
Games and the Impossibility of Realizable Ideal

Functionality

Anupam Datta1, Ante Derek1, John C. Mitchell1, Ajith Ramanathan1, and
Andre Scedrov2

1 Stanford University {danupam,aderek,jcm,ajith}@cs.stanford.edu
2 University of Pennsylvania scedrov@math.upenn.edu

Abstract. A cryptographic primitive or a security mechanism can be
specified in a variety of ways, such as a condition involving a game against
an attacker, construction of an ideal functionality, or a list of properties
that must hold in the face of attack. While game conditions are widely
used, an ideal functionality is appealing because a mechanism that is
indistinguishable from an ideal functionality is therefore guaranteed se-
cure in any larger system that uses it. We relate ideal functionalities to
games by defining the set of ideal functionalities associated with a game
condition and show that under this definition, which reflects accepted
use and known examples, bit commitment, a form of group signatures,
and some other cryptographic concepts do not have any realizable ideal
functionality.

1 Introduction

Many security conditions about cryptographic primitives are expressed using a
form of game. For example, the condition that an encryption scheme is seman-
tically secure against chosen ciphertext attack (ind-cca2) [1] may be expressed
naturally by saying that no adversary has better than negligible probability to
win a certain game against a challenger. In this definition, the game itself clearly
identifies the information and actions available to the adversary, and the condi-
tion required to win the game identifies the properties that must be preserved
in the face of attack. Another way of specifying security properties uses ideal
functionalities [2–5]. In this approach, usually referred to as Universal Compos-
ability [3] (UC) or Reactive Simulatability [6] an idealized way of achieving some
goal is presented, possibly using mechanisms such as authenticated channels and
trusted third parties that are not basic primitives in practice. An implementation
is then considered secure if no feasible attacker can distinguish the implemen-
tation from the ideal functionality, in any environment. An advantage of this
approach is that indistinguishability from an ideal functionality leads to com-
posable notions of security [3, 5, 7]. In contrast, if a mechanism satisfies a game
condition, there is no guarantee regarding how the mechanism will respond to
interactions that do not arise in the specified game.

In this paper, we develop a framework for comparing game specifications and
ideal functionalities, and prove some negative results about the existence of ideal

functionalities in certain settings. While most known primitives have game-based
definitions (see, e.g., [8]), it has proven difficult to develop useful ideal functional-
ities for some natural primitives. Some interesting issues are explored in [9, 10],
which describe a series of efforts to develop a suitable ideal functionality for
digital signatures. In brief, there is a widely accepted game condition for digital
signatures, existential unforgeability against chosen message attacks, formulated
in [11]. However, there are many possible ideal functionalities that are consistent
with this game condition. For example, a functionality could either explicitly dis-
close information about messages that were signed in the past, or not disclose
this information. More generally, given a game condition, it is often feasible to
formulate various functionalities that satisfy the game condition yet reveal vary-
ing kinds of “harmless” information that does not seem relevant to the goals of
the mechanism.

If we have a game or set of games that define a concept like secure encryption,
digital signature, or bit-commitment, then we would like to identify precisely the
set of possible ideal functionalities associated with each game condition. Since
an ideal functionality is intended to be evidently secure by construction, we
propose that an ideal functionality must satisfy the given game condition on
information-theoretic grounds, rather than as a result of computational com-
plexity arguments. Applied to encryption, for example, this means that an ideal
functionality for encryption must not provide any information about bits of
the plaintext to the adversary. Our definition of ideal functionality for a set of
game conditions is consistent with all examples we have found in the literature,
and reflects the useful idea that it should be easier to reason about systems
that use an ideal functionality than about systems that use a real protocol. Us-
ing our definition, we show that while bit-commitment may be specified using
games, there is no realizable ideal functionality for bit-commitment. This may
be seen as a negative result about specification using ideal functionality, since
there are constructions of bit-commitment protocols that are provably correct
under modest cryptographic assumptions (see, e.g., [12]). We also show that
there is no realizable ideal functionality for other reasonable and implementable
cryptographic primitives, including a form of group signatures and a form of
symmetric encryption with integrity guarantees, under certain conditions that
allow the encryption key to be revealed after it is used.

The intuition behind our impossibility result is relatively simple. Illustrated
using bit-commitment, a good commitment scheme must have two properties:
the commitment token must not reveal any information about the chosen bit,
while subsequent decommitment must reveal a verifiable relationship between
the chosen bit and the commitment token. These are contradictory requirements
because the first condition suggests that tokens must be chosen randomly, while
the second implies that they are not. Similar “decommitment” issues arise in
symmetric encryption or keyed hash, if the encryption key is revealed after some
messages using the key have been sent on the visible network. At a more technical
level, our proof by contradiction works by showing that if there was a realization
of the ideal functionality for bit-commitment, it could be transformed into a

protocol for bit-commitment that achieves perfect hiding and binding without
using a trusted third party. However, it is well known that such a protocol does
not exist [12]. While impossibility results for group signatures and symmetric
encryption could be proved by instantiating the general proof method, we present
simpler proofs by reducing bit-commitment to these primitives.

In a previous study of ideal functionality for bit commitment, Canetti and
Fischlin show that a particular ideal functionality for bit-commitment is not
realized by any real protocol [13]. In related work, Canetti [3] shows that partic-
ular functionalities for ideal coin tossing, zero-knowledge, and oblivious transfer
are not realizable. Canetti et al [14] show that a class of specific functionali-
ties for secure multi-party computation are not realizable, while Canetti and
Krawczyk [15] compare indistinguishability-based and simulatability-based defi-
nitions of security in the context of key-exchange protocols. Our results are more
general since we prove that, given a game definition of a primitive, there is no re-
alizable ideal functionality associated with that game condition. In addition, our
proof is different in that it provides a reduction to a previous negative result in-
dependent of universal composability [12], and appears to apply immediately to
many primitives. A related issue is the choice of so-called “setup assumptions,”
such as public-key infrastructure, and common reference string. Our negative
results hold under some setup assumptions, such as the absence of shared pri-
vate information, or the presence of a trusted certificate authority (or PKI), and
fail for other setup assumptions, such as the assumption of a common reference
string. This is expected, since [13] construct a realizable ideal functionality in
the common reference string model. We have yet to characterize precisely the
set of possible setup assumptions under which our negative results hold.

While our general proof could be carried out using a number of computational
models, we adopt a setting based on a form of process calculus. One advantage
of this setting over interacting Turing machines [3, 11, 12] is a straightforward
way of modularizing games that use a functionality. This is useful for defining
primitives that are protocols, as opposed to local functions, by games. In princi-
ple, some version of our proof could be carried out using some version of Turing
machines, augmented with separate function-call-and-return tapes for interact-
ing with some form of oracle that performs public communication visible to the
adversary.

Preliminary definitions are presented in Section 2, followed by definitions
of bit-commitment functionalities and the main impossibility proof in Section 3.
Reductions from other primitives are given in Section 4, with concluding remarks
in Section 5.

2 Preliminaries

2.1 Probabilistic Process Calculus

Process calculus is a standard framework for studying concurrency [16, 17] that
has proved useful for reasoning about security protocols [2, 18]. This is more of

a “software” model than a “machine” model, since process calculus expressions
are a form of program defining a concurrent system. Two main organizing ideas
in process calculus are actions and channels. Actions occur on channels and are
used to model communication flows. Channels provide an abstraction of the
communication medium. In practice, channels might represent an IP address
and port number in distributed computing, or a region of shared memory in a
parallel processor.

A probabilistic polynomial-time process calculus (PPC) for security protocols
is developed in [19–21] and updated in more recent papers [18, 22]. The syntax
consists of a set of terms that represent local sequential probabilistic polynomial-
time computation and do not perform any communication with other processes,
process expressions that can communicate with other processes, and channels
that are used for communication. Terms contain variables that receive values
over channels. There is also a special variable η called the security parameter.
Each expression defines a set of processes, one for each choice of value for the
security parameter. Each channel name has a bandwidth polynomial in the se-
curity parameter associated with it. The bandwidth ensures that no message
gets too large and, thus, ensures that any expression can be evaluated in time
polynomial in the security parameter.

Syntax of PPC: Expressions of PPC are constructed from the following gram-
mar.

P ::= � | ν(c)P | in(c, x).(P) | out(c, T).(P) | [T].(P) | (P | P) | !q(η)(P)

Intuitively, � is the empty process taking no action. A process in(c, x).P with an
input operator waits until it receives a value for input variable x on the channel
c and then proceeds with process P . Similarly, an output out(c, T).P transmits
that value of the term T on the channel c and then proceeds with P . Channel
names that appear in an input or an output operation can be either public
or private, with a channel being private if it is bound by the private-binding
operator, ν and public otherwise. Actions on a private channel bound by a ν

are not observable outside the scope of the ν operator. Hence private channels
can be used to provide a form of secure communication. The match operator
[T], a form of “if”, executes the expression that follows it iff T evaluates to 1.
The parallel composition operator, |, applied to two expressions allows them to
evaluate concurrently, possibly communicating over any shared channels. The
bounded replication operator has bound determined by the polynomial q affixed
as a subscript. The expression !q(η)(P) is expanded to the q(η)-fold parallel
composition P | · · · | P before evaluation. There is also a syntactic notion of
context in PPC. A context C[·] is an expression with a hole [·] such that we
can substitute any expression into the hole and obtain a well-formed expression.
Contexts may be used to represent the environment or adversary that interacts
with a protocol or process.

Evaluating PPC expressions: To evaluate an expression in PPC we choose a
probabilistic scheduler that selects communication steps. We then evaluate ev-

ery term and match that is not in the scope of an input expression. When we
can no longer evaluate terms and matches, we select a pair of input and output
expressions on the same channel according to the scheduler, erase the output
expression and substitute the value transmitted by the output (truncated suit-
ably by the bandwidth of the channel) for the variable bound by the input. This
procedure is repeated until no communication steps are possible. Further discus-
sion, and explanation of a number of issues related to probabilistic scheduling,
are explained in [18, 22–24].

Equivalence relations over PPC: Two equivalence relations over PPC will prove
useful for studying security issues. The first relation, computational observational
equivalence, written ∼=, relates two expressions just when, in any context, the dif-
ference between the distributions they induce on observable behavior (messages
over public channels) is negligible in the security parameter η. Formally P ∼= Q
just when ∀ contexts C[·].∀ observables o :

Prob [C[P] produces o] − Prob [C[Q] produces o] is negligible in η

Since the evaluation of all expressions and contexts in PPC are guaranteed to ter-
minate in polynomial-time, ∼= is a natural way to state that two expressions are
computationally indistinguishable to a poly-time attacker. The second relation,
information-theoretic observational equivalence, written =, relates two expres-
sions just when they induce exactly the same distribution on observable behavior
in all contexts. Formally P = Q just when ∀ contexts C[·].∀ observables o :

Prob [C[P] produces o] − Prob [C[Q] produces o] = 0

As a consequence, we can use = to state that two expressions are indistinguish-
able even to unbounded attackers.

2.2 Function calls and returns

Process calculus allows processes to be programmed in a modular way, with one
process relying on another for certain computations or actions. For example,
one process P might wish to send a number bit-by-bit on a channel d. This can
be done by writing another process Q that handles all the communication on
channel d for P . This process Q receives a number n on some channel c used
only for communication between P and Q, and then sends the bits of n on a
channel d as required. If P wants a return value, such as notification that Q has
finished sending the message, then P can execute an input action on channel
c immediately after sending the number n to Q. This pattern of sends and
receives essentially works like an ordinary remote procedure call and return. If
the channel c is private, we can think of this as a remote procedure call between
one process and another on the same processor, through a loopback interface,
or a remote procedure call between two processors behind a firewall that makes
LAN traffic invisible to an external attacker.

We will refer to the pattern of sends and receive just described for pro-
cesses P and Q as a function call and return. Function calls and returns turn
out to be a very useful concept in structuring games that specify properties
of cryptographic primitives. To give a relatively concise notation, we will write
Callη(〈params〉, C) returns 〈vars〉.P for a call that sends (outputs) parameters
params on calling channels C, and then waits to receive (input) return values
〈vars〉 before executing process P . To emphasize that a function call and return
hides the structure of Q from the calling process P , we sometimes refer to this as
a black-box call. Since PPC provides private channels, a function call and return
will always be done on a private channel to avoid exposing the parameters or
return values to an adversary.

For every function call and return to proceed, there must be a process that
waiting to receive the call and then send a return value. Rather than write out all
the input and output actions associated with responding to a remote procedure
call, we will simply write Impl[C, D] for a process that responds to blackbox calls
on channels C, possibly using channels in D for some other purpose. For example,
the process Q described above has the form Impl[c, d]. since it receives function
calls on channel c and performs public communication on channel d.

2.3 Interfaces and cryptographic primitives

In this paper, a cryptographic primitive is defined by an interface and a set of
required security or correctness conditions that are expressible using the inter-
face. The interface is the set of actions defined and applicable to the primitive,
expressed as a set of function calls and returns. For example, the interface to
an encryption primitive consists of calls to three probabilistic functions: key-
generation, encryption, and decryption. A correctness condition for encryption
is that the decryption of an encryption under the correct key returns the mes-
sage encrypted. A semantically-secure encryption primitive must also satisfy a
security condition stating that no probabilistic polynomial-time adversary can
win a game that involves guessing which of two messages has been encrypted.

A protocol for a primitive is a process that responds to a set of function
calls and supplies the associated returns, without using any additional private
communication. For example, RSA can be formulated as an encryption protocol
that implements key-generation, encryption, and decryption. A functionality for
a primitive similarly supports the given interface, but may use additional private
communication (such as used for a trusted third party; see Section 3.3). These
restrictions on private communication are meant to prevent abusing the security
associated with private channels, which are not a realistic primitive on the open
public network. However, there are no restrictions on the way a functionality can
communicate or reveal information to the adversary. For example, a functionality
for signatures [10] could let the attacker choose the bitstrings for signatures.

An ideal functionality for an interface and a set of game conditions is a
functionality that satisfies the correctness conditions with high probability and
satisfies the security conditions in an information-theoretic way (i.e., against an
unbounded adversary).

2.4 Universal Composability

Universal composability [3, 13, 14, 25, 26] involves a protocol to be evaluated, an
ideal functionality, two adversaries, and an environment. The protocol realizes
the ideal functionality if, for every attack on the protocol, there exists an attack
on the ideal functionality, such that the observable behavior of the protocol under
attack is the same as the observable behavior of the idealized functionality under
attack. Each set of observations is performed by the same environment. The
intuition here is that the ideal functionality ‘obviously’ possess a desired security
property, possibly because the ideal functionality is constructed using a central
authority, trusted third party, or private channels. Therefore, if a protocol is
indistinguishable from an ideal functionality, the protocol must have the desired
security property. In previous work, that which makes an ideal functionality
“ideal” appears not to have been characterized precisely.

Universal composability can be expressed as a relation in process calcu-
lus [23, 24]. To give a form appropriate for the present paper, let P1, . . . ,Pn

be n principals. We will assume that for some k, every principal Pi (i > k) is in
collusion with the adversary. Given an expression P , we will write P [C] to denote
an instance of P running over the channels in C. We say that an implementation
Impl securely realizes a functionality F just when for any real world adversary
A, there exists a simulator S such that for any environment E :

ν(C1, . . . , Ck)(P1[C1, D] | · · · | Pn[Cn, D] | Impl[C1, D] | · · · | Impl[Ck, D]) |
A[Ck+1, . . . , Cn, D] | E

∼= ν(C1, . . . , Ck)(P1[C1, D] | · · · | Pn[Cn, D] | F [C1, . . . , Ck, D]) |
S[Ck+1, . . . , Cn, D] | E

Here the first3 k principals are assumed to be honest, and the remainder are
assumed to be dishonest and acting in collusion with the adversary. To prevent
the adversary/simulator from unfairly interfering with communications between
the honest principals and the implementations (real or ideal), we make the links
between the honest principals and the implementations private. Specifically, par-
ticipant Pi uses private channels Ci to communicate with the implementation
(real or ideal). The set of network channels D is used for communication between
different participants. Both the adversary and the simulator have access to these
channels.

Secure realisability requires that if we replace the real implementations Impl

with an ideal implementation F (the functionality), there exists a simulator (that
can interact with F) which makes the ideal and real configurations indistinguish-
able. Another way to state this is that every real attack can be translated, using
the simulator, into an attack on the functionality. We note that the principals
that act in collusion with the attacker execute arbitrary programs and, in the
ideal world, interact directly with the simulator (which mounts the ideal at-
tack). Example configurations with two honest participants I and R are given
in Figure 1.

3 Since parallel composition is associative, the order in which we write the processes
does not matter, and we may assume without loss of generality that the k honest
principals occur first in the list.

E

I

Impl

R

Impl

A

E

I R

F

S∼=

Fig. 1. Real and ideal configurations with two honest participants

3 Functionalities for Bipartite Bit-Commitment

A bipartite bit-commitment protocol allows a principal A to commit on a bit
b to the principal B. However, B gains no information about the bit b until A

later opens the commitment. We therefore formulate bit-commitment using four
function calls, one call for each principal in each phase of the commitment. After
defining the interface for bipartite bit-commitment, we define the game condi-
tions for bit commitment and prove that no ideal functionality for these game
conditions is realizable. We stress that the game conditions for bit-commitment
as formulated in this paper are equivalent to standard security notions [12, 27],
and that they can be realized using standard cryptographic assumptions such as
the existence of pseudorandom functions [27].

3.1 Commitment interface

A bipartite bit-commitment scheme provides four function calls:

SendCommitη(b, C) returns 〈σ〉 GetCommitη(C) returns 〈σ〉
Openη(σ, C) returns ∅ Verifyη(σ, C) returns 〈r〉

The initiator A commits to a bit using the call SendCommitη(b, C) returns 〈σ〉,
which communicates the commitment value over the channels in C. Some state
information σ is generated that can, amongst other things, be used to differen-
tiate between different commitments and is needed to open the corresponding
commitment. A responder B may receive a commitment from A by executing a
call GetCommitη(C) returns 〈σ〉 over the channels in C, which may also returns
some state information σ.

In the decommitment phase, the initiator A may open the commitment using
the function call Openη(σ, C) returns ∅, which uses the state information from
the initial call to indicate which commitment is to be opened. The responder B

can then verify the committed value by making the call Verifyη(σ, C) returns 〈r〉.
If verification succeeds, r contains the value of the committed bit. Otherwise, r

is a symbol ⊥ indicating failure.

3.2 Commitment correctness and security conditions

There are three conditions on bit-commitment [12,27] — correctness, hiding, and
binding. After explaining each condition, we show that each can be stated as an
equivalence. The equivalences are written using ∼=, which give the game condition
required of any implementation. With ∼= replaced by =, the same equivalences
can be used to state the information-theoretic properties required for an ideal
functionality. More precisely, an ideal functionality for bipartite bit-commitment
is an implementation for the four function calls listed in the interface above such
that the correctness property below is satisfied with high probability, and the
hiding and binding properties of bipartite bit-commitment below are satisfied
with an information-theoretic equivalence. It is easy to verify that the concrete
functionality considered in [13] is an instance of the ideal functionality for bi-
partite bit-commitment.

Given a game condition, there is a canonical way of writing it as an indis-
tinguishability between expressions. The basic idea is that, since ∼= quantifies
over all contexts, any successful attack on the game condition can be translated
into a similarly successful context that distinguishes between the two sides of
the equivalence. Conversely, since all expressions and contexts in PPC are guar-
anteed to evaluate in polynomial time and since the class of terms is precisely
the class of probabilistic poly-time functions, every successfully distinguishing
context can be translated into a successful attack on the corresponding game
conditions.

Hiding: An implementation Impl is hiding if for an honest initiator, no adversary
can gain, with non-negligible advantage, information about the committed bit.
In other words, probability PAdv that the attacker Adv, after interacting with an
honest initiator committing to a randomly chosen bit b, successfully guesses the
bit b should be close to a half. Writing this property as an equivalence yields:

ν(C, c).(Impl[C, D] | out(c, rand) | in(c, b).
SendCommitη(b, C) returns 〈σ〉.in(d, b′).out(dec, b′

?

= b))
∼= ν(C, c).(Impl[C, D] | out(c, rand) | in(c, b).

SendCommitη(b, C) returns 〈σ〉.in(d, b′).out(dec, rand))

Both expressions select a random bit and commit to it. The adversary (expressed
as a context) interacts with the commitment protocol and tries to guess the
committed-to value. The difference between the two expressions is that the LHS
tests, over the channel dec, whether the adversary’s guess matches the chosen
bit, while the RHS assumes, again over the channel dec, that the adversary
fails with probability 1/2. Clearly, any successfully distinguishing context must
guess the bit with non-negligible advantage, thereby proving the existence of an
adversary that violates the hiding property. Hence, we can naturally express the
hiding condition that for all Adv, the probability PAdv − 1

2 is negligible in η as
a process calculus equivalence. To say that an implementation is perfectly or
information-theoretically secure we require that ∀Adv : PAdv − 1

2 = 0, which is
the same as replacing ∼= by = in the equivalence above.

Binding: The binding property is that no adversary can open a commitment
to an arbitrary value. This condition can be restated using a game in which
the adversary commits to a challenger (an honest responder), who then picks
a random b and challenges the adversary to open the commitment to b. As an
equivalence, it is stated as:

ν(C, d)(GetCommitη(C) returns 〈σ〉.out(d, rand) | in(d, b).out(c, b).

Verifyη(σ, C) returns 〈r〉.out(dec, r
?

= b) | Impl[C, D])
∼= ν(C, d)(GetCommitη(C) returns 〈σ〉.out(d, rand) | in(d, b).out(c, b).

Verifyη(σ, C) returns 〈r〉.out(dec, if r
?

= ⊥ then false else rand) | Impl[C, D])

Here both expressions wait for a commitment, and then challenge the adversary
to open the commitment to a randomly chosen bit. The LHS tests whether
the adversary successfully does so, whilst the RHS assumes that if the attempt
to open does not fail (i.e., the result of Verify is not ⊥) the adversary fails
with probability 1/2. Perfect binding is expressed by replacing ∼= with = in the
equivalence above.

Correctness: An implementation Impl is correct if an honest responder is able to
verify an opened commitment by an honest initiator with overwhelming proba-
bility. This correctness property may be expressed as the process calculus equiv-
alence.

ν(C, c)(out(c, rand) | in(c, b).SendCommitη(b, C) returns 〈σI〉

.Openη(σI , C) returns ∅.in(d, b′).out(dec, b
?

= b′) | Impl[C, D]) |
ν(C′)(GetCommitη(C′) returns 〈σR〉.Verifyη(σR, C′) returns 〈r〉.out(d, r) | Impl[C′, D])

∼= ν(C, c)(out(c, rand) | in(c, b).SendCommitη(b, C) returns 〈σI〉
.Openη(σI , C) returns ∅.in(d, b′).out(dec, true) | Impl[C, D]) |
ν(C′)(GetCommitη(C′) returns 〈σR〉.Verifyη(σR, C′) returns 〈r〉.out(d, r) | Impl[C′, D])

Here, both expressions pick a random bit, commit to it, and then try to open
it. The LHS checks whether the verifier obtained the correct value for the bit,
whilst the RHS assumes that the verifier gets the right value all the time.

3.3 Impossibility of Bit-Commitment

In this section, we show that no ideal functionality for bit-commitment can be
realized. This generalizes the impossibility result for one particular functionality
given in [13]. Other plausible bit-commitment functionalities can be constructed
by adjusting the level of information and possible actions provided to the attacker
by the functionality. For example, the functionality may let the attacker change
the identity of the committer, hence making the commitment unauthenticated.
Alternatively, the functionality may let the attacker change the committed bit
if the attacker manages to correctly guess an internal secret of the functionality
(since this is a low probability event, correctness still holds). Our proof shows
that all of these variants (as well as further variants discussed in [13]) and their
combinations are not realizable. Although we have not yet obtained a general
characterization, our theorem applies under some setup assumptions, and fails

in the common reference string model in accordance with the construction given
in [13].

Our proof by contradiction roughly works as follows: given a real protocol P
that realizes an ideal functionality F for bit-commitment, we construct another
real protocol Q which provides the same correctness guarantee. However, in
protocol Q all calls to the bit-commitment interface by principals are handled
by copies of F . As a consequence, Q provides perfect hiding and binding, which
is a contradiction.

In order to state the theorem formally, we require some definitions. We say
that P is a real protocol if each instance of P only communicates with one
principal over a set of private channels. Intuitively, since it cannot communicate
with two separate parties over private channels hidden from the adversary, a real
protocol cannot act as a secure trusted third party. We say that a protocol P
for bit-commitment is terminating when the following expression will, with high
probability, produce the messages “go” and “done”.

ν(C)(SendCommitη(b, C) returns 〈σI〉.in(c, z).Openη(σI , C) returns ∅.in(d, z) | P[C, D] |
ν(C′)(GetCommitη(C′) returns 〈σR〉.out(c, “go”).
Verifyη(σR, C′) returns 〈r〉.out(d, “done”) | P[C′, D])

Intuitively, if the function calls are implemented with P , in the absence of the
attacker two honest parties should be able to first finish the commitment stage,
synchronize, and then finish the decommitment stage.

Theorem 1. If F is an ideal functionality for bilateral bit-commitment, then
there does not exist a terminating real protocol P that securely realizes F .

Before giving the proof, the following two lemmas will be useful. The first lemma
states the well known fact [12] that perfect hiding and binding protocols for bit-
commitment do not exist without a trusted third party. We omit the proof here.
The second lemma states that any realization of F will also be correct for bit-
commitment. The proof sketch is in Appendix A. Similarly, any realization of F
will enjoy complexity-theoretic hiding and binding guarantees; however, we do
not require this fact for the impossibility result.

Lemma 1. There does not exist a terminating real protocol P which is correct
with high probability, and both perfectly hiding and perfectly binding.

Lemma 2. If P is a terminating real protocol that securely realizes F , then P
is correct with high probability.

Proof (Proof of Theorem 1). We assume that P securely realizes F . It follows
that for any configuration involving principals making use of P , there exists a
simulator S such that replacing the calls to P with calls to the simulator in
conjunction with the functionality yields an indistinguishable configuration.

Consider the following real configuration when the environment plays the
role of the responder honestly. It selects a bit and sends that bit to the initiator.
The initiator then commits to that bit using a copy of the implementation PI .
The responder is corrupted by the adversary to simply forward messages to
the environment. After corrupting the responder, the adversary simply forwards

E1

I1 PI

PR

E1

I1 F

PR

S

∼=

Fig. 2. Configurations for the first step

messages. The environment then honestly plays the responder’s role using a copy
of the real implementation PR. At the conclusion of the commitment phase, the
environment initiates decommitment by instructing the initiator to open. The
environment then verifies the initiator’s attempt to open, and then decides if the
bit the initiator opened to was the bit the environment selected at the start of the
run. The programs of the four principals are given below, where Forward(C ↔ D)
is an expression that forwards in an order-preserving way messages received on
the channels C to channels D and vice versa:

E1 ≡ ν(C, c)(out(c, rand) | in(c, b).out(IOI , b).GetCommit
η(C) returns 〈σ〉.out(IOI , open).

Verify
η(r, C) returns 〈σ〉.out(dec, b

?

= r))

I1 ≡ ν(C′)(in(IOI , b).SendCommit
η(b, C′) returns 〈σ′〉.in(IOI , x).Open

η(σ′
, C

′) returns ∅)

A1 ≡ Forward(NetI ↔ NetR)

R1 ≡ Forward(IOR ↔ NetR)

This real configuration and its corresponding ideal configuration are shown in
Figure 2 on the left and right, respectively (omitting the forwarders for clar-
ity). Let us consider the ideal configuration. Here, the initiator uses the ideal
functionality F , whilst the environment continues using the real protocol. A
simulator S must exist such that it can “convert” the messages of the func-
tionality into messages that PR understands and vice versa. This simulator sits
between PR and F and is connected to F via the bit-commitment interface and
the unspecified interface of F . Since P securely realizes F , it follows that the
configurations are indistinguishable. Furthermore, by Lemma 2 the environment
in the real configuration must register success with high probability, since the
adversary does nothing. Whence the expression Q consisting of F and S wired
in the way that they are must be able to commit to PR and, then, successfully
open the commitment.

Let us now consider another real configuration (Figure 3) where the initia-
tor is corrupted to be a forwarder but the responder is honest. As before, the
adversary, after corrupting the initiator, does nothing. The environment selects
a bit and then runs the initiator’s role directly. However, instead of using P to
implement the initiator’s role, the environment uses the expression Q from the
first part of the argument. To commit, the environment sends the bit to the

E2

R2PR

F

S

E2

F

S

R2F

S ′

∼=

Fig. 3. Configurations for the second step

functionality whose messages are then translated by the simulator into messages
suitable for the copy of the implementation PR used by the honest responder.
After committing, the environment waits for a receipt from the responder, be-
fore decommitting. It then waits for the responder to send the bit it believes the
initiator committed to and the environment checks that the bit it received was
the same as the bit to which it committed. The responder, for its part, receives
a commitment, sends a receipt to the environment, then verifies a commitment,
and forwards the result to the environment. The programs are given below:

E2 ≡ ν(C, c)(out(c, rand) | in(c, b).SendCommit
η(b, C) returns 〈σ〉.in(IOR, x).

Open
η(σ, C) returns ∅.in(IOR, b

′)out(dec, b
?

= b
′) | Q[C, IOR])

R2 ≡ ν(C′)(GetCommit
η(C′) returns 〈σ′〉.out(IOR, receipt).

Verify
η(r, C

′) returns 〈σ′〉.out(IOR, r))

A2 ≡ Forward(NetI ↔ NetR)

I2 ≡ Forward(IOI ↔ NetI)

In this scenario, the simulator S ′ sits between the expression Q (consisting
of simulator S and functionality) and the functionality F . Again, from secure
realizability, Lemma 2, and the fact that Q looks like an initiator running the
implementation P , we know that in the real configuration, the environment will,
with high probability, register a success. Therefore, so must the ideal configura-
tion, whence the expression Q′ consisting of F and S ′ must correctly play the
role of the responder running the implementation P .

If we look at the ideal configuration, we notice that the functionality is no
longer working as a trusted third party. Every message is run through the sim-
ulators S and S ′. Thus, we have an implementation of bit-commitment that is
a real protocol. The initiator executes the code given by the expression Q while
the responder executes the code given by the expression Q′. From the above
argument it follows that the implementation Q | Q′ is a correct implementa-
tion. Furthermore, the Q | Q′ has to be information-theoretically hiding and
binding because of the way they make use of the functionality. For example, to
commit to a bit, the caller passes the bit to the functionality which, by defi-
nition, reveals no information about the bit regardless of the other parties in

the configuration until the open step. Thus, we have a correct with high prob-
ability, and information-theoretically hiding and binding implementation of the
bit-commitment interface that does not make use of trusted third parties. This
contradicts Lemma 1.

4 Generalization of the Impossibility Result and Other

Examples

In this section state a more general impossibility result: if G is a functionality
and P is a protocol which uses G to achieve bit-commitment with perfect hid-
ing and binding, then the functionality G cannot be realized. Intuitively, the
functionality G together with protocol P constitutes an ideal functionality for
bit-commitment F , and any realization of G will lead to the realization of F .
Therefore, we would expect that all primitives that can be used to build bit-
commitment are not realizable as functionalities. We illustrate this by showing
that certain (rather strong) variants of symmetric encryption and group signa-
tures cannot have realizable ideal functionalities. Due to space constrains, the
security definitions are mostly informal and proof sketches have been moved
to Appendix A.

Hybrid Protocols: We will consider implementations of primitives which, in ad-
dition to public channels, may use a particular functionality. Let G be any func-
tionality, a G-hybrid protocol P for a primitive is an implementation of the
primitive’s interface which does not make use of the trusted third party except
maybe by making calls to G’s interface. We will write P [Q] to denote an instance
of P where calls to G’s interface are handled by the implementation Q (real or
ideal).

Theorem 2. If G is a functionality and P is a terminating G-hybrid protocol
for bit-commitment which is correct with high probability and provides perfect
hiding and perfect binding, then no protocol realizes functionality G.

Symmetric Encryption: Symmetric encryption primitive is defined by the stan-
dard interface for key generation, encryption and decryption.

KeyGenη(C) returns 〈K〉 Encryptη(K, p, C) returns 〈c〉 Decryptη(K, c, C) returns 〈p〉

In addition to the obvious correctness property, we assume, as in [28], that the
encryption scheme is CCA-secure and that it provides ciphertext integrity. Prov-
ably secure schemes with respect to these two properties exist under reasonable
assumptions [29]. Informally, we can describe the properties as follows:

– CCA-security means that it is hard for an adaptive attacker with access to
the decryption oracle to distinguish the plaintext from a random value of
the same length given the ciphertext. Perfect CCA-security means that the
probability of success is exactly half.

– Integrity of ciphertexts means that it is hard for an attacker to find a ci-
phertext c which will successfully decrypt unless that ciphertext has been
produced by the encryption algorithm for some key and plaintext. Perfect
integrity of ciphertexts means that the probability of an attacker finding such
a ciphertext is zero.

Corollary 1. If F is a functionality for symmetric encryption providing perfect
CCA-security and perfect integrity of ciphertext then F cannot be realized.

Group Signatures: Group signature primitive is defined by the interface for key
generation, group signing, group signature verification and opening. For simplic-
ity we will assume that the group is always of size two.

GKeyGenη(C) returns 〈gpk, gmsk, gsk0, gsk1〉 GSignη(m, gsk, C) returns 〈sig〉
GVerifyη(gpk, m, sig, C) returns 〈result〉 GOpenη(gmsk, m, sig, C) returns 〈identity〉

In addition to the obvious correctness properties, we assume that the group
signature scheme provides anonymity and traceability even against dishonest
group managers. This is a stronger security requirement than the version prin-
cipally considered in [30] (though [30] does briefly discuss this variant); [30] also
shows that schemes with these properties exist if trapdoor permutations exist.
Informally, we can describe the properties as follows:

– Anonymity means that it is hard for an adaptive attacker with access to an
opening oracle to recover the identity of the signer given a signature and
a message, even if the attacker has all the signing keys. Perfect anonymity
means that the probability of success is exactly half (assuming, as we do,
only two possible signers).

– Traceability means that it is hard for an attacker that adaptively corrupts
a coalition of signers and has access to a signing oracle to produce a valid
message-signature pair that opens to a signer not in the coalition, even when
the group manager is dishonest. Perfect traceability means that the proba-
bility of an attacker forging such a signature is zero.

Corollary 2. If F is a functionality for group signatures providing perfect anonymity
and perfect traceability then F cannot be realized.

5 Conclusion and Future Directions

We articulate accepted practice in the literature by giving a precise definition
of an ideal functionality satisfying any given game specification: An ideal func-
tionality must be a process or a set of processes that realize the game conditions
in an information-theoretic, rather than computational complexity, sense. Using
this definition we show that bit commitment, group signatures, and other cryp-
tographic concepts that are definable using games do not have any realizable
ideal functionality.

This proof appears applicable to other functionalities, and to a range of so-
called “setup assumptions.” However, we have not yet characterized the applica-
ble setup assumptions precisely. Some examples of setup assumptions are pre-
shared keys, certificate authorities, random oracles or common reference strings.
These additional assumptions can be captured by a hybrid model where parties
have access to an additional ideal functionality “implementing” the assumption,
such as a trusted certificate authority. As demonstrated in [13], there are real-
izable ideal functionalities for bit-commitment when parties have access to one
form of common reference string functionality. One possibility is to restrict
attention to functionalities that are used only in the initialization phase. Our
intuition suggests that a similar impossibility proof can be constructed for this
case as long as these setup functionalities are global, i.e. all honest parties can
access them. This does not contradict the common reference string construction
in [13] since a fresh instance of the common reference string functionality is re-
quired for each pair of participants engaged in a session and cannot be accessed
by other honest parties. We hope to develop this idea more fully in future work.

An appealing property of indistinguishability-based specifications is the con-
nection with composability: if a real security mechanism is indistinguishable
from an ideal one, then any larger system using the real mechanism will be-
have in the same way as the same system using the ideal mechanism instead.
In light of the limitations on indistinguishability-based specifications explored
in this paper, there are several modifications to the basic theory that might
provide useful forms of composability. One direction is to relax or modify the
requirements for ideal functionality. For example, information-theoretic equiva-
lence could be replaced with the indistinguishability of random systems in the
sense of [31]. This would allow adaptive, computationally unbounded distin-
guishers to query the system at most polynomially many times in the security
parameter. Another possible direction involves the modification of the Universal
Composability framework recently considered in [32, 33], which allows a com-
mitment functionality. In the modified framework, parties are typed in a certain
way, and the typing must be respected by the simulator. On the other hand, since
the intuition for some of these directions is not clear, it may be more productive
to develop methods for stating and proving conditional forms of composability.
More precisely, primitives and protocols could be guaranteed to operate securely
only in environments that satisfies certain conditions. Games currently provide
a very limited form of conditional composability, since a game condition pro-
vides guarantees for any system whose actions can be regarded as (or reduced
to) moves in a relevant game. We also consider the work on protocol composi-
tion logic [34, 35] a potentially relevant form of conditional composability, since
protocols or primitives proved correct in that framework carry guarantees that
apply to any environment respecting certain invariants expressed explicitly in
the logic.

References

1. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Advances in Cryptology - EURO-
CRYPT 2000, International Conference on the Theory and Application of Cryp-
tographic Techniques, Proceeding. Volume 1807 of Lecture Notes in Computer
Science., Springer-Verlag (2000) 259–274

2. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: the spi calculus.
Information and Computation 143 (1999) 1–70 Expanded version available as SRC
Research Report 149 (January 1998).

3. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS ’01: Proceedings of the 42nd IEEE symposium on Foundations
of Computer Science. (2001) 136 Full version available at http://eprint.iacr.

org/.
4. Lincoln, P., Mitchell, J.C., Mitchell, M., Scedrov, A.: A probabilistic poly-time

framework for protocol analysis. In: ACM Conference on Computer and Commu-
nications Security. (1998) 112–121

5. Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure
reactive systems. In: ACM Conference on Computer and Communications Security.
(2000) 245–254

6. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library
with nested operations. In: CCS ’03: Proceedings of the 10th ACM conference on
Computer and communications security, ACM Press (2003) 220–230

7. Backes, M., Pfitzmann, B., Waidner, M.: A general composition theorem for secure
reactive systems. In: TCC ’04: Proceedings of the 1st Theory of Cryptography
Conference. Volume 2951 of Lecture Notes in Computer Science., Springer-Verlag
(2004) 336–354

8. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004) http://eprint.iacr.org/

2004/332.
9. Backes, M., Hofheinz, D.: How to break and repair a universally composable

signature functionality. In: Information Security, 7th International Conference, ISC
2004, Proceedings. Volume 3225 of Lecture Notes in Computer Science., Springer-
Verlag (2004) 61–72

10. Canetti, R.: Universally composable signature, certification, and authentication.
In: CSFW ’04: Proceedings of the 17th IEEE Computer Security Foundations
Workshop, IEEE Computer Society (2004) 219–233

11. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1) (1989) 186–208

12. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press (2000)

13. Canetti, R., Fischlin, M.: Universally composable commitments. In: Advances in
Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference,
Proceedings. Volume 2139 of Lecture Notes in Computer Science., Springer-Verlag
(2001) 19–40

14. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally compos-
able two-party computation without set-up assumptions. In: Advances in Cryp-
tology - EUROCRYPT 2003, International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Proceedings. Volume 2656 of Lecture Notes
in Computer Science., Springer-Verlag (2003) 68–86

15. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Advances in Cryptology - EUROCRYPT 2001, Inter-
national Conference on the Theory and Application of Cryptographic Techniques,
Proceeding. Volume 2045 of Lecture Notes in Computer Science., Springer-Verlag
(2001) 453–474

16. Milner, R.: Communication and Concurrency. International Series in Computer
Science. Prentice Hall (1989)

17. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative, and strati-
fied models of probabilistic processes. International Journal on Information and
Computation 121(1) (1995)

18. Ramanathan, A., Mitchell, J.C., Scedrov, A., Teague, V.: Probabilistic bisimula-
tion and equivalence for security analysis of network protocols. In: Foundations
of Software Science and Computation Structures, 7th International Conference,
FOSSACS 2004, Proceedings. Volume 2987 of Lecture Notes in Computer Science.,
Springer-Verlag (2004) 468–483

19. Mitchell, J.C., Mitchell, M., Scedrov, A.: A linguistic characterization of bounded
oracle computation and probabilistic polynomial time. In: FOCS ’98: Proceedings
of the 39th Annual IEEE Symposium on the Foundations of Computer Science,
IEEE Computer Society (1998) 725–733

20. Lincoln, P.D., Mitchell, J.C., Mitchell, M., Scedrov, A.: Probabilistic polynomial-
time equivalence and security protocols. In: Formal Methods World Congress, vol.
I. Number 1708 in Lecture Notes in Computer Science, Springer-Verlag (1999)
776–793

21. Mitchell, J.C., Ramanathan, A., Scedrov, A., Teague, V.: A probabilistic
polynomial-time calculus for the analysis of cryptographic protocols (preliminary
report). In: 17th Annual Conference on the Mathematical Foundations of Program-
ming Semantics. Volume 45., Electronic notes in Theoretical Computer Science
(2001)

22. Ramanathan, A., Mitchell, J.C., Scedrov, A., Teague, V.: Probabilistic bisimulation
and equivalence for security analysis of network protocols. Unpublished, see http:

//www-cs-students.stanford.edu/∼ajith/ (2003)

23. Datta, A., Küsters, R., Mitchell, J.C., Ramanathan, A., Shmatikov, V.: Unifying
equivalence-based definitions of protocol security. In: 2004 IFIP WG 1.7, ACM
SIGPLAN and GI FoMSESS Workshop on Issues in the Theory of Security (WITS
2004). (2004)

24. Datta, A., Küsters, R., Mitchell, J.C., Ramanathan, A.: On the relationships
between notions of simulation-based security. In: TCC ’05: Proceedings of the 2nd
Theory of Cryptography Conference. Volume 3378 of Lecture Notes in Computer
Science., Springer-Verlag (2005) 476–494

25. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Advances in Cryptology - EUROCRYPT 2002, International
Conference on the Theory and Application of Cryptographic Techniques, Proceed-
ing. Volume 2332 of Lecture Notes in Computer Science., Springer-Verlag (2002)
337–351

26. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC ’02: Proceedings of the 34th
annual ACM symposium on Theory of computing, ACM Press (2002) 494–503

27. Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptology 4(2)
(1991) 151–158

28. Backes, M., Pfitzmann, B.: Symmetric encryption in a simulatable Dolev-Yao style
cryptographic library. In: CSFW ’04: Proceedings of the 17th IEEE Computer
Security Foundations Workshop, IEEE Computer Society (2004) 204–218

29. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of
operation for efficient authenticated encryption. In: CCS ’01: Proceedings of the
8th ACM Conference on Computer and Communications Security, ACM Press
(2001) 196–205

30. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Advances in Cryptology - EUROCRYPT 2003, International Conference
on the Theory and Applications of Cryptographic Techniques, Proceedings. Vol-
ume 2656 of Lecture Notes in Computer Science., Springer-Verlag (2003) 614–629

31. Maurer, U.M.: Indistinguishability of random systems. In: Advances in Cryptology
- EUROCRYPT 2002, International Conference on the Theory and Application of
Cryptographic Techniques, Proceeding. Volume 2332 of Lecture Notes in Computer
Science., Springer-Verlag (2002) 110–132

32. Prabhakaran, M., Sahai, A.: New notions of security: Achieving universal compos-
ability without trusted setup. In: STOC ’04: Proceedings of the 36th annual ACM
symposium on Theory of computing, ACM Press (2004) 242–251

33. Prabhakaran, M., Sahai, A.: Relaxing environmental security: Monitored function-
alities. In: TCC ’05: Proceedings of the 2nd Theory of Cryptography Conference.
Volume 3378 of Lecture Notes in Computer Science., Springer-Verlag (2005) 104–
127

34. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and com-
positional logic for security protocols. Journal of Computer Security 13 (2005)
423–482

35. He, C., Sundararajan, M., Datta, A., Derek, A., Mitchell, J.C.: A modular cor-
rectness proof of TLS and IEEE 802.11i. In: ACM Conference on Computer and
Communications Security. (2005)

A Proof Sketches

Proof (Proof sketch of Lemma 2). Consider a configuration consisting of an hon-
est initiator running the implementation P , an honest responder running the
implementation P , and an adversary that does nothing. The initiator waits for a
bit from the environment and then commits to that bit. It then waits for a mes-
sage from the environment and then opens its commitment. The responder, after
receiving a commitment, sends a receipt to the environment. After a successful
verification of an attempt to open the commitment, it sends the opened-to value
to the environment. The environment selects a bit, sends it to the initiator and
waits for a receipt from the responder. Once it gets this message, it instructs the
initiator to open its commitment, and then waits for the responder to reveal the
bit to which the initiator committed. If that bit matches the bit the environment
selects at the start of the run, the environment registers success. Otherwise it
registers failure.

By the terminating property of P , we know that this run will complete.
The ideal configuration has the initiator talking to the functionality which talks
directly to the responder. Though a simulator exists in the ideal configuration, it

can do nothing since both the initiator and responder are connected directly to
the functionality. By virtue of the functionality’s correctness, we know that in the
ideal configuration the environment will register success with high probability.
Since P securely realizes F , the environment must register success in the real
configuration with high probability. Whence the correctness of P is established.

Proof (Proof sketch of Theorem 2). Assume that P is a terminating G-hybrid
protocol for bit-commitment, which is correct with high probability and pro-
vides perfect hiding and binding. A functionality F = P [G] is clearly an ideal
functionality for bit-commitment. Let Q be a real protocol which is a realization
of G, consider a real protocol R = P [Q] in which all the calls of P to the func-
tionality G are implemented with Q. We claim that R is a secure realization of
F . Choose any real configuration for R, consisting of an attacker A, and parties
P1, . . . , Pn. We need to show that there is a simulator S such that for any en-
vironment E this configuration is indistinguishable from one where parties call
functionality F instead of R. This configuration is also a real configuration for
the protocol Q. Therefore, there is a simulator such that when all calls to Q

are replaced with calls to G, the two configurations are indistinguishable for any
environment. Since this ideal configuration is exactly the ideal configuration for
F we are done with the proof, because by Theorem 1 there can be no protocol
realizing any ideal functionality for bit-commitment.

Proof (Proof sketch of Corollary 1). Assume that F is an ideal functionality for
symmetric encryption and construct a F-hybrid protocol for bit-commitment
providing perfect hiding and binding. The initiator can commit to b by generating
a new key, encrypting b and sending the ciphertext via public channel. To open
the commitment, initiator sends the key. This protocol provides perfect hiding
because of the perfect CCA-security provided F , and provides perfect binding
because of the perfect integrity of ciphertexts provided by F . By Theorem 2,
functionality F cannot be realized.

Proof (Proof sketch of Corollary 2). Construct a F-hybrid protocol for bit-
commitment providing perfect hiding and binding. The initiator can commit
to b by generating all the group keys, signing a random message with b’s signing
key, and then sending, as the signature, the tuple consisting of the b’s signature,
the message, the group public key, and all the signing keys. To open the commit-
ment, the initiator sends the group manager’s secret key. This protocol provides
perfect hiding because of the perfect anonymity provided F , and provides per-
fect binding because of the perfect traceability provided by F . By Theorem 2,
functionality F cannot be realized.

