
Characterizing Bots’ Remote Control Behavior

Elizabeth Stinson and John C. Mitchell

Department of Computer Science, Stanford University, Stanford, CA 94305
{stinson, mitchell}@cs.stanford.edu

Abstract. A botnet is a collection of bots, each generally running on
a compromised system and responding to commands over a “command-
and-control” overlay network. We investigate observable differences in
the behavior of bots and benign programs, focusing on the way that
bots respond to data received over the network. Our experimental plat-
form monitors execution of an arbitrary Win32 binary, considering data
received over the network to be tainted, applying library-call-level taint
propagation, and checking for tainted arguments to selected system calls.
As a way of further distinguishing locally-initiated from remotely-initiated
actions, we capture and propagate “cleanliness” of local user input (as
received via the keyboard or mouse). Testing indicates behavioral separa-
tion of major bot families (agobot, DSNXbot, evilbot, G-SySbot, sdbot,
Spybot) from benign programs with low error rate.

1 Introduction

Botnets have been instrumental in distributed denial of service attacks, click
fraud, phishing, malware distribution, manipulation of online polls and games,
and identity theft [2,18,19,25,33,30]. As much as 70% of all spam may be trans-
mitted through botnets [4] and as many as 1

4 of all computers may be partici-
pants in a botnet [37]. A bot master (or “botherder”) directs the activities of a
botnet by issuing commands that are transmitted over a command-and-control
(C&C) overlay network. Some previous network-based botnet detection efforts
have attempted to exploit this ongoing C&C behavior or its side effects [3,6,25].
Our work investigates the potential for host-based behavioral bot detection. In
particular, we test the hypothesis that the behavior of installed bots can be char-
acterized in a way that distinguishes malicious bots from innocuous processes.
We are not aware of any prior studies of this topic.

Each participating bot independently executes each command received over
the C&C network. A bot command takes some number of parameters (possibly
zero) – each of a particular type – in some fixed order. For example, many bots
provide a web-download command, which commonly takes two parameters; the
first is a URL that identifies a remote resource (typically a file) that should be
downloaded, and the second is the file path on the host system at which to store
the downloaded data. A botnet, therefore, constitutes a remotely programmable
platform with the set of commands it supports forming its API.

Many parameterized bot commands are implemented by invoking operating
system services on the host system. For example, the web-download command

connects to a target over the network, requests some data from that target,
and creates a file on the host system; all of these actions (connect, network
send and receive, and file creation) are performed via execution of system calls.
Typically, a command’s parameters provide information used in the system call
invocation. For example, the connect system call takes an IP address argument,
which identifies the target host with which a connection should be established.
Implementations of the web-download command obtain that target host IP from
the given URL parameter. Thus, execution of many parameterized commands
causes system call invocations on arguments obtained from those parameters.

In this paper, we test the experimental hypothesis that the remote control
of bots through parameterized commands separates bot behavior from normal
execution of innocuous programs. We postulate that a process exhibits external
or remote control when it uses data received from the network (an untrusted
source) in a system call argument (a trusted sink). We test our hypothesis via a
prototype implementation, BotSwat, designed for the environment in which the
vast majority of bots operate: home users’ PCs running Windows XP or 2000
[25]. BotSwat can monitor execution of an arbitrary Win32 binary and interposes
on the run-time library calls (including system calls) made by a process. We
consider data received over the network to be tainted and track tainted data
as it propagates via dynamic library calls to other memory regions. We identify
execution of parameterized bot commands when tainted arguments are supplied
to select gate functions, which are system calls used in malicious bot activity.

Our experimental results suggest that the presence of network packet con-
tents in selected system call arguments is an effective indicator for malicious
Win32 bots, including tested variants of agobot, DSNXbot, evilbot, G-SySbot,
sdbot, and Spybot. Bots from these families constitute 98.2% of malicious bots
seen in the wild [18]. While these bots may implement commands in significantly
different ways, similarities in the way they respond to external control allow a
single approach to identify them. Additionally, the thousands of variants of each
such family generally differ in ways that will not affect our ability to detect
them; this is in contrast to traditional anti-malware signature scanners which
may require a distinct signature for each variant [38]. Moreover, our generic
approach does not rely on a particular command-and-control communication
protocol (e.g., IRC) or botnet structure (e.g., centralized or peer-to-peer).

Since our prototype implementation only has visibility into memory-copying
calls made via a Dynamically Linked Library (DLL), we introduce strategies to
counteract the effects of out-of-band memory copies – those which occur outside
of the interposition mechanism. In particular, we perform content-based tainting,
which considers a memory region tainted if its contents are identical to a known
tainted string. We also introduce substring-based tainting, whereby a region will
be considered tainted if its contents are a substring of any data received by the
monitored process over the network. These strategies are applied upon calls by
a monitored process into taint propagation functions, which are DLL functions
used to copy or convert the contents of memory. Applying these strategies allows
us to effectively identify bot behavior even when all of the bot’s calls to memory-

copying functions occur out-of-band, which may be the case if the bot statically
links in C library functions.

A consequence of BotSwat’s use of library-call-level taint propagation is that
bots could apply out-of-band encryption functions (e.g., XOR) to network data
and consequently defeat detection by the prototype implementation. This is a
limitation of our current testing platform rather than a deficiency in the char-
acterization of bot remote-control behavior. Our testing of versions of agobot,
which encrypt C&C communications via dynamic calls to the OpenSSL library,
indicates that remote control behavior can still be identified (even when commu-
nications are encrypted), given visibility into the cryptographic function calls.
Current botnet C&C communications tend to be unencrypted [19].

While both bots and benign programs may create files, interact with the
network, and execute programs, we are able to separate bot behavior from that
of benign programs by distinguishing between remotely-initiated and locally-
initiated actions. We tested applications typical to the target environment (home-
user PCs) which exhibit extensive network interaction. Early testing revealed
that a benign program may use some tainted value in a system call argument as
a result of local user input. For example, when a user downloads a webpage via
a browser then clicks on a hypertext link therein, the browser will consequently
request the content stored at the linked URL. In so doing, the browser will invoke
system calls (e.g., connect, send) on tainted arguments (the URL). If user input
were not tracked, this sequence of events would look similar to bot execution of
the web download command. To account for this phenomenon in our experimen-
tal assessment, we designed and implemented a user-input module that identifies
data values resulting from local user input as received via the keyboard or mouse.
These clean strings are used to identify instances of local control. Our testing of
eight benign programs over a variety of activities common to those applications
resulted in eight total flagged behaviors (five different) whereas testing six bots
resulted in a total of 202 flagged behaviors (18 different).

In Sect. 2, we provide background information on bots. Section 3 describes
our experimental method, and Sect. 4 details our prototype implementation.
Our experimental results are given in Sect. 5. We discuss the potential for and
challenges to applying our findings for real-time host-based bot detection in Sect.
6. Section 7 describes related work and Sect. 8 provides concluding remarks.

2 Bots and Botnets

A botnet is a network of compromised machines that can be remotely controlled
by a bot master over a command-and-control (C&C) network. Individual bots
connect to a rendezvous point – commonly an IRC server and channel, access to
which may require password authentication – and await commands.

2.1 Bot Families and Variants

The Honeynet Project identifies four main Win32 bot families: (1) the agobot
family – the most well known; (2) the sdbot family – the most common; (3)

DSNXbot; and (4) mIRC-based bots [25]. A family is “a new, distinct sample of
malicious code,” whereas a variant is “a new iteration of the same family, one
that has minor differences but that is still based on the original” [36]. Variants
may be created by augmenting the functionality of a bot (e.g., adding a new
exploit for use in spreading) or by applying “packing transformations” (such
as compression and encryption) to a bot binary [36,38]. We tested at least one
variant from each of the first three major Win32 bot families (agobot, sdbot,
and DSNXbot) as well as evilbot and Spybot. Data from McAfee suggests that
bots from these tested families collectively constitute 98.2% of known variants
(as of June 2005) [18]. Since bots in the wild may link in C library functions
statically or dynamically, we tested bots under both conditions.

Fig. 1. Bot capabilities

2.2 Bot Capabilities and Commands

Figure 1 provides a summary of some of the functionality exported by the tested
bots. The shaded cells represent activities that are detected by BotSwat as de-
scribed in Sect. 5. Note that, of the 22 different bot activities listed, 21 are
implemented as parameterized commands by each of the bots that provides that
capability. The exception is keylogging, which – for both of the bots that perform
it – logs the captured keystrokes to a file whose name is statically configured.
This chart reflects the bot versions we tested; different variants from each of
these families may export more or less functionality.

Candidate Commands Since our characterization of bot behavior exploits
the fact that command parameters are often used in system call arguments, we
identify a bot’s candidate commands as those which take at least one parameter
that is subsequently used (in whole or in part) in an argument to a critical system
function. Our method considers non-candidate commands, those which take no
parameters or parameters with only “local meaning” to the bot, out-of-scope.

Any bot execution of a received command is an instance in which that bot is
being remotely controlled. The remote control behavior associated with a partic-
ular command consists of all the actions taken by the bot as a direct consequence
of receipt of that command. Not all commands result in an equal amount of re-
mote control behavior; e.g., a command that asks a bot to return its ID (some
statically-configured value) to the bot controller entails fewer actions than the
described web-download command. We approximate a command’s remote con-
trol behavior by identifying the number of distinct system calls invoked during
a successful execution of that command; these values were obtained through bot
source code inspection. A bot’s total potential remote control behavior, then, is
the sum of the remote-control behavior of each of that bot’s commands (Table 1,
Row 1). Our coverage of that potential can be measured by summing the remote-
control behavior of each of a bot’s candidate commands (Table 1, Row 2). The
complete list of system calls used in the tallies can be found in [52]. The number
of system calls invoked by a bot’s candidate commands accounts for around 64
to 79% of the system calls invoked over all of the bot’s commands. Interestingly
enough, the non-candidate commands that cause the highest number of system
call invocations generally perform beneficial tasks (from the perspective of the
compromised host); specific examples of this can be found in [52].

Table 1. The number of system calls invoked during successful execution of
commands.

ago DSNX evil GSyS sd Spy

syscalls invoked over all cmds 591 145 5 187 173 202
syscalls invoked over candidate cmds 417 114 5 122 110 145

3 Experimental Method

We developed a host-based method that identifies instances of external control,
whereby a process uses data it received from an untrusted source in a system
call argument without having received intervening (local) user input implicitly
or explicitly agreeing to this use.

Tainting Component This component identifies when untrusted data is re-
ceived by the system (taint instantiation) and tracks that data as it propagates

to other memory regions (taint propagation). For our method, taint instantia-
tion occurs upon network receive, and taint propagation keeps track of memory
regions to which tainted data is written. This component exports an interface
that enables querying whether a particular memory region is considered tainted.

User Input Component This purpose of this component is to identify actions
that are initiated by the local application user. A primary challenge in designing
this component is to identify the data values corresponding to mouse input events
where this mapping (from event to value) is heavily application-dependent and
not typically exposed (i.e., available via a library call). This component exports
an interface that enables learning whether a data value or memory region is
considered clean or whether a syscall invocation is likely the result of user input.

Behavior-Check Procedure Triggered by invocation of selected system calls,
this procedure queries the tainting and user-input components to determine
whether to flag the invocation as exhibiting external control. Invocations on
arguments that contain more bytes of tainted than clean data are flagged.

4 Implementation

This section describes the interposition approach and the tainting, user-input,
and behavior-check instrumentation used to evaluate our hypothesis.

4.1 Library and System Call Interposition

We use the detours library provided by Microsoft Research for library- and
system-call interposition [9]. Our platform consists of a set of functions that we
want to interpose upon, a replacement function for each, and a mechanism for
performing interposition. The replacement functions contain the tainting, user-
input, and behavior-check instrumentation. This platform is packaged as a DLL
that can be injected into a target process upon its creation. Our implementation
consists of approximately 70,000 lines of C++ code and, for the purpose of
conducting thorough experiments, may intercept up to 2,200 API functions.

4.2 Tainting Module

Our tainting module operates dynamically at the library-call level and consid-
ers data received over the network to be tainted; consequently, network receive
functions (e.g., recv, WSARecv) are instrumented as taint instantiators. Taint
propagation functions include those which copy memory from a source to a des-
tination buffer (e.g., memcpy), convert a buffer’s contents to a numeric value (e.g.,
atoi), or convert one numeric value to another (e.g., htons). Taintedness can
be a property of memory addresses, strings, or numeric values. A total of 172
different functions (enumerated in [52]) were instrumented as taint propagators.

As a result of out-of-band memory copies, our mechanism may possess one of
two flawed views regarding a particular memory region. If a destination region
D is written to with tainted data via an out-of-band operation, we will not know

that D should be considered tainted. Our belief that D does not contain tainted
data is a false negative. Similarly, a tainted region T may be written to via
an out-of-band operation with untainted data; in this case, our belief that T is
tainted is a false positive. We perform content-matching to reduce false positives
and content-based and substring-based tainting to reduce false negatives.

To reduce false positives, we perform content-matching : for a believed-to-be-
tainted memory region M, before taking any action on the basis of M’s supposed
taintedness (where actions include propagating taint or flagging a system call
invocation), we confirm that M’s contents match the relevant portion of the
network receive buffer N from which M allegedly descended. The information
needed to perform such a comparison (an identifier of N, the offset into N from
which this tainted data descended, the number of bytes of tainted data, etc.) is
stored in the data structure describing a tainted memory region.

There are three conditions under which a region may be considered tainted:
address-based, content-based, and substring-based. Under address-based taint-
ing, a memory region is considered tainted if its address range overlaps with
that of a known tainted region. With content-based tainting, a memory region
will be considered tainted if its contents are identical to a known tainted string.
Under substring-based tainting, a memory region will be considered tainted if its
contents are a substring of any data received over the network by this process.

The tainting module may run in one of two modes, which differ in the condi-
tions used to determine taintedness. Under cause-and-effect propagation, a mem-
ory region is considered tainted if the address-based or content-based conditions
hold. Under correlative propagation, a memory region will be considered if any
of the three conditions holds. Consequently, these modes differ in the amount
of resilience provided against out-of-band copies. Cause-and-effect propagation
was designed for the case where the majority of memory-copies made by a mon-
itored process are visible to the interposition mechanism. We refer to this as
cause-and-effect propagation since, in applying it, there is a tight causal rela-
tionship between receipt of some data over the network and use of that data in
a system call argument. That is, we can point to a sequence of memory copies
from a network receive buffer to a system call argument buffer. Correlative prop-
agation, on the other hand, was designed for the case where most or all memory
copies occur out of band – such as can occur when a bot statically links in C
library functions. This mode is referred to as correlative propagation since, in
applying it, we are ultimately identifying when data received over the network
correlates to that used in system call arguments.

Upon a call to a taint propagation function f, that function’s relevant argu-
ments are checked for taintedness via applying the appropriate conditions, given
the mode, and performing content-matching. Given a tainted source argument,
taint propagation proceeds in the following way. For source buffers, we ensure
that the tainted portion of that buffer is a known tainted string and its address
range is a known tainted region. If f copies some portion of this source buffer to
a destination buffer, the corresponding portion of the destination region is tran-
sitively marked tainted. If, on the other hand, f converts the source buffer to a

numeric value, we add the numeric result to our collection of tainted numbers.
Finally, if the tainted source argument is a number which f converts to another
number, we add the destination value to our set of tainted numbers.

4.3 User Input Module

Our implementation tracks local user input as received via the keyboard or
mouse and considers subsequent use of such clean data, such as in a system call
argument, innocuous. Obtaining the data value corresponding to a keystroke
is generally straightforward as the system generates a message in response to
keyboard input for the target application identifying the key or character. Our
implementation monitors such messages and creates, for each line of keyboard
input, a clean string consisting of the previously input characters.

Obtaining the data value corresponding to a mouse input event is more chal-
lenging as the system generates, upon receipt of such an event, a message which
merely identifies the target window, type of event (e.g. left button down), and
coordinate pair within that window at which the event occurred. The actual data
value corresponding to such an event is application-defined and not available via
a library call. Our implementation addresses this opacity via exploiting local-
ity of reference; in particular, our goal was to identify when an application was
executing code to handle a user-input event. We posited that any data values
referenced during execution of such code could be considered clean and that in
this way we could infer a set of data values corresponding to a user input event.

For a Windows user input event E, an application calls DispatchMessage in
order to invoke that application’s predefined handler for E. The handler must
process E prior to returning from DispatchMessage [35] and may invoke system
calls in its processing. Thus, upon entry to DispatchMessage and until return
from it, we add any string referenced by any interposed-upon function to our
collection of clean strings.

4.4 Behavior-Check Procedure

Our ability to identify bot behavior relies in part on our selection of appropriate
system calls and their arguments to check for taintedness and cleanliness. The
collection of bot capabilities (Fig. 1) informed our selection of system calls (gates)
and their particular arguments (sinks); these are described below. The algorithm
is as follows. If the sink type is numeric, if the argument value is tainted, we flag
the invocation; otherwise, we pass control to the system call. While a numeric
value will either be considered tainted or not, buffer arguments may contain some
number of bytes of tainted and/or clean data. If the sink type is a data buffer
which contains no tainted data, control is passed to the system call. Otherwise,
we query the user-input module to determine whether that buffer also contains
clean data. If not, the invocation is flagged; if so, this procedure will flag the
invocation only if the argument contains more bytes of tainted than clean data.

A behavior is a general description of an action that may be detected via
checking particular arguments for one or more system calls. The same gate func-
tion may be instrumented to detect multiple different behaviors. Conversely,
multiple library functions may be instrumented to check for a single behavior.
Table 2 contains the complete list of behaviors and the gate functions for each be-
havior. In general, we favored instrumenting lower-level API functions as gates;
e.g., instrumenting NtOpenFile as a gate enables us to detect all behaviors that
entail listing a directory, deleting a file, or replacing a file since the higher-level
API functions for these tasks ultimately call into NtOpenFile.

Two behaviors (tainted send and derived send) require a bit more explana-
tion. Tainted send occurs when data received over one connection (or socket) is
sent out on another; e.g., when a bot is acting as a proxy, it echoes out on a
second socket the data heard on the first. Since an application may commonly
receive and send certain fixed strings over a variety of connections, we do not per-
form content-based or substring-based tainting for such strings. The set of such
strings is small, application-specific, and generally consists of protocol header
fields; e.g., a browser’s set includes HTTP/1.1 and Accept-Range. Consequently,
the tainted send behavior is not flagged for transmission of routine messages
that do not otherwise contain tainted data. Derived send occurs when a system
call is invoked on some tainted input to obtain a result that is then sent on
the network. Various data leaking commands match derived send, such as those
which take a parameter identifying a registry key and return its value.

Table 2. Detected behaviors and the gate functions for each behavior.

Behavior gate function

B1 tainted open file NtOpenFile
B2 tainted create file NtCreateFile
B3 tainted program execution CreateProcess{A,W}
B4 tainted process termination NtTerminateProcess
B5 bind tainted IP NtDeviceIoControlFile
B6 bind tainted port NtDeviceIoControlFile
B7 connect to tainted IP connect; WSAConnect
B8 connect to tainted port connect; WSAConnect
B9 tainted send NtDeviceIoControlFile; SSL write
B10 derived send NtDeviceIoControlFile; SSL write
B11 sendto tainted IP sendto; WSASendTo
B12 sendto tainted port sendto; WSASendTo
B13 tainted set registry key NtSetValueKey
B14 tainted delete registry key NtDeleteValueKey
B15 tainted create service CreateService{A,W}
B16 tainted delete service OpenService{A,W}
B17 tainted HttpSendRequest HttpSendRequest{A,W}
B18 tainted IcmpSendEcho IcmpSendEcho{A,W}

5 Experimental Evaluation

This section provides the results of testing our experimental hypothesis that the
remote control behavior of bots can be detected via checking selected system calls
for tainted arguments. To determine the utility of this characterization of remote
control, we compare the effects of detected commands to those of all commands.
Finally, we measure whether benign programs exhibit remote control.

5.1 Bot Experiment Setup

We edited the source code of each bot by altering its C&C parameters such that,
when executed, that bot would connect to a C&C server under our control. We
then built two versions of each bot: one which dynamically linked in C library
functions (DYN) and a second which statically linked these in (STAT). We then
executed each bot binary, injecting our DLL into the newly-spawned bot process
so as to intercept its API calls (as described in 4.1). We were then able to exercise
each bot over its set of commands and monitor the effects of each such command.

5.2 Terminology

When BotSwat flags a system call invocation, we say that a behavior is detected.
If flagging this invocation is incorrect, we refer to this as a false positive. Any
behavior flagged for a benign program is considered a false positive. If BotSwat
fails to flag a system call invocation on an argument that contains data received
over the network (most likely because BotSwat does not know that this argument
should be considered tainted), we say a behavior is exhibited but not detected
and refer to this as a false negative. We say that a command is detected when
BotSwat correctly flags at least one behavior exhibited by that command. Note
that many commands exhibit more than one behavior; therefore, a particular
command may exhibit a false negative but still be detected.

5.3 Bot Results

In summary, we found that the external or remote control behavior of bots
can be measured by identifying system call invocations which use tainted pa-
rameters. Moreover, the effects of a bot’s detected commands account for the
majority of the effects of all of a bot’s commands (where effects are measured
via number of system call invocations). Bots in general exhibit a great volume
and diversity of behaviors. Table 3 provides a summary of our test results. Row
1 identifies the total number of commands provided by each of the tested bots.
The number of those commands that take at least one parameter that is sub-
sequently used (in whole or in part) in a critical system function is provided in
row 2. The 3rd row gives the number of candidate commands that were detected
using cause-and-effect propagation (C&E) for bots built with C library func-
tions dynamically linked in (DYN). The last row shows the number of candidate

commands detected using correlative propagation (CORR) on bots built with
statically linked in C library functions (STAT). We did not have a version of
evilbot which dynamically linked in C library functions.

Table 3. Summary of bot command detection.

ago DSNX evil GSyS sd Spy

cmds 88 28 5 56 50 36
candidate cmds 36 14 5 26 20 15
detected cmds (DYN, C&E) 33 14 N/A 26 20 15
detected cmds (STAT, CORR) 31 10 5 12 12 15

Detection of Commands on Dynamically-Linked Bots The best detec-
tion occurs under cause-and-effect propagation on dynamically-linked bots, since
these conditions provide the best visibility into the bot’s use of data received
over the network. Only three total candidate commands were not detected in
this mode: agobot’s harvest.registry and scanning commands. Agobot’s scan-
ning commands use a transformation of a received parameter in a system call
argument. Taintedness was not propagated across this transformation opera-
tion; thus, scan.start and scan.startall were not detected. Also, the same
set of commands was detected (and the same behaviors flagged for each com-
mand) for agobot whether that bot encrypted C&C messages via dynamic calls
to the OpenSSL library or not. Thus, detection of remote control is resilient to
command encryption, given visibility into the cryptographic function calls.

Detection of Commands on Statically-Linked Bots Since all tested bots
either primarily or exclusively use C library functions for memory copying, static
linking severely hinders visibility into a bot’s use of received data. We were still,
however, able to detect execution of many of the bots’ candidate commands by
correlating received network data to system call arguments. We explore below
the effects of detected vs. undetected commands and provide some evidence that
these undetected commands are significantly less harmful than are the detected
commands. Many of the undetected commands rely on the previous execution
of a command this is detected under these conditions. In particular, three of
DSNX’s four undetected commands (75%), seven of sdbot’s eight (87.5%), and
seven of G-SySbot’s fourteen (50%) perform clone management; this function-
ality only makes sense when a clone exists to be managed. The command that
creates a clone – for each of these three bots – was detected under STAT, CORR.
There were three false positives under this mode; in all cases, the incorrectly
flagged behavior was in fact malicious but not an example of external control.

The candidate commands that were not detected under STAT, CORR share
a common property that could be used to produce even better detection results.

Specifically, 24 of the 28 undetected commands use sprintf to format the argu-
ment buffers passed to system calls. The call to this buffer-formatting function
was not visible to BotSwat (under STAT) and thus it was not able to infer that
the resulting argument buffers contained (among other data) strings received
over the network. Statistical tests that measure how similar an argument buffer
is to data received over the network may provide significant gains here.

The Effects of Detected Commands Relative to All Commands As
discussed in Sect. 2.2, not all commands result in an equal amount of remote
control behavior. 1 We find that the commands we are able to detect for each
bot – even under STAT, CORR – account for the majority of that bot’s total
potential remote control behavior. For Spybot, e.g., under STAT, CORR, the
number of system calls invoked during execution of detected commands is 145
(Table 4) and during execution of all commands is 202 (Table 1). The same
pattern held for all tested bots and is a consequence of the relative severity of
commands we are able to detect even under these conditions.

Table 4. The number of system calls invoked during successful execution of
candidate and detected commands.

ago DSNX evil GSyS sd Spy

syscalls invoked by candidate cmds 417 114 5 122 110 145
syscalls . . . detected cmds (DYN, C&E) 393 114 N/A 122 110 145
syscalls . . . detected cmds (STAT, CORR) 386 110 5 99 99 145

Bots Exhibit Volume and Diversity of Behaviors For each bot command,
we counted the number of distinct behaviors correctly detected in a successful
execution of that command. Then we tallied these values across commands, giv-
ing us the number of times each behavior was detected for each bot (Fig. 2).
It is not uncommon for execution of a single command to result in detection of
multiple behaviors. Executing a port redirect command, e.g., generally results
in four detected behaviors: binding a tainted port (B6), connecting to a tainted
IP (B7), connecting to a tainted port (B8), and tainted send (B9). Note that in
practice the raw number of detected bot behaviors might be much larger since
execution of certain commands may cause the same behavior to be repeatedly
flagged. Such is the case with denial-of-service (DoS) commands, which often

1 We approximate the remote control behavior associated with a particular command
via tabulating the number of distinct system calls invoked in a successful execution
of that command. Then the bot’s total potential remote control behavior is the sum
of these values across all of that bot’s commands.

cause a particular behavior to be flagged with transmission of each DoS packet.
We note that the distribution of detected behaviors across bot families is not
uniform; e.g., behavior B11 (sendto tainted IP) is frequently flagged in agobot
but never in DSNXbot and only rarely in G-Sys, sd, and Spybots. Such differ-
ences may be leveraged to perform classification of an encountered bot as more
likely to be a variant of a particular family.

Fig. 2. The number of times each behavior was detected, over all of a bot’s
commands.

5.4 Benign Program Results

We tested eight benign applications that exhibit extensive network interaction
across a variety of activities typical to these programs. False positives in this
context are any instances in which a system call invocation is flagged. This
could arise from imperfections in our user-input module implementation, which
may not be able to infer that a system call invocation is the result of local user
input. Alternatively, a benign program may genuinely exhibit external or remote
control. There were eight false positives: two for the browser, three for the email
client, two for the IRC client, and one for the IRC server. The programs, activities
across which their behavior was traced, and results are described below.

Benign Program Testing We tested a browser (firefox), email client (Eudora),
IRC client (mIRC), ssh client (putty), FTP clients (WS FP and SecureFX),
anti-virus (AV) signature updater (Symantec’s LuComServer 3 0.exe), and IRC
server (Unreal IRCd). Since the majority of systems infected with bots are those
of home users (who do not typically run server programs) [32], we tested against
only one server program. We note, however, that server programs may, at an
abstract level, be designed to respond to certain types of external control (that
exerted by the client).

We used the browser to visit a variety of sites, some containing linked-in im-
ages. Once at a site, we clicked on hypertext links, downloaded files specified by

links, saved the web page’s contents to a file, executed downloaded programs from
within the browser, etc. With the email client, we received, composed, replied to,
forwarded, and sent email, including and excluding attachments, and including
and excluding HTML. We also saved and executed received attachments from
within the email client. We exercised the IRC client over a range of its capa-
bilities: connecting to a server and channel, messaging, DCC file transfer, etc.
We used the ssh client to connect to and execute commands on a remote host.
Using FTP clients, we connected to and browsed various FTP sites, navigated
across directories (alternatively using the mouse and keyboard), and downloaded
files. We tested the AV signature updater via establishing a base state with stale
virus definitions files then instructing the updater to get the latest AV signatures.
Finally, the IRC server was networked to other servers and serviced clients.

Benign Program Results We present the results of running under correla-
tive propagation (which has the most relaxed requirements for taintedness) with
the user-input module enabled. Four of the eight false positives occur as a re-
sult of the automatic downloading of linked-in images performed in rendering
an HTML document. Two of these were exhibited by the browser and two by
the email client, both upon receipt of an HTML document containing an element. Receipt of such an element causes the application to re-
quest the content specified in the SRC URL. Also, when the user receives an
email with an attachment, Eudora automatically creates a file of the same name
(as the received file), which causes the tainted open file behavior (B1).

The mIRC client generated two false positives as a result of performing Direct
Client Protocol (DCC) file receipt. These false positives reveal limitations in our
user-input module implementation. In preparation for DCC file transfer, the file
sender provides an IP and port to the recipient via a network message. The
recipient then creates a TCP connection to the sender using the specified IP and
port. Therefore, behaviors B7 (connecting to a tainted IP) and B8 (connecting to
a tainted port) were flagged. Prior to the chat client creating such a connection,
however, the client asks the user whether he wishes to perform this operation and
will only proceed if the user responds affirmatively. Our user-input module was
not able to infer the connection between the user input agreeing to this behavior
(via a dialog box) and the values used to create the network connection.

The IRC server repeatedly exhibited the tainted send behavior (B9) – which
identifies when data heard over one socket is sent out on another. Clearly this
behavior is expected, since the overriding purpose of an IRC server is to partici-
pate in a chat network, which entails receiving messages and sharing those with
its clients and/or other servers.

Benign Results Discussion We find it interesting that most of the detected
behaviors of benign programs may be known to carry a risk and thus our flagging
of these behaviors may not be totally inappropriate. In particular, [53] recom-
mends disabling DCC file receipt so as to avoid malware infection (2 behaviors);
the automatic downloading of linked-in images performed by the email client

and browser may be exploited to perform DoS attacks [50] (4 behaviors); and
email attachments are a known malware propagation vector (1 behavior).

Table 5 summarizes the detection of behaviors across all tested programs.
Note that a single run of any such program may exhibit fewer behaviors depend-
ing upon the inputs to that particular run-time instance. In general, bots exhibit
high volume (202 across all bots and all commands, as in Fig. 2) and great di-
versity (18 different) of behaviors. By contrast, only eight behaviors total (five
different) were flagged over execution of all benign programs even when testing
under the most liberal taint propagation mode, correlative. We discuss how one
might handle these false positives in Sect. 6. Finally, we acknowledge the limita-
tions of black-box dynamic testing; that is, there may be other inputs to these
benign programs that would result in flagging additional behaviors. Similarly, it
may be the case that higher fidelity taint propagation (e.g., assembly-code-level
tainting) reveals additional behaviors. That said, all programs (malicious and
benign) were tested using the same system, and the demonstrated behavioral
gap between bots and benign applications under these conditions is dramatic.

Table 5. For each tested program, the number of distinct behaviors detected.

distinct behaviors which behaviors

agobot 16 B1 - B16
GSySbot 12 B1 - B3, B6 - B12, B17, B18
sdbot 12 B1 - B3, B6 - B12, B17, B18
Spybot 10 B1 - B4, B6 - B9, B11, B12
DSNXbot 7 B1 - B3, B6 - B9
evilbot 1 B3
Eudora 3 B1, B7, B17
Firefox 2 B7, B9
mIRC 2 B7, B8
Unreal IRCd 1 B9
putty 0 N/A
SecureFX 0 N/A
Symantec AV updater 0 N/A
WS FTP 0 N/A

5.5 Performance Results

Function interception via the detours library imposes an overhead of fewer than
400 nanoseconds per invocation [9]. We measured the overall performance impact
of BotSwat’s instrumentation via scripting a bot to receive then execute various
commands; the bot’s performance was measured natively and under each of the
two propagation modes. The overall measured performance overhead is 2.81%
when using cause-and-effect propagation and 3.87% under correlative.

6 Potential for Host-Based, Behavioral Bot Detection

Signature-based anti-malware mechanisms suffer from several critical limitations,
including the inability to detect novel malware instances or obfuscated variants
and the need to continuously update their signature sets [34,38]. A recent study
found that even the most effective anti-virus vendor failed to detect a significant
percentage of malware samples found in the wild [42]. Behavior-based approaches
to malware detection provide a powerful alternative: the ability to detect entire
classes of malware including previously unseen instances. The primary challenge
is to identify a useful behavioral characterization: one which identifies behav-
ior fundamental to a class of malware but which is not generally exhibited by
innocuous programs. The data presents a compelling argument that our charac-
terization meets these criteria; the very behavior that makes bots most useful to
their installers (their programmability) provides the basis for detection.

Our prototype implementation was designed to test the effectiveness of our
behavioral characterization; a secure implementation of our method must be
able to detect and differentiate such remote control behavior in a way that is
difficult for malware to adaptively evade and subvert. Designing such a system is
a research problem unto itself. We highlight some of the fundamental challenges
and tradeoffs in building a bot detection mechanism based on our findings.

Process Monitoring Mechanism The mechanism that enables visibility into a
process’s actions may also be referred to as a sandbox. There are two primary de-
sign considerations: visibility, which refers to the type and granularity of events
visible to the sandbox, and isolation, which refers to the difficulty of a moni-
tored process to evade or subvert the sandbox. The (user-space) in-line function
hooks [9] used in the prototype implementation provide high visibility (as the
interposition code runs in the same address space as the monitored application)
but very weak isolation [8,10]. Kernel-space system call interposition and Virtual
Machine Introspection [24] are additional possibilities.

Tainting Challenges and Tradeoffs Since a malicious bot may evade detection
via performing data movement (or data transformation) operations out-of-band,
coverage is a critical aspect of the system’s security. There appears at present
to be a fundamental tradeoff in dynamic tainting modules between coverage
and performance; i.e., tainting implementations that provide thorough coverage
(as in [12]) exact significant performance penalties. Also, if there are operations
across which taintedness is not propagated (e.g., writes to persistent storage or
pipes), surely such avenues will be used to launder tainted data. Propagating
taint more thoroughly may result in more flagged behaviors and false positives.

User Input Module Challenges There are two types of attacks specific to this
component: spoofing user input events and genuinely obtaining user input. Expo-
sure to user-input-spoofing attacks may be minimized by incorporating a kernel-
level component that identifies receipt of user input events. The latter attack,
however, highlights the fundamental challenge in this module’s design. In partic-
ular, since the meaning of user input events is inherently application-defined, a
user-input module must rely on the application that received a user-input event
to implicitly or explicitly identify the semantics of that input. Consequently, if a

malicious process is able to legitimately obtain any local user input, that process
may be able to arbitrarily assign meaning to that input.

System Inputs and Outputs An interesting question is which processes to
monitor using the detection mechanism. A reasonable decision may be to not
monitor known benign programs. Such a decision would inevitably cause attack-
ers to explore ways in which such known benign programs could be coopted to
do the attackers’ bidding (as in [50]). In either case, a general decision must
be made about when to label something a bot. A reasonable tradeoff may be
to require some volume and diversity of behaviors; then a lower threshold more
narrowly constrains the attacker’s arena but may also result in more false posi-
tives. Additionally, one could whitelist certain behaviors known to be generated
by particular applications during their legitimate operation (as in Sect. 5.4). A
final option may be to identify and flag execution of commands – sequences of
correlated behaviors – rather than individual behaviors.

7 Related Work

Applications of Tainting Analysis Tainting has been applied statically, dynam-
ically, at a language level, via an interpreter, an emulator, compiler extensions,
etc. [1,11,12,14,15,20,27]. Most commonly, security-motivated tainting has been
used to identify vulnerabilities in or exploitations of non-malicious programs.

Host-Based Intrusion Detection The problem of distinguishing execution of
an installed malicious bot from that of innocuous processes differs from that
explored by much previous run-time, host-based, anti-malware research, which
has focused on identifying when a host program (generally assumed to be non-
malicious) has been exploited [5,12,13,21,28]. While a bot may be spread via
leveraging such exploits, monitoring execution of an installed bot using one of
these mechanisms will generally not result in the bot being identified as ma-
licious since no exploit of a local host program is entailed in normal bot ex-
ecution. Other behavior-based research has been done to identify rootkits and
spyware [23,49,7,31]. [31] identifies extrusions: stealthy outgoing network connec-
tion made by malicious processes. User-intended (legitimate) outgoing network
connections include those preceded in time by receipt of user input. A difference
between our work and theirs is that, for us, outgoing network connections are
only one of 18 behaviors of interest; also, we are interested in the semantics of
user-input events, not merely their occurrence at some point in time.

Botnet Detection Host-based approaches include scanning the contents of
files and memory for certain byte sequences as well as content-based filtering,
which identifies receipt of packets containing known bot-command keywords,
as in Norton Intrusion Prevention. Network-based approaches to botnet detec-
tion include those which: (a) detect secondary effects of botnets [6,3]; (b) set
up honeypots to obtain bot binaries then infiltrate those botnets [25,41,40]; (c)
mitigate the effects of a botnet at a DDoS victim [22]; (d) apply content-based
Network Intrusion Detection System (NIDS) signatures [16]; (e) apply heuristics
to IRC channel traffic to identify likely C&C rendezvous points; (f) identify IRC

NICK messages likely to have been generated by bots [44]; (g) track and cor-
relate various types of NIDS alarms to identify bot-infection sequences [43]; (h)
perform analysis of flow data to identify suspected bots then likely conversations
between such suspected bots and their C&C servers [45]. Challenges for these ap-
proaches include: changing the C&C protocol or botnet topology; encrypting or
otherwise obfuscating C&C communications; altering the timing of bot-related
events and port scanning activity so as to stay below detection thresholds; bots
which employ non-worm-like spreading behavior; coverage of C&C rendezvous
points; running a botnet entirely within a single administrative domain; etc.

8 Conclusions

Botnets present a serious and increasing threat, as launching points for attacks
including spam, distributed denial of service, sniffing, keylogging, and malware
distribution. Our work explores whether the execution of malicious bots can be
distinguished from that of innocuous programs. We provided a characterization
of the remote control behavior of bots, identified the fraction of current bot
remote-control behavior covered by this characterization, built a prototype im-
plementation, and evaluated our hypothesis against six bots from five different
families and a variety of benign applications typical to the target environment.
We introduce techniques, such as content-based and substring-based tainting,
that enable us to effectively identify a bot’s remote control behavior even when
visibility into the memory-copying calls made by a bot is severely limited.

Experimental evaluation suggests that the external or remote control be-
havior of bots can be detected by identifying system call invocations which use
tainted parameters. We see that the effects of a bot’s candidate commands (as
measured via number of system call invocations) constitute the vast majority of
the effects of all of a bot’s commands. We also see that bots in general exhibit
a great volume and diversity of behaviors. Finally, we note that, when we track
local user input and sanitize subsequent uses of it, benign programs relatively
rarely exhibit the external control behavior that we’re measuring. Significant
challenges remain in the problem of building a secure and robust bot detection
system based on these observed behavioral differences.

Acknowledgements. Thanks to the detours team at MSR and Galen Hunt
in particular for helpful insights into detours. We are also grateful to David
Dagon at Georgia Tech, who provided versions of agobot, and to Andrew Sakai,
for testing assistance. Thanks to Tal Garfinkel and Adam Barth for helpful
feedback. We thank Wenke Lee for extensive and valuable feedback on our work
and on its presentation. We are very grateful to our reviewers and to our shepherd
for their insightful questions and comments.

References

1. Turoff, A.: Defensive CGI Programming with Taint Mode and CGI::UNTAINT
2. Schneier, B.: How Bot Those Nets? In Wired Magazine, July 27, 2006.

3. Dagon, D.: Botnet Detection and Response: The Network Is the Infection. In Op-
erations, Analysis, and Research Center Workshop, July 2005.

4. Ilett, D.: Most spam generated by botnets, says expert. ZDNet UK, Sept. 22, 2004.
5. Wagner, D., Dean, D.: Intrusion Detection via Static Analysis. In IEEE Symposium

on Security and Privacy, May 2001.
6. Cooke, E., Jahanian, F., McPherson, D.: The Zombie Roundup: Understanding,

Detecting, and Disrupting Botnets. In Steps to Reducing Unwanted Traffic on the
Internet, July 2005.

7. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.: Behavior-based Spy-
ware Detection. In Proc. 15th USENIX Security Symposium, August 2006.

8. Hoglund, G., Butler, J.: Rootkits: Subverting the Windows Kernel. First Edition,
Addison-Wesley, Upper Saddle River, NJ, 2006.

9. Hunt, G., Brubacher, B.: Detours: Binary Interception of Win32 Functions. In 3rd
USENIX Windows NT Symposium, July 1999.

10. Butler, J.: Bypassing 3rd Party Windows Buffer Overflow Protection. In phrack
Volume 0x0b, Issue 0x3e, Phile #0x0, 7/13/2004.

11. Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., Rosenblum, M.: Understanding
Data Lifetime via Whole System Simulation. In Proc. of the USENIX 13th Security
Symposium, August 2004.

12. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis,
and Signature Generation of Exploits on Commodity Software. In Network and
Distributed Systems Symposium, February 2005.

13. Rabek, J., Khazan, R., Lewandowski, S., Cunningham, R.: Detection of Injected,
Dynamically Generated, and Obfuscated Malicious Code. In Proc. of the ACM
Workshop on Rapid Malcode, October 2003.

14. Ashcraft, K., Engler, D.: Using programmer-written compiler extensions to catch
security holes. In IEEE Symposium on Security and Privacy, May 2002.

15. Locking Ruby in the Safe http://www.rubycentral.com/book/taint.html
16. LURHQ. Phatbot Trojan Analysis. http://www.lurhq.com/phatbot.html
17. Christodorescu, M., Jha, S., Seshia, S., Song, D., Bryant, R.: Semantics-Aware

Malware Detection. In IEEE Symposium on Security and Privacy, May 2005.
18. Overton, M.: Bots and Botnets: Risks, Issues, and Prevention. In Virus Bulletin

Conference, Dublin, Ireland, October 2005.
19. Ianelli, N., Hackworth, A.: Botnets as a Vehicle for Online Crime. CERT Coordi-

nation Center, December 2005.
20. perlsec http://perldoc.perl.org/perlsec.html
21. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A Sense of Self for Unix

Processes. In IEEE Symposium on Security and Privacy, May 1996.
22. Kandula, S., Katabi, D., Jacob, M., Berger, A.: Botz-4-Sale: Surviving Organized

DDoS Attacks That Mimic Flash Crowds. In Network and Distributed System
Security Symposium, May 2005.

23. Strider GhostBuster Rootkit Detection http://research.microsoft.com/rootkit/
24. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture

for Intrusion Detection. In Network & Distributed Systems Security, Feb. 2003.
25. Honeynet Project & Research Alliance. Know your Enemy: Tracking Botnets.
26. The majority of bot code was obtained from: http://tinyurl.com/3y4cfd
27. Shankar, U., Talwar, K., Foster, J., Wagner, D.: Detecting format string vulnera-

bilities with type qualifiers. In Proc. 10th USENIX Security Symp., Aug. 2001.
28. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure execution via program shep-

herding. In Proc. 11th USENIX Security Symposium, August 2002.

http://www.rubycentral.com/book/taint.html
http://www.lurhq.com/phatbot.html
http://perldoc.perl.org/perlsec.html
http://research.microsoft.com/rootkit/
http://tinyurl.com/3y4cfd

29. Parizo, E.:s New bots, worm threaten AIM network. SearchSecurity, Dec. 2005.
30. Naraine, R. Money Bots: Hackers Cash In on Hijacked PCs. eWeek, Sept. 2006.
31. Cui, W., Katz, R., Tan, W.: BINDER: An Extrusion-based Break-in Detector for

Personal Computers. In Proc. of the 21st Annual Computer Security Applications
Conference, December 2005.

32. Martin, K.: Stop the bots. In The Register, April, 2006.
33. Keizer, G.: Bot Networks Behind Big Boost In Phishing Attacks. TechWeb, Nov.

2004.
34. Christodorescu, M., Jha, S.: Testing Malware Detectors. In Proc. of the Interna-

tional Symposium on Software Testing and Analysis, July 2004.
35. MSDN Library. Using Messages and Message Queues. http://tinyurl.com/27hc37
36. Symantec Internet Security Threat Report, Trends for July 05-December 05. Vol-

ume IX, Published March 2006.
37. Sturgeon, W.: Net pioneer predicts overwhelming botnet surge. ZDNet News, Jan-

uary 29, 2007.
38. Symantec Internet Security Threat Report, Trends for January 06-June 06, Volume

X. Published September 2006.
39. Barford, P., Yegneswaran, V.: An Inside Look at Botnets. Special Workshop on

Malware Detection, Advances in Information Security, Springer Verlag, 2006.
40. Freiling, F., Holz, T., Wicherski, G.: Botnet Tracking: Exploring a Root-Cause

Methodology to Prevent Distributed Denial-of-Service Attacks. In European Sym-
posium On Research In Computer Security, September 2006.

41. Rajab, M., Zarfoss, J., Monrose, F., Terzis, A.: A Multifaceted Approach to Under-
standing the Botnet Phenomenon. In Proc. of ACM SIGCOMM/USENIX Internet
Measurement Conference, October 2006.

42. Jevans, D.: The Latest Trends in Phishing, Crimeware and Cash-Out Schemes.
Private correspondence.

43. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting
Malware Infection Through IDS-Driven Dialog Correlation. Manuscript.

44. Goebel, J., Holz, T.: Rishi: Identify Bot-Contaminated Hosts by IRC Nickname
Evaluation. 1st Workshop on Hot Topics in Understanding Botnets, April 2007.

45. Karasaridis, A., Rexroad, B., Hoeflin, D.: Wide-Scale Botnet Detection and Char-
acterization. 1st Workshop on Hot Topics in Understanding Botnets, April 2007.

46. Kristoff, J.: Botnets. NANOG32, October 2004.
47. Ramachandran, A., Feamster, N., Dagon, D.: Revealing botnet membership using

DNSBL counter-intelligence. In 2nd Workshop on Steps to Reducing Unwanted
Traffic on the Internet, July 2006.

48. Grizzard, J., Sharma, V., Nunnery, C., Kang, B., Dagon, D.: Peer-to-Peer Botnets:
Overview and Case Study. 1st Workshop on Hot Topics in Understanding Botnets,
April 2007.

49. Wang, Y., Beck, D., Vo, B., Roussev, R., Verbowski, C.: Detecting Stealth Software
with Strider GhostBuster. Microsoft Technical Report MSR-TR-2005-25.

50. Lam, V., Antonatos, S., Akritidis, P., Anagnostakis, K.: Puppetnets: Misusing Web
Browsers as a Distributed Attack Infrastructure. In the 13th ACM Conference on
Computer and Communications Security, October 2006.

51. Schneier, B.: Semantic Attacks: The Third Wave of Network Attacks. In the Cryp-
togram newsletter, October 15, 2000.

52. Stinson, E., Mitchell, J.: Characterizing the Remote Control Behavior of Bots.
Manuscript. http://www.stanford.edu/˜stinson/pub/botswat long.pdf

53. mIRC Help, Viruses, Trojans, and Worms. http://www.mirc.co.uk/help/virus.html

http://tinyurl.com/27hc37
http://www.stanford.edu/~stinson/pub/botswat_long.pdf
http://www.mirc.co.uk/help/virus.html

	Characterizing Bots' Remote Control Behavior
	Elizabeth Stinson and John C. Mitchell

