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Abstract

We define a simple collection of operations for creating and manipulating record
structures, where records are intended as finite associations of values to labels. A
second-order type system over these operations supports both subtyping and
polymorphism. We provide typechecking algorithms and limited semantic models.

Our approach unifies and extends previous notions of records, bounded
guantification, record extension, and parametrization by row-variables. The general aim
is to provide foundations for concepts found in object-oriented languages, within a
framework based on typed lambda-calculus.
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1. Introduction

Object-oriented programming is based on record structures (cdijedt$ intended
as named collections of valueattfibuteg and functions roethody Collections of
objects formclasses A subclassrelation is defined on classes with the intention that
methods work “appropriately” on all méxars belonging to the subclasses of a given
class. This property is imp@nt in software engineering because it permits after-the-fact
extensions of systems by subclasses, without requiring modifications to the systems
themselves.

The first object-oriented language, Simula67, and most of the more recent ones (see
references) are typed by using simple extensions of the type rules for Pascal-like
languages. These extensions mainly involve a notiosubtyping In addition to
subtyping, we are interested here in more powerful type systems that smoothly
incorporateparametric polymorphism

Type systems for record structures have recently received much attention. They
provide foundations for typing in object-oriented languages, data base languages, and
their extensions. IipCardelli 1988] the basic notions of record types, as intended here,
were defined in the context of a first-order type system for fixed-size records. Then Wand
[Wand 1987] introduced the conceptrafiw-variableswhile trying to solve the type
inference problem for records; this led to a system with extensible records and limited
second-order typing. His system was later refined and shown to have principal types in
[Jategaonkar, Mitchell 1988] [Rémy 198@nd again iMfWand 1989] The resulting
system provides a flexible integration of record types and Milner-style type inference
[Milner 1978].

Meanwhile [Cardelli, Wegner 1985Hefined a full second-order extension of the
system with fixed-size records, based on techniques from [Mitchell 198djat system,

a program can work polymorphically over all the subtypesd a given record typ#,

and it can preserve the “unknown” fields (the oneB but not inA) of record parameters

from input to output. However, some natural functions are not expressible. For example,
by the nature of fixed-size records there is no way to add a field to a record and preserve
all its unknown fields. Less obviously, a function that updates a record field, in the purely
applicative sense of making a modified copy of it, is forced to remove all the unknown
fields from the result. Imperative update also requires a careful typing analysis.

In this paper we describe a second-order type system that incorporates extensible
records and solves the problem of expressing the natural functions mentioned above. We
believe this second-order approach makes the presentation of record types more natural.
The general idea is to extend a standard second-order (or even higher-order) type system
with a notion of subtyping at all types. Record types are then introduced as specialized
type constructions with some specialized subtyping rules. These new constructions
interact well with the rest of the system. For example, row-variables fall out naturally
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from second-order type variables, and contravariance of function spaces and universal
guantifiers mixes well with record subtyping.

In moving to second-order typing we give up the principal type property of weaker
type systems, in exchange for some additional expressiveness. But most importantly for
us, we gain some perspective on the space of possible operations on records and record
types, unencumbered (at least temporarily) by questions about type inference. Since it is
not clear yet where the bounds of expressiveness may lie, this perspective should prove
useful for comparisons and further understanding.

The first part of the paper is informal and introduces the main concepts and problems
by means of examples. Then we formalize our intuitions by a collection of type rules. We
give a normalization procedure for record types, and we show soundness of the rules with
respect to a simple semantics for the pure calculus of records. Finally, we discuss
applications and extensions of the basic calculus.

2. Informal development

Before looking at a formal system, we describe informally the desired operations on
records and we justify the rules that are expected to hold. The final formal system is
rather subtle, so these explanations should be useful in understanding it.

We also give simple examples of how records and their operations can be used in the
context of object-oriented languages.

2.1 Record values

A record valueis intended to represent, in some intuitive semantic sense, a finite map
from labels to values where the values may belong to different types. Syntactically, a
record value is a collection @itlds where each field is a labeled value. To capture the
notion of a map, the labels in a given record must be distinct. Hence the labels can be
used to identify the fields, and the fields can be taken to be unordered. This is the notation
we use:

() the empty record.

(x=3, y=true) a record with two fields, labeledandy,
equivalent tqy=true, x=3).

There are three basic operations on record values.
« Extension(r|x=a) ; adds a field of labed and valuea to a record, provided a field of
label x is not already present. (This condition will be enforced statically.) We write
(r|x=aly=b) for ((r|x=a)|y=D).
« Restrictionr\x ; removes the field of labe] if any, from the record. We writer\xy
for r\x\y.
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« Extractionr.x ; extracts the value corresponding to the lab&lom the record,
provided a field having that label is present. (This condition will be enforced statically.)

We have chosen these three operations because they seem to be the fundamental
constituents of more complex operations. An alternative, consider@iland 1987]
would be to replace extension and restriction by a single operation that either modifies or
adds a field of labet, depending on whether another field of labed already present. In
our system, the extension operation is not required to check whether a new field is
already present in a record: its absence is guaranteed statically. The restriction operation
has the task of removing unwanted fields and fulfilling that guarantee. This separation of
tasks has advantages for efficiency, and for static error detection since fields cannot be
overwritten unintentionally by extension alone. Based on a comparison between the
systems ofWand 1987]and [Jategaonkar, Mitchell 1988{ also seems possible that a
reasonable fragment of our language will have a practical type inference algorithm.

Here are some simple examples. The symbolvalue equivalence) means that two
expressions denote the same value.

OX=3) <= (x=3) extension
((x=3)|y=true) <> (x=3, y=true)
(x=3, y=true)ly <> (x=3) restriction (cancellingy)
(Xx=3, y=true)\z <> (x=3, y=true) (no effect)
(x=3, y=true).x < 3 extraction
((x=3)|x=4) invalid extension
(x=3).y invalid extraction

Some useful derived operators can be defined in terms of the ones above.
« Renaming[x<-y] = (r\x|y=r.x): changes the name of a record field.
« Overriding(r <= x=a) =, (r\x|x=a): if x is present im, overriding replaces its value
with one of a possibly unrelated type, otherwise exterdempare with [Wand 1989]).
Given adequate type restrictions, this can be seen as an updating operator, or a method
overriding operator. We writ@ < x=a < y=Db) for ((r <= x=a) <= y=hb).

Obviously, all records can be constructed from the empty record using extension
operations. In fact, in the formal presentation of the calculus, we regard the syntax for a
record of many fields as an abbreviation for iterated extensions of the empty record, e.g.:

(x=3) = (OE3)

(x=3, y=true) =gt (O[X=3)|y=true)

This definition allows us to express the fundamental properties of records in terms of
combinations of simple operators of fixed arity, as opposeehiy operators. Hence, we
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never have to use schemas with ellipses, sucfx,as, , ..., x,=a,), in our formal
treatment.

Sincer\x <= r wheneverr lacks a field of labek, we can formulate the definition
above using any of the following expressions:

(OIx=3ly=true) < (O\X[x=3)\yly=true) <> () < x=3 < y=true)

The latter forms match better a similar definition for record types, given in the next
section.

2.2 Record types

In describing operations on record values we made positive assumptions of the form
“a field of labelx mustoccur in record” and negative assurtipns of the form “a field
of labelx must notoccur in recora”.

These constraints will be verified statically by embedding them in a type system,
hencerecord typeswill convey both positive and negative information. Positive
information describes the fields that members of a recordnysthave. (Members may
have additional fields.) Negative information describes the fields the members of that
type must nothave. (Members may lack additional fields.)

Note that both positive and negative information expresses constraints, hence
increasing either kind of information will lead to smaller sets of values. The smallest
amount of information is expressed by the record type with no figldsshich therefore
denotes the collection of all records, since all records have at least no fields and lack at
least no fields. This type is called ttodal record type.

@ the type of all records.
Contains, e.g{), (x=3).

OH\X the type of all records which lack fields of
labelx. E.g.x), (y=true), but not(x=3).

(x:Int, y:Booly the type of all records which haeg leastfields
of labelsx andy, with values of typemnt and
Bool. E.Q.:(x=3, y=true), (x=3, y=true, z="str"),
but not (x=3, y=4), (x=3).

x:Intply the type of all records which hawa¢leasta field
of labelx and typdnt, and no field of labey.
E.g.(x=3, z="str"), but not(x=3, y=true).

Hence a record type is characterized by a finite collectiopasitfve type fields(i.e.
labeled types) andegative type field§.e. labels}. We often simply say “fields” for

Lin this section we consider onfyoundrecord types, i.e., those containing no record type variables.
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“type fields”. The positive fields must have distinct labels and are unordered. Negative
fields are also unordered. We have assumed so far that types are normalized so that
positive and negative labels are distinct, otherwise positive and negative fields may
cancel, as described shortly.

As with record values, we have three basic operations on record types.
« Extension{R|x:A) : This type denotes the collection obtained fi®imy addingx fields
with values inA in all possible ways (provided that none of the elemen® basx
fields). More precisely, this is the collection of those recérpisa) such that is inR
and a is in A, provided that a positive type fieldis not already present iR. (This
condition will be enforced statically.) We sometimes wiRg<Aly:B) for ((R|x:AD|y:B).
« RestrictionR\x : this type denotes the collection obtained fiRioy removing the field
x (if any) from all its elements. More precisely, this is the collection of those redards
such that is inR. We writeR\xy for R\x\y.
« ExtractionR.x: this type denotes the type associated with lalelR, providedR has
such a positive field. (This condition will be enforced statically.)

Again, derived operators can be defined in terms of the ones above.
« RenamingR[x<-y] =, (R\x]y=R.X): changes the name of a record type field.
« Overriding(R< xA) =, (Rx|xA): if a type fieldx is present irR, overriding
replaces it with a fielc of typeA, otherwise extendR. Given adequate type restrictions,
this can be used to override a method type in a class signature (i.e. record type) with a

more specialized one, to produce a subclass signature.

The crucial formal difference between these operators on types and the similar ones
on values is that type restrictions do not cancel as easily, for exatiyle: (), (xX:A)y
# (X:A), etc., sincg)\y is a smaller set thaf). As a consequence, one must always make
a type restriction before making a type extension, as can be seen in the examples below,
because the extension operator needs proof that the extension label is missing. The
symbol<> (type equivalence) means also that two type expressions denote the same type.

O\ Int) <= {xInt) extension
(@x:Inthlyly:Bool) <= ¢x:Int, y:Bool)
@xInt, y:Boolh)ly <= {xInthly restriction (cancellingy)
x:Int, y:Boolp)\z <= {xInt, y:Bool\z (no effect orx,y)
@x:Int, y:Bool).x <= Int extraction
(@O x:Inty invalid extension
(@x:Inth[x:Int) invalid extension
x:Int).y invalid extraction

It helps to read these examples in terms of the collections they represent. For
example, the first example for restriction says that if we take the collection of records that
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havex andy (and possibly more) fields, and remove ytieeld from all the elements in
the collection, then we obtain the collection of records that haxdiald (and possibly
more fields) but ny field. In particular, we do not obtain the collection of records that
havex and possibly more fields, because those would inglude

The way positive and negative information is formally manipulated is easier to
understand if we regard record types as abbreviations, as we did for record values, e.g.:

@x:Int) her  (OWX[XInt)
{x:Int,y:Bool) =, €CEI\x|x:Int)\y]ly:Boobh

Then, when considerinfy:Bool)\y we actually have the expansigf)\y|y:Bool\y. If we
allow the outside positive and negatiyéabels to cancel, we are still left wigh\y. In
other words, the inngrrestriction reminds us thgtfields have been eliminated.

Remark. It is deceptive to think that every record{RIx:A) has at least the fields
of some record iR (i.e., that{R[x:A) has “more type fields” thaR), since
(R|x:A}) is not necessarily contained R For example, ifR=()\x the two
collections are incomparable.

Based on this example, one might then think fik|x:A) has more type
fields thanR, and this is indeed true f&=(). However, in general this fails; for
exampleR=()\x makes the collections incomparable, &{)\x|x:A) causes the
two collections to have the same fields.

It is also deceptive to think thBix has fewer type fields thaR sinceR is in
general not contained iR\x. This containment is true f&®=()\x, but false for
R=() where the opposite is true, aRe{()\x|x:A) makes the two collections
incomparable.

These observations might appear to conflict with our previous assertion that
positive and negative information always makes things smaller. The assertion is
true for normalized record types, but not for arbitrary applications of operators
which may later cancel out. We shall study the normalization process in a later
section.

2.3 Record value variables
Now that we have a first understanding of record types, we can introduce record value
variables which are declared to have some record type. For exargpemeans that
must not have a fielg, andr:{x:A) means that must have a field of typeA. The welt
formed record expraegons can now be formulated more precisely:

(r|x=a) wherer:{)\x
r\x wherer:{)
r.xX wherer:{x:A) for someA
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Record value variables can now be used to write function abstractions. Here we have
a function that increments a field of a record, and adds another field to it:

let f(r: x:Inthly) : ¢x:Int, y:Int) =
(r <= x=r.x+1|y=0)

This function requires an argument with a fieldnd no fieldy; it has type:
f: xInthly — ¢x:Int, y:Int)
and can be used as follows:

f((x=3)) (x=4, y=0) : {(x:Int, y:Int)
f((x=3, z=true)) < (x=4, y=0, z=true) : {x:Int, y:Int)

!

The first application uses the non-trivial fact tkat3) : (x:Int)ly. We could also have
matched the parameter type preciselyfl@x=3)\y), which is of course equivalent. The
second application is noticeable for several reasons. First, it uses the non-trivial fact that
(x=3, z=true) : {(x:Int)\y. Second, the “extra” fiela is preserved in the result value,
because of the walyis defined. Third, the “extra” field is not preserved in the result
type, becaustéhas a fixed result type; we shall come back to this problem.

Remark. An alternative syntactic notation, along the lines of [Jategaonkar,
Mitchell 1988] could use pattern matching of record parameters:

let f({rr\y|x=rx)) : {x:Int, y:Int) =
(rr |x=rx+1|y=0)

Here the actual parameter must match the shape of a record with a diedida
collection of remaining components that lackl he variablesr andrx are bound

to the appropriate components and then used in the bagyvbererr acquires

the assumption that it does not contain eithery fields. There are some non
trivial details to pattern matching in the presence of subtyping. Since our main
objective is to illustrate the fundamental ideas, we choose the simpler syntax.

2.4 Record type variables

In the previous section we introduced record value variables, and we used record
types to impose restrictions on the values which could be bound to such variables. Now
we want to introduce record type variables in order to write programs that are
polymorphic over a collection of record types. We similarly need to express restrictions
on the admissible types that these variables can be bound to; these restrictions are written
as subtype specifications.
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To write subtype specifications, we use a predigat® meaning thaA is asubtype
of B: in other words, every value éfis also a value d8. The typing rule based on this
condition is calledubsumptionand will play a central role in the formal system.

Using subtype assumptions, we can better formulate the restrictions on the record
type operators:

(RIX:A)  whereR <: {)\x
R\x whereR <: {)
R.x whereR <: {x:A) for someA

We may now write a polymorphic version of the functiarf the previous section:

let fR<:(x:Int)ly)(r:R) : (RJy:Int) =
(r <= x=r.x+1|y=0)

This function expects first a type paramdawhich must be a subtype @ft:Int)ly, and
then an actual value parameter of typeAn example application is:

f(@x:Int, zBool\y)((x=3, z=true)) <>
(x=4, y=0, z=true) : {(x:Int, y:Int, zBool)

First, note thaR is bound tgx:Int, zBoolp\y, which is a subtype df:Int)\y as required.
Second,(x=3, z=true) has type(x:Int, zBool)\y as required. Third, the result type,
obtained by instantiating, is {{x:Int, zBool\y|y:Int), which is the same &s:Int, y:Int,
z:Bool) by definition. Finally, note that the “extra” fieikdhas not been forgotten in the
result type this time, because all the “extra” fields are carried over from input to output
type by the type variable. This is the advantage of writifign polymorphic style.

What is the type of then? We cannot write this type with simple function arrows,
because we have a free variaBeo bind. Moreover, we want to mark the precise
location where this binding occurs, because this permits more types to be expressed.
Hence, we use an explitibunded universal quantifier

f: V(R<:(x:Inthly) R = (R]y:Int})

This reads rather naturally: “for all typBswvhich are subtypes @k:Int\y, f is a function
from R to {RJy:Int)”. (The scope of a quantifier extends to the right as much as possible.)

Remark. Notice that we have freedom in the typing of the polymorphic function
f; for example, we could have chosen the typing:

let f(R<:()\x y)(r:¢Rx:Int)) : (Rx:Int]y:Int) =
(r <= x=r.x+1|y=0)

f((zBool\x Y)((x=3, z=true)) : {(x:Int, y:Int, ZBool)

Page9



This typing turns out to be incomparable with the previous one; in general we do
not seem to have a “best” way of typing an expression. However, we have not
studied this aspect of the system carefully.

2.5 Subtype hierarchies

Our operations on record types and record values make it easy to define new types
and values byeusingpreviously defined types and values.

For example, we want to express the subtype hierarchy shown in the diagram below,
where various entities can have a combination of coordinadesly, radiusr, and color
C.

First, we could define each type independently:

let Point= {x:Real y:Rea)

let ColorPoint= (x:Real y:Rea] c:Color)

let Disc= (x:Real y:Rea) r:Rea))

let ColorDisc= (x:Real y:Real r:Real c:Color)

But these explicit definitions do not scale up easily to large hierarchies; it is much
more convenient to define each type in terms of previous ones, e.g:

let Point= (x:Real y:Rea)

let ColorPoint= {Point < c:Color)

let Disc= {Point < r:Rea))

let ColorDisc= {ColorPoint< r:Rea})

Note that{Point/c:Color) would not be well-formed here, since member®oht may
have ac label.In section 4.3 we shall examine another way of defining this hierarchy, for
example derivind?oint from ColorPointby “retracting” thec field.

Point
Xy
ColorPoint Disc
Xyc Xyr

N S

ColorDisc
Xyrc

Similarly, record values can be defined by reusing available values:

let p:Point= (x=3, y=4)
let cpColorPoint=(p <- c=green
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let cdColorDisc=(cp < r=1)
let dDisc=cd\c

We should notice here that the subtyping relation depends only on the structure of the
types, and not on how the types are named or constructed. Similarly, record values belong
to record types uniquely based on their structure, independently of how they are declared
or constructed.

Another observation, which we already made in a more abstract context, is that
Pointir <: Point sincePoint does not contain, but Poinly is incomparable withPoint
sincePoint requiresy:Int while Pointly forbids it.

2.6 The update problem

The type system for records we have described in the previous sections was initially
motivated by a single example which involves typing an update function. Here updating
is intended in the functional sense of creating a copy of a record with a modified field,
but the discussion is also relevant to imperative updating.

The problem is to define a function that updates a field of a record and returns the
new record; the type of this function should be such that when an argument of the
function has a subtype of the expected input type, the result has a related subtype. That is,
no type information regarding additional fields should be lost in updating. (We have
already seen that bounded quantification can be useful in this respect.)

It is pretty clear what the body of such a function should look like; for example for an
inputr and a boolean field which has to be negated, we would write:

(r < b=nof(r.b)) (an abbreviation fofr\b|b=not(r.b)) )

The overriding operator here preserves the additional fields of
One might expect the following typing, which seems to preserve subtype information
as desired:

let updatéR<:{b:Bool))(r:R): R =
(r <= b=nof(r.b))

In words, we expeatpdateto be a function fronR to R, for any subtyp® of {(b:Bool).
But this typing is not derivable from our rules and, worse, it is semantically unsound. To
see this, assume we have a tfjpee <: Boolwith unique elemerttue, as follows:

true: True<: Bool
not : Bool — Bool (alternatively,not: V(A<:Bool)A—Boo))

updaté(b:True))((b=true)) <> (b=false : {b:True)

2Although the singleton typ€rue may seem artificial, this argument can be nefdated with any proper inclusion between two
types.
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This use olupdateproduces an obviously incorrect result type. In general, a function with
result typeR has a fixed range; it cannot restrict its output to an arbitrary subtyiRe of
even when this subtype is given as a parameter.

To avoid this problem, we must update the result type as well as the result. The
correct typing comes naturally from typechecking the bodypafateaccording to the
rules for each construct involved; note how the shape of the result type matches the shape
of the body of the function:

let updatéR<:{b:Bool))(r:R): (R<—b:Bool) =
(r <= b=nof(r.b))

updaté(b:True))((b=true)) <>
(b=false : ((¢b:True)<—b:Bool) <= {h:Bool))

The outcome is that the overriding operator on types, which involves manipulation of
negative information, is necessary to express the type of update functions. Bounded
guantification by itself is not sufficient.

The typeV(B<:A) B — B turns out to contain only the identity function Arin many
natural semantic models, such as [Bruce, Longo 1990]. For exampla=thikteand let
the subrangesi[.m] be subtypes adiint. Then any function of typ¥(B<:Int) B — B can
be instantiated ton[.n] — [n..n], hence it must be the identity on. jh] for anyn, and
hence the identity over all drft.

A further complication manifests itself when updating acts deep in a structure,
because then we have to preserve type information with subtyping occurring at multiple
levels. Here is the body of a function that negatesstaebfield of a records of type
fa:(b:Bool)) :

(s=-a=(s.a=b=noft(s.a.n))

The following is a correct typing which does not lose information on subtypes (simpler
typings would). Here we need to introduce an additional type parameter in order to use
two type variables in the result type and to avoid two possible ways of losing type
information:

let deepUpdatdR<:(b:Bool))(S<:(a:R})(s.S): (S—a:{(R<-b:Bool)) =
(s<—a=(s.a=—b=nof(s.a.h))

Of course this is rather clumsy; we need one additional type parameter for each additional
depth level of updating. Fortunately, we can avoid the extra type parameters by using
extractiontypesS.a Again, the following typing comes naturally from typechecking the
body ofdeepUpdataccording to the rules for each construct:

let deepUpdatés<:{a:(b:Boo))(s:S): (S—a:(S.a—b:Bool)) =
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(s<-a=(s.a=b=nof(s.a.n))

The output type is still complex (it could be inferred) but the input is more natural. Here
is a use of this function:

deepUpdat&a:(b:True, c:C), d:D})((a=(b=true, c=v), d=w)) <=
(a=(b=false c=v), d=w) : {a:{(b:Bool, c:C), d:D)

Here we have provided an argument type that is a subtyfae(bfBool)) in “all possible
ways”.

Finally, we should remark that the complexity of the update problem seems to
manifests itself only in the functional case, while simpler solutions are available in the
imperative case. Simpler type systems for records, such as the [@adelli, Wegner
1985] may be adequate for imperative languages when properly extended with
imperative constructs, as sketched below.

The imperative updating operator := has the additional constraint that the new record
should have the same type as the old record, since intuitively updating is done “in place”.
This requirement produces something very similar to the typing we have initially shown
to be unsound. Here assignable fields are identifiecaby

let updatéR<:{var kBool))(r:R): R=
r.b :=nof(r.b)

Soundness is then recovered by requiring that assignable fields be both covariant and
contravariant. Hencd;rue <: Bool does not implyivar b:True) <: {var b:Bool), thereby
blocking the countexxamples to soundness.

Imperative update, with the natural requirement of not changing the type of a record,
leads to simpler typing. However, this approach does not completely solve the problem
we have discussed in this section. Imperative update alone does not provide the
functionality of polymorphically extending existing records; when this is added, all the
problems discussed above about functional update resurface.

3. Formal development

Now that we have acquired some intuitions, we can discuss the formal type inference
rules in detail. We first define judgment forms and environment structures. Then we look
at inference rules individually, and we analyze their properties. Finally, we provide a set-
theoretical semantics for the pure calculus of records.

3.1 Judgments and inferences
A judgmentis an inductively defined predicate between environments, value terms,
and type terms. The following judgments are used im&bzing our system:
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FE env E is an environment

EF Atype Alis atype

EFA<B Ais a subtype oB

EFa: A a has typeA

EFA<B equivalent types
EFa<b:A equivalent values of typ&

The formal system is given by a setioference ruleselow, each expressed as a
finite set ofantecedenjudgments and side conditions (above a horizontal line) and a
single conclusionjudgment (below the line). Most inference rules are actuailg
schemaswhere meta-variables must be instantiated to obtain concrete inferences. For
typographical reasons, we write the side conditions for these schemas as part of the
antecedent.

3.2 Environments

An environmeniE is a finite sequence of (a) unconstrained type variables, (b) type
variables constrained to be subtypes of a given type, and (c) value variables associated
with their type.

We usedom(E) for the set of type and value variables defined in an environment.

(ENV1) (ENV2) (ENV3) (ENV4)
X¢domE) EFAtype XdomE) EFAtype ¥domE)
F g env FE, X env F E, X<:A env FE,xAenv

Hence, a legal environment is obtained by starting with the empty emerdp and
extending it with a finite set adissumptiongor type and value variables. Note that the
assumptions involve distinct variables; we could perhaps allow multiple assumptions
(e.g., g, X<:A, X<:B) but this would push us into the more general discipline of
conjunctive types

Assumptions about variables can then be extracted from well-formed environments:

(VAR1) (VAR2) (VAR3) (VAR4)
FE,X,E'env F E,X<:A,E' env FE,X<:A,E' env F E,xA,E' env

E,X,E'+ X type EX<AE'F X type EX<AE'FX<A E.xXAE'FXA

All legal inferences take place in (well-formed) environments. All judgments are
recursively defined in terms of other judgments. For example, above we have used the
typing judgmentE - A type in constructing enviraments; vice versa, well-formed
environments are involved in cstnucting types.

We now consider the remaining judgments in turn.

Pagel4



3.3 Record type formation

The following collection of rules determines when record types are well-formed.
There is some interdependence between this section and the following ones, since
equivalence rules have assumptions that involve subtyping, which is discussed later.
Fortunately, these assumptions are fairly simple, so a full understanding of the subtype
relation is not required at this point.

(F1) (F2) (F3) (F4)
FE env EFR<(\x EF Atype EF R<: () E F R<:(Sx:A)<:()
EF () type EF (R|x:A) type EF R\x type EF R.x type

As shown above, and already discussed informally, the legal record types are: the
type of all records{); a record type variabl¥, (because ofvar2) in the previous
section); an extensiofR|x:A) of a record typdR, providedR does not have; and a
restrictionR\x of a record typ&. Moreover, extracting a compondRixof a record type
R that has a labed, produces a legal type.

In general, ifR does not have, thenR will be a subtype of the typg@\x of all records
without X. This explains the hypothesis of ruke). In rule (r4) we useR<:(Sx:A) to
guarantee that every recordRrhas arx field.

3.4 Record type equivalence

When are two record types equivalent? We discuss here the formal rules for
answering such a question. Type equivalence, as a relation, is reflexive (over well-formed
expressions), symmetric, and transitive; it is denoted by the syb8lubstituting two
equivalent types in a third type should produce an equivalent result; this is called the
congruenceproperty, and requires a number of rules to be fully formalized (these are
listed in section 3.7). We now consider, by cases, the equivalence of extended, restricted
and extracted record types.

Two extended record types are equivalent if we can reorder their fields to make them
identical (or, recursively, equivalent). This simple fact is expressed by the following rule.
A number of applications of this rule, and of the congruence property, may be necessary
to adequately reorder the fields of a record type.

(TE1)
EFR<()\xy EFA,Btype xzy

E - ((RIx:AD]y:B) <> (CRIy:B}|x:A)

Similarly, we can reorder restrictions. Moreover, a double restrifoxreduces tdr\x.
This fact is expressed in slightly more general form below, since the assumptiénh that
does not have is sufficient to deduce th&x is the same &R
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(TE2) (TE3)
E F R<:()\x EF R<({)

EFRx<R E F R\xy <= R\yx

The most interesting rules concern the distribution of restriction over extension. An
outside restriction and inner extension of the same variable can cancel each other.
Otherwise, a restriction can be pushed inside or outside of an extension of a different
variable.

(TES5) (TES6)
EFR<{)\x EF Atype EFR<()\x EF Atype xzy

EF (R|XA)X <= R E F (R|xA)\Y <= (R\y|x:A)

Note however that in a situation liK&R\x|x:A) no cancellation or swap can occur. The
inner restriction may be needed to guarantee that the extension is sensible, and so neither
is redundant.

Finally, a record extraction is equivalent to the extracted type:

(TE7) (TES8)
EFR<{(\x EFAtype EFR<(Sy:B)\x<:() EFAtype xzy
EF (R|XA).X < A EF (R|XA).y <= R.y
(TE4)
EFR<(Sy:B)<:{() xzy
EFR\X.y< Ry

These equivalence rules can be given a direction and interpreted as rewrite rules
producing a normal form for record types; normalization is investigated in a later section.

3.5 Record subtyping

We have seen that subtyping is central to the notion of abstracting over record type
variables, and we have intuitively justified some of the valid subtype assertions. In this
section we take a more rigorous look at the subtype relation.

Subtyping should at least be a pre-order: a reflexive and transitive relation. Given a
substitutive type equivalence relatierr, such as the one discussed in the previous
section, we require:

(G1) (G2)
EFA<B EFA<B EFB<:C
EFA<B EFA<:C

Reflexivity is a special case @f).
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It would be natural to require subtyping to be anti-symmetric, hence obtaining a
partial order. A reasonable semantics of subtyping will in fact construct such a partial
order. However, it might be too strong to require anti-symmetry as a type rule. In some
systems anti-symmetry may introduce obscure ways of proving type equivalence, while
in other systems it may be provable from the other rules. Moreover, anti-symmetry does
not seem very useful for typechecking, hence we do not include it.

The basic intuition about subtyping is that it behaves much like the subset relation;
this is expressed by tleibsumptiorrule, which claims that ik<:B anda is an element
of A, thena is also an element &.

(G3)
EFaA EFA<B

Eta:B

We feel strongly that subsumption should be included in the type system, since this rule
gives object-oriented programming much of its flavor. One should not be satisfied, for
programming purposes, with emulating subsumption by explicit coercions. The latter
technique is interesting and adequate for providing semantics to a language with
subsumption [Breazu-Tanneet, al. 1989][Curien, Ghelli 1992], but even then it would
seem more satisfactory to exhibit a model that satisfies subsumption directly.

Combining(c1) and(e3) we obtain another standard type rule:

EFaA EFA<B
Eta:B

This rule is normally taken as primitive, but here it is derived.

We are now ready to talk about subtyping between record types. It helps if we break
this problem into pieces and ask what are the subtypes of: (1) the total recafil (&)e
an extended record tyg®|x:A), (3) a restricted record tyg@x, and (4) a record type
extractionR.x

Case (1). Every record type should be a subtype of the total record type. Hence, we
have three subcases: (1a) the total record type is of course a subtype of itself, and this is
simply a consequence g@f1); (1b) any well-formed extended record type is a subtype of
@»; and (1c) any well-formed restricted record type is a subtyfi éfence we have the
following rules corrgponding to 1b and 1c respectively:

(S1) (S2)
EFR<(\x EFAtype EFR<()

EF (R|xA) <: () EFR\x<: ()
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Case (2). A subtype of an extended record type will be another extended record type,
provided all respective components are in the subtype relation:

(S3)
EFR<SX:()\x EFA<B

EF (R|x:A) <: (Sx:B)

The conditionA<:B says that we can produce a subtype by weakening the type of a given
field. The conditionR<:Stells us that we can produce a subtype either (a) by weakening
other fields inductively, because @fs) itself, or (b) by requiring the presence of
additional components, because@fy, or (c) by requiring the absence of additional
components, for example because frons2)we are able to deriv@\yx <: {()\x.

Case (3). The subtype rule for restricted types is semantically stomghtd: if
everyr in Roccurs inS, then every\x in Rix occurs inS\x:

(S4)
EF R<&:()

E FR\x <: S\x

Remark. Although this rule looks innocent, it hides some interesting subtlety in
its assumption. Let us analyRe:Sby cases.

The cases wheR andS are themselves restrictions (eitherxobr of some
other variable) are straightforward. Similarly simple are the cases RiagS
are matching extensions, both of them either containing or not containixg an
field.

Suppose however th& has a positive field andS does not, for example
R=(T|x:A) andS=T. In that case, if we hag<:Swe would erroneously conclude
thatR\x = (T |xA)\x <= T <: T\x = Sx (which is false foill={}).

Fortunately there was a flaw in this argument; the assumptigssfoequires
R = (TlxxA) < T =S, but this is false (fom=¢)\x). Note also that taking
R=(T\x|x:A) andS=T leads to a similar contradiction for{)\x.

A legal instance of the assumptiorRs (()\x|xA) <: {) =S from which we
conclude thaR\x = {{)\x|x:AD\x <= ()\x <: {()\x = Sx, which is correct.

Case (4). We have to consider the subtypes of record type extractions; that is
situations of the fornR.x<: T.x, or more generallfR.x<: A under an assumptidR <:
(S|x:B). If R can be converted to the folRF(R'|Xx:A), then the extractioR.xsimplifies
and no special rule is required to ded&ce<:A. But if R is a type variable, for example,
the following rule is necessary:

(S5)
E F R<:(Sx:A)<:()

EFR.X< A
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This says that iR has arx field of typeA, thenR.xis a subtype of (and possibly equal
to A).

Finally, there is a another subtyping rule that we must consider. If every reicdrd
has anx field, then any such is described also by the tyg&x|x:R.%), sincer\x is
described by R\x and thex field of r is described byrR.x Therefore we have the
following inclusion:

(S6)
E F R<:(Sx:AY<:()

EFR < (RX|xR.%

The inverse inclusion is not necessarily valid, although it might seem natural to require it
as we shall see later.

The rulese) can be used in the following derivation, which provides a “symmetrical”
version ofiss) as a derived rule:

E F R<S<((T|xAY<:()
s6) EF S<{SX|x:S.%
G2 EFR<({SX[x:S.%
(s5) EFR.XX<:S.X

In absence ofss), the derived rule above would have to be taken as primitive, replacing
(S5).

3.6 Record typing and equivalence

Now that we have seen the rules for type equivalence and subtyping, the rules for
record values follow rather naturally. The only subtle point is about the empty record. We
must be able to assign it a type which lacks any given set of labels. This is obtained by
repeatedly applying the following two rules:

(1) (12)
FE env EF(O\X..%, - R<:(Q)

EF X%, @) EFO\Xx...x, - Ry

The remaining constructions on record values are typed by the corresponding
constructions on record types, given the appropriate assumptions:

(13) (E1) (E2)
EFrR<:()\x EFaA EFr:R<:{) EF r:(R|x:A)<:()

EF(r|x=a) : (Rx:A) EFr\x: Rx EFrx: A
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As we did in the previous section, we can use the el derive a “symmetrical”
version of(2):
E F r:R<:{Sx:A)<:()
s6) EF R<{RXXR.%
3 EFr{RXXxR.
€2 EFrx:R.X

Finally, we have to examine the rules for record value equivalence. These rules are
formally very similar to the ones already discussed for record type equivalence; record
extensions can be permuted, record components can be extracted, and restrictions can be
permuted and pushed inside extensions, sometimes cancelling each other.

The main formal difference between these and the rules for types is that we equate
(O\x <= (). Hence, restriction can always be completely eliminated from variable-free
records.

Because of the formal similarity we omit a detailed discussion; the complete set of
rules for our type system follows in the next section.

3.7 Type rules

We can now summarize and complete the rules for record types and values, along
with selected auxiliary rules. These rules are designed to be immersed in a second-order
A-calculus with bounded quantification (see [Cardelli, Wegner 1986¢ possibly with
recursive values and types.

We only list the names of the rules that have already been discussed.

Environments
(ENV1)...(ENV4), (VARL)...(VAR4)
General properties of <: and <«
(G1)...(G3)

(G4) (G5)
EFA<B EFA<B EFB<C

EFB<A EFA<C

(G6) (G7)
EFa<b:A EFa<sb:A EFb<c:A

EFb<a:A EFa<c:A

Formation

(F1)...(F4)
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Subtyping
(S1)...(S6)
I ntroduction/Elimination

(11)...(13), (E1), (E2)

Type Congruence
(TC1) (TC2) (TC3)
F E env EF X type EFR<S<()\x EFA<B
EFQ) <= O EFX< X EF (R|xA) <= (Sx:B)
(TC4) (TC5)
EFR< S<:{) EF R < S< (T|xXA)<:()
EF R\X <= Sx EFR.X<> S.x

Type Equivalence
(TE1)...(TES)
Value Congruence

(VC1a) (VC2) (VC3)
FE env EFXx:A EbFre—s:R<()\x ErFa<b:A

EFO)<=(:0 EFEXx<Xx:A EF (r|x=a) <= (s|x=hb) : (R|x:A)

(VC4) (VC5)
Ebr < s:R() EFr < s: R<{SxA)<()

EFr\x < s\x: R\x EFrx< s.x:R.x

Value Equivalence

(VED) (VE2)
EFrR<()\xy EFaA EFbB xzy F E env

E F ((r|x=a)|y=Db) <= ((r|ly=Db)|x=a) : ((R|x:A}]y:B}) EFO)\X<(): ()
(VE3) (VE4) (VE5)

EF r:R<:()\x EFr:R<: () EFr{RIXA)<() xzy
EFr\x<r:R EF r\xy <= r\yx: R\xy EFrlyx<rx:A
(VES6) (VET)

EFrR<(\x EFaA EFrR<()\x EFaA xzy

EF(rlx=a)\x<>r:R EF (r|x=a)\y <= (r\y|x=a) : (R|x:A)\y
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(VES) (VE9)

EFrR<()\x EFaA EFr{Rly:B)\x<:() EFaA xzy
EF(rjx=a)x<=a:A EF(r|x=a)y<ry:B
(VE10)

EF r:R<:(Sx:A)<:Q)
EFr < (r\x|x=r.x) : R
Special rules

In the following sections we discuss the rulesb) and(te9) below; these are valid
only with respect to particular semantic interpretations.

(VC1b) (TE9)
EFr:() EFsQ E F R<:(Sx:A)<:()
Ebr<s:{) EFR < (RX|xR.%)

In presence ofreg), the rulesse) is redundant, and the rulgss) andvcs) are implied by
the simplerrcsb) andvcsb) below.

(TC5b) (VC5b)
EF R < (SxA)<:() EFr < s: (RxA)<()
EFR.Xx< A EFrx< sXx:A
Properties
Lemma 3.7.1:

(1) If E-Atype thenkE env

(2) If EFA<:B, thenEenv
Proof

Simple simultaneous induction on derivations, withas the base case.
O

Lemma 3.7.2:
(1) If EFA<B, thenE}F Atype and E+ B type
(2) If EFA<:B, thenEF Atype and EF Btype

Proof
Show (1) and (2) simultaneously by induction on derivations. The hardest case is
(te1). The next hardest (ses). All the others are substantially simpler. We prove
(te1) below and leave the remaining cases to the reader.

To prove (1) forrel), we assum& F R<:{)\xy andE I A,B type. Usings2)
andss) we may derivé F ()\xy<:{)\x and so by transitivity andz) we haveE +
(R|x:A) type The next goal is to show th@R|x:A) is a subtype afj\y. Using(s2)
and(s4) we havek F R<:(})\y by transitivity, and so byre2), E+ R\y <= R. The
type congruence rules gie (R|x:A) <= (R\y|x:A). By (tes) and transitivity we
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now haveE F (R|xA) <= (R|x:A)\y. From(si) and the original hypotheses, it is
easy to shovE F (R[x:A) <: () and so bysa), E F (RxA)y <: {)\y. This allows
us to deriveE F (R|xA) <: {)\y, from which we may finally obtaif +
(CRIx:A)ly:B) type
The proof ofE I ((R|y:B)|x:A) typeis similar.

O

Sample derivations
We show the main steps of some derivations that can be carried out in this system,
assuming rules for typing basic constants.

The first example simply builds a record of two fields, with its natural type.

(1) 0O

(E1) O\ O\ (const) 3:Int

(13) (O\WX|X=3) @ COO\X[x:Int)

(E1) (O\WX|X=30\y @ ¢O\X|x:Inthly (const) true : Bool
(13) {(O\Xx=3)\y|y=true) : (CH\x|x:Int)\y|y:Bool

(def) (x=3, y=true) : {x:Int, y:Bool)

Next, we derive a non-trivial type inclusion. To construct record types of different
lengths on the two sides of <:, we start with the basic asymmegsy ahd we build up
symmetrically from there (there is no more direct way).

(G1) <)

(S4) O\ <: OH\X

(S1) (OWXxInt) <: ¢

(S4) (O Inthly <: (H\y (G1) Bool <: Bool
(s39 EOX|x:Inth\yly:Boob <: ({)\y|y:Bool)

(def) @x:Int, y:Bool) <: {y:Bool)

Now we show that a given record lacks a given label. This time the key rue is
Some type equivalence rules are used to rearrange the type into a standard form.

(1) 00

(12) () 1y 2 Dy<

(ED O\ QWX (S4) WX <: (H\x (const) 3:Int
(13) (O\WX]x=3) : (O\W\X|x:Int)

(TE3,7€3,61,63)  ((N\X[x=3) : ¢OI\X\y|x:Int})
(TE6,G1,G3) (O\X|X=3) @ CEO\X[X:Inthly
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(def) (x=3) : (x:Inthly

Finally, we show that by removing a label we obtain a subtype. The basic asymmetry
here is provided bys2).

(G1) <)

(s2) My <€)

(S4) WX <: ()\x (G1) Int <: Int
(S3) COWAX|x:Int) <: ¢O\x|x:Int)

(TE3,7C2,61,62)  (O\X\y[x:Int) <: (H\x[x:Int)
(TE6,G1,G2) COWXX:Inthly <: ¢E)\x|x:Int)
(def) x:Inthly <: (x:Int)

3.8 Semantics of the pure calculus of records

Our stated intent is to define a second-order type system for record structures.
However, models of such a system are rather complex, and outside the scope of this
paper.

In this section we provide a simple set-theoretical model of the pure calculus of
records, without any additional functional or polymorphic structure. The intent here is to
show the plausibility of the inference rules for records, by proving their soundness with
respect to a natural model.

This model is natural because it embodies the strong set-theoretical intuitions of
subtyping seen as a subset relation, and of records seen as finite tuples. Although this
model does not extend to more complex language features, it exhibits the kind of simple-
minded but (usually) sound reasoning that guides the design and implementation of
object-oriented languages.

Syntax

We start with the language implied by the type rules of section 3.7. Since no basic
non-record values are expressible in this calculus, we must make some arbitrary choices
to get started. To this end, we will consider an extension of the pure calculus with any
collectionG; , G, , ... of basic (ground) type symbols and an arbitrary collection of
subtype relation&; <: G; between them. To incorporate these new symbols into the
calculus, we add the following two rules (which preserve lemmas 3.7.1 and 3.7.2):

FE env FE env
EF G, type EFG <G (as appropriate)

For simplicity, we do not introduce value constants; instead we work with environments
containing assumptions of the fokm G, .
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We will now construct a model of the extended calculus.

Semantic domains

In the following, we rely largely on context to distinguish between syntactic
expressions and semantic expressions, and we often identify terms with their denotations.

We start by choosing some fixed set of laliglsind a collection of setg, , g, , ...
corresponding to the type symbdls , G, , ... such that; [ G if G, < GJ. is a
subtyping axiom.

For simplicity, we assume that no element of gnis a finite partial function oh
(i.e. a record, as we shall see shortly). This assumption is useful when we define the
subtype relations of sections 3.9 and 3.10.

Since() serves as a type of all records, we will need some value space closed under
record formation. This property may be accomplished by regarding records as finite
functions fromL to values, and usinginkedvalues with rank <. We useA —. B for
the set of partial functions frod to B with finite domainf(x)! to indicate that the partial
functionf is undefined ax, andf(x){ to indicate that is defined ak.

Define setg,; of records of rank and set/ of values of rank as follows:

o = Ui g Y = R 0%
Ro = L=mMW Risp = L =5 Y
R = U< R the set ofecords

4 = U< ¥ the set ofvalues

The essential properties of this construction are summarized by the relationship:
R=0L—-Y) 07

It is clear by construction tha&t, [0 4/, , and so® [ 7. To see thatg =L —; ¥, we first
show thatl —. 7 0 ®.Ifr e L - 7, then sincalonr) is finite there is somewith
ranggr) O %/ ; hencer € R, O R.. The converse follows from the fact thatéfR , thenr €
Ri= L —=p%) O L=,

We now summarize the notation used to describe the semantic interpretation of
syntactic constants and operators:

@ = Ayel. 1

F-x = AyeL. if y=x then! elser(y)
provided re® andxel

r[x=a] = AyeL. if y=x then a else(y)
provided re R , xeL, ae ¥, andxg¢dontr).
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r(x) is well-defined,
provided re® , xeL, andxedon(r).

Lemma 3.8.1:
(1) The empty record is an element oR .
(2) For anyre ® we haver-xeg ..
(3) If re®_is not defined om, then for anyae ”we have[x=aleR .
(4) If reR is defined orx, thenr(x)e V.
Proof
(1) The empty function is a finite function.
(2) If reR thenr-x remains a finite partial function R .
(3) Supposee® with x ¢ dom(r), andae V.
Thenr[x=a] is well-defined (is a function) and belongsio
(4) Ifrex=L —; v andr(x) is defined them(x) € 7.
O

Types and type operations

Types are interpreted as subsets of our global value set; hence we have a type of all
values, and a type of all records. Subtyping is interpreted as set inclusion.

We introduce the following notation for operations on record types:

R-x = g {rx|reR}

if ROR
R[x:A] = et {r[x=a] | reR, acA}

if RO R x (Rundefined orx) andA [0 9/
R(x) = def {r(x) [ reR}

if RO 9x:A] for someS & andA O v

Lemma 3.8.2:
Under the conditions stated above, the BetsandR[x:A] are subsets
of %, and the setR(x) are subsets of’.
Proof
Q) IfROR, thenR-x={r-x|reR} O %, by 3.8.1.
(2) If RO R -x, thenRis a set of functionse L —; 4’ with x ¢ domr).
Hence for amA O 7, RIxA] = {r[x=a] | reR, acA} O ®, by 3.8.1.
(3) If RO gx:A], then for anyeR, regx:A] = {dx=a] | seS aeA};
so thatr(x)eA. HenceR(x) = {r(X) | reR} DA O 7.
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Interpretation of judgments

An assignmenp is a partial map from type variables to subsetg/ofind from
ordinary variables to elements ©f We say that an assignmegrgatisfiesan environment
E if the following conditions are satisfied:

If X in E, thenp(X) O v
If X<:Ain E, thenp(X) O A, OV
If x:A inE, thenp(x) e Ap O v

whereA, is the type defined b under the assignmept Similarly, bya, we indicate
the value of a terra under an assignentp for its free variables.

The judgments of our system are interpreted as follows.

F E env = for every initial segmenE', X<:A orE',x:A of E,
if p satisfiesE' thenA, [ 7.

EF Atype x Ao O %, for everyp satisfyingE.

EFA<B = Ap 0By O, for everyp satisfyingE.

EFA<B = Ap =By 07, for everyp satisfyingE.

EFa:A x ap € Ap U7, for everyp satisfyingE.

EFa<sb:A = ap=bp € Ag U7, for everyp satisfyingE.

Type and value expressions are interpreted using:

) = R

R\x = R-x

(R|x:A) = R[x:A]

R.x = R(X)

() = @

r\x = r-x

(r|x=a) = r[x=a]

r.x = r(x)
Soundness

Finally, we can show that this semantics satisfies the type rules. More precisely, we
consider the syster81 consisting of all the rules listed in section 3.7, except for the
special rulegvcib) and(Teg).

Theorem 3.8.3 (soundness):
The inference rules of syste®iare sound with respect to the
interpretation of judgments given in this section.

Proof
See appendix.

O
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3.9 A construction givingR = {R\x|x:R.x}

The type equivalence rule below seems very natural semantically. It also simplifies
the types associated with the override operation, and has application to extensional
models studied in the next section.

(TE9)
E F R<:(Sx:A)<:()
EFR < (RX|X:R.%)

In the simple model described in section 3.8, it is easy to see Rat {(k:A), then,
as required byssy.

RO (RX|x:R.%)

The reason is that every recardn R has arx component(x) € R(X), and remaining

components-x in R-x. However, it is not necessarily true that every combinatianxof
from R-x andr(x) from R(x) occur together in a single recordRnFor example, the set of
records:

R = {(x=1, y=true), (x=0, y=false}

is clearly a subset dgfx:Int). However,R # (R\x|x:R.%) since the record=1, y=false
and (x=0, y=true) do not appear iR. In category-theoretic terms, the equat®nr-
(R\x|x:R.») says thaR is the product oR\x andR.x

In this section we present a variant of the construction of section 3.8 in which rule
(TE9) IS sound. Since we are ultimately interested in polymorphism and bounded
quantification, we construct a model wi= (R\x|x:R.%) for every semantic typR with
R.x defined. The construction uses the same collection of values as before, but allows
only certain subsets af as types. In this way we eliminate sets of records which violate
(TE9).

We use a value space satisfying:
R =L —=7) 0¥

constructed as in section 3.8. Then for each natural nurmerdefine the collection
of subsets oft” which we wish to consider types of stagét the first stage, we may
select any subsets of provided we include the given ground typgs For definiteness,
let us take:

T = {61, 6.}
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We now define record types over preceding types. At each stage we take all record
types defined by a finite set of labeled component types, and a finite set of absent labels.
Each component type must belong to the preceding stage.

This construction may be clarified using an auxiliary definition. Suppose —; 7.
is a finite partial function from labels to types at stagendN [, L is a finite set of
labels disjoint from the domain d&*. Then the seg":N of records with components
present according #® and components absent accordindlis defined by:

RN = {rer| YxeL. PV O r(xeP(x)) O xeN O r(x)™}

T

We define the set of record types at stagé to be the set of alRP'N for suitable
“present” functionP and “absent” se\:

7. = {®N|P.L —

" 7 0 NO, L O domP)nN=¢g} O 7

fin ~i i

Note that® =%®’¢ belongs to every.,,.
The collectionT of all types is defined by:

T = Ui<wq;

As we have defined; the setV of all values is not a type. However, it is possible to
include ¥ in 7, if desired.

It is natural to consider any set of recorfs' with P: L —. 7 andN [, L, as a
“record type” overV. Define®T to be the collection of all record types:

RT ~def {R?’N | P:L fin 7,N Dfin L, anddon'(P)nN :¢}

Note that®?? = | JRT, SOR7Z has a maximal element. We may show that precisely
the union ofz7; and the record types ovef; that is7= 7, [ R7.

Lemma 3.9.1:

If P: L -, 7 andN O, L with dom(P)nN =g, theng"Ne 7.
That is,®7 0.
Proof

Supposeé?: L —, 7 andN [, L. Since the domain d is finite,
there is somewith P: L —. 7 . Hence®Ne 7., O T.
O

In this model we will interpret all judgments as before, except that type variables and
type expressions must denote elementg.ddince we consider only elementshs
types, we define the relatighl: B (A semantic subtypef B) as:

Al:B iff AOBandABe T
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By the simplifying assumption in section 3.9 that no ground type contains records, we
know that every subtype af will be an element oR7. If we had not made this
assumption, then we might have some subtyp& which “accidentally” could cause

(TE9) tO fail.

We may show that for any non-em@®¢ %7, a functionP and setN with R = g”N
are determined uniquely.

Lemma 3.9.2:

LetRe ®7 be non-empty. TheR = KN where:
dom(P) = {xeL | VreR. r(x){},
N = {xeL | VreR. r(x)1}, and
P(xX) = R(xX) for allxedom(P)

Proof
SupposeR € RT is non-empty and lepeR
We know thaR = g7N for someP,N.

(1) By construction okPN we havevreR. dom(P) O donr).
Moreover, ifVreR. r(x){, thenxedon(P), sincex¢dom(P) implies
ro-xeRand (O-x)(x)T. Consider the functiohdefined by:

f(x) = ro(X) if VreR r(x)!, and? otherwise
This function belongs tR, anddont(f) = {xeL | ¥YreR. r(x){} O don(P).
Hencedom(P) =don{(f) = {xeL | VreR. r(x){}.

(2) By construction o”Nwe havevreR. N O T(r) =, {xeL | r(x)1}.
Moreover, ifreR r(x)T, thenxeN (sincex¢N implies either(x)!
or (ro[x:a])(x)J, for an appropriately choseg[x=aleR).

Choose, fromR, =, {reR|r(x)| } wheneverR #¢, and define:
g(¥) = 1if VreR r(x)?, andr,(x) otherwise
This function belongs tR and T(g) = {xeL |VreR. r(x)1} ON.
Hence N = 1(g) = {xeL | YreR. r(x)1}.
(3) Assumexedon(P).
R(X) = R7N(X) = {r(x) | reR_, VyeL. r(y)eP(y)} (sincex¢N)
= {r(x) [reR ,r(xeP()} = { ac?’| aeP(X)} = P(X)
U

This allows us to write each non-empty record type X7 as®™N without
ambiguity. The lemma also demonstrates that wherR{xgiis defined R(x) = #7N(x) =
P(X) e T is a type.

It is now straightforward to show that the record types are closed under restietion (
X) and extensionR[x:B]):
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Lemma 3.9.3:
If R=%PNis any record type, theR-x = °'N, where
P' = P-{<x—=P(x)>}if P(x){, andP otherwise.
N' =N O {x
Proof
Straightforward.
l

Lemma 3.9.4:
If R=%K>Nwith xeN, andBe 7, thenR[x:B] = £"N', with:
P'=P O {<x—>B>}
N' = N-{x}
Proof
By definition, R[x:B] = {r[x=Db] | reR, beB}. It is easy to check
that everyr[x=b] belongs tag”"N" and conversely.
]

The semantic subtyping relation on record tyRes: R'is now detemined by the
present and absent information.

Lemma 3.9.5:
KON gPNiff
VYxedonm(P"). P(x){ O P(x) O: P'(X)
N O N
Proof
AssumegP N : g7N'
It is easy to check that' OO N by the definition ofg™N,
Similarly, if P'(x){ then we must havé(x)!{ 0O P(x) O P'(x).
By definition P(x) andP'(x) are types.
The converse is straightforward.
O

Since the point of this model construction is to gz (R-x)[x:R(x)] for every record
type R with R(X){, we must also prove this equation. Given the preceding lemmas, the
proof is almost immediate.

Lemma 3.9.6:
LetRe ®T be a record type with(x){ for allreR.
ThenR = (R-x)[X:R(X)].
Proof
We knowR = ®”N for some finite functior® and finite sel.
By preceding lemmas, we also have:
Rx = &N
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(RX)[XRX] = &V
with P'=P - {<x—=R(X)>}, N'=N 0O {x}
andP" =P'0 {<x—=R(X)>}, N"=N'-{x}.
SinceP" =P andN" =N, it follows thatR = (R-x)[X:R(X)].
O

Finally, we have the soundness theorem. Sysi@ms systenS1of Theorem 3.8.3
plus the rulaTeg).

Theorem 3.9.7 (soundness):
The inference rules of systeé&2are sound with respect to the
interpretation of judgments given above.

Proof
See appendix.

O

3.10 An extensional model construction
The following inference rule gives us an extensional equality between records:

(VC1b)
EFr:() EFs)
EFr<s:{)

The intuitive reason for adopting this rule is that &nds both belong tq), thenr
ands are indistinguishable. In fact, assumands differ at some labet. We cannot use
r.x or s.xto distinguish them since neither is well-typed; if we tseor s\x then we
simply remove the difference.

In addition to giving us more equations between records of{fypele (vcib) implies
the following extensionality property: for amys : {x;:A, , ... ,%:A), we haver <> s :
XA, XCAD iff rxi<ss. DA fori = 1..k. The straightforward proof of this uses
r\x;.. X, <= S\X;..% : ) and the value congruence rules.

Recall that in the previous models a record type was simply a set of records, and
equality of records was independent of the type. Therefore, any two distinct records
would be unequal elements ®f causingvcuib) to fail.

In this section, we will construct a model of the pure record calculus satisfying
and (vcib). It will be clear from the construction thato) is essential; we do not know
how to construct an extensional model satisfyivigb) without requiring that record
types satisfjR = (R\x|x:R.%). The main use ofre9) lies in showing that iR is a record
type with extensional equality, then bd®x andR(x), when defined, are extensional
record types.

We begin with a value spaaésatisfying:
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R = L) O W

constructed as in section 3.8, and define types as ceddial equivalence relations
(abbreviatedPERS) overv’ (see[lLongo, Moggi 1991). A PERIs a binary relation which
is symmetric and transitive, but not necessarily reflexive. An element of a type is defined
as an equivalence class of values infBR

Subtyping is based on set containment of partial equivalence relationdBascde,
Longo 1990], except that we consider only cerkERS as types.

The type of all recordg) is interpreted by theERR xR . This type has only one
element since there is a single equivalence clagsxiR : while {) contains all records,
all records are equivalent {f) (hencegvcib) holds).

The three operations on record types are defined as follows:

. If RisaPERoNR® withr(x)T for every recordRr, andA is aPER
on v/, thenR[x:A] is the relation orR given by:

r RIx:A] s iff r-xRs-x and r(x) As(x)
In writing r(x) As(x) we imply that (x){ ands(x){ .
o If RisaPERONZR , we define the relatioR-x by:
RXx =, {<rx, s> |rRg

. If RisaPERONR , withr(x)| wheneverRr, we define the
relationR(x) by:

RX) Sier {<r(x), sx)> [ rRs;

It is easy to show that under the hypotheses ali®jwe4] is a partial equivalence
relation on® . However,R-x andR(x) are not necessarily transitive. This will not cause
any problems, as it turns out, since by restricting the class of record types to some
collection satisfyingres), R-x andR(x) are guaranteed to be types (and h&m®s).

The types ovet/will be defined in stages, as before. We begin with some collection:
T, = {£,,E, ...}
of partial equivalence relations ovetthat do not relate any records to themselves. A
typical choice would be to begin with the identity relations on the ground types, ,
Given any finite partial map from L to PERs over?and a sel [J
the the domain d?, we define theERR”N over® by:

r #°Ns iff VxeL. PV O r(x) PX) s(X) O (xeN O r(x)T0s(x)1)

;. L disjoint from
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Note the similarity tar™ N for subsets of/ ; if we represent a subsgfl?’ by thePER
(Sx9 O (v x7), the two definitions coincide. It is easy to see that if é4ghis aPER
then so ig™N,
Following the earlier definition of record types in stages, we define:
T,, = {®N|PL—, 7 O NO, L O domP)nN=¢g} O T

i+1 i

and let:
T = Ui<oo{lid

This construction has much the same character as the previous non-extensional one,
although we have the added complication of establishing Rhatand R(x) (when
defined) arePERs wheneveRe 7. Since everRe T is easily seen to bereR we will do
this by showingR-xe TandR(x)eT.

It is easy to prove Lemma 3.9.1 for this model, showing that we need not consider
stages of the construction in later arguments.

Lemma 3.10.1:

If P:L —. 7 andN O, L with dom(P)nN =g, then *Ne T.

fin
Define the collection of all record types g7 = {&"N}.
Subtyping is interpreted as before, with:

AlU:B iff AOBandABe T

We now use present functions and absent sets to show that foRev&y, we have
R-xeTandR(x)eT if r(x){ for everyrRr.

Lemma 3.10.2:
If Re ®T, thenR-xeT.
If Re ®7 withr(x)| wheneverRr, thenR(X)eT .

Proof
The lemma is trivial iR= g, hence we assuni g.

(1) LetR=g"N. ThenR-x = "N with P' = P - {<x—~P(x)>} and
N'=N [ {x}. To see this, supposeR-x s. Then there must
be records',s'e® with r'Rs'andr=r'-x, sS=s-x.

SinceP'(y)l O r(y) P(y) s(y) andyeN' O r(y)T Osy)T,

it follows thatr ®7'N's,

To show the converse, we assum®N's and note that since
Rz ¢, there must be sonte 7with b P(x) b. It is easy to see
thatr[x=b] R gx=b], and sa R-xs.

(2) We now assumex){ wheneverRr. SinceR=%"N, we have
P(x)e7. It remains to show th&(x)=P(x). If a R(x) b,
then there exist ands with rRsanda=r(x), b=s(x).
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By definition of £ it follows thata P(x) b.
For the converse, we assumB(X) b; sinceR# g, there exist
r ands with r £”N's andr(x)=a, s(x)=b. Hencea R(x) b.

O

Lemma 3.10.3:
If Re %7 withr(x)! wheneverRr, andBe7; thenR[x:B]e 7.
Proof
The lemma is trivial iR= g. Otherwise, we leé®=%""N and show that
Rx:Bj=®""N'with P'=P O {<x—B>} andN'=N-{x}.
This is straightforward.
O

It is now an easy matter to show analogs of Lemma 3.9.2 and Lemma 3.9.6. These
conclude the basic properties of the construction. SySt8m systemS1 of Theorem
3.8.3 plus the ruleges) andvcib).

Theorem 3.10.4 (soundness):
The inference rules of systeé&8are sound for theErRmodel
construction.

Proof
See appendix.

O

3.11 The update operator

Extensional models are useful to characterize a natural form of record update, here
denoted byr.x :- a for functional update. The discussion is also relevant to the typing of
imperative update,x := a, although our models do not directly capture side-effects.

The functional update operator cannot be introduced by a simple definition. We want:

r.X:-a e (N\X|x=3)

but only provided that.x exists, and thatx :- a does not modify the type of thxfield.
Sufficient assumptions are thatR<:{) and a:R.x then we can derive the following

typing:
EFr:R<: )
€1 EF r\x:R\x EFaR.x
)  EF (r\x|x=a) : (Rx|x:R.%)
defy EF rx:-a : (RxxXR.®
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This is not quite satisfactory, because we would expect the result typeRp be
meaning that the type of a record is not modified by updating one of its fields (with a
value of the correct type).

Fortunately, by usingeg) ((R\x|x:R.X)<=R) we can derive the expected type rule:

(UPD)
EFrR<() EFaR.x

EFrx:-a: R

This seems to be a compelling reason for adopting because of its impact on such an
important operator as updating.

Note that theurp) rule is very strong; it applies even whieis a variable. From it we
can derive a perhaps more natural but less general rule:

(UPD")
EFr{RxA)<() EFaA

EFrx:-a : (RxA)

Remark. Here we might be tempted to weaken the assumptiGghH@ A'<:A,
and strengthen the conclusion ok r.x :- a : {(R|x:A). This is valid but
undesirable, since we might then be unable to updatg tiedd again with its
original contents.

The strong(rb) rule would not be expressible withoRtx types; the following
apparently natural variation is unsound:
EFr:R<:(SxA) EFaA
EFrx:-a:R

For example, tak@=Bool, R=(x:True), andr=(x=true); then fromr.x:Bool andfalseBool
we can derive.x:-false: {(x:True).

3.12 Normalization and decidability

Even though the basic ideas behind the record calculus are relatively simple, the
formal system has quite a few rules. As a consequence, it is not easy to see, by inspection,
how we could determine whether a supposed &pewell-formed, or whether a record
expression has tyge

In this section, we show that all of the basic properties of the calculus are decidable,
using relatively natural algorithms. In the process, we show that every type expression
has a unique normal form (modulo permuting the order of fields) and every typable
record expression hagancipal typein each suitable environment.
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The first properties we consider are deciding whether a supposed envirdamsent
well-formed and whether a givéxis a well-formed type expressionti A quick glance
at the formation rules shows that in order to determine whether a type is well-formed we
must be able to decide the following apparently simple properties; assiEmiRgtypeis
derivable, we want to know whethEr- R<:{)\x and whether there exiStandA such
that E F R<:{S[x:A). Therefore, we consider these first. Once we develop a simple
method for these, it is easy to check whether a type or environment is well-formed.

For each derivablE I R type we define a labeled trdeeqE |- R typg with:

edges labeled by field names
vertices labeled by finite sets of field names

If vis a vertex infredE F R typg, we call the finite set of field nameswvatheabsent set
at v.

Intuitively, if p=xX, ... % is a path from the root dfregE - R typg andN = {y,, y,,
... Y|} is the absent set of the vertex designated by this path, then:

EF(.RX).X ...).% type
EF(.RX)X ...)X < O\YY, ... Y

A convenient notational shorthand is to wiRep for (..(R.X).X, ...).x, wherep is the
pathp =x,X, ... X. If p =€ is the empty path, then we may wiRe for R. If eis an edge
leading from the root of a tree to the root of some subtree, we @edlot edge

We defineTreqE F R typg by induction on the length &. If E has length O theR
must be the type constafit In this case, we define:

TredgF () typ@ = single node with empty absent set.

For contexE = E',X<:A we use induction on the form of type expressions:
TredEF Y typg = TregE'l Y typg forY # X
TredEF X type = TredE'F A type

TregE | (S|x:B) typd is obtained from
T=TredE+ Stype and T =TreqE} B type
by makingT" a subtree of the root dfalong a root edge
labelledx, and removing from the absent set of the
root of T (if there).

TredEF Sx typg is obtained fronTred E+F S typé
by deleting the subtree along the root edge labe(ddhere), and
addingx to the absent set of the root.
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TregEF S.x typg is the subtree dfredE+ S typé
located along the root edge labeled

For contextE = E', X the definition ofTredE F R typg is the same as above, except for
the following case:

TredE,XF X typg = empty tree.
For contexE = E',xA we let:

TredEFRtypg = TredE'l R typg
This concludes the definition.

In the clauses definin@reqE  (S|x:B) type andTredE + S.x typg we have
assumed certain properties DfedE - S typ@. These are justified by the following
lemma.

Lemma 3.12.1:
Supposee - R typeand letT =TredEF R typg.
(1) If pis a path iril, thenE - R.p type
(2) If xis in the absent set @fat positionp, thenE - R.p<: {)\x.
Proof
By induction on the derivation df.
Caseg + () type Trivial.
CaseE' X<:AF Y typeandE' X}F Y typewith Y£X.
Induction hypothesis and the property thdE i J for
any judgment, andg,E'eny, thenE,E'+ J.
CaseE' X<:AF X type
By induction hypothesi&'+ A.p typeandE'F A.p<: ()\x.
The conclusion follows by repeated usergfand(ss), and
transitivity of <: .
CaseE', X X type Vacuous.
Case£' X<:At (Sly:B) typeandE' X} (Sy:B) type
Casep=¢. (1) is trivial.
(2) by induction hypothesig - S<: {()\x for x in
the absent set af (x2y). Hence E - (Sly:B) <: ()\x.
Casep =yp'. Use(e7) and induction hypothesis f&+ B type
Otherwise. Useres) and induction hypothesis f&+ R type
CaseE' X<:AF Sy typeandE', X+ Sy type
Casep =¢. Two subcases:
Casex=y. SinceE I- Sy typemust follow froms), we must
haveE |- S<: (). The result follows bysa).
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Casexzy. Thenx must be in the absent set iaedE F S typg
and scE F S<: {()\x. By (s4, EF Sy <: {()\xy, and we
know that@)\xy <: {(H\x.
Casep # €. Then p must be a pathTmegE - S typ@ not beginning
with y. It follows from the induction hypothesis that
EF S: (T|zA) for z2y the first symbol op. By (te4), we have
EF S.z<= Sy.z and the lemma follows by the congruence rules.
Casef' X<:AF Sy typeandE' X} Sy type
Straightforward from induction hypothesis.
CaseE',xAF R type By induction hypothesis.
O

The preceding lemma shows that the path and absent information providesky
F R typé is “sound” with respect to the proof rules of the calculus. Since the proof rules
are sound with respect to our semantics, it follows that the assertions of thg form
R<:()\x and3S,A E+ R<:(S|x:A) determined fromTreqE - R typg are semantically
sound.

We may also show that the assertions are semantically complete. It follows from the
preceding lemma that the proof rules are also semantically complete for deducing
assertions of the form: (B F R<:()\x, and (2) if there existS andA with R<:{S|x:A) in
every assignment satisfyirify thenE - R<:{S|x:A") for someS'andA'.

Lemma 3.12.2:
Supposee F R typeand letT =TredEF R typg.
There is a semantic modef and assignment such that:
(1) If pis a sequence of labels which is not a pafh tfen there
is some record in R, with r.p undefined.
(2) If pis a path il with x absent from every record iR,
thenx is in the absent set @fat the vertex located pt
Proof
We may use the model constructed in section 3.8 using a single
ground typeg=N, for example. For each environmé&htwe define
an assignmerg_ such that whenevét - R type there is someeR
with r.p! iff pis a path iffreqE - R typg. (This is straightforward.)
It is easy to verify that for any vertexn anyTredEF R typg, if xis in
the absent set af then there is no child along any edge lab&led
This and (1) imply part (2) of the lemma.
O

By constructing trees of absent sets, it is relatively easy to decide whether a purported
environment or type expression is well-formed. The basic idea is simply to check whether
FE env or EF R type by reading the environment and formation rules backwards. This
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gives us mutually recursive procedures which relyToegE - R typg in checking the
hypotheses aof2) and(a).

Theorem 3.12.3:
Given environmenE and expressioA, there are mutually
recursive procedures which decide wheth& env and E - A type

The next problems to consider are, given well-formed t§plesA typeand E+ B
type whetherE - A<=B or E+ A<:B. Since type equality may be used to prove subtyping
assertions, both depend on our choice of type equality rules. For definiteness, let us
assume we havees). Similar results seem to hold withqute), but we have not checked
the details.

If E+ R type then it is evident that by directing type equality rules, we may reRrrite
to one of the following “normal” forms:

1)
(2) X (atype variable)
3) ((Ryx) ... X))y, ... Y whereR; is either() or a type variable.
(4) (R\X ... XIy A, ... ¥:AD where, considering= TredEF R typg:
« R, is either{) or a type variable;
¢ Y ..yare exactly the labels on the root edges, of
o {y, .. }f} O{x; ... x};
o {X ..x}-{y, .. ¥} is the absent set at the rootf
. A ... A} are also in normal form.

In the semantics of section 3.9, the meaning of a type expression of form (4) is a
record typer™N, where N={x, ... X} - {y, ... y} domP) ={y, ... y}, and P(y,) is the
meaning ofA_. Since we may construct models in which no type is empty, and
assignments in which each type variable denotes a different type, we may show that two
type expressions are provably and semantically equal iff they have the same normal
forms, modulo differences in the order of field names and component types. By lemma
3.9.5, we may also see that, semantically:

(RN o Xy Ay yeAD O (Sl - ylvyiBy . B
iff

e ({u;...y}-{v,...vyph O ({xl...x}-{yl...x})

o {v,..v} O {yl...)f}

o if v._.=y thenA [0 B

This property allows us to decide semantic subtyping by normalizing type expressions,
comparing outer-most forms, and recursively examining corresponding component types.
Since all of the steps of the algorithm correspond to derivations in the proof system,
completeness of the proof rules (for type equality or subtyping assertions) follows.
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Theorem 3.12.4:
GivenE F A typeandE - B type there are straightforward algorithms
to determine whethdf - A<=B or E - A<:B. Moreover, the proof rules
are semantically complete for deducing type equality and subtype
assertions.

The final algorithmic problem is, giveB+ R typeand an expression determine
whetherE Fr:R.

Since we can decide whether one type is a subtype of another, it suffices to compute a
minimal typeSwith E +-r:Sand check whethdf - S<:R.

However, most record expressions do not have a minimal type. This stems from the
fact that for any sequenceg ... x of labels, we havé) : ()\x, ... X , and we can always
obtain a smaller type by adding more labels. To get around this problem, ypese
schemaghat contain sequence variables. We show that each typable record expression
has a schem8 such that every type faris a supertype of some instanceSfThis
allows us to test whether a record expression has any given type. We use for
sequence variables in schemas.

If Sis any scheme with sequence varidblidhen we sa¥ + S typeif E + S' typefor
everyS'obtained by replacinigwith a sequence of labels (including the empty sequence).

If E F S typethen a useful algorithm gakeAbser(k,S) which attempts to compute a
substitution instanc®&' (possibly containing sequence variables) suchBEas<:()\x. If
such an instance existslakeAbser{k,S) returns the smallest one. If no instance exists,
the algorithmfails. (Algorithm MakeAbsentuses an extension dfteqE + R typg to
schemas; details are straighforward and omitted.)

Using MakeAbsentwe may compute principal type schemBTSE,r), for any welt
formed environmenE and expression as follows:

PTSE, () o\ (wherel is a fresh sequence variable)
PTSE, x) E(X)

PTSE, rx) = PTSE,r).x if defined, else fail

PTSE, r\x) = PTSE, r)\x

PTSE, (r|x=a)) = ({MakeAbserfk, PTSE, r))|x:PTSE, a))

Theorem 3.12.5:
Givent E envand an expressian if E - r:RthenPTSE,r) succeeds,
producingSwith E + S<:R for some instanc8' of S. Otherwise,
PTSE,r) fails. Furthermore, giveB=PTSE,r) andE - R typeitis
easy to compute the smallest instaBbtef S such that if any instance
is a subtype oR, thenEF S<:R.

This concludes our investigation of decidability properties. We leave extensions of
these properties to functions and polymorphism for further work.
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4. Applications and extensions

One might ask why we should go to the trouble of defining the subtle extension and
restriction operators, instead of adopting the override operator as a primitivé\\éanh
1989] In particular, our explicit handling of negative information seems to introduce
much complexity.

One answer is that negative information seems necessary to a proper understanding of
the override operator. For example, the notiorab$ent fieldss critical to Rémy's
account of overriding in [Rémy 1989Hence, it seems worthwhile to investigate
negative information as formalized by a separate operator.

A more pragmatic answer is that overriding really performs two different actions in
different situations; it either extends a record or updates it. From a methodological point
of view, a single override operator is rather undesirable because it may silently destroy
information. A separate extension operator is preferable, because a type error occurs if we
attempt to use it to destroy an existing field. A separate update operator is also preferable,
because normally we do not want to update a field with a value of a totally different type.

Hence, in a programming language we would probably want to replace the override
operator by two separate operators: one for extension, which we have, and one for
updating, discussed in section 3.11. The restriction operator could still be used when we
really intend to delete a field.

Admittedly, restriction is still ambiguous, because it may or may not remove a field,
depending on whether the field is actually present. It is however possible to define a safe
restriction operator which produces a type error if the restricted field is not present.
Unfortunately, we could not find a way of completely eliminating the need for general
restriction (at least on types); this operator seems necessary to express crucial well
formedness conditions.

This said, we are now ready to investigate some useful derived operators.

4.1 The override operator

The override operatgr <— x=a) =, (r\x|x=a) is certainly very natural, in fact we
have used it almost exclusively in our examples. The derived type rules for this operator,
described below, are also very simple, especially if we consider the subsystem with only
overriding and extraction. The rules mixing overriding with restriction are still rather
interesting.

We recall the definition of the override operator:

(r < x=a) = (r\x|x=a)

def
(R<—x:A) dof  CRX|XA)
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The following rules are all simply derivable from the rules for our basic operators (we
assumereg)); with these, extension need not be a primitive.

Formation
EFR<({) EFAtype E F R<((S—xA)<:()
E F (R<xA) type EF R.x type
Subtyping

EFR<({) EFAtype

EFR<X:{) EFA<B
EF (R<=xA) <: {}

EF (R<XxA) <: {(S—x:B)

E F R<({(S&—xA)<: )

E F R<({(&—xA)<:{)
EFR.x<: A

EFR<: (R—xR.%

I ntroduction/Elimination

EFrR<() EFRaA

EF r:{R—xA)<:{)
EF (r<x=a) : (R—xA)

EFrx:A
Type Congruence
EFR<S<({) EFA<B EFR < (S—xA)<()
EF (R<xA) <= (S—x:B) EFR.x< A

Type Equivalence

EFR<() EFABtype xzy
E F ({R<=xA)<-y:B) <> ((R<y:B)<—x:A)
EFR<({) EFAtype
E F (R<—x:A)\X <= R\X

E F R<:{S—xA)<: ()

EFR < (R—xXR.%
EFR<({) EFAtype xzy

EF (R=xA)\y <= (Rly<=x:A)

EFR<() EFAtype

EF R<(S—yB)<({) EFAtype xzy
EF (R<=XA).X<> A

EF (R—xA).y<R.y

Value Congruence
EFr<—s:R<{) Eta<b:A
EF (r<x=a) <> {(s<x=b) : (R<—X:A)

Value Equivalence

EFr < s: (R—xA):{)
EFrx< sx:A

EFrR<({) EFaA EFDbB xzy
E H(r<x=a)<y=b) <> ((r<y=b)<x=a) : ({R—Xx:A)<Yy:B)
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EFrR<() EFaA EFrR<({) EFaA xzy

EF (rex=a)\x <= r'\x : R\x EF (rex=a)\y <= (r\y<=—x=a) : (R<x:A)\y
EFrR<q{) EraA EFr(R<yB)<{) EFaA xzy
EF(r<x=a).x<=a:A EF(re<x=a).y<ry:B
EFr{R—xA)<{) xzy E F r:R<{S—xA)<{)
EFrlyx<rx:A Ebr < (r<x=rx) :R

4.2 The rename operator
We may consider eenameoperator, that shows another interesting ude.ofypes.

rx<=yl =4 (N\Xly=r.x)
RIx<Yl =4 (RXY:RX)

The rules for this operator are easily derived. The only interesting questions are whether
renaming with an identical variable produces an equivalent value or type:

rx<x] < r ?
Rx<<x] < R ?

These equivalences are derivable for arbitraagdR, by using:

(VE10) (TE9)
E F r:R<:(Sx:A)<:() E F R<(Sx:A)<:()
EFr < (r\x|x=r.x): R EFR < (RX|XR.%

Recall thatveio) is satisfied in all our models, bgte) only holds in the latter two.
These are similar to thsurjective pairingrules inA-calculus. An alternative, not
involving surjective pairing, is to axiomatize the renaming operators independently.

4.3 The retraction operator: forgetting information

We have seen that even negative information should be considered as “additional”
information. So, one might ask whether there is any wati@ct information, both
positive and negative. This would seem to be more a convenience than a necessity, since
one could avoid introducing information in the first place, rather then retracting it later.
However, it is still interesting to investigate the possibilities.

We have not been able to formulate operators that independently retract positive and
negative information, but we can describe an operator that retracts all information about a
given label in a type. This operator works purely on type information; there is no
corresponding operator on values.
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Theretraction operator R~X, means “forget everything abaxtn record typeR”; the
following rules enforce the cancellation of all thenformation inR.

F ormation/Subtyping
EF R<() EFR<:&:() EF R<:()
EF R~x type EFR~x<:Sx EFR <R~

Type Equivalence

F E env EF R<:{) EF R<:{)
EF~X<= ) E F R~xX <> R~X E F R~xy <= R~yX
EF R<:() EFR<() xzy
E F R\X~X <= R~x E F R\x~y <= R~y\x
EFR<{(\x EFAtype EFR<()\x EFAtype xzy
E F (R|X:A)~X <> R~X EF (R|XA)~Y <= (R~y|x:A)

The main consequences for values involve the Rile: R~x together with the
subsumption rule: if:R, then we are allowed to forget some information alboand
concluder:R~x.

Here are some interesting inferences:

EFR<() EF R<:()

E F R~x<: {)~X EFr-R EFR<:R-X
EF R-x<: () EFr:R-x

EFr:R EFr:R<()\x EFa:A
EFr\x:Rx EF (rjx=a) : (R[x:A)
EFr\x : Rix~x EF (r|x=a) : (R[x:A)~Xx
EFr\x: R~x EF(r|x=a) : R~x

The conclusiom\x : R~x above seems to say that restriction on values can be seen as a
retraction operator, as well as a restriction operator.

Going back to a previous example from section 2.5, we can see the usefulness of the
retraction operator for defining hierarchies in “inverse” order:

let ColorDisc= (x:Real y:Rea] r:Rea] c:Color)
let ColorPoint= ColorDisc~r

let Disc= ColorDisc~c

let Point= ColorPoint-c

Note that the restriction operator would not produce the desired results.
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4.4 The concatenation operator

Concatenatioris a prime candidate for a primitive operator for a calculus of records.
Unfortunately this operator is very difficult to handle; so difficult that we have instead
chosen extension and restriction as our primitive notions. Here we discuss the main
problems.

Type hierarchies are naturally expressed by @ateméion operatoR Il Son types;
for example we would like to define:

let ColorDisc= ColorPointll Disc

Given a corresponding operator of valuess of typeR Il Sfor r:R ands.S, we would
like to guarantee that if we can derivdl s : R II S then there is a succesful and
unambiguous way to executd s at run-time.

Under these conditions, we can see that concatenation is in fundamental conflict with
the subsumption rule. Consider the function:

let fI(X<:(x:Int))(Y<:Qy:Bool)(r:X)(sY) : XIIY=rlI's
f1(¢x:Int, zInt))(Cy:Bool, zBool))((x=3, z=4))({(x=3, z=true)) < ? . ?

There is no explicit conflict in the definition &f, so it should typecheck. But when
fl1is used as above, we have to decide whiéld to produce, both in the result type and
in the result value. A popular choice is to hav/kY perform a left-to-right (or right-to
left) overriding of common fields; similarly far Il s at run-time. However, run-time
overriding can run into difficulties:

let f2(r:¢x:Int))(s:{y:Boob) : ¢x:Int, y:Bool) =r Il s
f2((x=3, y=4))((y=true, x=falsg) <> ?

Let us assume here that, whatever definition we give tosatisfies the equation:
@x:Int) Il ¢y:Bool) = {x:Int, y:Bool); thenf2 is well-typed. Could we use run-time
overriding in the invocation of2 above? According to the result typef@f the leftx
should override the right, while the righty should override the left so monodirectional
overriding will not work.

An option here is to give a run-time error, but this seems to defeat the purpose of
typechecking Il s. Another option might be to compile special code fos, according to
the types ofr ands, so as to pick the& field fromr and they field from s, and to do
overriding on the additional fields (to deal with the polymorphic case, below). This idea
however runs into further difficulties:

f1(¢x:Int, y:Int, zInt))({y:Bool, x:Bool, zBool))
((x=83, y=4, z=4))((y=true, x=false z=true)) < ? . ?
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If XII'Y is computed by overriding, here, we get the wrong result. Makifigy
compatible with the behavior ofll s above, would require violating some basic rules,
such as the beta-conversion rules for type parameters.

Because of all these difficulties, we should now feel compelled to defineonly
whenR andS are disjoint: that is when any field present in an elemeRti®fabsent from
every element o, and vice versa. Unfortunately, there is no way to axiomatize this
notion without drastically changing our type system: any two record BpesiShave a
non-empty intersection, and an element of this intersection can be exhibited via the
subsumption rule.

5. Conclusions

We have investigated a theory of record operations in presence of type variables and
subtyping. The intent is to embed this record calculus in a polymaokptadculus, thus
providing a full second-order theory of record structures and their types. Although we
have not investigated the type inference problem for this calculus, we have provided
typechecking and subtyping algorithms. We have also presented several models of the
basic record calculus; a full second-order model is left for future work.

The result is a very flexible system for typing programs that manipulate records. In
particular, polymorphism and subtyping are incorporated in full generality. We expect
that this theory will be useful in analyzing fundamental aspects of object-oriented
programming.
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Appendix
This appendix contains soundness proofs for the semantic interpretations given in the
paper.

Semantics of the pure calculus of records
SystemS1 consists of all the rules listed in section 3.7, except for the special rules
(vcib) and(Teg).

Theorem 3.8.3 (soundness):
The inference rules of syster84are sound with respect to the
interpretation of judgments given in section 3.8.

Proof
By induction on the length of the derivation of the judgments.

Environments

(ENv1). Vacuously true.

(ENv2). Vacuously true.

(ENva). By hypothesisE - A typeand sdA, [J 4/for anyp satisfyingE.
Moreover,E is well-formed by lemma 3.7.1, henEgX<:Ais also
well-formed.

(ENvV4). Similar toEenva).

Variables
(vAR1). If p satisfiesE, X, E; then by definitiorp(X) O 7.
(vAR2). If - E,X<:A,E" enythen for any satisfyingE we haveA, O 7.
Thus anyp satisfyingE, X<:A,E'must yieldp(X) 0 A, O 7.
(vAR3). Similar to(var2).
(vAr4). If H E,xA,E" eny then for any satisfyingE we havep(x) € Ay
0 9. Thus anyp satisfyingE,xA,E' must yieldp(x) € Ap O 7.

General
). If, for everyp satisfyingg, Ap=Bp [ VthenA, [ By,
(G2). By transitivity of subset.
c3). If, for everyp satisfyingE, ape Ag andA, [ By thenapeBy,.
(G4). By symmetry of equality.
(G5). By transitivity of equality.
o). If, for everyp satisfyingE, ap=bp € Ap thenbp=a, € Ay,
@7). If, for everyp satisfyingE, ap=bp € Ay andbp=cp € Ap

thenap=cp € Ap.
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Formation
Fn. R OvY
2. If, for everyp satisfyingE, Ry U ® -x andA, O ¥
thenRp[x:Ap] O £ O %, by Lemma 3.8.2.
F3). If Rp O R, thenRy-x O R I ¥, by Lemma 3.8.2.
Fa). If Rp 0 S[x:Ap] O R, thenA, 0 9, henceRp(x) O 7 by Lemma 3.8.2.

Subtyping

. If, for everyp satisfyingE, R, [ R -, thenR; is a set of finite
functionsr € L — 4’ with x ¢ don{r). For each such and any
ae Ap 07, we have[x=a] € L —; V. ThusRy[xAp] [ %..

s2. f Ry O R, thenRy-x O Ry O R.

(s3). SupposdR, 0 S 0 R -x andA, [ By O 7. LetreRp[x:Ag].
This meansiseR, with r = gx=a]. SinceseS, andA, [ By,
we haves[x=a] € $[X:Bp]. HenceRp[x:Ap] [ SH[x:By].

(s4). Suppos®, 0 S 0 R . If r'eRy-X, thenr' =r-x for somereR,,.
SincereS,, it follows thatr' =r-x € Sx.

(s5). Supposd, [ S[x:Ap] U &, then for anyeRy, reS[x:Ap] = {gx=3] |
SeSp, aeAp}; so thatr(x)eAp. HenceRp(X) = {r(X) | reRp} U Ap.
(s6). Supposd, [ S[x:Ap] U %, then for anyeRy, reS[x:A], so that
r=gx=a] for someseS, andaeA,. We havea=r(x)eRp(X), and

s=r-xe Ro-X, hence =(r-x)[x=r(x)]€(Ro-X)[x:Ro(X)]. It follows that
RoO(Ro-X)[x:Ro()].
Introduction

(). R O7.

(12). If, for everyp satisfyingE, the empty functiog e R, O %,
theng =g -X;.X, € Ry-y O R.

(13). If rpeRy with x ¢ don(rp) andapeAy, thenrpx=ap] is well-defined,
by Lemma 3.8.1, and belongsRg[x:Ap] O %, by Lemma 3.8.2.

Elimination
). If, for everyp satisfyingE, rpeRy O %, thenx ¢ don(rp-x).
Hencerpx e Ry-x U R, by Lemma 3.8.2.
E2). If rpeRp[X:Ap] O R, thenAy [0 9, andr, is a record withip(x)e Ap.

Type congruence
(Tcy). R=R 0O 7.
(rca). For everyp satisfyingE, X =X, 0 7.
(TC3). SUPPOSERH=S), S U R -X, andA=Bp [ V.
ThenRy[x:Ap] = S[x:Bp] O & O ¥.
(Tc4). SUPPOSERH=S, U R, thenRy-x=S,-x O R 0 7.
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(TCs). SUPPOSERH=, U Tp[X:Ap] U R .
Then bothR, and$, are sets of functionswith x ¢ don(r).

HenceRy(X) = {r(X) | reRp} = {r(x) | reS} = S(x) O 7.

Type equivalence
(Te1). Suppose, for eveny satisfyingE, Ry U (R -X)-y, Ap,Bp O ¥,
andx,ye L. For eachreRy, X,y ¢ donr). Then,
Rolx:Aplly:Bp] =
{sly=Db] | se{r[x=a] | reRy, acAp}, beBp} =
{r[x=a][y=b] | reRp,aeAn,beBp} = { rly=b][x=a] | reRp,beBp,acAp}=
{s[x=a] | se{r[y=b] | reRp, beBp}, acAp} =
Roly:Bpl[x:Ap] O R 0 7.
(re2). If Ry O R X, thenRy is a set of with x ¢ don(r). HenceRp-x = R,,.
me3). If Ry O R then Ry-X)-y = (Ro-y)-X.
(TE4). SUppos&Ry [ S[y:Bp] O R andxzy.
For eachreRy, y ¢ dontr). Then,
(Rox)(y) =
{sly) [ se{rx|reRp}} = {( r-X)(y) | reRp} = {r(y) | reRp} =
Ro(y) O .
(TES). Suppos&Ry L R -x andAp O V.
ThenRy[x:Ap] = {r[x=a] | reRy, acAp}.
So Ro[XAp])-x={r |reRp} = R.
(TE6). Suppos&Ry [ R X, Ap 0 9, andxzy. Then,
(Rob<Ap])-y =
{(r[x=al)-y | reRp, aeAg} = {(r-y)[x=a] | reRp, acAg} =
(Ro¥)[x:Ag] O & 0
(TE7). SUppos&R, O R -x andAp O V.
ThenRy[x:Ap] = {r[x=a] | reRy, acAp}.
Hence Rp[x:Ap])(X) = {(r[x=a])(X) | reRy, aeAp} = Ap 01 V.
(Tes). SupposRy U S[y:Bp]-x U R, Ap O 9, andxzy. Then,
(RoDA])(Y) = {(r[x=al)(y) | reRy, acAo} = {r(y) | reRo} = Rofy) 0 .

Value congruence
(rca). g=¢ [ R
(rc2). If, for everyp satisfyingE, p(x) € A, U 7, thenp(x)=p(x) € Ay.
(TC3). SUPPOSEr p=sy € Ry [ R -x andap=hy € Ay [ V.
Thenx ¢ don(rp)ddonm(sp). Hencerp[x=ay] = sp[x=bp] € Rp[x:Ap] U R,
by caseys).
(Tc4). SUppOsEr p=sp € Ry [ R.. Thenrp-x=sp-Xx € Ry-x I X, by casee.
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(TC5). SUPPOSEr p=sp € Ry [ S[X:Ap] U R..
Then Ry O (Ry-X)[x:Rp(X)] (by casess)), andrp,sp € (Rp-X)[X:Rp(X)].
Hence, by cas@2), rp(X)=sp(X) € Ro(xX) O 7.

Value equivalence
(ve1). Suppose, for eveny satisfyingE, rpeRy 0 R -X-y, apeAs 0 ¥,
bpeBp O ¥, andxzy. Thenx,y¢ don(rp), and
rob=aplly=bp] = roly=bpl[x=ap] € Ro[x:Ag]ly:Bp] 1 %.
(VE2). B -X=g@ € R..
(VE3). SUPPOSEpeR, I R X. Sincex ¢ don(rp), rp-X =rp.
(VE4). SUPPOSEpeRy L R.. (FpX)-y = (fp-y)-X € (RoX)-y O R..
(VES). SUPPOSEpeR[X:Ap] L R andxzy.
Thenx e donrp) and rp-y.X=rp.x€ Ag [ V.
(VE6). SUPPOSEpeR, U R X andageA, [ 7.
Thenx ¢ donfrp) and rp[x=ap]-x = rp.
(VE7). SUPPOSEpeRy [ R X, apeAg [ 7 andxzy.
Thenx ¢ donrp) and (p[x=ap])-y = (rp-y)[x=ap] € (Rp[x:Ap])-y O %..
(VES). SUPPOSEpeR, U R X, andageA, [ 7.
Thenx ¢ donrp) and (p[x=ap])(X) = ap.
(VE9). SUPPOSEpeRy[Y:Bp]-x T R, apeAp I ¥V andxzy.
ThenBp O 9, x ¢ don(rp), y € don(rp), and (p[x=ap])(y) =rp(y) € Bp.
(VE10). SUPPOSEpeRy [ S[XAp] U R .
ThenrpeSxAp], so thatrp=g[x=a] for somese S, andaeA,.
We havea=r p(xX)e Ry(X), ands=r o-xe Ry, hence p=(r o-X)[X=rp(X)],
which is well-formed (is a member dRd-X)[X:Rp(X)]).
O

A construction giving R = (R\x|x:R.x)
SystemS2is systenS1of Theorem 3.8.3 plus the ruleo).

Theorem 3.9.7 (soundness):
The inference rules of systeé&2are sound with respect to the
interpretation of judgments given in section 3.9.

Proof
The proof follows the general pattern of Theorem 3.8.3. The main new
properties that are needed are proved as lemmas in section 3.9.
In particularTeg) follows from Lemma 3.9.6. The formation rules
come from Lemmas 3.9.2, 3.9.3, 3.9.4, and 3.9.5.

O
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An extensional model construction
SystemS3is systenS1of Theorem 3.8.3 plus the rulgss) and(vcib).

Theorem 3.10.4 (soundness):
The inference rules of syste®3are sound for theeEr model
construction given in section 3.10.
Proof
The proof follows the general pattern of Theorem 3.8.3, using the lemmas
proved in section 3.10
O
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