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Abstract. We prove properties of a process calculus that is designed for an-
alyzing security protocols. Our long-term goal is to develop a form of protocol
analysis, consistent with standard cryptographic assumptions, that provides a
language for expressing probabilistic polynomial-time protocol steps, a spec-
ification method based on a compositional form of equivalence, and a logical
basis for reasoning about equivalence.

The process calculus is a variant of CCS, with bounded replication and
probabilistic polynomial-time expressions allowed in messages and boolean
tests. To avoid inconsistency between security and nondeterminism, messages
are scheduled probabilistically instead of nondeterministically. We prove that
evaluation of any process expression halts in probabilistic polynomial time and
define a form of asymptotic protocol equivalence that allows security proper-
ties to be expressed using observational equivalence, a standard relation from
programming language theory that involves quantifying over possible environ-
ments that might interact with the protocol.

We develop a form of probabilistic bisimulation and use it to establish the
soundness of an equational proof system based on observational equivalences.
The proof system is illustrated by a formation derivation of the assertion,
well-known in cryptography, that ElGamal encryption’s semantic security is
equivalent to the (computational) Decision Diffie-Hellman assumption. This
example demonstrates the power of probabilistic bisimulation and equational
reasoning for protocol security.

1. Introduction

There are a variety of methods used in the analysis of security protocols. The
main systematic or formal approaches include specialized logics such as BAN logic
[13, 19, 27], special-purpose tools designed for cryptographic protocol analysis [39],
and theorem proving [55, 56] and model-checking techniques using several general
purpose tools [43, 46, 52, 61, 63]. Although these approaches differ in significant
ways, all reflect the same basic assumptions about the way an adversary may in-
teract with the protocol or attempt to decrypt encrypted messages. This common
model, largely derived from Dolev and Yao [26] and suggestions due to Needham and
Schroeder [54], allows a protocol adversary to nondeterministically choose among
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possible actions (see [19]). This convenient idealization is intended to give the ad-
versary a chance to find an attack if one exists. In the presence of nondeterminism,
however, the set of messages an adversary may use to interfere with a protocol
must be restricted severely. Although Dolev-Yao-style assumptions make protocol
analysis tractable, they also make it possible to “verify” protocols that are in fact
susceptible to simple attacks that lie outside the adversary model (see e.g., [55,62]).
A further limitation of deterministic or nondeterministic settings is the inability to
analyze probabilistic protocols.

In this paper we describe some technical properties of a process calculus that was
proposed earlier [41, 42, 45, 51, 53] as the basis for a form of protocol analysis that
is formal, yet close in foundations to the mathematical setting of modern cryptog-
raphy. A recent conference paper [60] contains material excerpted from this paper.
The framework relies on a language for defining communicating polynomial-time
processes [51]. The reason we restrict processes to probabilistic polynomial time
is so that we can reason about the security of protocols by quantifying over all
“adversarial” processes definable in the language. In effect, establishing a bound
on the running time of an adversary allows us to relax the simplifying assumptions
on what the adversary might do. In particular, we can consider adversaries that
might send randomly chosen messages, or perform sophisticated (yet probabilistic
polynomial-time) computation to derive an attack from messages they overhear
on the network. An important aspect of our framework is that we can analyze
probabilistic as well as deterministic encryption functions and protocols. With-
out a probabilistic framework, it would not be possible to analyze an encryption
function such as ElGamal [28], for which a single plaintext may have more than
one ciphertext. A probabilistic setting is important also because the combination
of nondeterminism and bit-level representation of encryption keys renders any en-
cryption function insecure [41].

Some of the basic ideas of this work are outlined in [41], with the term language
presented in [51] and further example protocols considered in [42]. Much of this
paper is based on a preliminary report in [53]. The closest technical precursor is
the Abadi and Gordon spi-calculus [2, 3] which uses observational equivalence and
channel abstraction but does not involve probability or computational complexity
bounds; subsequent related work is cited in [1], for example. Prior work on CSP
and security protocols, e.g., [61,63], also uses process calculus and security specifi-
cations in the form of equivalence or related approximation orderings on processes.
One important parallel effort with similar goals, the paradigm of “universally com-
posable security”, can be found in [14–18]. The relationship of this paradigm to
our process calculus framework and its compositionality is discussed in [45]. The
paper [45] does not deal with probabilistic bisimulation or the proof rules for our
calculus. Another one based on I/O automata can be found in [7,8,57,58]. Previous
literature on probabilistic process calculi includes, e.g., [11, 40, 65]. However, as-
ymptotic equivalence as used in security does not appear in any of these references.
There are studies of asymptotic equivalence in the context of bisimulations though,
including e.g., [22, 23].

In this paper, security properties are specified as observational equivalences.
Specifically, P ∼= Q means that for any context C[ ], the behavior of process C[P]
is asymptotically computationally indistinguishable from the behavior of process
C[Q]. If P is a protocol of interest, and Q is an idealized form of the process
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that uses private channels to guarantee authentication and secrecy, then P ∼= Q is
a succinct way of asserting that P is secure. We have found this approach, also
used in [14–18, 58], effective not only for specifying security properties of common
network protocols, but also for stating common cryptographic assumptions. For
this reason, we believe it is possible to prove protocol security from cryptographic
assumptions using equational reasoning. The possibility is realized in this paper by
proving security of El Gamal encryption from the standard Decision Diffie-Hellman
assumption, and conversely.

Several advances over our previous efforts [41, 42, 45, 53] were needed to make
these formal equational proofs possible. First, we have refined the operational se-
mantics of our process calculus. Most importantly, we define protocol execution
with respect to any probabilistic scheduler that runs in polynomial time and oper-
ates uniformly over certain kinds of choices (to avoid unrealistic collusion between
the scheduler and a protocol attacker), and we give priority to private (“silent”)
actions by executing private actions simultaneously in parallel before public com-
munication. Second, we develop a form of probabilistic bisimulation that, while
not a complete characterization of asymptotic observational equivalence, gives a
tractable approximation. Third, we present an equational proof system and prove
its soundness using bisimulation. Finally, the material in Section 5 dealing with
computational indistinguishability, semantic security, El Gamal encryption, and
Decision Diffie-Hellman is entirely new.

Although our main long-term objective is to base protocol analysis on standard
cryptographic assumptions, this framework may also shed new light on basic ques-
tions in cryptography. In particular, the characterization of “secure” encryption
function, for use in protocols, does not appear to have been completely settled.
While the definition of semantic security [34] appears to have been accepted, there
are stronger notions such as non-malleability [25] that are more appropriate to pro-
tocol analysis. In a sense, the difference is that semantic security is natural for the
single transmission of an encrypted message, while non-malleability accounts for
vulnerabilities that may arise in more complex protocols. Our framework provides
a setting for working backwards from security properties of a protocol to derive nec-
essary properties of underlying encryption primitives. While we freely admit that
much more needs to be done to produce a systematic analysis method, we believe
that a foundational setting for protocol analysis that incorporates probability and
complexity restrictions has much to offer in the future.

2. Preliminaries

In Section 2.1 we introduce a notion of probabilistic function tailored to our
needs. Section 2.2 discusses multisets and extends the standard notion of an equiv-
alence class over a set to an equivalence class over a multiset. Finally, the material
in Section 2.3 on Turing machines recapitulates standard treatments and establishes
notation and terminology.

2.1. Probabilistic Functions.

Definition 2.1. A probabilistic function F from X to Y is a function X×Y → [0, 1]
that satisfies the following two conditions:

(1) ∀x ∈ X :
∑

y∈Y F(x, y) ≤ 1,
(2) For each x in X, the size of the set {y| y ∈ Y, F(x, y) > 0} is finite.
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For some x ∈ X, y ∈ Y , we write Prob
[
F(x) = y

]
= p and say F maps x to y with

probability p just when F(x, y) = p.

Definition 2.2. Let F : X × Y → [0, 1] be a probabilistic function. We will refer
to X as the domain of F, Y as the codomain of F, and

⋃

x∈X

{y| y ∈ Y, Prob
[
F(x) = y

]
> 0}

as the range of F.

We will say that a probabilistic function F : X × Y → [0, 1] is stochastic just
when ∀x ∈ X :

∑
y∈Y Prob

[
F(x) = y

]
= 1.

2.1.1. Composition of Probabilistic Functions.

Definition 2.3. We define the composition F2 ◦ F1 : X × Y → [0, 1] of two prob-
abilistic functions F1 : X × Y → [0, 1] and F2 : X × Y → [0, 1] as the function
satisfying the following condition:

∀x ∈ X.∀z ∈ Z : F(x, z) =
∑

y∈Y

F1(x, y) · F2(y, z)

Lemma 2.4. The composition of two probabilistic functions F1 : X × Y → [0, 1]
and F2 : Y × Z → [0, 1] is a probabilistic function from X to Z.

Proof. It is easy to see that F2 ◦ F1 satisfies condition 2 of Defn. 2.1. So it is
sufficient to show that F2 ◦ F1 satisfies the condition ∀x ∈ X :

∑
z∈Z F(x, z) ≤ 1.

For any fixed x ∈ X:
∑

z∈Z

F(x, z) =
∑

z∈Z

∑
y∈Y

F1(x, y) · F2(y, z) by Defn. 2.3

=
∑

y∈Y

(
F1(x, y) · ∑

z∈Z

F2(y, z)
)

≤ ∑
y∈Y

F1(x, y) by Defn. 2.1

≤ 1 by Defn. 2.1

Hence, composition is a probabilistic function. ¤

2.2. Multisets and Quotients of Multisets.

Definition 2.5. A multiset over a set X is a function A : X → N.

Note that any subset of X may be viewed, through its characteristic function,
as a multiset over X. We write x ∈ A iff A(x) ≥ 1. For two multisets, A and B
over X, we write A ⊆ B iff ∀x ∈ X : A(x) ≤ B(x). We will use ∅ to denote the
empty multiset defined as ∅(x) = 0 for all x ∈ X.

The union of two multisets over X, A and B, is given by (A]B)(x) = A(x)+B(x)
for all x ∈ X. The intersection of two multisets over X, A and B, is given by
(ACB)(x) = min{A(x), B(x)} for all x ∈ X. The difference A \B of two multisets
over X is given by (A\B)(x) = max{0, A(x)−B(x)}. The cardinality of the multiset
A over X is

∑
x∈X A(x). Finally, from a mapping f : X → Y and a multiset A over

X, we can define the multiset fA over Y as fA(y) =
∑
{x∈X| f(x)=y}A(x).

We may explicitly define a multiset A by enumerating its elements between
the {|· · ·|} brackets. For example, given an underlying set X, {|a, a, b|} denotes the
multiset A over X such that A(a) = 2, A(b) = 1, and ∀z ∈ X \ {x, y} : A(z) = 0.
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For any set X, element x ∈ X, and equivalence relation R ⊆ X ×X, [x]R is the
equivalence class of x with respect to R and X/R is the set of equivalence classes
of X induced by R. Let E ∈ X/R be an equivalence class of X under the relation
R. We write rep E for a representative element of E i.e., any x ∈ E.

We extend the notion of an equivalence class to multisets. Let A be a multiset
and X its underlying set. Let R be an equivalence relation over X. Given R and
an element x ∈ X, we define the equivalence class [x]R over A as the multiset

[x]R(y) =

{
A(y) if xRy, and
0 otherwise.

That is to say, the equivalence class of x with respect to R over the multiset A is
a multiset consisting of those elements y ∈ X related to x under R, each element
given the same multiplicities as in the multiset A. The set of equivalence classes of
A induced by R, written A/R, is the set {[x]R|x ∈ A}.
2.3. Probabilistic Turing Machines. The following definitions are standard (see
e.g., [6]).

Definition 2.6. An oracle Turing machine is a Turing machine with an extra
oracle tape and three extra states qquery, qyes, and qno. When the machine enters
state qquery control passes to the state qyes if the contents on the oracle tape are in
the oracle set; otherwise, control passes to the state qno. Given an oracle Turing
machine M , we will write M(ϕ,~a) for the result of M on input ~a using oracle ϕ.

We only consider binary oracles i.e., oracles that produce either a ‘1’ or a ‘0’
when queried. A binary oracle ϕ determines a set Aϕ = {a|ϕ(a)}, and querying ϕ
at a asks whether a ∈ Aϕ.

Definition 2.7. An oracle Turing machine M runs in oracle polynomial time if
there exists a polynomial q(~x) such that for all oracles ϕ, M(ϕ,~a) halts in time
q(|~a|) where ~a = 〈a1, . . . , ak〉 and |~a| = |a1|+ · · ·+ |ak|.

If M runs in oracle polynomial time, then M(~a) queries the oracle set on at most
the first q(|~a|) elements of the oracle set.

Definition 2.8 (Probabilistic poly-time Turing machine). Let M be an oracle
poly-time Turing machine. We can view M as a probabilistic poly-time Turing
machine (ppTM) if we randomly choose an oracle from the space of oracles that
can be queried in the time bound of M . More precisely, let M be an oracle machine
running in time bounded by the polynomial q(~x). Since M(~a) can only query an
oracle with at most q(~a) bits, we have a finite set Q of oracles on which M runs in
time bounded by q(x). Then, we can view M as a probabilistic poly-time Turing
machine where we say that M(~a) = b with probability p iff, choosing an oracle ϕ
uniformly at random from the finite set Q, the probability that M(ϕ,~a) = b is p.

Definition 2.9 (Probabilistic poly-time computable). We say that a probabilistic
poly-time Turing machine M computes a probabilistic function F if for all inputs ~a
and for all outputs b we have Prob

[
F(~a) = b

]
= Prob

[
M(~a) = b

]
. A probabilistic

function F is poly-time if it is computed by a probabilistic poly-time Turing machine.

We note that every function computed by a probabilistic polynomial-time Turing
machine satisfies condition 2 of the definition of probabilistic functions (Defn. 2.1)
and is, therefore, a probabilistic function.
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3. The Probabilistic Process Calculus

We present a probabilistic process calculus for analyzing security protocols in
which protocol adversaries may be arbitrary probabilistic polynomial-time pro-
cesses. The language consists of a set of terms that do not perform any commu-
nications, expressions that can communicate with other expressions, and, channels
that are the (logical) medium through which expressions communicate which each
other.

In what follows we assume a countable set of variable names V ar, a countable
set of channel names Channel, and a set of positive polynomials in one variable
Poly = {q : N → N| ∀a ∈ N : q(a) > 0}. Finally, we have a distinguished constant
n, the security parameter, that we will discuss in Section 3.2.

3.1. Terms. We assume the existence of a class of basic terms Θ for probabilis-
tic poly-time numeric functions of arbitrary arity, and a probabilistic function
eval : Θ× N∗ → N called basic term evaluation, such that:

(1) If θ is a basic term with k = arg(θ) arguments, then there exists a proba-
bilistic Turing machine Mθ with k inputs and a polynomial qθ(x1, . . . , xk)
such that:
(a) The Turing machine Mθ(a1, . . . , ak) returns a with probability p iff

eval(θ, 〈a1, . . . , ak〉) = a with probability p; and,
(b) For any choice of a1, . . . , ak, the machine Mθ(a1, . . . , ak) halts in time

at most qθ(|a1|, . . . , |ak|).
(2) For each probabilistic poly-time function f : Nm → N, there exists a basic

term θ of m arguments such that Mθ computes f .
The first condition states that all basic terms are computable in polynomial time,
while the second condition guarantees that any probabilistic poly-time function of
type Nm → N can be expressed by some basic term. One example of such a set of
terms is based on a term calculus called OSLR studied in Mitchell, Mitchell, and
Scedrov [51] (based in turn on work by Bellantoni and Hofmann [9,37]). The closed
OSLR terms of type Nm → N satisfy properties 1 and 2.

For our purposes, we simply identify the probabilistic poly-time functions and
basic terms. Thus, if f is a probabilistic poly-time function, then we will also use
f to refer to the basic term given by condition 2.

Definition 3.1 (Terms). Letting θ range over basic terms and x range over V ar,
the set Term of terms is given by the grammar:

T ::= x | n | (θ) T1, . . . , Tk where θ is a basic term of k arguments

Given a term T with no free variables, we define its reduction inductively:
(1) The term n reduces to the value chosen for the security parameter with

probability 1.
(2) The term [a/x]x reduces to the value a with probability 1.
(3) The term (θ) T1, . . . , Tk is reduced by first reducing T1, . . . , Tk yielding the

values a1, . . . , ak and then computing eval(θ, 〈a1, . . . , ak〉).
Given a term T we write T(a1, . . . , ak)

p
↪→ a just when T reduces to a on inputs

a1, . . . , ak with probability p. A term T is an atom just when ∃a ∈ N : T ≡ a. Given
a term T all of whose free variables are among x1, . . . , xk, it is easy to construct a
Turing machine MT with k inputs such that T(a1, . . . , ak) = a with probability p
just when [a1, . . . , ak/x1, . . . , xk]T reduces to a with probability p.
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We note that (id) a
1

↪→ a i.e., the term (id) a reduces to a with probability one.
In future we will simply write a for the term (id) a. Additionally, we draw the
reader’s attention to the fact that the distinguished constant n can appear as a
term. Finally, since every basic term has an associated Turing machine and since
the set of Turing machines are countable, Term is countable.

Example 3.2. Here are some sample terms:
(1) If M is a ppTM that generates key-pairs of a given length for some fixed

encryption scheme, then θM x is the term that generates key-pairs of length
x.

(2) If E is a ppTM that, given a message and a public key, produces the RSA
ciphertext of that message, then θE m k is the term that encrypts messages
m under public key k.

3.2. The Process Calculus. Expressions of the probabilistic process calculus
(PPC) are given by the following grammar:

P ::= ® (termination)
νc(P) (private channel)
in〈c, x〉.(P) (input)
out〈c, T〉.(P) (output)
[T1 = T2].(P) (match)
(P | P) (parallel composition)
!q(n).

(P)
(bounded replication)

Intuitively ® is the empy process that takes no further action. The private channel
operator, ν, forces the channel name c bound to it to act as a private channel in
the scope denoted by the enclosing parentheses. A channel name is public if it is
not bound by a ν-operator. For convenience we will α-rename channel names so
that they are all distinct. This is especially useful for separating public and private
channel names.

In the input expression in〈c, x〉.P, the input operator in〈c, x〉 binds the free
variable x in P. The expression in〈c, x〉.P waits until it receives a value a on the
channel c, and then substitutes a for the free occurences of x in P.

In contrast, the output operator in the output expression out〈c, T〉.P is not a
binding operator. The output operator out〈c, T〉 simply reduces T to a value a,
and then transmits a on the channel c before proceeding with P.

In the match expression [T1 = T2].(P), the match operator [T1 = T2] acts as a
guard on the expression P. If the match terms T1 and T2 both reduce to the same
value, then the evaluation of the expression P may continue. Otherwise, then entire
match expression evaluates to the empty process.

We evaluate the parallel composition P | Q by evaluating P and Q simultane-
ously. We will assume that the parallel composition operator | associates to the
left. The bounded replication operator has bound determined by the polynomial
q ∈ Poly affixed as a subscript. The expression !q(n).

(P)
is evaluated by rewriting

it as the q(n)-fold parallel composition
q(n) times︷ ︸︸ ︷
P | · · · | P

and evaluating the resultant expression. Finally, given expressions P and Q, we
write P ≡ Q just when P and Q are syntactically identical.
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An expression P generated by this grammar may contain the distinguished con-
stant n. Substituting a value drawn from the natural numbers for n gives rise to
processes. In particular if P is an expression, then the process obtained by sub-
stituting i for all occurrences of n in P is denoted P n←i i.e., P n←i ≡ [i/n]P. An
expression P can be thought to define the set of processes {P n←i| i ∈ N}. If we wish
to write a process without making the value of the security parameter explicit, we
will just drop the superscript and write P for a process obtained from the expression
P. The security parameter can appear in three places in an expression:

(1) In terms,
(2) In the polynomials bounding the replication operator, and,
(3) In bandwidth polynomials. We will associate a polynomial with each channel

name using the function σ : Channel → Poly. We will refer to σ as the
bandwidth map. The maximum number of bits that a channel c ∈ Channel
can transmit in one message is fixed by σ(c)(n).

Henceforth in this paper, unless otherwise specified, we will assume that every
process written without an explicit value for the security parameter has the same
value i chosen for the security parameter.

We let Expr be the set of process expressions and Proc the set of all processes
(expressions without n).

Example 3.3. Here are some sample expressions. In each we assume that the channel
bandwidths are large enough to accommodate the messages generated by the terms.

(1) We assume that we have terms rsa-params that generates the public values
of an RSA cryptosystem parameterized by n and rand-msg that generates
a random message of length determined by n.

in〈c1, x〉.in〈c2, y〉.out〈d, rsa(x, y)〉.® |
out〈c1, rsa-params〉.out〈c2, rand-msg〉.®

This expression computes the RSA ciphertext of the message y in the RSA
cryptosystem determined by x.

(2) !2n.
(
out〈c, rand〉.®)

. The expression can potentially transmit (given a suit-
able number of inputs on the channel c) up to 2n random bits.

(3) out〈c, rand〉 | !n−1.
(
in〈c, x〉.out〈c, x ‖ rand〉.®)

. We can use this expres-
sion to guess a key of length n.

If P is an expression with free variables (i.e., variables not bound by an input)
we say that P is open; otherwise P is closed. We will denote the set of all variable-
closed processes by ClosedProc. Let P be a open PPC expression and ξ a valuation
of the free variables of P in N. Then P(ξ) denotes the result of substituting, for
each free variable x, the value ξ(x) for all free occurrences of x in P. We extend
the notions of open, closed, and substitutions to processes in the usual way.

3.2.1. Contexts. A context is an expression with numbered “holes” (indicated by
empty square brackets [ ]k with k ∈ N). The numerical subscripts serve to uniquely
identify the holes. The notion of a context will prove very useful in reasoning about
security. If we express protocols as expressions, then we can use contexts to express
adversarial environments in which the protocols execute.
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In what follows we will assume that the subscripts numbering holes are drawn
from an index set K = {k1, . . . , km| ki ∈ N}. We define contexts inductively:

C[ ]K ::= P
[ ]ki (ki ∈ K)
νc(C[ ]K)
in〈c, x〉.(C[ ]K)
out〈c, T〉.(C[ ]K)
[T1 = T2].(C[ ]K)
(C[ ]K1 | C[ ]K2) (K1 ∩K2 = ∅,K1 ∪K2 ⊆ K)
!q(n).

(C[ ]K
)

This definition of contexts allows zero-holed contexts, which are just expressions. If
C[ ]K is a one-holed context with the hole indexed by k ∈ K we will simply write
C[ ]k.

It is useful to have a condition on the sets of indices ensuring that, after substi-
tuting one context into another, the holes in the resultant context are all uniquely-
indexed. Let C[ ]K be a context with K = {k1, . . . , km}. Let K1, . . . ,Km′ (m′ ≤ m)
be sets of indices such that ∀i, j ∈ [1..m′] : Ki∩Kj = ∅ and ∀i ∈ [1..m′] : K∩Ki = ∅.
Then C[C1[ ]K1 , . . . , Cm′ [ ]Km′ ] is the expression obtained by substituting Ci[ ]Ki

for the hole indexed by ki ∈ K.
We note that if we substitute D[ ]K into the hole in the context in〈c, x〉.[ ]k,

the input operator in〈c, x〉 will bind all free occurrences of the variable x in D[ ]K .
Similarly, substituting D[ ]K into the hole in the context νc([ ]k) results in the
binding of any occurence of channel c in D[ ]K to the ν-operator. Additionally, if
C[ ]k is a zero-holed context, then C[D[ ]K ]k ≡ C[ ]k for any context D[ ]K . As
was the case for expressions, it follows from the presence of the security parameter
n in a context C[ ]K that we can view C[ ]K as defining the set {Cn←i[ ]K | i ∈ N}.

We now extend syntactic identity to contexts. We will write that C[ ] ≡ D[ ]
just when writing C[ ] and D[ ] without any indices yields syntactically identical
expressions.

Definition 3.4. We define Con to be the set of all contexts. We will write PCon
for the set of contexts without n. The set of one-holed contexts will be an important
one and so we denote it by Con1.

Unless specifically stated or made contextually clear, we will assume that con-
texts are one-holed.

Definition 3.5. Let C[ ] and D[ ] be contexts. Then we say that D[ ] is a
subexpression of C[ ] exactly when there exists a one-holed context E[ ] such that
C[ ] ≡ E[D[ ]]. We say that D is a proper subexpression of C if E[ ] 6≡ [ ]. In the case
that D[ ] is not a zero-holed context, we will say that D[ ] is a subcontext of C[ ].
We will extend the definitions of (proper) subexpressions to (proper) subprocesses.

For brevity, instead of writing out〈c, T〉.(®), we will write out〈c, T〉. We will
also drop parentheses whenever it does not interfere with clarity.

Definition 3.6. An expression Q appears guarded in P by an input (resp. output)
operator if it appears in the scope of an input operator (resp. if out〈c, T〉.C[Q] is a
subexpression of P for some one-holed context C[ ], some channel c and some term
T). An expression P is blocked if each match and non-atomic term appearing in
P either appears guarded by an input operator or appears guarded by an output
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operator, and unblocked otherwise. This definition is easily extended to expressions
appearing in contexts.

Intuitively a blocked process is blocked from performing local computation (as
embodied in terms) since all unguarded terms are atoms. On the other hand, an
unblocked process can continue performing local computation. We model situations
where a local computation requires some data via communication over a network
by guarding a term representing that computation with a suitable input operator.

3.3. The Operational Semantics for PPC. The evaluation of a process pro-
ceeds in a series of communication steps. Each communication step is probabilis-
tically selected by a scheduler. A communication step takes an input-output pair
(which is an input and an output on the same channel, neither of which are blocked)
and performs the communication by substituting the output value for the bound
variable in the scope of the input. This procedure is repeated until there are no
input-output pairs left.

Performing a communication step on a blocked process might yield an un-
blocked process rather than a blocked process. For example, the blocked process
in〈c, x〉.[T1(x) = T2(x)].® | out〈c, 1〉 has only one possible communication step:
the input in〈c, x〉.[T1(x) = T2(x)].® communicates with the output out〈c, 1〉. Per-
forming this step yields the match [T1(1) = T2(x)].® which is not blocked. So, we
introduce a reduction step that runs an unblocked process until it becomes blocked
i.e., ready to communicate.

Consequently, an evaluation step on a process is a three-stage procedure that
first performs a reduction step to obtain a blocked process, next performs selection
step to select a particular communication step, and finally performs the chosen
communication step. The evaluation of processes is a series of evaluation steps
that terminate only when there are no more communication steps to perform.

We observe that the only sources of probabilistic behavior in process evaluation
are the reduction steps and the selection steps. Probability naturally arises in the
context of process reduction since the terms are meant to capture polynomially-
bounded probabilistic computation: without probability it would be difficult to
capture probabilistic encryption schemes like ElGamal encryption, pseudorandom
number generators, etc. The selection step is probabilistic since scheduling is done
probabilistically. The reader might wonder why the scheduler needs to be proba-
bilistic rather than simply nondeterministic. If nondeterministic scheduling is em-
ployed, an attacker has unreasonable computational power. Consider the following
process:

out〈d, Encrypted〉 | out〈c1, 0〉 | out〈c1, 1〉 | · · · | out〈ck, 0〉 | out〈ck, 1〉 |
in〈d, e〉.in〈c1, x1〉 · · · in〈ck, xk〉.out〈c, Decrypt(e, x1 ‖ · · · ‖ xk)〉

where Decrypt(e, x1 ‖ · · · ‖ xk) is a function that decrypts the encrypted message
e using the k-bit key x1 ‖ · · · ‖ xk (which we read as the concatenation of the bits
xi). Using nondeterministic scheduling, the attacker can simply guess the key and
decrypt the message. Because we wish to constrain the computational power of
the adversary by restricting it to poly-time1 probabilistic behavior, we must adopt
probabilistic scheduling. We could have used nondeterministic scheduling if we had
constrained the abilities of the adversary (as in the Dolev-Yao model). We do not

1We show in Section 6 that the attacker is limited to time polynomial in the security parameter.
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do this since such a model eliminates from consideration simple attacks that lie
outside the adversary model (see e.g., [62]).

The following list provides an informal discussion of the behavior of each syntac-
tic element of PPC. We will formalize these informal semantics in the next section.

Inputs: A process in〈c, x〉.P can receive a value a of size no greater than the
bandwidth b = σ(c)(i) (recall that we assume all processes have the same
value i substituted for the security parameter). The value a mod 2b − 1 is
then substituted for the variable x everywhere in P. In order to ensure that
the value received by the input has size smaller than the c’s bandwidth, we
do not substitute a for x in P but a mod (2b − 1).

Outputs: A process out〈c, a〉.P can transmit the value a on the channel c.
The value a is generated by reducing some term T . Whilst reducing T we
ensure we bandwidth-limit the result.

Matches: A match [T1 = T2].P proceeds with P only when T1 and T2 evaluate
to the same value. Otherwise, the match becomes the empty process.

ν-Operator: The ν-operator controls whether a channel is private or public.
A channel c bound by ν is private in the scope of the binding. If a channel
name c is bound somewhere in a process, then it cannot appear in an input
or output operator outside the scope of that binding since we α-rename
channel names before evaluation.

Intuitively, a private channel models communication through some priv-
ileged secret medium that cannot be seen by eavesdroppers. In terms of
the calculus, an output on a private channel can only be captured by an
input on the same channel if the input is also in the scope of the binding
ν-operator. We will use private channels to transmit shared secrets like
private keys, seed values and so on.

Parallel Composition: Processes combined using the parallel composition
operator, |, evaluate in parallel. If a process that can perform an input
communication step and another process that can perform an output com-
munication step on the same channel are composed in parallel, then the
combined process can perform a communication step where the input gets
its value from the output (subject to the bandwidth restrictions on chan-
nels). Alternatively, two processes composed by | may proceed indepen-
dently of each other without communicating with each other.

Replication: For a particular choice of value i for the security parameter n,
the replication !q(n).

(P)
is just the q(i)-fold parallel composition of P n←i.

That is to say

!q(i).
(
P

) ≡
q(i) times︷ ︸︸ ︷

P | · · · | P
Recall that we assume that parallel composition is left-associative.

We use the bandwidths associated with each channel name (using the bandwidth
map σ) to ensure that no exponentially long messages can ever be transmitted.
This property is crucial in obtaining the polynomial time bound on process eval-
uation given in Section 6.5. Consider the expression P ≡ !n.

(
in〈c, x〉.out〈c, x2〉) |

out〈c, 2〉. It is easy to see that P n←i simply squares the value 2 i times (thanks
to the replication operator). Thus, P generates values of length exponential in n.
Now if the output of P is used as the input to some poly-time expression Q, we
will obtain an exponential-time expression since Q must run on exponentially long
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Figure 1 Process Reduction.

Prob
[® ½ ®]

= 1
Prob

[
in〈c, x〉.P ½ in〈c, x〉.P]

= 1
Prob

[
out〈c, T〉.P ½ out〈c, a〉.P]

=∑
{m|m mod (2σ(c)(i)−1)=a} Prob

[
T ↪→ m

]

Prob
[
νc(P) ½ νc(Q)

]
= Prob

[
P ½ Q

]
Prob

[
[T1 = T2].® ½ ®]

= 1
Prob

[
[T1 = T2].P ½ Q

]
=

(
∑

a∈N Prob
[
T1 ↪→ a

] · Prob
[
T2 ↪→ a

]
) · Prob

[
P ½ Q

]
(P 6≡ ®)

Prob
[
[T1 = T2].P ½ ®]

=∑
{〈a,b〉∈N2| a 6=b} Prob

[
T1 ↪→ a

] · Prob
[
T2 ↪→ b

]
(P 6≡ ®)

Prob
[
P1 | P2 ½ Q1 | Q2

]
= Prob

[
P1 ½ Q1

] · Prob
[
P2 ½ Q2

]

values. However, if we truncate the messages transmitted then no message can ever
get exponentially long.

We now formalize the intuitive operational semantics just given. Our presenta-
tion will consist of four steps. We start by formally defining reduction. Our goal is
to define the meaning of a process as the labelled transition system for that process.
In order to define this “process graph”, we will need to define the labels on edges
in the graph (actions), as well as the probabilities that annotate those edges (which
denote the probability that the action labelling the edge occurs during evaluation).
So, after defining reduction, we will define actions and the probability that a par-
ticular action can be taken by a process. With these definitions in hand, we will
give the operational semantics for PPC as a set of inference rules. Only then can
we define the meaning of a process as a process graph. Our final step is to formalize
scheduling.

In the remainder of this section, we will confine ourselves to closed processes. The
extension to open processes can be achieved by considering the open process under
all valuations of free variables, and the extension to expressions can be achieved by
considering the expression under all values for the security parameter.

Reduction. Evaluation of processes involves the reduction of unblocked processes to
blocked processes, and this is where we start. We define in Figure 1 the probability
Prob

[
P ½ Q

]
that P reduces to Q by induction on the structure of P. In this

definition we assume that all processes have the same value substituted for n, the
security parameter. We will write P

p
½ Q to indicate that P reduces to Q with

probability p. If Prob
[
P ½ Q

]
> 0 we say that Q is a reduct of P. A reduct Q of

P is trivial just when Q ≡ P and non-trivial otherwise.
The definition omits the case of replication, !q(i).

(
P

)
, since we simply treat repli-

cation as q(i)-fold parallel composition of P. In all other cases, we have that
Prob

[
P ½ Q

]
= 0. In Lemma 3.7 we will prove that reduction is a probabilistic

function from unblocked to blocked processes and that reduction is idempotent.
The idea behind reduction is to evaluate all terms in exposed outputs and elim-

inates exposed matches by evaluating them. Consider what happens when we
attempt to reduce the match [T1 = T2].P. The probability that we obtain some
blocked process Q is equal to the product of the probability that the match suc-
ceeds and the probability that P reduces to Q. We notice, however, that the only
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reduct of ® is ®. Unfortunately, we can also obtain that ® by failing the match
in the case that P ≡ ®. Hence when dealing with matches, we consider that case
that P ≡ ® separately from the case that P 6≡ ®.

We also draw the reader’s attention to the probability that out〈c, T〉.Q reduces
to out〈c, a〉.Q. Intuitively this probability should just be the probability that T
evaluates to the value a. However, the reader might recall that we truncate values
to σ(c)(i) bits during transmission. Thus, the probability of seeing an a placed on
the channel c is more properly calculated as the sum over all values m congruent
to a modulo 2σ(c)(i) − 1 of the probability that the term T reduces to a.

Lemma 3.7. Reduction, denoted ½, is a probabilistic function from unblocked
processes to blocked processes. Furthermore, reduction is idempotent i.e., if P is a
blocked process then Prob

[
P ½ P

]
= 1.

Proof. A routine induction on the structure of processes. ¤
Actions. We now define actions which will label edges in the process graph of a
process. A communication step, as we already noted, consists of an input-output
pair. However, in order to capture the behavior of a process in any arbitrary context,
it will be useful to have communication where one party in the communication is
part of an arbitrary context in which the process is being evaluated. Thus, we
will require communications representing an input that receives a value from an
arbitrary evaluation context and communications representing an output that sends
a value to an arbitrary evaluation context. Thus, we will have labels, which we will
call actions, indicating communications in the conventional sense as well as these
partial communications where one of the participants is in the arbitrary context in
which the process is being evaluated. In addition we will make use of a silent action
to signify communications on private channels as well as reduction steps.

Definition 3.8. Let Λ = {in〈c, a〉| c ∈ Channel, a ∈ N} be the set of input actions
and Λ̄ = {out〈c, a〉| in〈c, a〉 ∈ Λ} the set of output actions. We let τ be the silent
action. If α, β ∈ Λ∪ Λ̄∪{τ}, we will say that β is the co-action of α, written β = ᾱ,
exactly when either

(1) α = in〈c, a〉 and β = out〈c, a〉; or,
(2) α = out〈c, a〉 and β = in〈c, a〉; or,
(3) α = β = τ .

Clearly, ¯̄α = α. We let Λ1 = Λ∪ Λ̄ be the set of partial actions and Λ2 = {α · ᾱ|α ∈
Λ1} the set of actual actions. The set Act = Λ1 ∪ Λ2 ∪ {τ} is the set of actions of
PPC. We will define the set of public actions to be the set Act \ {τ} i.e., the set of
all non-silent actions.

The precise meaning of the various actions is given by the operational semantics
induced by the inference rules of Figure 2. An actual action α · β is just the simul-
taneous ordered occurrence of the actions α and β. We will show in Section 4.2 that
the action product is commutative with respect to the probabilistic bisimulation
relation.

In the rest of this paper, we use α to range over all actions, 2A to denote the
powerset of the set A, P(A) to denote the set of all multisets whose elements are
drawn from A, the function chan : Act → 2Channel to determine the channel(s) on
which an action occurs, and, the function priv : Proc → 2Channel to obtain the set
of private channels in a process P.
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We now define an equivalence relation over actions. Intuitively, two actions
should be equivalent if they generate the same observable behavior. That is to say,
two actions should be equivalent if they put the same values on the same channels.
In order to formally define this equivalence relation we will need to define the carrier
of an action α, denoted car α, which represents the underlying channel and value
being transmitted by the action. We define

car : Act → ∅ ∪ {〈input, c, a〉, 〈output, c, a〉, 〈actual, c, a〉| c ∈ Channel, a ∈ N}
by cases:

(1) car τ = ∅,
(2) car in〈c, a〉 = 〈input, c, a〉,
(3) car out〈c, a〉 = 〈output, c, a〉, and,
(4) car(α · ᾱ) = 〈actual, c, a〉 just when α 6= τ and α is an input (resp. output)

on the channel c receiving (resp. sending) the value a.

Definition 3.9. We say that α and β are equivalent, written α ∼ β, exactly
when car α = car β. Given a multiset of actions A, we say that the equivalence
class [α]∼ ∈ A iff ∃β ∈ [α]∼ such that β ∈ A. We extend this notion of action-
equivalence to multisets of actions as follows: given two multisets of actions η and
θ, we say that η ∼ θ ⇐⇒ η/∼ = θ/∼ using the definition of multiset quotient from
Section 2.2.

Since ∼ places each action into an equivalence class determined by its observable
behavior, it is easy to see that α · ᾱ ∼ ᾱ · α. Henceforth we shall use the variables
[α], [β], . . . to range over the equivalence classes of Act induced by ∼.

Locating Contexts, Separators, and Normalization Functions. In this section we
introduce some some technical material that will allow us to properly define the
probabilities that will annotate edges in a process graph. The three notions we will
study are: (1) locating contexts, (2) maximal c-separators, and, (3) the normaliza-
tion function N . Locating contexts will prove convenient in precisely identifying
the participants in a single action. Maximal c-separators will allow us to properly
specify the effects of the ν-operator. We will use the normalization function to
correctly compute the probabilities associated with a particular edge in a process
graph.

Definition 3.10. Given specific occurrences of the sub-processes P1, . . . , Pk of Q,
we will refer to the k-holed context C[ ] such that C[P1, . . . , Pk] ≡ Q as a locating
context for P1, . . . , Pk in Q. We will also say that C[ ] locates P1, . . . , Pk in Q.

We will use locating contexts to exactly identify the subprocesses of a process
involved a (partial or actual) communication step. We will define a silent action of
a process P as either a reduction step or the simultaneous occurrence of all actual
actions of P on private channels that can go simultaneously. In order to define
the behavior of a silent action representing communications on private channels,
we will need to locate all the inputs and outputs corresponding to that action. A
c-separator for a process P is, essentially, a locating context that identifies all the
actual actions on the channel c that P can simultaneously take, and we will use
separators to specify the effects of the ν-operator. Naturally, there might be many
ways in which a process P can simultaneously take all actual actions on the (private)
channel c that can simultaneously go, and we will require one c-separator for each
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way. A c-separator that identifies m distinct action will be a 2m-holed context
whose holes are numbered from 1 to 2m. The even-numbered holes will locate
inputs and the odd-numbered holes will locate outputs (condition 1 below). Finally,
a c-separator must identify actions that can be taken by a process. Therefore, each
subprocess located by the separator must not be guarded by an input or an output
(condition 2 below).

Definition 3.11. Let P be a blocked process, c a channel, K = {1, . . . , 2m}, and
C[ ]K a 2m-holed locating context for 2m processes Q1, . . . , Q2m in P such that

(1) For each even i ∈ [1..2m] we have that Qi is an input expression on the
channel c and for each odd i ∈ [1..2m] we have that Qi is an output ex-
pression on the channel c, and,

(2) For each i ∈ [1..2m] there does not exist a 2m-holed context D[ ] and a
one-holed context E[ ] such that either
(a) C[ ]K ≡ D[[ ]1, . . . , [ ]l−1, in〈c, x〉.E[ ]l, . . . , [ ]2m] holds for some

l ∈ [1..2m], c ∈ Channel and x ∈ V ar; or, or
(b) C[ ]K ≡ D[[ ]1, . . . , [ ]l−1, out〈c, T 〉.E[ ]l, . . . , [ ]2m] holds for some

l ∈ [1..2m], c ∈ Channel and T ∈ Term.
Then, C[ ]K is a c-separator for P. A 2m-holed c-separator C[ ]K for P is maximal
just when there does not exist a 2(m+1)-holed c-separator D[ ]K′=K∪{2m+1,2m+2}
for P such that

D[[ ]1, . . . , [ ]i−1, in〈c, x〉.Qi, [ ]i+1, . . . , [ ]j−1, out〈c, T〉.Qj , [ ]j+1, . . . , [ ]2m+2]

≡ C[ ]K

for some even i ∈ K ′ and odd j ∈ K ′ i.e., C[ ]K is a c-separator that identifies one
way of simultaneously taking all possible actual actions on the channel c.

Given a c-separation of P we will also assume, without any loss of generality,
that the output located by the hole indexed i communicates with the input located
by the hole indexed i− 1. Thus, an 2m-holed c-separator for P “separates” out or
identifies a set of m actual actions on the channel c that P can simultaneously take.
Given m actual actions, α1, . . . , αm of P, we will say that the αi (1 ≤ i ≤ m) are
mutually non-interfering if there exists a 2m-holed c-separator for P that identifies
the actions α1, . . . , αm.

We define Sepc(P) to be the set of all maximal c-separators of P. Let P be a
blocked process with i exposed inputs on the channel c and j exposed outputs on
the channel c. Then, the number of ways that P can simultaneously take a maximal
set of mutually non-interfering actual actions on the channel c is

i!
(i− j)!

if j ≤ i,

j!
(j − i)!

if j > i, and,

0 if either i = 0 or j = 0.

If either i or j is zero, then no c-separation exists and Sepc(P) = ∅. Since Sepc(P) is
the set of all maximal c-separators of P, this computation yields the size of Sepc(P)
(denoted |Sepc(P)|).

Now we turn to the normalizing function N . The normalization factor of a
process P with respect to the action α counts the number of distinct ways that P
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can take an action of type α. When evaluating a process P, we will pick a particular
action of type α uniformly at random from the set of all actions of type α that the
process P can possibly take. In Figure 2, we use the normalization factor to ensure
that we combine probability distributions on actions correctly when we combine
processes using | or apply a ν-operator.

Definition 3.12. Let BlockedProc be the set of blocked processes. We define the
normalizing function N : BlockedProc×Act → R by induction:

(1) N(®, α) = 0,

(2) N(νc(P), α) =





N(P, α) if ∀a ∈ N : in〈c, a〉, out〈c, a〉 6∈ car α

and α � τ ,
N(P, τ) · |Sepc(P)| if α ∼ τ and N(P, τ) 6= 0,
|Sepc(P)| if α ∼ τ and N(P, τ) = 0, and,
0 otherwise.

(3) N(in〈c, x〉.P, α) =

{
1 if ∃a ∈ N : α ∼ in〈c, a〉,
0 otherwise.

(4) N(out〈c, a〉.P, α) =

{
1 if α ∼ out〈c, a〉,
0 otherwise.

(5) N(P1 | P2, α) =





N(P1, α) + N(P2, α) +
+

∑
{β·β̄∼α}N(P1, β) ·N(P2, β̄) if α � τ ,

N(P1, τ) ·N(P2, τ) otherwise.

(6) N(!q(i).
(
P

)
, α) = N(

q(i) times︷ ︸︸ ︷
P | · · · | P, α).

Lemma 3.13. The normalization function N is well-defined.

Proof. By induction on the structure of processes. ¤
Probabilistic Transitions and Process Graphs. In this section we give the semantics
of PPC processes as a(n evaluation) graph induced by a set of inference rules. We
will write

P
α[p]−−→ Q

iff it can be obtained from the inference rules of Figure 2. We refer to P
α[p]−−→ Q as

a transition and its intuitive meaning is that if P takes the action labelled α, then
with probability p it will become Q. The first group of axioms deal with inputs and
outputs. In Axioms (I) and (O), we stipulate that a ∈ [0..2σ(c)(i) − 1] since values
placed on a channel are truncated by the channel’s bandwidth. These two axioms
allow the evaluation of input and output processes.

We draw the reader’s attention to the fact that if a process is unblocked then
it can only take a reduction action: in Axioms (CL), (CR), (SL), (SR), (C), (S),
and (N1) we assume that P1 | P2 is blocked. Thus the only actions available
to an unblocked process are the reduction actions specified by Axiom (R) which
states that an unblocked process can take a silent transition to one of its non-trivial
reducts.

Axioms (SL), (SR), and (S) characterize the behavior of silent actions under the
parallel composition. Essentially, if P and Q can take silent actions, then P | Q
simultaneously takes a silent action of P and one of Q. This behavior is meant to
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Figure 2 The Operational Semantics of PPC.

in〈c, x〉.P in〈c,a〉[1]−−−−−−→ [a/x]P (I)

out〈c, a〉.P out〈c,a〉[1]−−−−−−→ P (O)
P unblocked

P
τ [Prob[P reduces to Q]]−−−−−−−−−−−−−−−→ Q

(R)

P1
α[p]−−→ Q1, P1 | P2 blocked, α � τ,

P2 has no silent actions

P1 | P2

α
[

1
N(P1|P2,α)

]

−−−−−−−−−→ Q1 | P2

(CL)

P2
α[p]−−→ Q2, P1 | P2 blocked, α � τ,

P1 has no silent actions

P1 | P2

α
[

1
N(P1|P2,α)

]

−−−−−−−−−→ P1 | Q2

(CR)

P1
α[p]−−→ Q1, P2

ᾱ[q]−−→ Q2, P1 | P2 blocked, α � τ

P1 | P2

α·ᾱ
[

1
N(P1|P2,α·ᾱ

]

−−−−−−−−−−−→ Q1 | Q2

(C)

P1
τ [p]−−→ Q1, P2 has no silent actions, P1 | P2 blocked

P1 | P2
τ [p]−−→ Q1 | P2

(SL)

P1 has no silent actions, P2
τ [p]−−→ Q2, P1 | P2 blocked

P1 | P2
τ [p]−−→ P1 | Q2

(SR)

P1
τ [p]−−→ Q1, P2

τ [q]−−→ Q2, P1 | P2 blocked

P1 | P2
τ [pq]−−−→ Q1 | Q2

(S)

C[ ] ∈ Sepc(P), C[R1, . . . , Rk] ≡ P, P blocked,

∃D[ ] ∈ PCon : either Prob
[
C[®, . . . ,®] τ−→ D[®, . . . ,®]

]
> 0 or C[ ] ≡ D[ ],

∀i ∈ [1..k].i odd: Prob
[
C[R1, . . . , Ri, Ri+1, . . . , Rk]

in〈c,a〉·out〈c,a〉−−−−−−−−−−→
C[R1, . . . , Ri−1, Si, Si+1, Ri+2, . . . , Rk]

]
> 0

νc(C[R1, . . . , Rk])
τ[ 1

N(νc(P),τ) ]−−−−−−−−→ νc(D[S1, . . . , Sk])
(N1)

P blocked, SepcP = ∅, P τ [p]−−→ Q

νc(P)
τ [p]−−→ νc(Q)

(N2)

P
α[p]−−→ Q,α � τ, @a ∈ N : in〈c, a〉, out〈c, a〉 ∈ car α

νc(P)
α[p]−−→ νc(Q)

(N3)
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embody the idea that a silent action is somehow internal to a process. Thus, when
two processes are composed with |, the two processes can take their silent (internal)
actions simultaneously. Axiom (N1) states that binding the channel c in the process
P to the ν-operator allows the process νc(P) to take a silent action representing the
simultaneous execution of a maximal set of non-interfering actual actions of P on
the channel c and some silent action of P. Axiom (N2) states that if P has no actual
actions on the channel c, then binding c to the ν has no effect on silent actions.
Axiom (N3) states that the ν-operator has no effect on the probability distribution
for an action that is neither silent nor on the channel c.

The operational semantics for PPC (as given by the rules of Figure 2) induce
a mapping ϕ from ClosedProc to a domain of probabilistic labelled transition
systems which we can extend to a mapping χ from Proc to a domain of sets of
probabilistic labelled transition systems. We can further extend χ to a mapping ψ
from Expr to a domain of sets of sets of probabilistic labelled transition systems.
More concretely, the operational semantics for PPC gives the labelled transition
system of a process as a(n evaluation) graph where each node is labelled by a process
and each directed edge 〈u, v〉 represents a transition from the process labelling u to
the process labelling v and is labelled by the pair consisting of the action labelling
t and the probability associated with t. To give the semantics of an open process P
we consider all valuations of the free variables of P. Similarly to give the semantics
of an expression P, we consider all processes obtained by substituting in P a value
for the security parameter. We defer the details until after Defn. 3.16.

An examination of the rules given in Figure 2 reveals that it is possible for a
node in the process graph of P to have several outgoing edges labelled with the
same action-probability pair. Consider the process graph of out〈c, a〉 | out〈c, a〉:

out〈c, a〉 | out〈c, a〉
〈out〈c,a〉, 1

2 〉

uulllllllllllll 〈out〈c,a〉, 1
2 〉

))RRRRRRRRRRRRR

® | out〈c, a〉
〈out〈c,a〉,1〉

²²

out〈c, a〉 | ®
〈out〈c,a〉,1〉

²²
® | ® ® | ®

Often we will want to sum probabilities over the outgoing edges of a node in order to
calculate the total probability that a process does something. In the example above,
for instance, we might wish to know the cumulative probability that out〈c, a〉 |
out〈c, a〉 takes an action out〈c, a〉—in this case that value is 1. In order to ensure
that we calculate these sums correctly, it will be important to distinguish between
transitions with the same labels. In order to do so, we will identify transitions with
indices such that no two outgoing transitions of a process have the same index.

It now remains for us to discuss the indices themselves. We need to find a set of
indices that ensures that no two transitions leaving a process has the same index.
We can use a locating context to identify the input and/or output expressions
involved in an action i.e., we can simply index a transition labelled by α with
the locating context that identifies the inputs and outputs that communicate via
the action α.2 In order to accommodate reduction actions, we will use zero-holed

2Many locating contexts are of no use in identifying communication steps. Consider, for example,
the locating context [T1 = T2].C[ ]. No communication located by this locating context can
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contexts to “locate” the participant (the entire process) involved in a reduction
action. We shall refer to the set of locating contexts as the index set and denote it by
Index. Using locating contexts to index our transitions also confers the benefit that
we can single out the subprocesses of a process that are communicating. Clearly
Index ⊆ PCon. Using these indices, the process graph of out〈c, a〉 | out〈c, a〉
becomes:

out〈c, a〉 | out〈c, a〉
〈out〈c,a〉, 1

2 ,[ ]|out〈c,a〉〉llll
l

uullll
l 〈out〈c,a〉, 1

2 ,out〈c,a〉|[ ]〉
RRRR

R

))RRRR
R

® | out〈c, a〉
〈out〈c,a〉,1,®|[ ]〉

²²

out〈c, a〉 | ®
〈out〈c,a〉,1,[ ]|®〉

²²
® | ® ® | ®

We will write P
α[p]−−→j Q to denote a transition P

α[p]−−→ Q that we can index
with j ∈ Index. The following lemma states that sums over the probabilities of
transitions leaving a process are well-defined i.e., for each type of action they are
less than 1.

Lemma 3.14.

∀P ∈ Proc.∀α ∈ Act :
∑

β∼α,j∈Index

Prob
[
P

β−→j Q
] ≤ 1

Proof. There are two cases to distinguish:
(1) P is unblocked. Then the only action available to P is a reduction step.

From the definition of reduction (see Defn. 3.3) it is easy to see that∑
j∈J Prob

[
P

τ−→j Q
] ≤ 1 since reduction is a probabilistic function from

unblocked processes to blocked processes.
(2) P is blocked. Our inference rules guarantee that only a finite number of

transitions leaving P are labelled by β ∼ α. In particular, only N(P, α) of
the transitions leaving P are labelled by β ∼ α. Each of these transitions
has probability 1/N(P, α) whence the desired result follows.

Since the case analysis is exhaustive, the desired result follows. ¤
Remark 3.15. Our indices are chosen so that no two identically-labelled transitions
leaving a process P have the same index. Consequently, whenever we use some set
A ⊆ Act to sum over probabilities of transitions, we will make use of indices and
Lemma 3.14 to guarantee that the sum is well-defined. However, since we require
indices purely for this technical reason, whenever we can safely do so, we will not
annotate transitions with indices.

An examination of the definition of the normalization function together with the
inference rules of Figure 2 shows that Prob

[
P

α−→ Q
] ·N(P, α) = 1 holds whenever

P is a blocked process. This is because N(P, α) counts the number of ways that
you can take an α-transition in P and the semantics given for PPC ensure that the

possibly be taken, since the outermost match needs to be reduced first. However, for every valid
communication it is easy to see that there must exist a locating context identifying the participants
in that communication step. Hence, we can use (a subset of all) locating contexts to identify valid
communications.
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action α of a process P is chosen according to the uniform distribution on α-actions
available to P.

We now define the process graph of a process P.

Definition 3.16. A probabilistic transition system or process graph is a 3-tuple
〈R, T, I〉 with

(1) R a set of states,
(2) T ⊆ R×Act× [0, 1]× Index×R a set of transitions, such that

(a)
(〈s, α, p, j, t〉 ∈ T ∧ 〈s, β, q, j, r〉 ∈ T

)
=⇒ (α = β) ∧ (p = q) ∧ (t = r)

(b) ∀s ∈ R.∀α ∈ Act :
(∑

{〈s,β,p,j,t〉∈T | β∼α} p
)
≤ 1

and,
(3) I ∈ R the initial state.

The first requirement on T says that every outgoing transition of a state must
have different indices. The second one says that, for each state s and for each action
α, the sum of the probabilities over all the outgoing transitions β with β ∼ α does

not exceed 1. We will write P
[α][p]−−−→ Q iff

∑

j∈Index,β∼α

Prob
[
P

β−→j Q
]

= p

We will say that Q is α-reachable from P exactly when Prob
[
P

[α]−−→ Q
]

> 0.
It is clear from the definition of process graphs that a process can have several
process graphs. For example, given a process graph G for P we can construct
another process graph G′ for P by adding a node u labelled by a process Q that
is not reachable from P by any path. We remove this ambiguity by defining an
isomorphism on process graphs and then identifying all isomorphic graphs.

We will consider superfluous all parts of a transition system not reachable from
the root, and we will identify states labelled with the same process. Thus, letting
T be the set of all transitions, an isomorphism between two transition systems
〈R, T, I〉 and 〈R′, T ′, I ′〉 is a bijective mapping f : T ∪ Proc → T ∪ Proc between
their states and transitions satisfying:

(1) f(s, α, p, j, t) = (f(s), α, p, k, f(t)) where j and k may be different indices3,
(2) f(s) = s′ with s′ ∈ R′, and,
(3) f(I) = I ′.

We will identify isomorphic transition systems. So, writing Proci for the set of all
processes having i as the value of the security parameter, ϕ(P n←i) for P n←i ∈ Proc
is defined to be the transition system 〈Proci, T, P n←i〉 with

T = {〈Qn←i, α, p, j, Rn←i〉|Qn←i α[p>0]−−−−→j Rn←i}
It is easy to see that the transition system for P n←i is a directed acyclic graph.

Let G be the domain of transition systems or process graphs. We can extend
ϕ : ClosedProc → G to an interpretation χ : Proc → 2G of all PPC processes by
extending ϕ to open processes. To do so, let P be an open PPC process and let ξ
denote a valuation of the free variables of P in N. Then, denoting by P(ξ) the result
for all free variables x of substituting ξ(x) for x in P, we can define χ(P) as the

3The arguments of remark 3.15 can be used to demonstrate that the second condition on T in the
definition of probabilistic transition systems—Defn. 3.16—is never violated.
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set {ϕ(P(ξ))| ξ is a valuation of FV (P)}. To extend χ : Proc → 2G to an interpre-
tation ψ : Expr → 22G of expressions we define ψ(P) as the set {χ(P n←i)| i ∈ N}.

Finally, we will define the transition set of P, denoted Trans(P), as the set

{[α]∼| ∃Q ∈ Proc : Prob
[
P

α−→ Q
]

> 0}
of equivalence classes of actions labelling arrows leaving the node labelled by P in
ϕ(P). We note that the transition set of P is finite since an examination of the rules
of Figure 2 reveals that any node in the process graph of P has finite outdegree.

Schedulers. Our goal i is to provide a process-calculus-based treatment of security
protocols and security properties. To do so, we will model attackers as contexts
within which the protocol, modelled as an expression, executes. However, in the
real world, the network over which a protocol is running might be under the control
of the adversary. We model this situation by placing the network (i.e., the order
in which messages are sent) under the control of a scheduler which is then made
part of the definition of an adversary i.e., formally, an adversary is a pair consisting
of a context and a scheduler. Since we do not want to fix a particular scheduler
in our operational semantics, we defined the process graph of a process without
specifying an particular schedule. As a consequence, the process graph of a process
is not probabilistic in that the sum over the probabilities of transitions leaving a
process can be greater than one. We apply a scheduler to a process graph to get
probabilistically well-defined behavior: the scheduler selects a type of action, and
then a particular transition labelled by an action of that type is chosen uniformly
at random.

Typically, the analysis of a security protocol assumes that the adversary has to-
tal control over the scheduling of messages. In particular, the adversary schedules
particular messages. However, in our setting, the scheduler only controls the sched-
uling of types of messages rather than the messages themselves. If the scheduler had
direct control over the scheduling of messages, then we would be able to distinguish
processes in an unreasonable way. For example, a scheduler that always schedules
the leftmost message would be able to distinguish P | Q from Q | P. That is to say,
a scheduler that has total control over the scheduling of messages themselves can
make scheduling-decisions on the basis of information derived from quirks of the
syntax of PPC (such as a well-defined notion of leftmost) rather than relying just
on information having to do with the structure of the protocol’s communications.
By having the scheduler schedule solely on the basis of the types of actions, we
blind the scheduler to all information derived from the syntax of PPC (as opposed
to the network behavior of the protocol).

While restricting scheduling to types of messages is indeed a restriction (since in
principle the adversary cannot assign an arbitrary distribution to the actions avail-
able to a process), it is not a significant problem. If each type of action in the set of
types of actions available to a process contains exactly one action, then the sched-
uler essentially picks individual actions from the set of actions according to some
arbitrary distribution. We believe that any security protocol can be systematically
rewritten so that at each step of the evaluation, the set of types provided to the
scheduler consists of singletons. We can do so by adding time-stamps to messages,
unique message identifiers and so on to ensure that at no point can a process take
two identically-labelled transitions. In addition, scheduling over types of actions
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rather than particular actions conforms to the intuition that two (indexed) transi-
tions generating the same observable should be considered equivalent since we only
care about the observables seen and not how the observables were generated.

Let us now define schedulers formally. Let 2Act/∼ be the set of all subsets of
equivalence classes of Act induced by ∼.

Definition 3.17. A scheduler S : 2Act/∼ → Act/∼ is a stochastic probabilistic
function from subsets of Act/∼ to elements of Act/∼ that satisfies the condition

∀A ⊆ Act/∼ : [τ ]∼ ∈ A =⇒ (
Prob

[
S(A) = [τ ]∼

]
= 1

)

We define Sched as the set of all schedulers.

Given a set of equivalence classes of actions under ∼, a scheduler picks one of
those equivalence classes. The stochastic property guarantees that the scheduler
always picks some equivalence class out of its input. Thus the stochastic property
functions as a “progress” condition. We note that the time bound on the running
time of a scheduler is polynomial in the size of the set of equivalence classes of
actions given to it as input.

We can classify schedulers based on their behavior on A/∼. Thus, for example,
the uniform scheduler U is the scheduler satisfying

∀A ⊆ Act/∼.∀[α]∼, [β]∼ ∈ A : Prob
[
U(A) = [α]∼

]
= Prob

[
U(A) = [β]∼

]

We can also define special classes of process expressions based on how schedulers
act on them. An important such class is the class of scheduler-insensitive process
expressions. Let P be a process expression such that for all choices i of security
parameter, P n←i is a process for which at each stage of evaluation all possible
actions are of the same type. Since schedulers are stochastic, the choice of scheduler
becomes irrelevant.

3.4. Probabilistic Bisimulation. In this section we adapt weak bisimulation [50]
to a in a probabilistic model involving a probabilistic (rather than nondeterminis-
tic) scheduler. We will call this weak probabilistic bisimulation or just probabilistic
bisimulation from here on. We will present probabilistic bisimulation as an equiv-
alence relation over Proc. The development follows the presentation given in van
Glabbeek, Smolka, and Steffen [65] which studies various approaches to probabilis-
tic bisimulation and presents an elegant and economical treatment of probabilistic
bisimulation.

We will refer to a sequence of actions leading from the process P to the process
Q as a path from P to Q. We will refer to a sequence of silent actions terminated
by an α-step as an α-path. An α-path must be of length at least 1 whenever α is
public; on the other hand, if α is silent the path can have zero length. We will call
zero length paths empty paths and τ -paths silent paths. Let α1, · · · , αk−1 with

R1
p1[α1]−−−−→j1 R2

p2[α2]−−−−→j2 . . .
pk−2[αk−2]−−−−−−−→jk−2 Rk−1

pk−1[αk−1]−−−−−−−→jk−1 Rk

be a path from some process R1 to some process Rk. Given a scheduler S, we will
say that this path is achieved under S with probability p give by

p =
k−1∏

j=1

(
Prob

[
S(Trans(Rj)) = [αj ]∼

] · pj

)
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We say that the sequence π = 〈j1, . . . , jk−1〉 of indices supports α1, . . . , αk−1. In
fact we will denote paths by their supports since a sequence of indices 〈j1, . . . , jm〉
uniquely defines a path provided the source node of the transition indexed by
ji+1 is the destination node of transition indexed by ji for 1 ≤ i < m. We will
write Prob

[〈j1, . . . , jk〉S
]

= p just when that the path supported by 〈j1, . . . , jk〉 is
achieved under scheduler S with probability p. In order to denote a set of processes,
we will decorate letters as in R. We will say that an α-path from P to a process
Q ∈ R supported by 〈j1, . . . , jk〉 is minimal with respect to R just when there does
not exist a shorter α-path from P to another process in R supported by 〈j1, . . . , jk′〉
for some k′ < k. That is, an α-path π is minimal with respect to a set of process
R just when no initial path π′ of π is an α-path into R.

Definition 3.18. We define Paths(P, α, R) as the set of α-paths from P to some
process in R that are minimal with respect to R.

We note that the minimality condition in the definition of Paths(P, α,Q) only
affects silent paths since every α-path in trivially minimal (an α-path cannot have
more than one non-silent transition).

Definition 3.19. We define a cumulative probability distribution function (cPDF)
µ : Proc×Act× 2Proc × Sched → [0, 1] by

µ(P, α, R, S) =





1 if α ∼ τ and Paths(P, τ, Proc) = ∅,∑

π∈Paths(P,α,R)

Prob
[
πS

]
otherwise.

Given a scheduler S, the sum µ(P, α, R, S) measures the total probability that
a process can take an α-path scheduled by S to reach a process in the set R. The
first case in the definition of a cPDF essentially add reflexive silent loops to all
processes with no silent actions. These silent actions are not actually available to
the process and hence can’t be scheduled but they are technically important for the
proof of the congruence theorem of Section 3.5.

Lemma 3.20.

∀P ∈ Proc.∀α ∈ Act.∀R ⊆ Proc.∀S ∈ Sched : µ(P, α, R, S) ≤ 1

Proof Sketch. The proof is a straightforward induction on the length of α-paths
whose details are left to Appendix D. A key fact to remember in the proof is that
we only consider τ -paths of minimal length. This avoids the problem of a path
contributing multiple terms to the cumulative probability. For example, consider a
process P with the process graph

P
τ [1]−−→ Q

τ [1]−−→ R
α�τ [1]−−−−→ ®

By not restricting to minimal silent paths, µ(P, τ, [P]', S) = 2 since P ' Q ' R.
However, restricting to minimal paths sidesteps this problem. ¤

For an equivalence relation R over Proc we write Proc/R to denote the set of
equivalence classes of Proc induced by R, and [P]R to denote the equivalence class
(with respect to R) of which P is a member.

We are now in a position to define bisimulation equivalence. Our presentation
will follow [50,65]. We start by characterizing the conditions under which a relation
is a bisimulation. We will then define a particular bisimulation, ', as the union over
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all bisimulations. Finally, we will show that ' defined as a union of bisimulations is
the largest bisimulation, thereby defining bisimulation equivalence. The advantage
of this presentation is that in order to prove that two processes are bisimilar, we need
only provide a bisimulation that establishes the desired bisimulation equivalence.

The following definition provides a test of whether a given equivalence relation
is a bisimulation. Intuitively, an equivalence relation R passes the test if, two
processes P and Q are related by R iff they have the same probability of passing
into any equivalence class induced by R by taking the same type of action.

Definition 3.21. An equivalence relation R ⊆ ClosedProc×ClosedProc is a weak
probabilistic bisimulation, or bisimulation, just when (P, Q) ∈ R implies that

∀U ∈ ClosedProc/R.∀S ∈ Sched.∀α ∈ Act : µ(P, α, U, S) = µ(Q,α, U, S)

Two processes P and Q are bisimulation equivalent (denoted P ' Q) if there
exists a bisimulation R such that (P,Q) ∈ R. It immediately follows that ' =⋃{R|R is a bisimulation}. We extend bisimulation to all processes by stipulating
that P, Q ∈ Proc are bisimulation equivalent iff for all substitutions ξ of values for
their free variables, P(ξ) ' Q(ξ). We extend bisimulation equivalence to expressions
by stipulating that P,Q ∈ Expr are bisimulation equivalent iff ∀i ∈ N : P n←i '
Qn←i.

We note that Defn. 3.21 is a weakening of the intuitive definition given previously
since we replace “iff” with “implies”. Clearly, any relation satisfying the intuitive
definition satisfies Defn. 3.21. It remains for us to show that Defn. 3.21 satisfies
the intuitive definition. It is traditional to use a fixed-point iteration technique [50]
to establish this kind of result.

Definition 3.22. Let F be a function over subsets of ClosedProc × ClosedProc
such that if R ⊆ ClosedProc× ClosedProc then (P, Q) ∈ F(R) iff

∀R ∈ Proc/R.∀S ∈ Sched.∀α ∈ Act : µ(P, α, R, S) = µ(Q,α, R, S)

We can extend F to all processes and then to expressions by using the same
method we used to extend bisimulations to all processes and expressions.

Lemma 3.23. For F and binary relations R, R1, and, R2 over Proc, we have

(1) F is monotonic i.e., R1 ⊆ R2 =⇒ F(R1) ⊆ F(R2), and,
(2) R is a bisimulation iff R ⊆ F (R).

Proof. (1) follows immediately from Defn. 3.22. (2) is just a reformulation of the
definition of bisimulation (Defn. 3.21) with ‘⊆’ taking the place of ‘implies’. ¤

We call R a pre-fixed-point of F if R ⊆ F(R). If R = F(R) then we call R a
fixed-point of F . Bisimulation equivalences are exactly the pre-fixed-points of F ; it
is easy to show ' is the largest pre-fixed-point of F .

Lemma 3.24. Bisimulation equivalence is the largest fixed point of F .

Proof. Since ' is a bisimulation, ' ⊆ F('). Since F is monotonic, we have that
F(') ⊆ F(F(')) i.e., F(') is a pre-fixed-point of F . Since ' is the largest
pre-fixed-point of F , F(') ⊆ ' whence ' = F('). Since ' is the largest pre-
fixed-point of F , it must be the largest fixed-point of F . ¤
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It follows that ' is the largest bisimulation equivalence over Proc. It will also
be useful to establish that bisimulation equivalence is an equivalence relation. We
will adapt the method used by van Glabbeek, Smolka, and Steffen [65] in estab-
lishing that nondeterministic bisimulation was an equivalence relation to show that
probabilistic bisimulation is also an equivalence relation.

Lemma 3.25. If Bk (k ∈ K) is a collection of bisimulations, then their reflexive,
transitive closure (

⋃
k Bk)∗ is a bisimulation.

Proof. Each of the relations Bk are symmetric, so (
⋃

k Bk)∗ is also symmetric.
Whence (

⋃
k Bk)∗ is also an equivalence relation. Suppose (P, Q) ∈ (

⋃
k Bk)∗.

Then there are n processes P0, . . . , Pn for a certain n ∈ N such that P = P0,
Q = Pn and for j ∈ {1, . . . , n}, (Pj−1, Pj) ∈ Bi for certain i ∈ K. Suppose
U ∈ Proc/(

⋃
k Bk)∗ and α ∈ PubAct. Let 1 ≤ j ≤ n and (Pj−1, Pj) ∈ Bi.

Since U is the union of several equivalence classes T ∈ Proc/Rk
and for each

T we have ∀S ∈ Sched : µ(Pj−1, α, T, S) = µ(Pj , α, T, S), it follows that ∀S ∈
Sched : µ(Pj−1, α, U, S) = µ(Pj , α, U, S). Since this holds for all j ∈ {1, . . . , n} we
conclude that ∀S ∈ Sched : µ(P, α, U, S) = µ(Q, α, U, S). Whence (

⋃
k Bk)∗ is a

bisimulation. ¤
As an immediate corollary of the Lemma 3.25 we conclude that ' is an equiva-

lence relation.

Corollary 3.26. Bisimulation equivalence is an equivalence relation over Proc.

We remind the reader that a process determines its own behavior given that
a particular action type is chosen. In particular, given that P takes a particular
action of type α it will reach some α-reachable Q with probability uniformly chosen
over the number of α-actions P can take. However the process does not define a
distribution on the types of actions to take i.e., the process evaluates in the presence
of someone who chooses which type of action to next perform by pushing, as it were,
buttons. This is precisely the notion of a reactive bisimulation [40, 49, 59] i.e., a
process reacts to the environment as embodied in the button-pusher. In our setting
the person pressing buttons to choose the next action to perform is an explicitly
probabilistic scheduler as opposed to the nondeterministic scheduler seen commonly
in the literature.

3.5. Bisimulation Equivalence is a Congruence. In this section, we prove a
congruence theorem inspired by Milner [50]. The proof adapts the approach used of
van Glabbeek, Smolka, and Steffen [65] as this simplifies the proof considerably. Es-
sentially, we reason in terms of µ (the cPDF) rather than in terms of the underlying
transitions.

In order to prove the main theorem of the this section, we will make use of the
the following two lemmas which are proved in Appendices A and B respectively.

Lemma 3.27. Let P1, P2 be processes with P1 ' P2 and Q be another process.
Then, ∀R ∈ Proc/'.∀S ∈ Sched.∀α ∈ Act :

(1) µ(P1 | Q,α, R, S) = µ(P2 | Q,α, R, S), and,
(2) µ(Q | P1, α, R, S) = µ(Q | P2, α, R, S).

Lemma 3.28. Let P, Q be processes such that P ' Q. Then,

∀R ∈ Proc/'.∀S ∈ Sched.∀α ∈ Act : µ(νc(P), α, R, S) = µ(νc(Q), α, R, S)
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Main Theorem 3.29.

∀P,Q ∈ Proc.∀C[ ] ∈ Con1 : P ' Q =⇒ C[P] ' C[Q]

Proof. We start by noting that any variable in C[P] either occurs bound in P,
free in P but bound in C[ ], or free even in C[P]. Since we defined bisimulation
equivalence on open processes C[P], C[Q] by considering C[P], C[Q] under all
possible valuations, we can eliminate from consideration variables that appear free
in C[P], C[P] as well as variables that appear free in just C[ ].

We will write C[ ] ∈ Con1 to denote that C[ ] ∈ Con1 and C[P] and C[Q] are
variable-closed processes. So, in order to establish the desired congruence property,
it is enough to show that B = {〈C[P], C[Q]〉|P ' Q, C[ ] ∈ Con1} is a bisimulation
i.e., we need to show that ∀P, Q ∈ Proc with P ' Q,

∀C[ ] ∈ Con1.∀R ∈ Proc/B .∀S ∈ Sched.∀α ∈ Act :

µ(C[P], α, R, S) = µ(C[Q], α, R, S) (1)

Thus far, what we have done is to simplify our problem by exploiting the definition
of bisimulation over variable-open processes as bisimulation over all valuations of
those variable-open processes. We can now proceed with the proof proper.

We proceed by an induction on the maximum of the number of free variables
in P and Q. The basis occurs when neither P nor Q have any free variables. The
proof for this case closely follows the proof of the inductive hypothesis. The only
difference is when we consider a context whose top-level operator is an input. In
that case, the action of the input is trivial since P and Q have no free variables for
the context to bind. Consequently, we leave the details of the proof of the basis to
the reader and we just assume as our first inductive hypothesis that (1) holds for
pairs 〈N,O〉 ∈ Proc with at most m free variables.

To establish the inductive hypothesis (when P, Q have at most m + 1 free
variables), we need only show one direction of (1) (by substituting ≤ for =) since the
other direction (≥) follows by a similar argument. We will write Pathsn(P, α, R)
just when the support of a path in Paths(P, α, R) can be derived by a proof tree of
height at most n from the inference rules of Figure 2. We then define µn : Proc×
Act× 2Proc × Sched → [0, 1] as

µn(P, α, R, S) =
∑

π∈Pathsn(P,α,R)

Prob
[
πS

]

We adopt the convention that µ0(P, α, R, S) = 0. The well-definededness of µn

follows from the well-definededness of µ (see Lemma 3.20). Intuitively µn measures
the cumulative probability that P can take a sequence, scheduled by S, of at most
n−1 silent actions followed by an α-step in order to reach some set of processes R.
Let us write Prock for the set of all processes with at most k free variables. Since
µ(P, α, R, S) = limn→∞ µn(P, α, R, S) we need just show, via an induction on n,
that for all n ≥ 0 we have

∀P,Q ∈ Procm+1.∀C[ ] ∈ Con1.∀R ∈ Proc/B .∀S ∈ Sched.∀α ∈ Act :

µn(C[P], α, R, S) ≤ µ(C[Q], α, R, S) (2)

For our second inductive hypothesis, we may assume (2) for some n ≥ 0 since the
basis (when n = 0) is trivial. In proving (2) for n+1 we pick an arbitrary scheduler
S and undertake a case analysis depending on the topmost operator of C[ ].
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(1) C[ ] ≡ [ ]. We show that for all R ∈ Proc/B , S ∈ Sched, and α ∈ Act

µn+1(P, α, R, S) ≤ µ(Q,α, R, S) (3)

Now ' ⊆ B (from the definition of B′). Thus, R is the disjoint union of
one or more T ∈ Proc/', and we need only prove (3) for these T rather
than the whole of R. Then, we can immediately conclude (from P ' Q)
that µn+1(P, α, R, S) ≤ µ(P, α, R, S) = µ(Q, α, R, S).

(2) C[ ] ≡ in〈c, x〉.D[ ]. We show that for all R ∈ Proc/B , S ∈ Sched, and
α ∈ Act

µn+1(in〈c, x〉.D[P], α, R, S) ≤ µ(in〈c, x〉.D[Q], α, R, S) (4)

Clearly, Trans(in〈c, x〉.D[P]) ∼ Trans(in〈c, x〉.D[Q]) (the only actions
available to either process are input actions on the channel c). Thus if, for
all a ∈ [0..2σ(c)(i) − 1], we have that α � in〈c, a〉 then, trivially,

µ(in〈c, x〉.D[P], α, R, S) = (in〈c, x〉.D[Q], α, R, S) = 0

and the desired result is obtained.
Now, we assume that α ∼ in〈c, a〉 for some a ∈ [0..2σ(c)(i) − 1]. Since

∀O ∈ Proc : α, β ∈ Trans(in〈c, x〉.D[O]) =⇒ α � β, it follows that

µn+1(in〈c, x〉.D[P], α, R, S) = Prob
[
S(Trans(in〈c, x〉.D[P])) = [α]∼

]

The action in〈c, a〉 (a ∈ [0..2σ(c)(i)− 1]) causes in〈c, x〉.D[P] to evaluate to
[a/x]D[P]. By the second inductive hypothesis we have that D[P] ' D[Q]
and by the first inductive hypothesis we have [a/x]D[P] ' [a/x]D[P]. Then
from Trans(in〈c, x〉.D[P]) ∼ Trans(in〈c, x〉.D[Q]) we can show

µn+1(in〈c, x〉.D[P], α, R, S) = µn+1(in〈c, x〉.D[Q], α, R, S)

We finish this case by noting that µ(in〈c, x〉.D[Q], α, R, S) is the limit
of µn+1(in〈c, x〉.D[Q], α, R, S). In establishing the basis we use the same
argument except we note that the action in〈c, a〉 (a ∈ [0..2σ(c)(i)−1]) causes
in〈c, x〉.D[P] to evaluate to D[P] since, in the basis, P has no free variables.

(3) C[ ] ≡ out〈c, T〉.D[ ]. We show that for all R ∈ Proc/B and α ∈ Act

µn+1(out〈c, T〉.D[P], α, R, S) ≤ µ(out〈c, T〉.D[Q], α, R, S) (5)

We will write Prob
[
T ↪→ [a]m

]
for

∑
{n|n mod m≡a} Prob

[
T ↪→ n

]
. Noting

that silent actions are hidden, it is easy to see that for each α ∼ out〈c, a〉
µn+1(out〈c, T〉.D[P], α, R, S) = Prob

[
T ↪→ [a]m

]

For any α � out〈c, a〉 we also have that µn+1(out〈c, T〉.D[P], α, R, S) = 0.
We do not have a term denoting the probability of scheduling the ac-
tion since if T is not a value, then the only action available is a reduc-
tion step, and if T is a value a, then the only action available is the
output action out〈c, a〉. In either case, the set of equivalence classes of
Trans(out〈c, T〉.D[P]) induced by ∼ is a singleton whence every scheduler
picks the single element with probability one.

We finally note that our assumption that C[P], C[Q] be closed processes
implies that D[P], D[Q] are closed processes. We then finish in the manner
of case 2 by using the inductive hypotheses.
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(4) C[ ] ≡ [T1 = T2].D[ ]. We show that for all R ∈ Proc/B and α ∈ Act

µn+1([T1 = T2].D[P], α, R, S) ≤ µ([T1 = T2].D[Q], α, R, S) (6)

It is easy to check that every action that [T1 = T2].D[P] (resp. [T1 =
T2].D[Q]) can take is guarded by the reduction step needed to eliminate
the outermost exposed match. Thus we see that

µn+1([T1 = T2].D[P], α, R, S) =(
Prob

[
T1 ↪→ a

] · Prob
[
T2 ↪→ a

]) · µn(D[P], α, R, S)

Again, we note that D[P] and D[Q] are closed processes since we assume
that C[P] and C[Q] are closed processes. Thus, we can apply our two
inductive hypotheses to show that

µn+1([T1 = T2].D[P], α, R, S) ≤ µn+1([T1 = T2].D[Q], α, R, S)

and then finish as in case 2.
(5) C[ ] ≡ νc(D[ ]). We show that for all R ∈ Proc/B and α ∈ Act

µn+1(νc(D[P]), α, R, S) ≤ µ(νc(D[Q]), α, R, S) (7)

A ν-operator restricting channel c makes all actions in〈c, a〉 · out〈c, a〉 or
in〈c, a〉 · out〈c, a〉 in its scope invisible and prevents any other transitions
on the channel c from occurring. We can therefore distinguish two cases.
(a) c ∈ chan(α). Then

µn+1(νc(D[P]), α, R, S) = µn+1(νc(D[Q]), α, R, S) = 0

We then finish as in case 2.
(b) c 6∈ chan(α). Then we use Lemma 3.28 and the inductive hypotheses.

(6) C[ ] ≡ O | D[ ] or C[ ] ≡ D[ ] | O. We just show C[ ] ≡ O | D[ ]
since the other case follows by a symmetric argument. We show that for
all R ∈ Proc/B and α ∈ Act

µn+1(O | D[P], α, R, S) ≤ µ(O | D[Q], α, R, S) (8)

We just use apply Lemma 3.27 using the inductive hypotheses.

Since the case analysis is exhaustive, the desired result is established. ¤

4. Observational Equivalence

We wish to be able to say that two closed expressions are equivalent if and only
if they behave in the same way in the presence of any adversary. Formally speak-
ing, we will identify the space of adversaries with the space of pairs of contexts
and schedulers and then stipulate that two closed expressions are observationally
equivalent under some scheduler if the two closed expressions produce “approxi-
mately” the same observable behavior when messages are scheduled according to
the chosen scheduler. By “approximate” we will mean “asymptotically close in the
security parameter”. So, even though an adversary may distinguish two closed ex-
pressions for a small value of the security parameter (via, say, a brute force search
over keys), once we increase the security parameter sufficiently, that adversary will
get defeated.
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4.1. The Observational Equivalence Relation. We will first define the notion
of an observable and then the probability that an expression generates a particular
observable. Then we will define observable equivalence and show that it is a con-
gruence. Next we relate probabilistic bisimulation equivalence and observational
equivalence.

Definition 4.1. An observable o is a pair 〈c, a〉 ∈ Channel × N. Let Obs be the
set of all observables.

Let us denote the set of actual actions with Act×. Let P ∈ Proc be a blocked
process and let o = 〈c, a〉 be an observable. We will say that P generates the
observable o under scheduler S, written P ;S o, just when an action equivalent to
in〈c, a〉 · out〈c, a〉 is selected by S during the course of the evaluation of P. Since
evaluation is a sequence of actual actions, we need not consider partial actions when
we compute the probability that P generates the observable o under the scheduler
S. We remind the reader that partial actions were used solely to prove that ' was
a congruence.

Remark 4.2. Since ' is an equivalence relation over Proc, we know that ' breaks
up Proc into several distinct equivalence classes that cover the whole of Proc. Thus,∑

R∈Proc/'

µ(P, α, R, S) =
∑

R∈Proc/'

∑

Q∈R

µ(P, α, {Q}, S) =
∑

R∈Proc

µ(P, α, {R}, S)

Consequently, we will move between the two formulations as convenience dictates.

The probability that P generates the observable o under the scheduler S is the
probability that P can take a in〈c, a〉 ·out〈c, a〉-path, under S, plus the probability
that P can, under S, take an α-path (with α not equivalent to in〈c, a〉 · out〈c, a〉)
to some process R times the probability that R generates o under S. Formally,
Prob

[
P ;S o

]
is given by

∑

R∈Proc

µ(P, in〈c, a〉 · out〈c, a〉, {R}, S) +

∑

{β∈Act×| β�in〈c,a〉·out〈c,a〉}
R∈Proc

µ(P, β, {R}, S) · Prob
[
R ;S o

]

Lemma 4.3. Prob
[
P ;S o

] ≤ 1.

Proof. We leave the proof to Appendix D. ¤
Definition 4.4. We define PSched, the set of perceptible schedulers, as the set of
poly-time schedulers that only schedule private actions and actual actions.

We view process evaluation as a series of actual actions whose types are picked
by a scheduler. Since we are interested only in actual actions, we need only consider
perceptible schedulers when defining observational equivalence.

Definition 4.5 (observational equivalence). Let P and Q be two expressions. We
will say that P and Q are observationally equivalent, written P ∼= Q, if:

∀q(y) ∈ Poly.∀σ ∈ Σ.∀C[ ] ∈ Con1.∀o ∈ Obs.∀S ∈ PSched.∃io ∈ N.∀i > io :
∣∣Prob

[
σ(Cn←i[P n←i]) ;S o

]− Prob
[
σ(Cn←i[Qn←i]) ;S o

]∣∣ ≤ 1
q(i)
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Theorem 4.6. ∼= is a congruence.

Proof. Reflexivity and symmetry follow from the definition of ∼=. For transitivity,
we let P ∼= Q and Q ∼= R. Then:

∀q(x) ∈ Poly.∀σ ∈ Σ.∀C[ ] ∈ Con1.∀o ∈ Obs.∀S ∈ PSched.∃i1 ∈ N.∀i > i1 :
∣∣Prob

[
σ(Cn←i[P n←i]) ;S o

]− Prob
[
σ(Cn←i[Qn←i]) ;S o

]∣∣ ≤ 1
2 · q(i)

and:

∀q(x) ∈ Poly.∀σ ∈ Σ.∀C[ ] ∈ Con1.∀o ∈ Obs.∀S ∈ PSched.∃i2 ∈ N.∀i > i2 :
∣∣Prob

[
σ(Cn←i[Qn←i]) ;S o

]− Prob
[
σ(Cn←i[Rn←i]) ;S o

]∣∣ ≤ 1
2 · q(i)

We let i3 = max{i1, i2}. Then transitivity follows directly:

∀q(x) ∈ Poly.∀σ ∈ Σ.∀C[ ] ∈ Con1.∀o ∈ Obs.∀S ∈ PSched.∀i > i3 :
∣∣Prob

[
σ(Cn←i[P n←i]) ;S o

]− Prob
[
σ(Cn←i[Rn←i]) ;S o

]∣∣ ≤ 1
q(i)

To establish the congruence property, we need to show that P ∼= Q implies that
∀C[ ] ∈ Con1 : C[P] ∼= C[Q]. Let C[ ] ∈ Con1 be a context. So we must show that
∀D[ ] ∈ Con1 : D[C[P]] ∼= D[C[Q]]. But D[C[ ]] ∈ Con1. Since P ∼= Q it follows
that D[C[P]] ∼= D[C[Q]] and the congruence property is established. ¤

Finally

Theorem 4.7. P ' Q =⇒ P ∼= Q.

Proof. Direct from Theorem 3.29 and the definition of '. In particular, Theorem
3.29 says that if P ' Q then ∀C[ ] ∈ Con1 : C[P] ' C[Q]. But the fact that
two processes are bisimular implies that the respective induced distributions on
observables are identical (since in the definition of ' we insist that the respective
cumulative probability distribution functions match exactly). As a result, the two
processes must be observationally equivalent. ¤

Let Σ be the set of valuations of free variables. If σ ∈ Σ is a valuation, then
we denote the result of performing the valuation σ on P by σ(P). We note if P is
variable-closed then σ(P) ≡ P. Additionally, we note that each valuation σ can be
expressed as a context Cσ[ ]. Let σ be a substitution that substitutes the value ai for
the variable xi where 1 ≤ i ≤ k. Then, we can capture this valuation in the context
νc1(· · · (νck

(out〈c1, a1〉 | · · · | out〈ck, ak〉 | in〈c1, x1〉. · · · .in〈ck, xk〉.[ ]) · · · )). Via
a series of private communications, each of the variables xi (1 ≤ i ≤ k) is replaced
with the values ai just as σ demands. Thus, ∼= can naturally be defined over all
expressions, open and closed.

4.2. A Reasoning System for PPC. The congruence and equivalence properties
of ∼= will form the basis of our reasoning system for protocols. We present an
incomplete but sound reasoning system in Figure 3. We now proceed to sketch
justifications for the proof rules. Rules CON, TRN, and, SYM are formalizations of
∼=’s congruence properties. The four rules P1, P2, P3, and P4 formalize various
properties of |, the parallel composition operator. We note that rule P4, which
states that if P1

∼= P2 and Q1
∼= Q2, then P1 | Q1

∼= P2 | Q2, follows directly from
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Figure 3 A Reasoning System for PPC

P | Q ∼= Q | P (P1)

® | P ∼= P (P2)

(P | Q) | R ∼= P | (Q | R) (P3)
P1

∼= P2,Q1
∼= Q2

P1 | Q1
∼= P2 | Q2

(P4)

c 6∈ Channel(P), x 6∈ FreeV ars(P)
P ∼= νc(out〈c, T 〉 | in〈c, x〉.P)

(NU1)

C[out〈c, T〉] is scheduler-insensitive,
c 6∈ Channel(C[®]), Public(C[out〈c, T〉]) = {c}

∃TC : out〈c, TC〉 ∼= C[out〈c, T〉] (NU2)

c 6∈ Channels(C[®])
νc(C[P]) ∼= C[νc(P)]

(EXT)

P has no public channels
P ∼= ® (ZER)

P ∼= Q, C[ ] ∈ Con1

C[P] ∼= C[Q]
(CON)

P ∼= Q,Q ∼= R
P ∼= R (TRN)

P ∼= Q
Q ∼= P (SYM)

σ(c)(x) = σ(d)(x)
νc(P) ∼= νd(P [d/c])

(R1)

σ(c)(x) = σ(d)(x),
d 6∈ Channel(P),P ∼= Q

P [d/c] ∼= Q[d/c]
(R2)

fT and fU are computationally indistinguishable
out〈c, T〉 ∼= out〈c, U〉 (EQ1)

∀i ∈ [1..k] : out〈c, Ti〉 ∼= out〈c, Ui〉
out〈d, V(T1, . . . , Tk)〉 ∼= out〈d, V(U1, . . . , Uk)〉 (EQ2)

∀a1, . . . , ak : out〈ci, Ui(a1, . . . , ak)〉 ∼= out〈ci, Vi(a1, . . . , ak)〉, i ∈ {1,m}
FV (C[out〈c1, U1(x1, . . . , xk〉), . . . , out〈cm, Um(x1, . . . , xk〉)]) =

FV (C[out〈c1, V1(x1, . . . , xk〉), . . . , out〈cm, Um(x1, . . . , xk〉)]) =
{xi}

in〈d, xi〉.C[out〈c1, U1(x1, . . . , xk)〉] · · · [out〈cm, Um(x1, . . . , xk)〉] ∼=
in〈d, xi〉.C[out〈c1, V1(x1, . . . , xk)〉] · · · [out〈cm, Vm(x1, . . . , xk)〉]

(PUL)
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CON. In particular, Q1
∼= Q2 implies P1 | Q1

∼= P1 | Q2 (using CON and the context
P1 | [ ]). But, P1

∼= P2 implies P1 | Q2
∼= P2 | Q2 (again, using CON with the

context [ ] | Q2). We use the transitivity of ∼= to complete the proof.
The other three rules P1, P2, P3 all follow by giving suitable bisimulations and

then exploiting Theorem 4.7. Rule P1 asserts the commutativity of parallel com-
position with respect to ∼=. Rule P2 states that composing an expression P and the
empty process using | yields an expression that is equivalent to just P. Lastly P3
states that the parentheses around parallel compositions do not matter i.e., that
we get equivalent expressions whether we stipulate that | is left-associative or right-
associative. As a consequence of P3 we will write P | Q | R for either (P | Q) | R
or P | (Q | R).

Rule NU1 states that one can place silent communication in front of P and obtain
an observationally equivalent expression if the input of the silent communication is
ignored. This rule is also proven by giving a suitable bisimulation. In the proof, we
note that the first two silent actions (one to reduce T and one to actually perform
the silent communication) take νc(out〈c, T〉 | in〈c, x〉.P) to P with probability 1
just when the conditions on c and x are satisfied.

Rule NU2 states that if you have a scheduler-insensitive process expression with
only one output on a public channel, then the entire process expression can be
written as a single term placed in an output on the same channel. That is to say,
we can fold the entire process into the single output. Essentially, this rule states
the silent transitions are completely invisible—we can replace a process consisting
of silent activity and a single public output with a single public output. The proof
is fairly straightforward. Consider the term TC,S that simulates the evaluation
of C[out〈c, T〉] under the scheduler S and outputs a iff the observable 〈c, a〉 is
generated.4 Since C[out〈c, T〉] is scheduler-insensitive it means that the behavior of
the process does not depend on the scheduler. Thus, each TC,S (parameterized by
choice of scheduler) is in fact the same term (since the scheduler does not matter).
So in fact we have a single term TC that simulates the evaluation of C[out〈c, T〉]
(under any scheduler) and returns a iff the observable 〈c, a〉 is generated. Whence
we have demonstrated the existence of the term TC . To finish, we verify that
out〈c, TC〉 ∼= C[out〈c, T〉] via a bisimulation.

Rule EXT allows us to “extrude” the scope of a private channel under certain
constraints. The proof is an easy bisimulation that relies on alpha-renaming channel
names apart. The rule ZER follows from the fact that an expression that produces
no observables is trivially observationally equivalent to the zero-expression ®. The
formal proof is via a bisimulation.

The first of the two rules dealing with renaming channels, R1 states that one
can arbitrarily rename private channels (as long as bandwidths are respected).
In this rule, P [d/c] is taken to mean the closed expression obtained by replacing
the channel name c with the channel name d (we define a similar notation for
processes). The soundness of this rule follows from the fact that all private channels
that can go at a given point in execution go simultaneously. It is easy to give
a bisimulation between νc(P) and νd(P[d/c]) (where P is a process in the process
expression P) since if a private communication on c could go simultaneously with the
private communication on d, then after renaming c to d the private communication
on d (formerly on c) would still be able to go simultaneously with the private

4The existence of the term TC,S follows from Theorem 6.10.
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communication on d (formerly also on d). Furthermore, since private channels do
not produce observables, renaming private channels cannot cause problems.

The second rule regarding renaming, R2, allows us to rename public channels
to a name that is not currently in use by the expression. There is an additional
technical restriction that ensures that the bandwidth associated with the new name
is as big as the bandwidth associated with the old name. Since, by assumption
P and Q are observationally equivalent, renaming the same channel in the same
way in both expressions, cannot violate their equivalent (all it does is change the
distribution on observables on the channel c and observables on the channel d).
Thus, a bisimulation can be easily given to verify this (the bisimulation between
P [d/c] and Q[d/c] is just the bisimulation between P and Q with P and Q having
the same security parameter i)—renaming the channels amounts to a systematic
renaming of the edges in the associated process graphs).

The rule PUL asserts that if two functions fV : Nk×N→ [0, 1] and gU : Nk×N→
[0, 1] induce almost the same distribution on outputs, then we can “pull out” one of
the arguments to the corresponding terms into an output. A proof sketch follows:

Proof. We proceed by contradiction. For each 1 ≤ j ≤ m, we consider two pro-
cesses. The first, Hj , is defined as:

in〈d, xi〉.C[out〈c1, V1(x1, . . . , xk)〉, . . . , out〈cj−1, Vj−1(x1, . . . , xk)〉,
out〈cj , Uj(x1, . . . , xk)〉, . . . , out〈cm, Um(x1, . . . , xk)〉]

and the second, Hj+1, is defined as:

in〈d, xi〉.C[out〈c1, V1(x1, . . . , xk)〉, . . . , out〈cj , Vj(x1, . . . , xk)〉,
out〈cj+1, Uj+1(x1, . . . , xk)〉, . . . , out〈cm, Um(x1, . . . , xk)〉]

Note that Hj and Hj+1 only differ in the expression plugged into the jth hole—Hj

has the expression out〈cj , Uj(x1, . . . , xk)〉 plugged into the jth hole while Hj+1 has
the expressions out〈cj , Vj(x1, . . . , xk)〉 plugged into the jth hole. Let us assume
that Hj � Hj+1. Then there must be set of values a1, . . . , ak such that Uj and
Vj at those values can be distinguished with non-negligible advantage. But this
means that out〈c1, Uj(a1, . . . , ak)〉 � out〈c1, Vj(a1, . . . , ak)〉 which is a contradic-
tion. Therefore Hj

∼= Hj+1.
In this manner we can build up the chain of equivalences H1

∼= H2
∼= · · · ∼= Hm

and employ the transitivity of ∼= to obtain the desired result. ¤

The rule EQ1 states that if the functions fT and fU are computationally indistin-
guishable then out〈c, T〉 and out〈c, U〉 are observationally indistinguishable. This
rule is validated by the proof of Theorem 5.8.

Finally, EQ2 states that if there are k pairs of terms 〈Ti, Ui〉 that induce almost
the same distribution on the natural numbers, then given a term V with k free
variables, the closed term V(T1, . . . , Tk) induces almost the same distribution on
natural numbers as V(U1, . . . , Uk) whence the two processes out〈d, V(T1, . . . , Tk)〉
and out〈d, V(U1, . . . , Uk)〉 are observationally equivalent.

Proof. We proceed by contradiction. For each 1 ≤ i ≤ k, we consider two processes.
The first, Hj is defined as out〈d, V(T1, . . . , Tj−1, Uj , . . . , Uk)〉 and the second, Hj+1,
is defined as out〈d, V(T1, . . . , Tj , Uj+1, . . . , Uk)〉. We note that Hj and Hj+1 only
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differ in the jth argument to V. Assume that Hj � Hj+1. If the context C[ ]
distinguishes between Hj and Hj+1, then the context

in〈c, x〉.C[out〈d, V(T1, . . . , Tj−1, x, Uj+1, . . . , Uk)〉]
distinguishes between out〈c, Tj〉 and out〈c, Uj〉. This contradicts the hypothesis
that each out〈c, Ti〉 is observationally equivalent to out〈c, Ui〉. In this manner we
can build up a chain of equivalences H1

∼= · · · ∼= Hk and employ the transitivity of
∼= to obtain the desired result. ¤

5. Cryptographic Examples

This section requires that processes evaluate in polynomial time. We will assume
this, deferring an actual proof of this fact until Section 6. In what follows we will
denote an element x chosen uniformly at random from the set X by x ∈R X. In
Section 5.1 we will show that our notion of asymptotic observational equivalence
and the standard notion of indistinguishability by poly-time statistical tests coin-
cide. In Section 5.2 we apply the previous observation to define pseudorandom
number generators in PPC. In Sections 5.3 and 5.4 we respectively define semantic
security and the Decision Diffie-Hellman Assumption (DDHA) in terms of process
equivalences. Finally, in Section 5.5 we derive the equivalence between the DDHA
and the semantic security of ElGamal encryption by making use of the formal proof
system for PPC given in Section 4.2.

5.1. Computational Indistinguishability. Here we show that our asymptotic
observational equivalence relation coincides with the standard cryptographic notion
of indistinguishability by polynomial-time statistical tests.

We start by recalling the notions of a function ensemble used in cryptography
literature [29–31,44,47,67].

Definition 5.1 (function ensemble). A function ensemble f is an indexed family
of functions {fi : Ai → Bi}i∈N. A function ensemble f : Ai → Bi is uniform if there
exists a single Turing machine M that computes f for all values of i i.e., M(i, x) =
fi(x). A uniform function ensemble f : Ai → Bi is poly-time if there exists a
polynomial q and a single Turing machine M such that M(i, x) computes fi(x) in
time at most q(|i|, |x|). A uniform function ensemble f : Ai → Bi is probabilistic
poly-time if fi is a probabilistic poly-time function. A poly-time statistical test
A : {0, 1}m(x) → {0, 1} is a {0, 1}-valued probabilistic poly-time function ensemble.

The notion of computational indistinguishability is central to cryptography. Gol-
dreich [31], in particular, has an excellent discussion.

Definition 5.2 (computational indistinguishability). Let q(x) be a positive poly-
nomial. A uniform probabilistic poly-time function ensemble f : ∅ → {0, 1}l(x) is
computationally indistinguishable from a uniform probabilistic poly-time function
ensemble g : ∅ → {0, 1}l(x) just when for all poly-time statistical tests A we have:

∀q(x).∃io.∀i > io :
∣∣Prob

[Ai(fi()) = “1”
]− Prob

[Ai(gi()) = “1”
]∣∣ ≤ 1

q(i)

Definition 5.3. Let P be a closed expression with no public inputs and with ex-
actly one public output on the channel c where σ(c)(x) = q(x). We will say that



A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 35

the probabilistic poly-time function ensemble fP : ∅ → {0, 1}q(x) is the character-
istic function for P with respect to the scheduler S when we have that ∀a ∈ N :
Prob

[
fPi () = a

]
= Prob

[
P n←i ;S 〈c, a〉

]
.

Definition 5.4. Let f : ∅ → {0, 1}q(x) be a probabilistic poly-time function ensem-
ble. Let Tf be a term such that MTf

computes f . Then, we say that out〈c, Tf 〉 is
the characteristic expression for f .

Let f : ∅ → {0, 1}q(x) be a probabilistic poly-time function ensemble and let
Pf ≡ out〈c, Tf 〉 be its characteristic expression. Then, it is easy to see that ∀S ∈
PSched.∀a ∈ N : Prob

[
fi() = a

]
= Prob

[
P

n←i
f | in〈c, x〉 ;S 〈c, a〉

]
.

We want to show, in this section, that the standard notion of computational
indistinguishability can be captured elegantly in our system. Roughly speaking, we
want to show that f is computationally indistinguishable from g iff the characteristic
expression for f is observationally equivalent to the characteristic expression for g.
To do so, we will show two facts:

(1) If there exists a poly-time statistical test A that distinguishes between f
and g, then there exists a context C[ ] that distinguishes between the
characteristic expressions for f and g under any scheduler. This is shown
in Lemma 5.5.

(2) If there exists a context C[ ] that distinguishes between the characteristic
expressions for f and g under a scheduler S, there exists a poly-time statis-
tical test A that distinguishes between f and g. This is shown in Lemma
5.7.

We will use these two lemmas to show that the notion of PRNG can be captured
in PPC.

Lemma 5.5. Let A : {0, 1}m(x) → {0, 1} be a poly-time statistical test. Let P be
any closed expression with no public inputs and exactly one public output such that
fP : ∅ → {0, 1}m(x) is its characteristic function. Then, we can construct a context
CA[ ] such that fP ◦A is the characteristic function for CA[P] under any scheduler.

Proof. By construction. If A is a poly-time statistical test then using the properties
established by the conditions on terms given in Section 3.1, we can construct the
context CA[ ] ≡ in〈c, x〉.out〈d, TA(x)()〉 | [ ] with σ(c)(x) = m(x) and σ(d)(x) = 1.

It is easy to see that this context applies the test to the m(n)-bit output of
some process “plugged” into the hole. By assumption, we have that fP is the
characteristic function for P. Now, TA is produced from A using the properties
established by the conditions on terms given in Section 3.1. Hence, CA[P] must
produce the observables 〈d, 0〉 and 〈d, 1〉. The probability that C

n←i
A [P n←i] pro-

duces the observable 〈d, 0〉 must be the same as the probability that the function
fPi ◦ Ai produces zeroes under any scheduler since a scheduler must always make
progress (i.e., schedule something if it can) and C

n←i
A [P n←i] has only one possible

communication (the one between P n←i and C
n←i
A [ ]).

Similarly, the probability that C
n←i
A [P n←i] produces the observable 〈d, 1〉 must

be the same as the probability that the function fPi ◦ Ai produces ones under any
scheduler. Hence, fP ◦ A must be the characteristic function for CA[P]. ¤

We will say that an context so constructed is a poly-time distinguishing context.
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Definition 5.6. Let P be a closed expression and o an observable. We will say that
f : ∅ → {0, 1} is an indicator for P with respect to o under the scheduler S when
Prob

[
P n←i ;S o

]
= Prob

[
fi() = 1

]
and Prob

[
P n←i 6;S o

]
= Prob

[
fi() = 0

]
.

Lemma 5.7. Let C[ ] be a context and let o be an observable. Let f : ∅ → {0, 1}m(x)

be any function and Pf be its characteristic closed expression. Then, we can specify
a poly-time statistical test t from the triple 〈C[ ], o, S〉 such that f ◦ t is an indicator
for C[Pf ] with respect to the observable o under the scheduler S.

Proof. Our construction of t follows. We compute f ◦t by evaluating the expression
C[out〈d, Tf 〉] (where MTf

computes f) under the scheduler S and returning 1 if the
observable o was generated and 0 otherwise. It is easy to check that

Prob
[
f ◦ t = 1

]
= Prob

[
Cn←i[out〈d, Tf 〉] ;S o

]

and that
Prob

[
f ◦ t = 0

]
= Prob

[
Cn←i[out〈d, Tf 〉] 6;S o

]

¤

Clearly, given an context and a closed expression, each potential observable
defines a poly-time statistical test. We can now prove that an algorithm taking
short strings to long strings is pseudorandom if and only if the process given by the
algorithm, when evaluated on a short random input, is observationally equivalent
to the process that returns a long random seed.

Theorem 5.8. Let f : ∅ → {0, 1}l(x) be a uniform probabilistic poly-time function
ensemble. Let g : ∅ → {0, 1}l(x) be another uniform probabilistic poly-time function
ensemble. Let F (resp. G) be the characteristic expression for f (resp. g).

Then, f is computationally indistinguishable from g if and only if F ∼= G.

Proof. Assume that F ∼= G and that, by way of producing a contradiction, f is
not computationally indistinguishable from g. Then, we have that there exists a
poly-time statistical test A that distinguishes between the output of f and the
output of g. Hence, by Lemma 5.5, we can construct a poly-time distinguishing
context C[ ] that, under any scheduler, distinguishes between F and G with the
same probability that A distinguishes between f and g. So C[ ] will distinguish
between F and G with probability greater than 1/q(i) for some polynomial q(x)
(as A distinguishes between f and g with probability greater than 1/q(i)), thus
producing a contradiction.

Now, assume that f is computationally indistinguishable from g and that, by
way of producing a contradiction, F � G. Then we have that for some polynomial
p(x) and scheduler S there exists a context D[ ] that distinguishes between the two
processes with probability greater than 1/p(i). Let the distinguishing observation
be 〈d, i〉.

We can then use Lemma 5.7 to construct a poly-time statistical test that dis-
tinguishes between the output of f and g with precisely the same probability that
D[ ] distinguishes between F and G under the scheduler S, thereby creating a
contradiction. ¤

5.2. Pseudorandom Number Generators.

Definition 5.9. A function ensemble f : ∅ → {0, 1}l(x) is random poly-time if f
with respect to n is a poly-time function that returns random elements in {0, 1}l(x).
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We recall the notion of a pseudorandom number generator from cryptographic
literature [29–31,44,47,67].

Definition 5.10 (pseudorandom number generator). Let q(x) be a positive poly-
nomial. A pseudorandom number generator (PRNG) is a uniform polynomial time
function ensemble f : {0, 1}k(x) → {0, 1}l(x) such that for all poly-time statistical
tests A:

∀q(x).∃io.∀i > io :
∣∣Prob

[Ai(fi(s)) = “1”
]
s∈R{0,1}k(i)

− Prob
[Ai(r) = “1”

]
r∈R{0,1}l(i)

∣∣ ≤ 1
q(i)

In general, f : {0, 1}k(i) → {0, 1}l(i) is an interesting PRNG only when ∀x ∈
N : l(x) À k(x).

Theorem 5.11. Let f ′ : {0, 1}k(x) → {0, 1}l(x) (∀x ∈ N : l(x) > k(x)) be a uni-
form probabilistic poly-time function ensemble. Let r : ∅ → {0, 1}l(x) and s : ∅ →
{0, 1}k(x) be uniform poly-time random function ensembles. Define f as s ◦ f ′. Let
F (resp. R) be the characteristic expression for f (resp. r).

Then, f ′ is a PRNG if and only if F ∼= R.

The closed expression F, essentially, transmits a random seed generated by s
to f ′ (a candidate PRNG) via function composition, and then transmits the value
computed by f ′ on a public channel. In contrast, R is a closed expression that
simply transmits the value computed by r (a function that returns truly random
values of the same length as those generated by f) on a public channel.

Proof. This theorem is a special case of the Theorem 5.8. We note that s ◦ f ′ : ∅ →
{0, 1}l(x) is a uniform probabilistic poly-time function ensemble. and that the
definition of PRNG simply states that s ◦ f ′ is computationally indistinguishable
from r. ¤

5.3. Semantic Security. Semantic security is an important cryptographic prop-
erty due to Goldwasser and Micali [34]. Our definition of semantic security, though,
is adapted from presentations by Goldreich [32] and by Goldwasser and Bellare [10,
33]. The definition of semantic security we work with assumes uniform-complexity.

Before we provide a definition of semantic security, we need to define an en-
cryption scheme. The ideas behind public-key cryptosystems were first proposed
by Diffie and Hellman [24]. Our presentation of public-key cryptosystems is drawn
from Goldreich [32] as well as Goldwasser and Bellare [33].

Definition 5.12. [24, 32, 33] A public-key encryption scheme or, more simply, an
encryption scheme is a triple 〈G,E,D〉 with the following properties:

(1) The key-generator is a probabilistic poly-time algorithm G that, on input
1k (the security parameter) produces a pair 〈e, d〉 where e is the public or
encryption key and d is the corresponding private or decryption key.

(2) The encryption algorithm is a probabilistic poly-time algorithm E with
takes as input the security parameter 1k, an encryption key e and a string
m called the message or plaintext and produces an output string c called
the ciphertext.
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(3) The decryption algorithm is a probabilistic poly-time algorithm D with
takes as input the security parameter 1k, a decryption key d and a ci-
phertext c and produces a message m′ such that for every m, for every
c ∈ E(1k, e, m), the probability that D(1k, d, c) 6= m is negligible.

Now onto semantic security. Intuitively, an encryption scheme is semantically
secure if, given a ciphertext, no polynomially-bounded adversary can reliably com-
pute something about the associated plaintext i.e., the encryption scheme does not
reveal anything about the plaintext. We note that this version semantic security is
in a chosen-plaintext model of security since the adversary, begin in possession of
the public key, can encrypt a polynomial number of plaintexts it chooses before it
attempts to compute something about the associated plaintext.

A useful formulation of semantic security is in terms of indistinguishability. Intu-
itively, if it is infeasible for any adversary to distinguish between the encryptions of
any two messages (even when it chooses the messages) then the encryption scheme
cannot be revealing anything about the plaintext. Goldwasser and Micali [34]
showed that if an encryption scheme is secure in the indistinguishable sense, then
it is semantically secure. The reverse direction, that semantic security implies se-
curity in the indistinguishable sense, was shown by Micali, Rackoff, and Sloan [48].
Goldreich [32] has a fairly detailed proof in both directions. We will work with
security in the indistinguishable sense since it is more convenient for our purposes.
Our presentation is drawn from Tsiounis and Yung [64] as well as Goldwasser and
Bellare [33].

Definition 5.13. An encryption scheme 〈G, E, D〉 is indistinguishably secure if for
every probabilistic poly-time Turing machine F, A, for every polynomial q, and for
sufficiently large i:

∣∣Prob
[
A(1k, e, F (1k, e), c) = m| c ∈ E(e,m0)

]−

Prob
[
A(1k, e, F (1k, e), c) = m| c ∈ E(e,m1)

]∣∣ ≤ 1
q(i)

where 〈m0, m1〉 ∈ F (1k, e).

In other words, it is impossible to efficiently generate two messages (using F )
such that an attack A can reliably distinguish between their encryptions. It is
clear that we are considering adaptive chosen plaintext semantic security since the
adversary, being in possession of the encryption key, can generate a polynomial
number of messages to encrypt before it responds to the challenge.

Encoding the statement of indistinguishable encryptions as an observational
equivalence in PPC is straightforward. In order to encode the statement of in-
distinguishable encryptions as an observational equivalence, we will assume an ef-
ficient tupling function i.e., a function 〈x1, xk〉 that is polynomial in the lengths of
x1, . . . , xk. Since we truncate messages that are too long, a tupling function that
generates outputs of super-exponential length will not work correctly.5 In what fol-
lows, we will use the notation in〈c, 〈x1, . . . , xk〉〉 to mean that the input obtained
on channel c should be treated as a k-tuple whose ith element is named xi. We
start by defining the notion of observationally indistinguishable encryptions.

5Normal “diagonal” pairing or a scheme based on bit-interleaving will do nicely.
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Definition 5.14. Let 〈G,E,D〉 be an encryption scheme. Then 〈G,E,D〉 is an
observationally indistinguishable encryption scheme iff

νc(out〈c, pkey(G(1n))〉 | in〈c, key〉.out〈pub, 〈key, 1n〉〉.in〈msg, 〈m0,m1〉〉.
out〈challenge, 〈key, 〈m0,m1〉, E(key,m0)〉〉) (L-SS )

is observationally indistinguishable from

νc(out〈c, pkey(G(1n))〉 | in〈c, key〉.out〈pub, 〈key, 1n〉〉.in〈msg, 〈m0,m1〉〉.
out〈challenge, 〈key, 〈m0,m1〉, E(key,m1)〉〉) (R-SS )

where pkey is a function that, given a private-public key-pair, returns only the
public key.

An examination of the expression L-SS shows that it
(1) Generates a encryption-decryption key-pair,
(2) Publishes the security parameter and the public key,
(3) Obtains a message pair (that could be a function of the security parameter6

and the public key7),
(4) Publishes the encryption of the first message, along with the message pair

and the encryption key.8

An examination of the expression R-SS shows that it is identical to expression
L-SS except that R-SS chooses to encrypt the second message. It should be in-
tuitively apparent that the statement that the two processes are observationally
equivalent is a reformulation in PPC of the statement that 〈G,E,D〉 is indistin-
guishably secure (and hence semantically secure). We now proceed to formalize
this intuition.

Theorem 5.15. Let 〈G,E,D〉 be an encryption scheme. Then, 〈G,E,D〉 is se-
mantically secure iff

νc(out〈c, pkey(G(1n))〉 | in〈c, key〉.out〈pub, 〈key, 1n〉〉.in〈msg, 〈m0,m1〉〉.
out〈challenge, 〈key, 〈m0, m1〉, E(key, m0)〉〉) (L-SS )

is observationally indistinguishable from

νc(out〈c, pkey(G(1n))〉 | in〈c, key〉.out〈pub, 〈key, 1n〉〉.in〈msg, 〈m0,m1〉〉.
out〈challenge, 〈key, 〈m0,m1〉, E(key, m1)〉〉) (R-SS )

Proof. Let us assume that 〈G,E, D〉 is not indistinguishably secure and then show
that L ∼= R does not hold. Since 〈G,E,D〉 is not semantically secure, there must
exist a pair of probabilistic poly-time algorithms A, F such that, with non-negligible

6There is no real need to publish the security parameter, as we have done in the previous step.
Since the adversary (context) and the protocol (expression) are run with the same value for the
security parameter, the message-generation function F ‘knows’ the security parameter without
the need for an explicit publish.

7The message-generation algorithm F can adaptively choose the message-pair based on the public
key and security parameter.

8After this point the adversary knows the public (encryption) key as well as the message-pair. So
the adversary could mount an adaptive chosen plaintext attack by selecting several plaintexts and
computing their encryptions.
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probability, A can distinguish between encryptions of messages chosen by F i.e.,
for some positive polynomial q we have

∣∣Prob
[
A(1k, e, F (1k, e), c) = m| c ∈ E(e,m0)

]−

Prob
[
A(1k, e, F (1k, e), c′) = m| c′ ∈ E(e,m1)

]∣∣ >
1

q(i)

Let us now construct a context A[ ] out of A and F .

[ ] | in〈pub, 〈key, sec〉〉.
out〈msg, F (sec,key)〉.in〈challenge, 〈pubkey, m-pair, cipher〉〉.

out〈response, A(sec,pubkey,m-pair, cipher)〉
| in〈response, x〉.®

Let us consider A[L] (resp. A[R]). The first thing to note is that in any evaluation
path of A[L] (resp. A[R]), at each evaluation step there is only one communication
step that can happen. Hence, the choice of scheduler is irrelevant since schedulers
are stochastic.

The attacking context A[ ] supplies a pair of messages chosen by F (based on
the security parameter and public key) to L (resp. R) which then returns the
encryption of the first (resp. second) message along with the encryption key and
the pair of messages. Then, the attacking context A[ ] applies A to the tuple
consisting of the security parameter, message-pair, encryption key, and ciphertext.
This yields a guess as to the message which is then check for accuracy by L (resp.
R). Since A[ ] simply applies A to the encryption of a message chosen from the
pair given by F , it must distinguish between encryptions of messages chosen by
F with the same probability that A distinguishes between encryptions of messages
chosen by F . Whence if A can reliably distinguish between encryptions of messages
(i.e., A can distinguish with probability better than half), it follows that A[ ] can
distinguish between L and R with non-negligible probability (i.e., with probability
greater than 1/q(n) which is the probability with which A distinguishes between
encryptions of messages given by F ). Thus, L � R since we have constructed a
distinguishing context A[ ] out of A and F .

Let us now tackle the reverse direction. We assume that L � R and show that
〈G,E, D〉 is not indistinguishably secure. Since L � R, we have a context A[ ]
that, under some perceptible scheduler S, distinguishes between L and R on the
basis of some observable o. Furthermore, we assume A[ ] must provide messages
to L (resp. R) in order for the protocol to run (since L and R differ only in
the challenge step, any distinguishing observable can only be generated after the
challenge step has occurred9). Thus there must exists a probabilistic poly-time
algorithm F such that the probability that A[ ], using security parameter k and
public key e, provides the message pair π to L (resp. R) is precisely the probability
that F (1k, e) generates the message pair π. We can then create an attack A that
distinguishes between encryptions of messages picked by F as follows. We compute
A(1k, e, π = F (1k, e), c = E(e,mb)) where mb ∈ π by constructing the expression

9If the context A[ ] does not communicate with the expression plugged into its hole and the
expression plugged into the hole does not run via any internal public communications it can
perform, the context cannot distinguish between any two expressions. In particular A[®] will be
equivalent to A[P] for any P.
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P〈e,π,c〉 and then evaluating A[P〈e,π,c〉] under the scheduler S and with security
parameter n set to k. If the observable o is generated we return a “1” and if the
observable o is not generated we return a “0”. Let us denote the encryption of
the ith message in the message-pair (i ∈ {0, 1}) by ci. The expression P〈e,π,ci〉 is
defined as

νc(out〈c, pkey(G(1n))〉 | in〈c, key〉.out〈pub, 〈key, 1n〉〉.
in〈msg, 〈m0,m1〉〉.out〈challenge, 〈e, π, ci〉〉)

Clearly, the function A will successfully distinguish between encryptions of messages
in π with the same probability that, using the scheduler S, A[ ] distinguishes
between P〈e,π,c0〉 and P〈e,π,c1〉. Hence 〈G,E, D〉 is not indistinguishably secure.
Thus 〈G,E, D〉 is indistinguishably secure iff L ∼= R. We finish by noting that
〈G,E, D〉 is indistinguishably secure iff it is semantically secure. ¤
5.4. The Decision Diffie-Hellman Assumption. We start by defining the De-
cision Diffie-Hellman assumption [24]. Our version is drawn from Boneh [12] and
Tsiounis and Yung [64]. Goldreich [32], as well as Cramer and Shoup [20] also offer
helpful discussions.

A group family G is a set of finite cyclic groups {Gp} where the index p ranges
over an infinite set. An instance generator IG(n) takes security parameter n, runs
in time polynomial in n and returns a random index p as well as a generator g of
the group Gp.

Definition 5.16. A Decision Diffie-Hellman algorithm A for G is a probabilistic
polynomial time algorithm such that:

(1) Given 〈p, g, ga, gb, gc〉 the algorithm A reliably decides if c = ab; and,
(2) There exists a non-constant positive polynomials q(·) such that IG(n) =

〈p, g〉 implies that |〈p, g〉| = Ω(q(n)).
The probability is taken over the probability that the instance generator IG(1n)
returns 〈p, g〉 given n, random choice of a, b, c in [1.. ordGp] and random bits used
by A. The Decision Diffie-Hellman assumption for G is that no Decision Diffie-
Hellman algorithm exists.

The condition on the instance generator that the size of the outputs of the
instance generator grow faster than some non-constant positive polynomial ensures
that the groups returned by the instance generator become larger as the security
parameter increases. Since the instance generator runs in polynomial time, the
outputs of the generator cannot become too large i.e., there exists another non-
constant positive polynomial r(·) such that |〈p, g〉| = O(r(n)).

Remark 5.17. We give some examples of groups in which the DDHA is believed to
be intractable. These examples are drawn from Boneh [12].

(1) Let p = 2q + 1 where both p and q are prime. Let Qp be the subgroup of
quadratic residues in Z∗p. It is a cyclic group of prime order. This group is
parameterized by the choice of prime p.

(2) Let N = pq where p, q, p−1
2 , q−1

2 are prime. Let T be the cyclic subgroup
of order (p− 1)(q− 1). The DDHA is believed to be intractable for T . The
group T is parameterized by choice of N .

(3) Let p be a prime and Ea,b/Fp be an elliptic curve where |Ea,b| is prime.
This group is parametrized by choice of p, a, b.
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(4) Let p be a prime and J be a Jacobian of a hyper elliptic curve over Fp with
a prime number of reduced divisors. The group is parameterized by p and
the coefficients of the defining equation.

The index p encodes the group parameters. The instance generator selects a random
member of the group family G by picking the group parameters according to some
suitable distribution. In general we might not wish to use a uniform distribution; for
instance, one might wish to avoid primes of the form 2k +1 in the case where we are
working with a subgroup of quadratic residues in Z∗p. Thus, the DDHA challenge
〈p, g, ga, gb, gc〉 is completely general over the type of group we are working in:
p selects a member of the group family, g is a generator of that group, a, b, c are
integers chosen from [1.. ordGp], ga is the a-fold application of the group operation,
and = is group identity.

We can express the DDHA as an observational equivalence. Let us define two
expressions using the convention that 〈p, g, ga, gb, gc〉 is shorthand for the term
T(a, b, c) defined by the program

1. 〈p, g〉 = IG(1n)
2. return 〈p, g, ga, gb, gc〉

where n is the security parameter. With this notation in place, we define what it
means for the group family G to be observationally DDHA-secure.

Definition 5.18. The group family G is observationally DDHA-secure if

out〈ch, 〈p, g, ga, gb, gab〉| a, b ∈R [1.. ord Gp]〉 ∼=
out〈ch, 〈p, g, ga, gb, gc〉| a, b, c ∈R [1.. ord Gp]〉

where the term 〈p, g, ga, gb, gab〉| a, b ∈R [1.. ordGp] denotes the term T(a, b, ab) with
a, b chosen uniformly at random from [1.. ordGp].

We note the DDHA is known to be easy for certain groups (such as G2). Thus, in
order for the above equivalence to hold, it is necessary that the instance generator
does not select groups for which the DDHA is easy. However, as we have previously
noted, the instance generator can select groups within the group family according
to arbitrary distributions and, thereby, avoid easy cases.

The following theorem validates our attempt to express the DDHA in PPC by
asserting that the assumption of being observationally DDHA-secure is precisely
the DDHA.

Theorem 5.19. The DDHA holds for the group family G iff G is observationally
DDHA-secure.

Proof. A special case of Theorem 5.8. ¤

5.5. The Semantic Security of ElGamal Encryption. We now proceed to give
an example of the use of PPC to establish properties of protocols. In particular,
we will show that ElGamal encryption is semantically secure given the Decision
Diffie-Hellman assumption.

We start by describing the ElGamal encryption scheme [28].

Definition 5.20. Let · denote the group operation and = denote group equal-
ity. An ElGamal encryption scheme is a triple 〈G,E, D〉 of probabilistic poly-time
algorithms such that:
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(1) The key generating algorithm G, on input 1k outputs a public key e =
〈p, g, ga〉 and a private key d = a where 〈g, p〉 ∈ IG(1k), a ∈R [1.. ord Gp].

(2) An encryption algorithm E that, on input, e = 〈p, g, ga〉 and m outputs
〈gb,m · gab mod p〉 as the ciphertext (where b ∈R [1.. ord Gp]).

(3) A decryption algorithm D that, given ciphertext c = 〈k, c′〉 and decryption
key d computes c′/kd. To see why this works, we note that k = ga, c′ =
m · gab mod p, and d = b for some a, b, m. Then

c′

kd
=

m · gab

gba =
m · gab

gab
= m

In order to show that ElGamal is semantically secure given the Decision Diffie-
Hellman assumption, we will derive the assertion that ElGamal is an observationally
indistinguishable encryption scheme from an assertion expressing the DDHA. In
particular, we will derive the observational equivalence of

νc(out〈c, pkey(G(1n))〉 | in〈c, 〈p, g, ga〉〉.
out〈pub, 〈〈p, g, ga〉, 1n〉〉.in〈msg, 〈m0, m1〉〉.

out〈challenge, 〈〈p, g, ga〉, 〈m0,m1〉, 〈gb,m0 · gab〉〉| b ∈R [1.. ord Gp]〉) (L-EG)

and

νc(out〈c, pkey(G(1n))〉 | in〈c, 〈p, g, ga〉〉.
out〈pub, 〈〈p, g, ga〉, 1n〉〉.in〈msg, 〈m0, m1〉〉.

out〈challenge, 〈〈p, g, ga〉, 〈m0,m1〉, 〈gb,m1 · gab〉〉| b ∈R [1.. ord Gp]〉) (R-EG)

from the assertion that

out〈ch, 〈p, g, ga, gb, gab〉| a, b ∈R [1.. ord Gp]〉 ∼=
out〈ch, 〈p, g, ga, gb, gc〉| a, b, c ∈R [1.. ordGp]〉 (DDHA)

(From Section 5.4 we know that this second assertion is an expression of the DDHA).

Main Theorem 5.21. If the Decision Diffie-Hellman assumption holds for a group
family G, then ElGamal encryption using G is semantically secure against adaptive
chosen plaintext attacks. Furthermore, we can derive, using just the proof rules for
PPC given in Figure 3, the assertion in PPC that ElGamal encryption using G
is semantically secure (i.e., the equivalence L-EG ∼= R-EG) from the assertion in
PPC that the DDHA holds for G (i.e., the equivalence DDHA).

The proof is fairly straightforward. We will start with the equivalence DDHA
and build up the equivalence between L-EG and R-EG by systematically transform-
ing the term that outputs a challenge instance of the DDHA. In particular, we note
that, with the exception of the message-pair, the challenge instance 〈p, g, ga, gb, gc〉
looks almost like a challenge instance of ElGamal’s semantic security (which is a
tuple 〈〈p, g, ga〉, π, 〈gb, gc〉〉) where the message being encrypted is gc divided by
gab. Thus, it seems reasonable to assume that we can systematically transform the
DDHA challenge instance into a challenge instance for ElGamal’s semantic security
(where the messages are provided by the adversary).

Before we give the formal proof, we will give an informal mathematical proof
showing that DDHA implies the semantic security of ElGamal encryption. This
mathematical argument will be formalized in PPC and constitute the first half of
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the formal proof. We start by assuming that the 〈p, g, ga, gb, gc〉 is computationally
indistiguishable from the 〈p, g, ga, gb, gab〉 (where p, g are given by the instance
generator and a, b, c are chosen uniformly at random from [1.. ord Gp]). We will use
.= to denote computational indistinguishability. We recall to the reader’s attention
that computational indistinguishability is transitive. So we have that

〈p, g, ga, gb, gab〉 .= 〈p, g, ga, gb, gc〉
Since the two tuples are computationally indistinguishable, it follows that

∀m0,m1 ∈ Gp : 〈p, g, ga,m0,m1, g
b, gab〉 .= 〈p, g, ga,m0,m1, g

b, gc〉
i.e., if no algorithm can distinguish between 〈p, g, ga, gb, gab〉 and 〈p, g, ga, gb, gc〉,
then no algorithm can do so given two arbitrary elements of the group. Furthermore,
since g is a generator of the group it follows that m0 · gab = gr+ab. Since a, b
are chosen uniformly at random from [1.. ord Gp], it follows that gr+ab = gc′ for
randomly chosen c′ ∈ [1.. ordGp]. Thus we get that for all m0,m1 ∈ [1.. ord Gp]

〈p, g, ga,m0,m1, g
b, gab〉 .= 〈p, g, ga, m0,m1, g

b,m0 · gab〉
In other words, since g is a generator we can view gc as gab multiplied by some
arbitrary message. Similarly, we can show that for all message m0,m1

〈p, g, ga,m0,m1, g
b, gab〉 .= 〈p, g, ga, m0,m1, g

b,m1 · gab〉
whence the transitivity of .= yields

〈p, g, ga,m0,m1, g
b,m0 · gab〉 .= 〈p, g, ga,m0,m1, g

b,m1 · gab〉
for all message m0, m1. This claim is (almost) the assertion that ElGamal encryp-
tion is semantically secure since the tuple contains the public key 〈p, g, ga〉, the
message pair 〈m0,m1〉 and the encryption of one of the messages 〈gb,mi · gab〉. In
the formal proof, we will continue from this point using various structural rules in
PPC to convert this assertion to an assertion of the right form.

Proof. We start by assuming that DDHA is true i.e., that

out〈ch, 〈p, g, ga, gb, gab〉| a, b ∈R [1.. ord Gp]〉 ∼=
out〈ch, 〈p, g, ga, gb, gc〉| a, b, c ∈R [1.. ord Gp]〉

holds. For each m0 ∈ Gp we can use EQ2 to obtain that

out〈ch, 〈p, g, ga,m0, g
b,m0 · gab〉| a, b ∈R [1.. ordGp]〉 ∼=

out〈ch, 〈p, g, ga,m0, g
b,m0 · gc〉| a, b, c ∈R [1.. ord Gp]〉

Furthermore, since m = gd for some choice of d, it follows that the term m0 · gc

and the term gc (with c chosen uniformly at random in [1.. ordGp]) both induce
the same distribution on elements of the group. Thus

∀m0 ∈ Gp : out〈ch, 〈p, g, ga,m0, g
b,m0 · gc〉| a, b, c ∈R [1.. ordGp]〉 ∼=

out〈ch, 〈p, g, ga,m0, g
b, gc〉| a, b, c ∈R [1.. ord Gp]〉

Then, TRN (transitivity) gives us

∀m0 ∈ Gp : out〈ch, 〈p, g, ga,m0, g
b,m0 · gab〉| a, b ∈R [1.. ordGp]〉 ∼=

out〈ch, 〈p, g, ga,m0, g
b, gc〉| a, b, c ∈R [1.. ord Gp]〉
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Another application of EQ2 gives us

∀m0, m1 ∈ Gp : out〈ch, 〈p, g, ga,m0,m1, g
b,m0 · gab〉| a, b ∈R [1.. ordGp]〉 ∼=

out〈ch, 〈p, g, ga,m0,m1, g
b, gc〉| a, b, c ∈R [1.. ord Gp]〉 (†)

Using a similar argument to the one used to establish (†) we can show

∀m0, m1 ∈ Gp : out〈ch, 〈p, g, ga,m0,m1, g
b,m1 · gab〉| a, b ∈R [1.. ordGp]〉 ∼=

out〈ch, 〈p, g, ga,m0,m1, g
b, gc〉| a, b, c ∈R [1.. ord Gp]〉 (‡)

Then, using SYM (symmetry) and TRN, we can combine (†) and (‡) to obtain

∀m0, m1 ∈ Gp : out〈ch, 〈p, g, ga,m0,m1, g
b,m0 · gab〉| a, b ∈R [1.. ordGp]〉 ∼=

out〈ch, 〈p, g, ga,m0,m1, g
b, m1 · gab〉| a, b ∈R [1.. ordGp]〉 (z)

Until this point, we have taken advantage of various mathematical facts that follow
from working with Gp. In particular, being in Gp allows us to show that gc is just
gab times some random string R. We can then multiply the gc and gab terms by
some message since the distribution induced by gc is the same as that induced by
gab. Multiplying this message into gc and gab is effectively the same as multiplying
gab by one of two random messages. Thus far, we have formalized in PPC the
informal mathematical arguments given just prior to the formal proof.

We have obtained an observational equivalence that looks almost like the ob-
servational equivalence stating the semantic security of ElGamal encryption. In
particular, we have an observational equivalence that states the tuple consisting of
the elements of an ElGamal public key, the elements of a message-pair, and the
elements of the encryption of the first message, is computationally indistinguish-
able from a tuple consisting of the elements of the same ElGamal public key, the
elements of the same message-pair, but the elements of an encryption of the second
message. This is almost precisely the definition of the semantic security of ElGamal
(in terms of indistinguishability of encryptions) except that the challenge needs to
consist of three tuples encoding respectively the public key, the message-pair, and
the ciphertext. We also need those elements of the expression that allow an ad-
versary to provide the message-pair after seeing the public key. We can finish the
proof by repeatedly using PUL to ‘pull out’ arguments that we want to provide via
channels. In particular, we will pull out the message pair and provide it on an input
that waits for a suitable output by an adversary. We will also make use of R2 to
ensure that the channel-names in the derived expression match the channel-names
used in our statement of semantic security (see Theorem 5.15).

We now complete the derivation. First, we get the challenge into the right form
using EQ2 on (z):

∀m0, m1 ∈ Gp :

out〈ch, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, m0 · gab〉〉| a, b ∈R [1.. ord Gp]〉 ∼=
out〈ch, 〈〈p, g, ga〉, 〈m0,m1〉, 〈gb,m1 · gab〉〉| a, b ∈R [1.. ord Gp]〉



46 J.C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

Using proof rule PUL and R2 we can obtain the message-pair from a context:

in〈msg, 〈m0,m1〉〉.
out〈challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb,m0 · gab〉〉| a, b ∈R [1.. ord Gp]〉

∼=
in〈msg, 〈m0, m1〉〉.

out〈challenge, 〈〈p, g, ga〉, 〈m0,m1〉, 〈gb,m1 · gab〉〉| a, b ∈R [1.. ord Gp]〉
The context out〈pub, 〈〈p, g, ga〉, 1n〉〉.[ ] where, the term 〈p, g, ga〉 is shorthand for
the term U(a) defined as

1. 〈p, g〉 = IG(1n)
2. return 〈p, g, ga〉

and an application of CON allow us to publish the security parameter and public
key:

out〈pub, 〈〈p, g, ga〉, 1n〉〉.in〈msg, 〈m0,m1〉〉.
out〈challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb,m0 · gab〉〉| a, b ∈R [1.. ord Gp]〉

∼=
out〈pub, 〈〈p, g, ga〉, 1n〉〉.in〈msg, 〈m0,m1〉〉.

out〈challenge, 〈〈p, g, ga〉, 〈m0,m1〉, 〈gb,m1 · gab〉〉| a, b ∈R [1.. ord Gp]〉
Finally, another application of PUL, followed by an application of CON allows us to
‘pull’ out the p, g, a from the term, and then (via CON) provide them by making use
of the key generator (which will generate the pair consisting of 〈p, g, ga〉 (the public
key) an a (the private key). Since the challenge transmitted requires only the value
ga and does not require a, we do not have to transmit the private key. To ensure
security, we also use CON to wrap up this communication in a private channel.

νc(out〈c, pkey(G(1n))〉 | in〈c, 〈p, g, ga〉〉.
out〈pub, 〈〈p, g, ga〉, 1n〉〉.in〈msg, 〈m0, m1〉〉.

out〈challenge, 〈〈p, g, ga〉, 〈m0,m1〉, 〈gb, m0 · gab〉〉| b ∈R [1.. ordGp]〉)
∼=

νc(out〈c, pkey(G(1n))〉 | in〈c, 〈p, g, ga〉〉.
out〈pub, 〈〈p, g, ga〉, 1n〉〉.in〈msg, 〈m0, m1〉〉.

out〈challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb,m1 · gab〉〉| b ∈R [1.. ord Gp]〉)
But this equivalence is precisely the statement that ElGamal encryption is semanti-
cally secure (see Theorem 5.15). Hence, given the DDHA we can show that ElGamal
encryption is semantically secure. ¤

Remark 5.22. We draw the reader’s attention to the fact that the proof of the
semantic security of ElGamal encryption from the Decision Diffie-Hellman assump-
tion in the language of PPC can be split into two distinct parts. In the first part, we
used mathematical facts about the group operation · in the group Gp to transform
the DDHA challenge 〈p, g, ga, gb, gc〉 into a tuple 〈p, g, ga,m0,m1, g

b,mi · gab〉 that
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almost looked like a semantic security of ElGamal encryption challenge. Further-
more, the key fact about Gp used was that g was a generator of Gp whence for
some c it followed that m · gab = gc. The other facts used were trivial facts about
the group product (i.e., its associativity) and pairing (i.e., πi(〈m1,m2〉 = mi)).
The remainder of the proof consisted of purely structural transformations on the
expressions. We suggest that proofs in PPC, in general, can be separated into a
large sequence of structural transformations required to achieve the right shape of
the protocol, couple with a few transformations whose soundness are grounded in
mathematical facts about the special nature of the problem. These special facts can
be represented with special hypotheses (like DDHA) and special rules (such as the
one equation m · gab with gc). This proof could be rendered entirely mechanical by
axiomatizing in PPC, as it were, important mathematical properties about groups
that are relevant for this proof. Taken with the structural rules of Figure 3 this
would allow us to derive ElGamal’s semantic security from the DDHA in an entirely
mechanical manner. This observation also draws up the intriguing possibility that
we can work ‘backward’ from a statement of a desired property to some conditions
that must hold. In particular, we could have started with the statement of ElGamal
encryption’s semantic security and reversed the proof’s structural transformations
to obtain the DDHA—in fact that is just what we will do in Theorem 5.23. In
general, we hope to be able to precisely state the security conditions that need to
hold of the primitives for a given protocol to satisfy a desired security property.

Main Theorem 5.23. If ElGamal encryption using the group family G is seman-
tically secure against adaptive chosen plaintext attacks, then the Decision Diffie-
Hellman assumption holds for G. Furthermore, we can derive, using just the proof
rules for PPC given in Figure 3, the assertion in PPC that the DDHA holds for G
(i.e., the equivalence DDHA) from the assertion in PPC that ElGamal encryption
using G is semantically secure (i.e., the equivalence L-EG ∼= R-EG).

Proof. Since we assume that ElGamal encryption using the group family G is se-
mantically secure, it follows that

νc(out〈c, pkey(G(1n))〉 | in〈c, 〈p, g, ga〉〉.
out〈pub, 〈〈p, g, ga〉, 1n〉〉.in〈msg, 〈m0, m1〉〉.

out〈challenge, 〈〈p, g, ga〉, 〈m0,m1〉, 〈gb,m0 · gab〉〉| b ∈R [1.. ord Gp]〉) (L-EG)

is observationally equivalent to

νc(out〈c, pkey(G(1n))〉 | in〈c, 〈p, g, ga〉〉.
out〈pub, 〈〈p, g, ga〉, 1n〉〉.in〈msg, 〈m0, m1〉〉.

out〈challenge, 〈〈p, g, ga〉, 〈m0,m1〉, 〈gb,m1 · gab〉〉| b ∈R [1.. ord Gp]〉) (R-EG)

But then, using the rule CON we obtain that

νpub(νmsg(νchallenge(L-EG | in〈pub, 〈p, g, ga〉〉.out〈msg, 〈1, gr〉| r ∈R [1.. ord Gp]〉.
in〈challenge, 〈〈p, g, ga〉, 〈m0,m1〉, 〈gb, gc〉〉〉.out〈ddh, 〈p, g, ga, gb, gc〉〉)))

∼=
νpub(νmsg(νchallenge(R-EG | in〈pub, 〈p, g, ga〉〉.out〈msg, 〈1, gr〉| r ∈R [1.. ord Gp]〉.

in〈challenge, 〈〈p, g, ga〉, 〈m0,m1〉, 〈gb, gc〉〉〉.out〈ddh, 〈p, g, ga, gb, gc〉〉)))
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We draw the reader’s attention to the fact that the only observables that the left-
hand side and right-hand side expressions can generate are on the output on the
channel named ddh. Furthermore the output on ddh is a DDHA-challenge tuple.
The final output of the left-hand side expression is the tuple 〈p, g, ga, gb, 1·gab〉 where
p, g are chosen by the ElGamal instance generator and a, b are chosen at random
from [1.. ordGp]. For the right-hand side we get the tuple 〈p, g, ga, gb, gr+ab〉 where
r is chosen at random from [1.. ordGp]. Since g is a generator of Gp, gr+ab is a
random element of Gp. Finally, both the right-hand side and the left-hand side are
scheduler-insensitive processes since, at each stage of evaluation, only one possible
action can occur. We can then use proof rule NU2 to obtain the equivalence

out〈d, 〈p, g, ga, gb, gab〉| 〈p, g〉 ∈ IG(1n), a, b ∈ [1.. ordGp]〉 ∼=
out〈d, 〈p, g, ga, gb, gc〉| 〈p, g〉 ∈ IG(1n), a, b, c ∈ [1.. ord Gp]〉

which is precisely the statement of the DDHA. ¤

This proof is interesting in two respects. The first is that we use a context to
create a semantic security challenge of a particular form. We then use the fact that
private channels are invisible to ‘collapse’ the entire process into a term. In general,
this technique will be useful in going from long expressions to shorter expressions.

6. PPC Evaluates in Polynomial-Time

Our proof of the polynomial time-bound will proceed in two stages. First we will
show that the length of any perceptible path (i.e., a path whose edges are labelled
only by actual or silent actions) is a polynomial in the security parameter. This
follows from the proof of Lemma D.2. In particular, since there are only a finite
number of inputs and outputs in a closed expression, there must only be a finite
number of actual steps and silent actions that can occur during any evaluation of
a process expression. We will show that this finite number is actually a polynomial
in the length of the expression, and polynomial in the security parameter.

Then we will show that each action can be performed in time polynomial in the
length of the expression, and polynomial in the security parameter. To do so, we
will construct a Turing machine MP (see Section 6.1) for each closed expression P
such that MP(i, S) evaluates P n←i and produces the observable o with probability
Prob

[
P n←i ;S o

]
.

Our discussion of a mechanical evaluation procedure for processes will benefit
from the following useful definition:

Definition 6.1. We say that Q is a component of P just when P ≡ P1 | P2 and
Q ≡ Pk or Q is a component of Pk (with k ∈ {1, 2}).
6.1. A Turing Machine for Process Evaluation. In this section we will define
an evaluator for the closed expression P as a probabilistic Turing machine MP that
takes as input a value i for the security parameter and a perceptible scheduler S
and then continues as follows:

(1) It first performs a reduction step. Even if the process expression is blocked,
performing a reduction step will not harm anything since reductions are
idempotent (Lemma 3.7).

(2) It then performs a non-reduction action (it can do this since at this point
it is working on a blocked process). It does this by first computing the
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set of all actual actions and silent actions that the process can take—we
shall call this set the set of eligible actions. Then it applies a perceptible
scheduler to select the particular action being taken. Since this action is
always a non-reduction silent action (since the process is blocked at this
stage) or an actual action (i.e., in the equivalence class of some in〈c, a〉 ·
out〈c, a〉) we shall call this step a communication step. We note that the
probability of taking any action in this step is equal to the probability that
the perceptible scheduler selects that action out of all the (actual, non-
actual, and silent10 actions available—since perceptible schedulers never
pick non-actual actions, we can safely drop them from the set of possible
actions.

(3) It then repeats this procedure until the set of eligible actions becomes empty
at which point it halts.

We note that we have provided an evaluation procedure only for closed expressions.
The evaluation of expressions in general can be defined as evaluation under a pos-
sible valuation of the free variables. Also, we will refer to steps 1 and 2 together as
a single evaluation step in the evaluation of the expression.

Before we define our Turing machine, we will make an assumption that will
simplify both our construction as well as our analysis of the time-bound on process
evaluation (see Section 6). Since P is a closed expression, every term with variables
must appear in the scope of sufficiently many inputs that bind those variables.
For example, the term T(x1, . . . , xi) must appear in the scope of at least i inputs,
each of those inputs binding exactly one of those variables. Furthermore, we note
that a term in only reduced when it becomes exposed i.e., is not longer in the
scope of any input. At this point, the term has no variables—values have been
substituted for all variables in the term. Thus, there is no harm in delaying the
substitution of values into variables of terms until the terms need to be evaluated.
In particular, our Turing machine, instead of performing the substitution indicated
by a communication step, will create a λ-substitution instance of that term. For
example, given a term T(x1, . . . , xi) and a communication step that substitutes a
for xk, our Turing machine will create the term λxk.T(x1, . . . , xi) a rather than
T(x1, . . . , xk−1, a, xk+1, . . . , xi) (assuming, of course, that 1 ≤ k ≤ i). We note that
a single λ-substitution instance of a term requires a constant amount of space for
the λ and enough space for the variable name and the value to substitute for the
variable name. We will assume that variable names takes an amount of space linear
in the length of P—since the length of P is finite and each variable name requires
at least one character to write down, the number of distinct variables appearing in
P must be linear in the length of P.

Now, we note that each variable in P gets a value via some channel. Thus, the
size of the largest value that can be substituted for that variable is bounded by the
bandwidth polynomial associated with the channel on which the value arrives. Let
BP be the set of bandwidth polynomials appearing in P and define the polynomial
χ at value i as χ(i) =

∑k
i=j aix

pi where ai is defined as the maximum over all the
bandwidth polynomials of the absolute value of the coefficient of the xpi term (we

10In keeping with our intuitive semantics, we will ensure that a silent action is picked out of each
component of a parallel composition i.e., given P1 | · · · | Pk a silent transition will consist of a
silent action taken by each Pj , (1 ≤ j ≤ k), keeping in mind that we allow a process to take a
trivial action to itself if it has no silent actions.
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assume that if the bandwidth polynomial p(·) does not have a xpi term, then the
associated coefficient is 0); and k is the maximum order of any of the bandwidth
polynomials in BP . Clearly χ(·) so defined is a polynomial and, equally clearly
thanks to the construction of χ(·), ∀a ∈ N.∀q(·) ∈ BP : χ(a) ≥ q(a).

So our first assumption is that every value a to be substituted for a variable in
P has length given by χ(n). Since all values to be substituted for variables are
truncated by some bandwidth polynomial (since these values are transmitted over
channels), this ensures that we leave enough space to write down any value that
could possibly be substituted for that variable during evaluation. In particular,
during as we perform a communication step, if we leave enough room for the λ-
substitution instance that we will create (constant space for the λ plus linear in
the length of P space for the variable name plus χ(n) space for the value), we will
not need to “push” symbols around in order to make room for the value we want
to write down. But how many communication steps can possibly happen? From
Lemma 6.4 we know that the number of communication steps can be bounded by
the minimum of the number of inputs (in(P)) and the number of outputs (out(P))
in the process (see Defn. 6.3). Thus, we will assume that each term T has size

cT + min{in(P), out(P)} · (χ(x) + υ(P) + cλ)

where cT is a constant giving the length of the term T and cλ is the constant amount
of space needed for the λ in a λ-substitution instance, and υ(P) bounds the amount
of space needed for variables in P—since each distinct variable in P needs a unique
name and the number of distinct variables in P is limited by the length of P,
it follows that υ(P) is linear in the length of P. We note that if either in(P)
or out(P) is 0 then, technically, the inequality χ(x) ≤ cT + min{in(P), out(P)} ·
(χ(x) + υ(P) + cλ) is false. However, this is not a significant issue since evaluation
cannot proceed if there are either no inputs or no outputs.

Before we continue let us consider the space needed to write down the value
to which a term reduces. We note that a term either appears in a match or in
an output. For match terms, we note that we never really require the value to
which the term evaluates. All we need know is whether the match holds or fails.
Thus the space allocated to a term in the first assumption is sufficient since all
we will do is either erase the match (assuming the match was passed) or erase
the entire expression (assuming the match was failed). For an output term on the
channel c, we note that at most σ(c)(i) bits of the term’s value is transmitted.
Thus we need only write down the σ(c)(i) least significant bits. However we note
that σ(c)(x) ≤ χ(x) ≤ cT + min{in(P), out(P)} · (χ(x) + υ(P) + cλ) whence the
amount of space already budgeted by the first assumption is more than enough.
From Defn. 6.3 we note that cT + min{in(P), out(P)} · (χ(x) + υ(P) + cλ) is just
a polynomial in the security parameter that we shall denote by pT(x). The result
of this assumption is that each reduction simulated on our Turing machine will
either not change the length of the process or decrease the length of the process
(by replacing inputs and outputs with ®s and evaluating matches).

The ideas given thus far should be enough to allow us to proceed with the proof
of the time-bound on evaluation (Section 6). We will leave the detailed construction
of the evaluator for the expression P to Appendix C.
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6.2. The Correctness of Evaluators.

Lemma 6.2. Let P be a closed expression and MP be the associated evaluator.
Then MP(i, S) generates the observable o with the same probability that P n←i gen-
erates the observable o under the scheduler S.

The proof will refer to details about the construction of the evaluator and so we
invite the reader to peruse Appendix C before reading the sketch of the proof.

Proof sketch. We will show that each evaluation step is correct i.e., the if Qn←i is
obtained from Pi, then the next evaluation step that MP(i, S) performs results in
the process Rn←i with the same probability that Qn←i evaluates to Rn←i in one
evaluation step using the scheduler S.

We proceed by induction on the length of the evaluation path. The basis is
proved exactly as the inductive step and so we assume the lemma for evaluation
paths of length at most k and establish the result for the k + 1th evaluation step.

An evaluation step consists of a scheduling step (which includes performing the
communication) and a reduction step. Let us consider the scheduling step first.
Constructing the set of equivalence classes of actions is a deterministic step: each
process induces exactly one set of equivalence classes of actions. We then invoke the
scheduler by provide the set of equivalence classes to the scheduler is input. Since
the scheduler is assumed to be probabilistic poly-time, it follows that the scheduling
step selects the communication type to perform with the right probability. We then
need to pick an action of that type to perform. This is done by selecting an action
of that type uniformly at random. As we have already noted, this is precisely what
happens during the evaluation of a process: a scheduler selects an action type and
then picks an action in that type uniformly at random. Thus, the action to perform
is picked with the right probability. Actually performing that communication is
another deterministic step.

Now for the reduction step. Whenever the evaluator encounters an exposed term
of the form (λx1 · · ·λxk.T) ak · · · a1, the evaluator replaces that term with the value
obtained by running MT(a1, . . . , ak). Since terms are assumed to be probabilistic
poly-time computable, MT(a1, . . . , ak) will produce a with probability p iff the term
T reduces, with probability p, to a on inputs a1, . . . , ak.

Thus the k +1th evaluation step is performed with the right probability and the
inductive step is established. We now know that each evaluation step is correct.
Then it is easy to see that the probability that MP(i)(S) produces the observable o
is precisely the probability that P n←i generates o under scheduler S. In particular,
the probability that P n←i generates the observable o under scheduler S is the
probability of some evaluation path producing that observable. Since all evaluation
steps are performed correctly, all evaluation paths are performed correctly whence
all observables are generated with the right probability. ¤
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6.3. A Bound on the Length of any Evaluation Sequence.

Definition 6.3. Let P be a closed expression. We define in(P), the number of
inputs in P, and out(P), the number of outputs in P, inductively as follows:

in(®) = 0 out(®) = 0

in(νc(Q)) = in(Q) out(νc(Q)) = out(Q)

in(in〈c, x〉.Q) = 1 + in(Q) out(in〈c, x〉.Q) = out(Q)

in(out〈c, T〉.Q) = in(Q) out(out〈c, T〉.Q) = 1 + out(Q)

in([T1 = T2].Q) = in(Q) out([T1 = T2].Q) = out(Q)

in(Q1 | Q2) = in(Q1) + in(Q2) out(Q1 | Q2) = out(Q1) + out(Q2)

in(!q(n).
(Q)

) = q(n) · in(Q) out(!q(n).
(Q)

) = q(n) · out(Q)

It is clear from the definition that in(P) and out(P) are polynomials in n that are
positive for all input values.

Lemma 6.4. Let P be a closed process. Then, for all values i for the security
parameter and perceptible schedulers S, during any evaluation of P n←i, at most
min{in(P)(i), out(P)(i)} evaluation steps occur.

Proof. Consider any evaluation step (see Section 6.1) during the evaluation of P.
An evaluation step is made up of a reduction step followed by a communication step.
From the definition of reduction we now that a reduction step cannot increase the
number of inputs our outputs in a process (at worst, by causing a match to fail, it
will only reduce the number of inputs and outputs). Clearly, a communication step
syntactically eliminates an input/output pair from the expression being evaluation.
Thus each evaluation step must reduce the number of inputs and outputs by at
least one. Furthermore, each evaluation step requires both an input and an output
(so that the communication step can go through). Thus during evaluation we can
only have at most min{in(P)(i), out(P)(i)} communication steps whence we can
only have at most that many evaluation steps. ¤
Corollary 6.5. Let P be a closed expression. Then the number of evaluation steps
that can possibly occur during an evaluation of P is a polynomial in the security
parameter.

Proof. Using Lemma 6.4, we define the number of evaluating steps h that occur
during the evaluation of P as

h(i) = min{in(P)(i), out(P)(i)} ≤ in(P)(i) + out(P)(i)

Clearly, h is a polynomial in the security parameter. ¤
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6.4. A Bound on the Time for an Evaluation Step.

Definition 6.6. Let P be a closed expression. We inductively define a polynomial
length(P), the length of P, as follows:

length(®) = 1

length(νc(Q)) = 1 + length(Q)

length(in〈c, x〉.Q) = 1 + length(Q)

length(out〈c, T〉.Q) = 1 + pT(n) + length(Q)

length([T1 = T2].Q) = 1 + pT1(n) + pT2(n) + length(Q)

length(Q1 | Q2) = 1 + length(Q1) + length(Q2)

length(!q(n).
(Q)

) = q(n) · length(Q)

It is clear from the definition that length(P) is an always positive polynomial of n.
Furthermore, the correctness of this definition follows from the construction of the
evaluating Turing machine (see Appendix C). In particular, this definition accounts
for the padding that we add to the expression to ensure that we never need to push
symbols around when we perform communication steps.

Lemma 6.7. Let P n←i be a process and Rn←i a process such that Rn←i is the result
of performing some number of evaluation steps on P n←i. Then length(R)(i) ≤
length(P)(i).

Proof. Each reduction step eliminates matches and rewrites terms with values.
Thus a reduction step cannot increase the length of a process expression.

Also, each communication step removes at least one input and output from
P n←i. Furthermore, the contribution to the length of P n←i by a particular term
T accounts for the maximum size that T can grow to by the creation of successive
λ-substitution instances of T by communication steps. Hence length(R)(i) cannot
exceed length(P)(i). ¤

Lemma 6.8. Let P be a closed, blocked expression and S a perceptible scheduler.
Then the evaluator for P, MP , selects the next action to perform in time polynomial
in the length of P and polynomial in the security parameter.

Proof. Since P is blocked, it has not exposed matches or outputs that need reduc-
tion. Before the scheduler is invoked, we need to construct the set of equivalence
classes of actions. In one pass, we can decide if there are any silent actions since
silent actions are handled differently from public actions. In the case that silent
actions exist, there is only one equivalence class—[τ ]∼ (the scheduler must pick
silent actions if it can).

In the case that no silent actions exist, we need to build the set of equivalence
classes of actions induced by P. This can be done in one pass to collect all the
inputs and outputs (this pass is poly-time in the length of P). Since a public action
consists of an input and an output, the set of actions we need to consider is of size
at most in(P) · out(P). We then need one pass over this set to place each action
in its equivalence class. Determining the equivalence class of an action can be
done in constant time since we need just check the channel name and value. Thus,
the set of equivalence classes of actions A can be computed in time polynomial
in the n. Finally, the scheduler will pick an element from A in time polynomial
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in the size of A. Whence the time needed for the entire procedure of running
the scheduler and deciding which action-class to evaluate is at most a polynomial
sP = c · (in(P) · out(P) + length(P )) where c is a constant. ¤

Lemma 6.9. Let P be a closed expression. Then the Turing machine for P, MP ,
performs a communication step in time polynomial in the length of P and n.

Proof. Whenever MP hits an exposed term (λx1 . . . λxi.T) a1 . . . ak, it evaluates T
by evaluating the algorithm MT at a1, . . . , ak.11 The runtime is bounded by the
polynomial qT(|a1|, . . . , |ak|) (since, terms are probabilistic poly-time functions of
their arguments). However, each argument to a term comes via a communication
step or directly from the choice of value for the security parameter. Thus, each
input has size at most χ(n) whence the cost of evaluating a term is given by the
polynomial qT(χ(x), . . . , χ(x)) which is just a polynomial tT in one variable—the
security parameter. Since the number of terms in a process is a function of its
length, the reduction step needs to do at most

rP(n) = length(P) ·
(

m∑

k=1

tTk
(n)

)

where Terms(P) = {T1, . . . , Tm}.
Next, we need to select an equivalence class from the set of actions that can be

taken. From Lemma 6.8, this can be done in time sP(n) which is polynomial in n
and the length of P. We then need to select the particular action in the selected
equivalence class of actions. This is done using the following procedure:

(1) First, we make a list of all the actions of P in the selected equivalence class
[α]∼. This is done in time polynomial in the length of P.

(2) Then, we select one of those actions uniformly at random. We recall to
the reader’s attention that PPC is a species of reactive bisimulation (see
Section 3.4) i.e., the scheduler selects an equivalence class of actions to
perform and the syntax of the process determines the particular action of
that equivalence class to perform. Thus, having chosen a particular type of
action using the scheduler, we must select the particular action to perform.
An examination of the inference rules of Figure 2 shows that each action
in the same equivalence class is assigned the probability 1/n where n is
a normalization factor. Hence, the actions are selected according to the
uniform distribution.

This procedure takes time polynomial in the number of actions equivalent
to α which in turn is at most in(P) · out(P) which is a polynomial in n.

Thus, selecting the particular action to evaluate can be done in time polynomial in
n and the length of P. We shall call this polynomial dP .

Next we need to perform a series of substitutions. No matter how many there
are, they can be done in two passes. The first makes a list of all the values that
need to be moved around. The second goes from left to right erasing outputs
and replacing inputs of the form in〈c, x〉.Q with [a/x]Q (using blank symbols to
erase unnecessary symbols). Thus we can perform a communication step in time
mP = c · length(P).

11Since we only evaluate exposed terms and since we assume that P is closed, we can be sure that
all variables have values substituted for them.
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Thus the time for an evaluation step is given by the polynomial eP = rP + sP +
dP + mP which is a polynomial in the length of P and n. ¤

6.5. A Bound on Evaluation Time.

Main Theorem 6.10. Let P be a closed expression and MP its evaluator. Then
MP evaluates P in time polynomial in the security parameter.

Proof. We know that there are at most h(n) evaluation steps during the evalua-
tion of P (Lemma 6.5). Furthermore, each evaluation step takes time at most eP
(Lemma 6.9). But eP is a polynomial in the length of P and the security param-
eter i.e., eP = ê(length(P),n) for some polynomial ê(x, y). Since length(P) is a
polynomial in n it follows that eP is a polynomial in n. Thus, the overall cost of
evaluating Pi is ΦP(n) = h(n) · eP(n) which is just a polynomial in the security
parameter. ¤

7. Conclusion and Future Directions

The language presented in this paper allows us to define probabilistic processes
which communicate over a network that gives an adversary access to those commu-
nications.

Our process language uses a separate term language to actually perform com-
putations (the expression in〈c, x〉.out〈d, x + 2〉, roughly speaking, computes the
function x + 2 but all the computation is done by the term x + 2). One might
argue that such a distinction is not particularly necessary since the presence of
polynomially-bounded iteration in our process language should make it expressive
enough for probabilistic poly-time functions even without a dedicated term lan-
guage. This is certainly possible and we leave it to the interested reader to formalize
the necessary constructions and establish properties equivalent to the ones shown
here. One major advantage of our approach is that we simplify the proof of the time
bound on process evaluation since we do not have to establish that computation
be bounded by poly-time; rather we can stipulate that the term language we use
have the desired poly-time property. Additionally, we more accurately model the
situation from the point of view of an adversary since the sources of computation
(terms) are invisible to an adversary; only the information flows can be accessed
by an attacker.

One significant result is to show that expressions written in our language are all
bounded by polynomial time. We also proposed a definition of observational equiv-
alence for probabilistic programs that is based on the view that large differences
in probability are easier to observe than small differences. When we distinguish
between “large” and “small” using asymptotic behavior, we arrive at a definition
of observational equivalence that coincides with a standard concept from cryptog-
raphy, namely, indistinguishability by polynomial-time statistical tests. While we
have not fully explored the consequences of this definition, we believe it may shed
new light on other basic concepts in cryptography, such as the distinction between
semantically secure and non-malleable cryptosystems.

The steps taken in this paper form the beginning of a larger program that we
hope to carry out over the next few years. In part following the program estab-
lished in the study of spi-calculus [3], we hope to develop methods for reasoning
about observational equivalence and use these methods to establish security prop-
erties of various protocols. In this paper we also presented a reasoning mechanism
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inspired by the standard notion of a bisimulation between processes due to Mil-
ner [50]. While this mechanism has proved sufficient to establish some preliminary
equivalences, much work needs to be done in developing a range of techniques suffi-
ciently expressive to deal with the non-trivial problems this approach was intended
to handle. In particular, an important next step is to make our bisimilarity relation
asymptotic. That is to say, rather than requiring that the cumulative probability
distribution functions (µ-function) of two processes be identical, our next step will
be to allow the cumulative distributions to be (asymptotically) “close”.

Finally, we applied our calculus to some simple and well-known cryptographic
facts. First, we showed that a fundamental cryptographic notion, that of a pseudo-
random number generator, is expressible in our language in a fairly natural way. In
future, we hope to demonstrate that a range of other foundational cryptographic
primitives, such as pseudorandom function families, are all similarly expressible
in our language. By capturing a variety of essential cryptographic notions in our
framework, we hope to lay the groundwork for a methodology by which we reason
“backwards” from a desired property of a particular protocol to the properties that
the various primitives in the protocol must possess in order to establish the desired
protocol property. We expect some interesting foundational questions to arise in
the formulation of security properties such as authentication and secrecy.

Second, we provided a formal proof of the equivalence of the semantic security of
ElGamal encryption and the Decision Diffie-Hellman assumption. While this fact is
well-known to the cryptographic community, it is tremendously encouraging that we
can offer a simple and entirely mechanical proof of a non-trivial cryptographic fact
in our calculus. In future, we hope to extend our toolkit of equivalences so that we
may offer similarly mechanical formal proofs of properties of more complex security
protocols. It may also be possible to develop model-checking procedures along the
lines of these already explored for probabilistic temporal logics [21, 35, 36, 38]. In
fact, we hope to be able to develop automated reasoning procedures for use in a
network security setting using techniques developed in our study of the properties
of our process calculus.
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Appendix A. Proof of Lemma 3.27

We start with a little notation. Given a process P and a set of processes R, we
will write Prob

[
P

α−→ R
]

for
∑

R∈R Prob
[
P

α−→ R
]

i.e., the total probability that
P can take an α-transition into one of the processes in R.

The following lemma will also prove useful.

Lemma A.1. Let P and Q be blocked processes such that P ' Q. Then for all
public α we have N(P, α) = N(Q, α).
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Proof. We assume that N(P, α) < N(Q, α) in order to obtain a contradiction. An
examination of the definition of N (Defn. 3.12) reveals that N(P, α) counts the
number of transition labelled by α that P could possibly take. Thus if N(P, α) <
N(Q, α), it must be that some public β ∼ α must occur more often in Q than in
P.

Since we define ' by quantifying over all contexts and schedulers, in order to
achieve the contradiction with the assumption that P ' Q it suffices to produce
a scheduler S under which µ(P, β, R, S) 6= µ(Q, β, R, S). Consider the scheduler
that only schedules actions β equivalent to α if the transition set contains β. If
P has m occurrences of actions equivalent to α, after m transitions P will reduce
to a process that cannot take something equivalent to α, but after m transitions
Q will reduce to a process that can still take something equivalent to α. Since α-
transitions are public, P cannot be bisimilar to Q whence the desired contradiction
is obtained. ¤

Corollary A.2. Let P1 ' P2 be processes such that P1 | Q and P2 | Q are blocked
processes. Then for all public α we have N(P1 | Q, α) = N(P2 | Q, α).

Proof. We note that N(P1 | Q,α) = N(P1, α) + N(Q, α) + N̂(P1 | Q, α). Further-
more N̂(P1 | Q, α) is defined purely in terms of N(P1, β) and N(Q, β) (see Defn.
3.12). The rest follows by applying Lemma A.1. ¤

Lemma 3.27. Given processes P1, P2, and Q such that P1 ' P2, we have that
∀R ∈ Proc/'.∀S ∈ Sched.∀α ∈ Act :

(1) µ(P1 | Q,α, R, S) = µ(P2 | Q,α, R, S), and,
(2) µ(Q | P1, α, R, S) = µ(Q | P2, α, R, S).

The proof in an induction on the maximum length of α-paths from Pi | Q into
R. The basis is established by a case-analysis that distinguishes between actions
that occur ‘across’ the |-operator (i.e., that affect both Pi | Q) and actions that
affect only one side of the |.
Proof. We will just show that

µ(P1 | Q, α, R, S) = µ(P2 | Q,α, R, S) (∗)
since the proof of the other claim is similar. We start by simplifying the problem.
We note that no transition can eliminate the parallel composition operator | from a
process. Therefore, µ(P1 | Q, α, R) > 0 iff R contains processes of the form R1 | R2.
Hence, to prove (∗) it suffices to show

µ(P1 | Q, α, R1 | R2, S) = µ(P2 | Q,α, R1 | R2, S) (z)

To show (z) in the case that P1, P2, and Q are blocked, it suffices to demonstrate
that

µ(P1 | Q,α, R1 | R2, S) = p =⇒ µ(P2 | Q, α, R1 | R2, S) = p

At this point we begin a case analysis depending on whether P1 | Q can take a
transition equivalent to α to reach a process in the equivalence class of processes
R1 | R2. The first case is when µ(P1 | Q, α, R1 | R2, S) = 0 i.e., α does not take
P1 | Q into R1 | R2. Then either P1 fails to reach R1 or Q fails to reach R2. From
the definition of ' we have that µ(P1, β, R1, S) = µ(P2, β, R1, S). Therefore, either
P2 must fail to reach R1 or Q must fail to reach R2. Hence, we can conclude that
µ(P2 | Q, α, R1 | R2, S) = 0.
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The second case is when µ(P2 | Q, α, R1 | R2, S) > 0 i.e., α does take P1 | Q
into R1 | R2. We will prove this case by an induction on k, the maximum length
of paths from P1 | Q into R1 | R2. The basis (k = 1) will be established by a
case analysis. We will write µk to denote the cumulative probability distribution
function assuming path lengths not exceeding k. We will differentiate the case where
α, the action in question, occurs only on one side of the parallel composition from
the case where α affects both sides (as the reader will recall, the probability of both
components in a parallel communication taking an action is computed differently
from the probability of just one component taking an action).

(1) We assume that the action α affects both parties in the parallel compo-
sition. Furthermore, we need only consider the case where P1 can take a
β-transition into R1 and Q can take a γ-transition into R2 with β · γ ∼ α.
To see why consider what happens when P1 | Q takes an α-transition into
R1. Then, since no transition can eliminate |-operators, there must exist
processes R1a and R1b such that P1 takes a β-transition to [R1a]' and Q
takes a γ-transition to [R1b]' with:
(a) β · γ ∼ α; and,
(b) [R1a | R1b]' = R1.
But then

µ(P1 | Q, α, R1 | R2, S) = µ(P1 | Q,α, [R1a]' | [R1b | rep R2]', S)

and we can work with R1 = [R1a]' and R2 = [R1b | rep R2]'. Similarly,
we can eliminate from consideration the case where P1 | Q takes an α-
transition into R2.

To continue, let α ∼ τ . Then

µ1(P1 | Q, τ,R1 | R2, S) = µ1(P1, τ, R1, S) · µ1(Q, τ, R2, S)

Since we assume that the maximum length of silent paths into R1 | R2 is
1, we can continue as follows:

= µ1(P2, τ, R1, S) · µ1(Q, τ, R2, S)

= µ1(P2 | Q, τ,R1 | R2, S)

So much for the case that α is a silent action. If α is not silent, it must be
equivalent to in〈c, a〉 ·out〈c, a〉 since we assume that α affects both P1 and
Q. To aid succinctness we will write RP , with R ∈ Proc/', to denote the



62 J.C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

set
{
R ∈ R|Prob

[
P

α−→ R
]

> 0
}
. Then µ1(P1 | Q, α, R1 | R2, S) is

1
N(P1 | Q, α)

· Prob
[
S(Trans(P1 | Q)) = [α]

] ·

 ∑

R1∈R1
P1

Prob
[
P1

in〈c,a〉−−−−→ R1

] ·N(P1, in〈c, a〉)·

∑

R2∈R2
Q

Prob
[
Q

out〈c,a〉−−−−−→ R2

] ·N(Q, out〈c, a〉) +

∑

R1∈R1
P1

Prob
[
P1

out〈c,a〉−−−−−→ R1

] ·N(P1, out〈c, a〉)·

∑

R2∈R2
Q

Prob
[
Q

in〈c,a〉−−−−→ R2

] ·N(Q, in〈c, a〉)



The reader will notice that we only sum over the processes in R1 reachable
from P1 via an input a on the channel c and the processes in R2 reachable
from Q via an output a on the channel c. Since the only actions that
affect both parties combined with a | are actual actions on the channel c,
the only actions that the two participants can take are an input and an
output respectively. Hence we do not need to some over actions equivalent
to in〈c, a〉 and out〈c, a〉.

Rearranging terms we get

1
N(P1 | Q, α)

· Prob
[
S(Trans(P1 | Q)) = [α]

] ·
(

N(P1, in〈c, a〉) ·N(Q, out〈c, a〉)
Prob

[
S(Trans(P1)) = [in〈c, a〉]] · Prob

[
S(Trans(Q)) = [out〈c, a〉]] ·

µ1(P1, in〈c, a〉,R1, S) · µ1(Q, out〈c, a〉, R2, S)
+

N(P1, out〈c, a〉) ·N(Q, in〈c, a〉)
Prob

[
S(Trans(P1)) = [out〈c, a〉]] · Prob

[
S(Trans(Q)) = [out〈c, a〉]] ·

µ1(P1, out〈c, a〉,R1, S) · µ1(Q, in〈c, a〉, R2, S)

)
(†)

Since Trans(P1 | Q) ∼ Trans(P2 | Q)12, it immediately follows for each
α in Act that Prob

[
S(Trans(P1 | Q)) = [α]

]
= Prob

[
S(Trans(P2 | Q)) =

[α]
]
. From Corollary A.2 we have that N(P1 | Q, α) = N(P2 | Q,α) and

12This is easy to see since the actions available to P | Q are actions of P, actions of Q, and actions
constructed from input (resp. output) actions of P and output (resp. input) actions of Q. In
particular, from P1 ' P2 it follows that

µ1(P1, α, R1, S) = µ1(P2, α, R1, S)

Therefore [α]∼ ∈ Trans(P1) iff [α]∼ ∈ Trans(P2) i.e., Trans(P1) ∼ Trans(P2). Thus, from the
way we construct the transition sets for processes constructed with |, we have that Trans(P1 |
Q) ∼ Trans(P2 | Q).
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from Lemma A.1 we have that N(P1, α) = N(P2, α) for any α ∈ Act. This
allows us to substitute P2 for P1 in (†) and obtain

1
N(P2 | Q, α)

· Prob
[
S(Trans(P2 | Q)) = [α]

] ·
(

N(P2, in〈c, a〉) ·N(Q, out〈c, a〉)
Prob

[
S(Trans(P2)) = [in〈c, a〉]] · Prob

[
S(Trans(Q)) = [out〈c, a〉]] ·

µ1(P2, in〈c, a〉,R1, S) · µ1(Q, out〈c, a〉, R2, S)
+

N(P2, out〈c, a〉) ·N(Q, in〈c, a〉)
Prob

[
S(Trans(P2)) = [out〈c, a〉]] · Prob

[
S(Trans(Q)) = [out〈c, a〉]] ·

µ1(P2, out〈c, a〉, R1, S) · µ1(Q, in〈c, a〉, R2, S)

)

which is just µ1(P2 | Q,α, R1 | R2, S).
(2) We assume that the action α only affects one party of the parallel compo-

sition. We will tackle the case where α only affects P1 since the other case
follows by a similar argument.

Here we do not need to consider the case where P1 takes an α-transition
into R1 | R2. If it did, it would mean that P1 is of the form P ′1 | P ′2 such
that P ′1 takes a β-transition into R1 and P ′2 takes a γ-transition into R2

with β · γ ∼ α. But then, since no transition can lose |-operators, it would
be impossible for P1 | Q to take the α-transition into R1 | R2 since the
process fragment | Q would be lost along the way.

Let α ∼ τ . We note that Q cannot have a silent action since we assume
that α only affects P1. Since we do not normalize the probabilities of silent
actions when combining processes via a |, we have

µ1(P1 | Q, α, R1 | Q,S) = µ1(P1, τ, R1, S)

= µ1(P2, τ, R1, S)

= µ1(P2 | Q,α, R1 | Q, S)

Now we assume that α � τ . Again Q cannot have silent actions because
they would preempt the α that affects P1. Our proof of this case is via a
simple calculation that relies on one fact:

Prob
[
S(Trans(P1 | Q)) = [α]

]
= Prob

[
S(Trans(P2 | Q)) = [α]

]

We now proceed with the actual calculation. Since we are attempting to
prove the basis (k = 1), µ1(P1 | Q, α, R | Q, S) is just

Prob
[
S(Trans(P1 | Q)) = [α]

] ·
∑

R∈RP1

Prob
[
P1 | Q β−→ R | Q]

Rearranging terms as in case 1, we get

N(P1, α) · Prob
[
S(Trans(P1 | Q)) = [α]

]

N(P1 | Q, α) · Prob
[
S(Trans(P1)) = [α]

] · µ1(P1, α, R, S) (‡)

But we know that

∀α ∈ Act : Prob
[
S(Trans(P1 | Q)) = [α]

]
= Prob

[
S(Trans(P2 | Q)) = [α]

]
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Also from Corollary A.2 we have that N(P1 | Q, α) = N(P2 | Q,α) and
from Lemma A.1 we have that N(P1, α) = N(P2, α) for any α ∈ Act. This
allows us to substitute P2 for P1 in (‡) and obtain

N(P2, α) · Prob
[
S(Trans(P2 | Q)) = [α]

]

N(P2 | Q, α) · Prob
[
S(Trans(P2)) = [α]

] · µ1(P2, α, R, S)

which is just µ1(P2 | Q,α, R | Q,S).
Since the case analysis is exhaustive, we can assume the statement of the Lemma
for k ≤ m. We note that if k = m + 1 then µ(P1 | P2, α, R1 | R2, S) is exactly

∑

T1|T2∈Proc/'

µm(P1 | P2, τ, T1 | T2, S) · µ1(rep T1 | T2, α, R1 | R2, S)

To complete the proof we just apply the inductive hypothesis. ¤

Appendix B. Proof of Lemma 3.28

Lemma B.1. Let P ' Q with P and Q being blocked processes. Then |Sepc(P)| =
|Sepc(Q)|.
Proof. We note that N(P, in〈c, a〉) (resp. N(P, in〈c, a〉)) counts the number of
ways that P can take a transition labelled by in〈c, a〉 (resp. out〈c, a〉). So, the
sum over a ∈ N of N(P, out〈c, a〉) counts the number of outputs in P that can
be taken. To compute the number of inputs in P that can be taken we simply
compute N(P, in〈c, a〉) for some particular a—since an input can receive any value,
the number of inputs receiving, say, 0 is the number of inputs in P that are ready
to go. Now |Sepc(P)| is a function of the number of ways that P can take actual
actions on the channel c i.e., |Sepc(P)| is either(∑

a∈NN(P, out〈c, a〉))!(∑
a∈NN(P, out〈c, a〉)−N(P, in〈c, 0〉))!

or
N(P, in〈c, 0〉)!(

N(P, in〈c, 0〉)−∑
a∈NN(P, out〈c, a〉))!

depending on whether the number of outputs or inputs are greater. Since P ' Q
we can use Lemma A.1 to obtain that N(P, in〈c, 0〉) = N(Q, in〈c, 0〉) and that
∀a ∈ N : N(P, out〈c, a〉) = N(Q, out〈c, a〉). Whence |Sepc(P)| = |Sepc(Q)|. ¤
Lemma 3.28. Let P, Q be processes such that P ' Q. Then,

∀R ∈ Proc/'.∀S ∈ Sched.∀α ∈ Act : µ(νc(P), α, R, S) = µ(νc(Q), α, R, S)

Proof. We start by observing that µ(νc(P), α, R, S) = µ(νc(Q), α, R, S) = 0 when-
ever there exists a ∈ N such that either in〈c, a〉 ∈ carα or out〈c, a〉 ∈ carα. Thus,
we need only consider actions that do not happen on the channel c. Similarly, We
also note that

(1) Every scheduler has to schedule all private actions before any public actions
are scheduled. Hence, every path in the process graph for νc(P) has to
schedule public actions on the channel c which are now private before it
schedules any other public actions.

(2) Also, any path must schedule a c-action (i.e., an actual action on the chan-
nel c) simultaneously with other private actions if a c-action is available
(more on this when we establish the basis).
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We will proceed with an induction on the maximum length of α-paths from νc(P)
into R and show that µ(νc(P), α, R, S) = p =⇒ µ(νc(Q), α, R, S) = p. We will
write µk to indicate that we are assuming that the maximum α-path length in the
graph for P is k. The basis occurs when the maximum length of an α-path in P
is 1. Let us assume that α ∼ τ . A private action of νc(P) is a private action of P
occurring simultaneously with all c-actions of P that can go simultaneously. This
means that νc(P) can take a τ -action to νc(R) with non-zero probability iff there
exists a 2k-holed c-separator C[ ] ∈ Sepc(P) and 2k processes R1, . . . , R2k such
that

(1) C[R1, . . . , R2k] ≡ P

(2) Prob
[
C[®, . . . ,®] τ−→ C ′[®, . . . ,®]

]
> 0,

(3) We have for each even i with 0 < i ≤ 2k that Prob
[
C[R1, . . . , R2k] α−→

C[R1, . . . , Ri−2, R
′
i−i, R

′
i, Ri+1, . . . , R2k]

]
> 0.

Additionally, since ν-operators are never removed by reduction or communication
steps, we need only consider equivalence classes of actions containing processes of
the form νc(Q) (the probability that νc(P) can take any kind of transition to a
process that has no outermost ν-operator binding the channel c is zero).

Let us continue by assuming that P is blocked. We note that a c-separator must
consist of holes in parallel composition with the other holes and the remainder of the
process since each hole in a c-separator picks out an exposed input or an exposed
output. Then, it follows that if P takes any τ -transition, the result must be of
form C ′[R1, . . . , R2k] where C ′[R1, . . . , R2k] is reached from C[R1, . . . , R2k] via a
τ -action. Since each of the Ri is an input or an output expression, every process in
the equivalence class [C[R1, . . . , R2k]]' must be of the form D[A1, . . . , A2k] where
∀i ∈ [1..2k] : Ai ' Ri.

Then, µ1(νc(P), τ, [νc(C ′[R′1, . . . , R
′
2k])]', S) is given by

Prob
[
S(Trans(νc(P))) = [τ ]

] ·

 ∏

{i∈N| 0<i≤2k}
Prob

[
Ai | Ai−1

αi−→ A′i | A′i−1

]

 ·

∑

νc(D[A1,...,A2k])∈[νc(C′[R1,...,R2k])]'

Prob
[
P

τ−→ D[A1, . . . , A2k]
]

But since each of the Ri is an input or an output expression, it follows that
∏

{i∈N| 0<i≤2k}
Prob

[
Ai | Ai−1

αi−→ A′i | A′i−1

]
= 1

Then, rearranging terms as in the proof of Lemma 3.27, we get

Prob
[
S(Trans(νc(P))) = [τ ]

] · N(P, τ)
N(νc(P), τ)

· µ1(P, τ, [C ′[R1, . . . , R2k]]', S)

But N(νc(P), τ) = N(P, τ) · |Sepc(P)| (see Defn. 3.12) whence we get

Prob
[
S(Trans(νc(P))) = [τ ]

] · 1
|Sepc(P)| · µ1(P, τ, [C ′[R1, . . . , R2k]]', S) (†)

Since P ' Q it follows that Trans(P) ∼ Trans(Q) whence Prob
[
S(Trans(νc(P))) =

[α]
]

= Prob
[
S(Trans(νc(Q))) = [α]

]
. An application of Lemma B.1 gives us that
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|Sepc(P)| = |Sepc(Q)|. Finally P ' Q yields that µ1(P, α, R, S) = µ1(P, α, R, S).
So (†) can be rewritten as

Prob
[
S(Trans(νc(Q))) = [τ ]

] · 1
|Sepc(Q)| · µ1(Q, τ, [C ′[R1, . . . , R2k]]', S)

which is just µ1(νc(Q), τ, [νc(C ′[R′1, . . . , R
′
2k])]', S).

If P is unblocked, then the only action that νc(P) can take is a reduction action.
But then µ1(νc(P), τ, R, S) = µ1(P, τ, R, S) = µ1(Q, τ,R, S) = µ1(νc(Q), τ, R, S)
(since we assume that the maximum silent path length into R is 1).

Now let us assume that α � τ . Then νc(P) cannot have any private actions
(including any on the channel c) since they would preempt the action α. An exam-
ination of the rules of Figure 2 reveals that the ν-operator on the channel c has no
effect on other channels. Whence

µ1(νc(P), α, R, S) = µ1(P, α, R, S) = µ1(Q, α, R, S) = µ1(νc(Q), α, R, S)

So much for the basis. We assume that the theorem holds for paths of length
at most m and then establish the claim by observing that µm+1(νc(P), α, R, S) is
exactly ∑

R′∈Proc/'

µm(νc(P), τ, R′, S) · µ1(rep R′, α, R, S)

and deploying the inductive hypothesis. ¤

Appendix C. The Evaluator for Closed Expressions

We will now construct the machine MP .13 The machine has two input tapes,
two working tapes, and two output tapes. It starts with a value i for the security
parameter written out in unary14 on one input tape and a description of the Turing
machine implementing a perceptible scheduler S on the other tape—we know such
a Turing machine exists because a perceptible scheduler is a poly-time probabilistic
function. The input tape starts with the closed expression P that MP is supposed
to evaluated. The first step that MP undertakes is to substitute i for n in P. It
then copies P n←i onto one of the working tapes making sure to leave enough space
around the terms as specified by the assumption on the size of terms (we will use
the symbol Ã as a blank symbol that we use to delete symbols by overwriting them
as well as “pad out” terms so that we leave sufficient space as indicated by the
discussion on Section 6.1). As we reduce P n←i and perform communication steps,
we will rewrite P n←i on this working tape. At this point MP is ready to begin
evaluation of the process.

An evaluation step consists of a reduction step followed by a communication step.
We note that, due to the idempotence of reduction (see Lemma 3.7), performing
a reduction step on a blocked process does not alter the probability distribution
on observables induced by P. To perform a reduction step MP must evaluate
each exposed term and each exposed match in P n←i (it is easy to determine if
a term or match is exposed—every time an input operator, say in〈c, x〉.Qn←i, is

13The rest of this section can be safely omitted in a first reading since it merely details the intuitive
construction implied by the comments and assumptions above.

14For technical reasons, it is convenient that the security parameter be written out in unary. In
particular, the running time of a process will turn out to be p(n) ·q(|n|) for p and q polynomials in
one variable. We would like the running time to be polynomial in the size of the security parameter
and so we write the security parameter in unary to ensure that the property is respected.
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encountered, we consider every subexpression of Qn←i as not being exposed). In
order to evaluate the term T we will make use of the Turing machine MT asso-
ciated with T by the properties established by the conditions on terms given in
Section 3.1. We note that no evaluation sequence (i.e., an alternating sequence
of reductions and communication steps) can create terms. Thus, the set of terms
that could possibly be reduced during evaluation of P can be determined by in-
specting P. Let Terms : Expr → 2Term be a function from closed expression to
sets of terms such that Terms(P) is the set of terms that appear as syntactic el-
ements of P. Since every exposed term must be a substitution instance of terms
from the set Terms(P) (recall that P is assumed to be closed, and communication
steps create λ-substitution instances of terms), we can evaluate each substitution
instance λx1 · · ·λxk.T a1 · · · ak by simply running the Turing machine MT at inputs
a1, . . . , ak. In the case that the term evaluated appears in an output on the channel
c, we write down the σ(c)(i) least significant bits. If the term is part of a match,
we use a working tape to record the entire value of the term. In this manner, we
can compute a reduction step by simply invoking the appropriate Turing machines
at the appropriate values and overwriting matches with blank symbols and/or the
® process. We note that the distribution on process induced by performing a re-
duction step on P n←i is exactly the same as that specified by the definition of the
reduction function ρ (see Section 3.3) i.e., MP really does compute a reduction step
in stage of evaluation.

We then need to perform a communication step. We start by computing the
set of input/output pairs and silent actions that P n←i can take. This can be
done by simply collecting all the input and outputs that are not in the scope of
other inputs and outputs, and then building the set E of all pairs of equivalent
to in〈c, a〉 · out〈c, a〉 for some c and a (whether c is private or not). We augment
this set of actions with locating contexts (see Section 3.10) that we will use to
identify the particular inputs and outputs of a communication step. If E contains
no silent actions, then we have the set of eligible actions for P. If E has a silent
action, then the eligible set consists of sets of silent actions. Each of the sets in
the eligible set for P consists of the silent actions that one of the components of P
can possibly take. We then use the given perceptible scheduler S to select one of
the equivalence classes of the eligible set induced by ∼ (in the case that the eligible
set consists of silent actions, we skip this step since the scheduler must elect to
perform a silent action). Having selected an equivalence class, we then pick one
of the actions from that equivalence class uniformly at random and perform the
indicated substitution(s) if the eligible set contained no silent actions. Otherwise,
we pick one silent action from each of the sets in the eligible set. This corresponds to
having each component take a silent action independently (with components with
no silent actions taking the trivial silent action to itself). If the action is a public
one, we record the appropriate observable on the output tape—this tape will then
have all the observables generated during the evaluation of the process. Clearly, at
the termination of this step MP has correctly performed an action available to P.
However, has it done so with the right probability? An examination of the inference
rules of Figure 2 coupled with a blocked induction reveals that the probability of a
particular input (resp. output) action is simply one divided by the number of input
(resp. output) actions equivalent to it that are found in P. Thus our decision to
select the action uniformly at random from the chosen equivalence class is consistent
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with the probabilities induced by the rules of Figure 2. Thus the communication
step performed by MP respects the operational semantics of PPC.

Finally, MP repeats reduction-and-communication-step pairs until there are no
more actual actions to take. We note that this means that there will be a final
reduction step followed by no communication step, but since that reduction step
produces no observables, it can be ignored.

Our construction is specific to a particular closed expression. Thus each closed
expression has an evaluator associated with it. The reader will no doubt appreciate
that a single Turing machine able to evaluate any closed expression is a simple
extension. The input, in this case, will simply be the expression to be evaluated,
a value for the security parameter, a description of the Turing machine associated
with the scheduler, and descriptions of the Turing machines associated with each of
the terms in the process to be evaluated. In fact we can even extend this evaluation
machine to open expressions by including in the input a valuation for the free
variables of the process. We leave the details of these extensions to the interested
reader.

Appendix D. Miscellaneous Proofs

D.1. CPDFs are Well-Defined.

Lemma 3.20.

∀P ∈ Proc.∀α ∈ Act.∀R ⊆ Proc.∀S ∈ Sched : µ(P, α, R, S) ≤ 1

Proof. We note that the contribution of an empty path to µ is 0 if we are comput-
ing µ(P, α, R, S) with α public, and the contribution of an empty path when we
compute µ(P, τ, R, S) is 1 iff there are no positive length silent paths from P into
R. Hence we need only check the value of µ over positive length paths. In what
follows we will write Pathsk(P, α, R) to be the set of α-paths from P into R with
length k. Similarly, Paths≤k(P, α, R) denotes the set of α-paths from P into R
with length at most k.

We note that µ(P, α, R, S) is given by

µ(P, α, R, S) =
∑

π∈Paths(P,α,R)

Prob
[
πS

]

We can reorder this sum as
∞∑

k=1


 ∑

π∈Pathsk(P,α,R)

Prob
[
πS

]



It is important to consider this reordering carefully. In particular, multiple initial
segments of a single path will not appear in this sum since the only silent paths we
allow are paths of maximum length. Since paths are defined by their supports, and
every silent path must have a maximum support, it follows that Pathsk(P, τ, R)
contains only silent paths of minimal length. Thus, the total probability of getting
to R via a τ -path of length at most k − 1 is not over-estimated since the set of
paths we sum over will not contain a path π and a different path ψ such that π in
a initial path of ψ.

We proceed by induction on the maximum length of α-paths from P to some
member of R. The basis occurs when this path is at most length 1. The cumulative
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probability of taking an α-path from P into R, where the maximum length of the
α-path is 1, is just

 ∑

π∈Pathsk(P,α,R)

Prob
[
πS

]

 = Prob

[
S(Trans(P)) = [α]∼

] ·
∑

β∼α,
R∈R

Prob
[
P

β−→ R
]

From the definition of process graphs (Defn. 3.16) we know that
∑

β∼α,
R∈R

Prob
[
P

β−→ R
] ≤ 1

whence it follows that the entire term has value at most 1 (since schedulers are
stochastic probabilistic functions).

We take as our inductive hypothesis that the statement holds when the longest
path is of length at most k−1. Then the cumulative probability of taking an α-path
from P into R, where the maximum length of the α-path is k, is just the sum of
the probability of taking a silent path of length at most k − 1 and then getting to
R via a single α-step (see ‡) plus the probability of getting to R directly via an
α-step (see †). Thus, there are two terms to consider:

Prob
[
S(Trans(P)) = [α]∼

] ·
∑

β∼α
R∈R

Prob
[
P

β−→ R
]

(†)

and
∑

π∈Paths≤k−1(P,τ,R′)

Prob
[
πS

] ·

Prob
[
S(Trans(rep R′)) = [α]∼

] ·
∑

β∼α
R∈R

Prob
[
rep R′ β−→ R

]
(‡)

We use the definition of process graphs to show that the term
∑

β∼α
R∈R

Prob
[
P

β−→ R
]

(∗)

in (†) is at most one. We then use the inductive hypothesis and the definition of
process graphs to show that (‡) is at most one. But we can rewrite (‡) as

Prob
[
S(Trans(P)) = [τ ]∼

] ·
∑

Q∈Proc

Prob
[
P

τ−→ Q
] ·

∑

π∈Paths≤k−2(Q,τ,R′)

Prob
[
πS

] ·

Prob
[
S(Trans(rep R′)) = [α]∼

] ·
∑

β∼α
R∈R

Prob
[
rep R′ β−→ R

]
(z)

Finally we use the fact that a scheduler is a stochastic probabilistic function to
combine (∗) and (z) and, thus, establish the result. ¤
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D.2. Generation Probabilities are Well-Defined.

Lemma D.1.
∀S ∈ Sched :

∑

R∈Proc
α

µ(P, α, {R}, S) ≤ 1

Proof. Pick an arbitrary S ∈ Sched. We proceed by induction on the maximum
length of paths. The basis occurs when the maximum length of paths leaving P is
1. Then,

∑

R∈Proc
α

µ(P, α, {R}, S) =
∑
α

Prob
[
S(Trans(P)) = [α]∼

] ·
∑

β∼α

Prob
[
P

β−→ R
]

(†)

From the definition of process graphs (Defn. 3.16), we know that for any α in Act

it is the case that
∑

β∼α,R∈Proc Prob
[
P

β−→ R
] ≤ 1. Furthermore, S is a stochastic

probabilistic function (i.e., the sum over all action-types of probability that S picks
that action-type is either 0 or 1). Whence it follows that (†) is at most 1.

We can, therefore, assume as our inductive hypothesis that the lemma holds for
paths of at most length m. Let us denote the cPDF over paths of length at most m
by the symbol µm. The inductive step occurs when the maximum length of paths
leaving P is m + 1. In this case we compute

∑

R∈Proc
α

µm+1(P, α, {R}, S)

as
∑
α�τ

Prob
[
S(Trans(P)) = [α]∼

] ·
∑

β∼α,
R∈Proc

Prob
[
P

β−→ R
]
+

Prob
[
S(Trans(P)) = [τ ]∼

] ·
∑

U∈Proc

Prob
[
P

τ−→ U
] ·

∑

R′∈Proc/'

µm−1(U, τ, R′, S) · µ1(repR′, α, R, S)

We know that ∑

β∼α,
R∈Proc

Prob
[
P

β−→ R
] ≤ 1

We then deploy the inductive hypothesis with the fact that S is a stochastic prob-
abilistic function to complete the proof. ¤

Lemma 4.3. Prob
[
P ;S o

] ≤ 1.

Proof. Let α1, . . . , αk, with αi an αi-path, be an evaluation sequence. We proceed
via an induction on k the length of evaluation sequences. The basis occurs when P
generates o = 〈c, a〉 under scheduler S via an evaluation sequence of at most length
1. Then

Prob
[
P ;S o

]
=

∑

R∈Proc/'

µ(P, in〈c, a〉 · out〈c, a〉, R, S)
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which, by Lemma 3.20, is at most one. This establishes the basis. We now establish
the inductive hypothesis (when the length of the evaluation sequence is at most
k + 1). We compute Prob

[
P ;S o

]
as

∑

R∈Proc

µ(P, in〈c, a〉 · out〈c, a〉, {R}, S) +

∑

{β�in〈c,a〉·out〈c,a〉∈Act×}
R∈Proc

µ(P, β, {R}, S) · Prob
[
R ;S o

]
(†)

The inductive hypothesis gives us that Prob
[
R ;S o

] ≤ 1. Thus

∑

R∈Proc

µ(P, in〈c, a〉 · out〈c, a〉, {R}, S) +

∑

{β�in〈c,a〉·out〈c,a〉∈Act×}
R∈Proc

µ(P, β, {R}, S) (‡)

is an upper-bound on (†). We then complete the proof by using Lemma D.1 to
show that (‡) is at most 1. ¤

D.3. Paths in Process Graphs are of Finite Length.

Lemma D.2. Let P be a closed process. Then, under any scheduler, the length of
any path from root to leaf in the process graph of P is finite.

Proof. We note that no action creates new inputs or outputs. Furthermore, each
action removes at least one input or output whence no path can contain two edges
labelled by the same action (using locating contexts to color actions uniquely).
Consequently, since P is of finite length, the number of inputs, outputs, and input-
output pairs (which include all private and actual actions) that can possibly label
actions along a single path from root to leaf must be finite.

Now a node labelled by an unblocked process must only have outgoing reduction
actions and a blocked process has no outgoing reduction actions. Thus, there is
at most one edge labelled by a reduction action preceding any edge labelled by a
non-reduction action (since actions take blocked processes to unblocked processes).

Finally, since no path can contain two edges labelled by the same action and the
set of possible labelling actions is finite, the path must be of finite length. Since
this proof does not depend on the scheduler’s behavior, the property holds under
all schedulers. ¤

Definition D.3. Let G be the process graph of P. The graph G′ obtained by
relabelling each node labelled with the process Q with [Q]' is called the '-graph
induced by P.

The maximum length of paths from the root of a process graph to a leaf is a
rough measure of how long it takes to evaluate the process. We will use the '-graph
to study the length of paths in a process graph.

Lemma D.4. Let G be the '-graph induced by P. Let π be a path from the root
to a leaf. Then π does not contain a cycle.
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Proof. If π contains a cycle, there must exist two nodes on the path whose labels
are in the same equivalence class R under '. Whence it must be that for some
α ∈ Act and some scheduler S, we have that µ(repR, α, R, S) > 0. But then, under
that scheduler, there must be an infinite path in the graph since any process in R
can return to R via an α-path with non-negligible probability under S. But this
contradicts Lemma D.2. ¤


