
Analysis of the 802.11i 4-Way Handshake

Changhua He

changhua@stanford.edu

John C Mitchell

mitchell@cs.stanford.edu

Electrical Engineering and Computer Science Departments

Stanford University, Stanford, CA 94305

ABSTRACT
802.11i is an IEEE standard designed to provide enhanced MAC
security in wireless networks. The authentication process involves
three entities: the supplicant (wireless device), the authenticator
(access point), and the authentication server (e.g., a backend
RADIUS server). A 4-Way Handshake must be executed between
the supplicant and the authenticator to derive a fresh pairwise key
and/or group key for subsequent data transmissions.

We analyze the 4-Way Handshake protocol using a finite-state
verification tool and find a Denial-of-Service attack. The attack
involves forging initial messages from the authenticator to the
supplicant to produce inconsistent keys in peers. Three repairs are
proposed; based on various considerations, the third one appears
to be the best. The resulting improvement to the standard, adopted
by the 802.11 TGi in their final deliberation, involves only a
minor change in the algorithm used by the supplicant.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Security

Keywords
WLAN, 802.11i, 4-Way Handshake, Denial-of-Service,
Authentication, Key Management

1. INTRODUCTION
Wireless Local Area Networks (WLAN) [9, 10] provide important
flexibility for college campuses, coffee shops, airports and other
enterprises. Because they provide much higher transmission rates
than current cellular systems, WLAN systems promise to be
widely deployed in the coming years. However, security is a
serious concern because the wireless medium is open for public
access within a certain range.

In order to provide secure data communications over wireless
links, the 802.11 Task Group proposed the Wired Equivalent
Privacy (WEP) to encrypt the data stream and authenticate the
wireless devices. However, significant deficiencies have been
identified in both the encryption and the authentication
mechanisms [3, 7]. To repair the problems in WEP without
requiring additional hardware, the Wi-Fi Alliance proposed a
Temporal Key Integrity Protocol (TKIP) to provide stronger
security through a keyed cryptographic Message Integrity Code
(MIC), an Extended IV space and a key mixing function.
Furthermore, an authentication mechanism based on
EAP/802.1X/RADIUS [1, 11, 17] has been developed to replace
the poor Open System authentication and Shared Key
authentication in WEP. As a long-term solution to securing
wireless links, the latest IEEE standard 802.11i [12] was ratified
on June 24, 2004. The Counter-mode/CBC-MAC Protocol
(CCMP) provides data confidentiality, integrity and replay
protection. The authentication process combines 802.1X
authentication with key management procedures to generate a
fresh pairwise key and/or group key, followed by data
transmission sessions. However, 802.11i requires a WEP user to
upgrade the hardware in order to use the strongest security
mechanisms.

In this paper we analyze the 4-Way Handshake key management
protocol in 802.11i, using a finite-state verification tool called
Murϕ. We find a significant and unnecessary Denial-of-Service
(DoS) attack and investigate several possible repairs. We provided
these basic attacks and repairs to the 802.11 TGi; the third repair
in Section 5.3 was adopted. Although the 802.11i documentation
was left unchanged so that the ratification would not be delayed,
the repair will be added once the documentation is updated
[Walker, email communication, June 30, 2004]. Note that there
exist other possible DoS attacks against different layers of 802.11
networks, e.g., Physical Layer [5], MAC Layer [6] or upper layers
[3]. However, in this paper, we focus on analyzing and improving
the 4-Way Handshake; our repairs do not aim to prevent DoS
attacks in other layers.

Through our formal verification process, we identify the
functionality of each field in the handshake messages, achieve a
simplified protocol that has as strong an authentication as the
original one under our model, and identify some fields in the
original protocol as potentially redundant. Our analysis results
support and clarify passages in the 802.11i documentation,
providing insights that are useful for understanding and/or
implementing the protocol.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WiSE’04, October 1, 2004, Philadelphia, Pennsylvania, USA.
Copyright 2004 ACM 1-58113-925-X/04/0010...$5.00.

This paper is organized as follows. Section 2 describes the
authentication mechanism of 802.11i and abstracts the 4-Way
Handshake protocol for formal analysises. Section 3 explains the
Murϕ modeling of the protocol and summarizes our verification
results. Section 4 analyzes the DoS attack in detail and discusses
the practicality of the attack, based on the characteristics of
802.11b networks. Section 5 proposes several possible repairs and
evaluates their effectiveness. Section 6 concludes the paper.

2. IEEE 802.11i
IEEE 802.11i [12] defines three data encryption algorithms: WEP,
TKIP and CCMP, where WEP is included for backward
compatibility, TKIP is the short-term solution to fix WEP
problems, and CCMP is the long-term solution requiring
additional hardware capabilities. However, in this paper we focus
on the enhanced authentication protocols and do not investigate
these data confidentiality protocols in any detail.

2.1 The 802.11i authentication
In order to provide better authentication and confidentiality in
802.11 networks than WEP, the standard defines a Robust
Security Network Association (RSNA) based on IEEE 802.1X
[11] authentication. The authentication process involves three
entities, called the Supplicant, the Authenticator and the
Authentication Server. Generally, a successful authentication
means that the supplicant and the authenticator verify each other’s
identity and generate some shared secret for subsequent secure
data transmissions. The authentication server can be implemented
either in a single device with the authenticator, or through a
separate server, assuming the link between the authentication
server and the authenticator is physically secure. In infrastructure
networks, the stations are supplicants, the Access Points are
authenticators, and a separate RADIUS server may be used as an
authentication server.

The complete process of an 802.11i authentication consists of
handshakes between the supplicant and the authenticator (security
capability discovery and 802.1X [11] conversations), between the
authenticator and the authentication server (RADIUS de facto
[17]), and between the supplicant and the authentication server
(EAP-TLS de facto, with the authenticator serving as a relay [1]).
After these handshakes, the supplicant and the authentication
server have authenticated each other and generate a common
secret called the Master Session Key (MSK). The supplicant uses
the MSK to derive a Pairwise Master Key (PMK); The AAA key
material on the server side is securely transferred to the
authenticator to derive the same PMK in the authenticator.
Alternatively, the supplicant and the authenticator may be
configured using a static Pre-Shared Key (PSK) for the PMK.
Further, during a re-association, a cached PMK can be used
directly in order to reduce the computational load on the
authentication server during repeated authentication requests from
the same user.

Regardless of whether the PMK is derived from the
EAP/802.1X/RADIUS handshakes, based on a PSK, or reused
from a cached PMK, a 4-Way Handshake protocol must be
executed for successfully establishing a RSNA. Following the
establishment of the current PMK, this key management protocol

confirms the existence of the PMK, the liveness of the peers, and
the selection of the cipher suite; the protocol generates a fresh
Pairwise Transient Key (PTK) for each subsequent session,
synchronizes the installation of PTKs into the MAC, and in the
case of multicast applications transfers the Group Transient Key
(GTK) from the authenticator to the supplicants. After a
successful 4-Way Handshake, a secure communication channel
between the authenticator and the supplicant can be constructed
for subsequent data transmissions, based on the shared PTK
and/or GTK. The 4-Way Handshake may be repeated using the
same PMK.

In this paper we focus on analyzing the 4-Way Handshake
between the authenticator and the supplicant, after a shared PMK
is achieved and before the data communication begins. For the
purpose of analyzing the 4-Way Handshake, a shared PMK is
assumed to be known only to the authenticator and the supplicant.

2.2 The 4-Way Handshake
Once a shared PMK is agreed upon between the authenticator and
the supplicant, the authenticator may begin a 4-Way Handshake
by itself or upon request from the supplicant. The message
exchange is shown, at an abstract level, in Figure 1. S represents
the Supplicant and A represents the Authenticator; SPA and AA,
SNonce and ANonce, represent the MAC address and nonces of
the supplicant and authenticator, respectively; sn is the sequence
number; msg1, 2, 3, 4 are indicators of different message types;
MICPTK{} represents the Message Integrity Code (MIC)
calculated for the contents inside the bracket with the fresh PTK.
While MAC is commonly used in cryptography to refer to a
Message Authentication Code, the term MIC is used instead in
connection with 802.11i because MAC has another standard
meaning, Medium Access Control, in networking.

The fresh PTK is derived from the shared PMK through a Pseudo
Random Function with output length X (PRF-X), say, PTK =
PRF-X(PMK, "Pairwise key expansion" || Min{AA, SPA} ||
Max{AA, SPA} || Min{ANonce, SNonce} || Max{ANonce,
SNonce}), and divided into KCK (Key Confirmation Key), KEK
(Key Encryption Key) and TK (Temporary Key). Note that the
MIC is actually calculated with KCK, which is only part of PTK.
However, we do not distinguish them here because this appears to
be unrelated to the authentication process.

We ignore some fields of the messages in this abstracted version
of the message exchange, primarily because such fields are not

[Message 1: A → S]
AA, ANonce, sn, msg1

[Message 2: S → A]
SPA, SNonce, sn, msg2, MICPTK{SNonce, sn, msg2}

[Message 3: A → S]
AA, ANonce, sn+1, msg3, MICPTK{ANonce, sn+1, msg3}

[Message 4: S → A]
SPA, sn+1, msg4, MICPTK{sn+1, msg4}

Figure 1. The idealized 4-Way Handshake protocol

essential for authentication, although they could improve the
security in some sense. First, in the original protocol, a PMKID is
included in Message 1 to indicate the corresponding PMK used in
the handshake. This PMKID field can improve the security until it
is transmitted in the wireless link for the first time; the details will
be discussed in Section 4.3. Second, the RSN IE (Information
Element) fields are included in Message 2 and Message 3 to
negotiate the cipher suite and avoid a version rollback attack.
Third, an encrypted GTK is sent together in Message 3 in the case
of multicast applications.

When the 4-Way Handshake protocol runs as intended, a
communicating authenticator-supplicant pair execute exactly one
run of the protocol and share one valid PTK after the handshake.
The authenticator can refresh the PTK either periodically or upon
the request from the supplicant by running another 4-Way
Handshake with the same PMK.

The authenticator and the supplicant will silently discard any
received message that has an unexpected sequence number or an
invalid MIC. When the supplicant does not receive Message 1
within the expected time interval after a successful 802.1X
authentication, it will disassociate, de-authenticate and try the
same or another authenticator again. Note that the supplicant does
not use any other timeout during the 4-Way Handshake. On the
other hand, the authenticator will timeout and retry the message if
it does not receive the expected reply within the configured time
intervals. Furthermore, the authenticator will de-authenticate the
supplicant if it does not receive a valid response after several
retries.

While these operations sound reasonable, packet loss must be
taken into account, as well as the possibility of malicious
messages from an attacker. While the authenticator can initialize
only one handshake instance and accept only the expected
response, the supplicant must accept all messages in order to
allow the handshake to proceed. Hence, an attacker can easily
interfere with the handshake protocol by inserting a forged
Message 1. This leads to more severe vulnerabilities than might
be expected. We find this vulnerability by Murϕ modeling, with
details discussed in the following sections.

3. Murϕϕϕϕ MODELING
Murϕ [8] is a verification tool that will exhaustively search all
execution sequences of a nondeterministic finite-state system.
Mitchell et. al. [14] successfully applied this tool to the
verification of small security protocols, such as the Needham-
Schroeder public key protocol, the Kerberos protocol and the
TMN cellular telephone protocol. Subsequently, Mitchell et. al.
[15] adopted a “rational reconstruction” methodology using Murϕ
to analyze the SSL 3.0 handshake protocol. In this paper we will
use a similar methodology to analyze the 4-Way Handshake.

3.1 The Protocol Model
In order to use Murϕ for verification of security protocols, we
need to formulate a protocol model, add an attacker to the system,
state the desired security properties, and run the protocol for some
specific choice of system size parameters. The Murϕ system uses
explicit state enumeration to automatically check whether all

reachable states of the model satisfy the given properties. A trace
of messages will be output if any specified properties are violated,
thus identifying the steps involved in any successful attack.

In our Murϕ model, we consider the idealized 4-Way Handshake
protocol in Figure 1. Because the PMK is assumed to be secure,
the most important properties here are the PTK consistency and
freshness. For simplicity, we assume that the cryptographic
functions cannot be broken unless the key is disclosed.

The authenticator and the supplicant are programmed to follow
the protocol. Each pair of authenticator and supplicant shares a
PMK and tries to execute a given number of 4-Way Handshake
sessions sequentially. The attacker is able to masquerade as any
participant in the system by forging the MAC address. However,
the attacker is assumed not to know the shared PMK of any pair
of honest participants. The attacker can also eavesdrop on every
message, remember nonces and MICs of each message, insert
forged messages, and replay stored messages. Furthermore, the
attacker can compose Message 1 from stored nonces, and respond
to every message with an arbitrary combination of known nonces
and MICs. It is not obviously easy for the attacker to intercept and
block delivery of a message transmitted over a wireless link;
however, we assume the attacker is capable of doing so because
any message might be lost in a wireless environment, and this has
the same effect on the protocol.

The system size parameter indicates the number of authenticators,
supplicants and attackers in the system and the number of
sequential sessions each pair of participants can execute. We
executed the Murϕ model with different fields enabled in the
message format, identified the functionality of each field, and
achieved a simplified message format, keeping the same
properties as the original one. The details will be discussed in
Section 3.2. Furthermore, we found a DoS attack using Message 1
that will block the protocol very easily. Note that although our
verification process often reveals attacks, failure to find attacks
does not imply that the protocol is completely secure, because the
Murϕ model may simplify certain details and is inherently limited
to the configurations of the small number of entities and the
capabilities of the attackers.

3.2 The Protocol Clarifications
Starting from the simplest message format (only nonces included),
we increase the complexity of the messages until the complete
protocol in Figure 1 is reached. For each different message format,
the Murϕ model checks all possible executions and finds the
attacks that arise due to the absence of certain fields. Through this
approach, we identify the functionality of each field in the
message. We will not describe this process in detail. Instead, we
summarize the outcome for specific fields, in some cases verifying
the claims in the documentation of the standard, and in other cases
revealing ineffective or redundant mechanisms.

First, the message flag, which is a combination of the Key ACK,
Key MIC, and Secure bits in the Key Information field, is
necessary and should be protected by the MIC field in the
message. This flag makes Message 1, 2, 3, 4 distinguishable;
otherwise, the attacker can easily use MICs in Message 2 and
Message 3 to forge a valid Message 4, using Message 2 to forge a

valid Message 3 or vice versa. Furthermore, the authenticator
should only generate messages of type 1 and 3; the supplicant
should only generate messages of type 2 and 4.

Second, nonces are used to make every message fresh and derive
the fresh PTK. These should be generated in an unpredictable and
globally unique way. Otherwise, the protocol might be vulnerable
to replay attacks or pre-computation attacks. Fortunately, the
proposed nonce generation algorithm in the standard appears to
satisfy these requirements with high probability.

Third, the sequence number does not appear to be necessary for
any security objectives in the 4-Way Handshake. Replay attacks
are prevented by the freshness of nonces and PTKs. Furthermore,
the sequence number does not provide any performance
improvement because eventually the MIC field must be checked if
the attacker modifies the sequence number to a valid value.
Including the sequence number will provide minor performance
improvement only when the attacker blindly replays messages
without modifying the sequence number, or when messages arrive
out of order. Hence, we consider this field to be largely redundant.

Fourth, the MAC addresses of the authenticator and the supplicant
do not appear to be necessary for the authentication process. In
particular, it may not be necessary to include these addresses in
the PTK derivation. From the documentation, the MAC addresses
are used to bind the PTK to the peers. However, by establishing a
PMK successfully, the shared PMK has already bound all the
following keys with the peers. If the PMK is based on a PSK
shared by a group of users, the fresh nonces will bind the PTK to
the peers. Including MAC addresses in the PTK derivation does
not add any more security to the keys cryptographically.

Based on these clarifications, we achieve a simplified protocol
with a simpler message format than the one in Figure 1. Under our
Murϕ model, the protocol shown in Figure 2 has the same
authentication properties. Here the PTK is derived without AA
and SPA, say, PTK = PRF-X(PMK, "Pairwise key expansion" ||
Min{ANonce, SNonce} || Max{ANonce, SNonce}).

4. DoS ATTACK
In addition to verifying the functionality of each field in the
message format, our Murϕ model finds an attack on Message 1,
easily causing PTK inconsistency between the authenticator and
the supplicant. In this situation, protocol execution will be
blocked, eventually leading to an authenticator timeout and a
subsequent de-authentication of the supplicant. To avoid such an

attack, the supplicant needs to keep all the received nonces and
the corresponding PTKs, which ultimately leads to a DoS attack.
Section 4.1 describes the attack in detail; Section 4.2 explains the
inherent cause of the attack; Section 4.3 analyzes some limitations
of the attack due to detailed implementations, and Section 4.4
illustrates the practicality of the attack.

4.1 The DoS attack
Because the attacker is capable of impersonating the authenticator,
composing a Message 1, and sending to the supplicant, there is a
simple one-message attack that causes PTK inconsistency, as
shown in Figure 3. The attacker sends a forged Message 1 to the
supplicant after Message 2 of the 4-Way Handshake. The
supplicant will calculate a new PTK corresponding to the nonces
for the newly received Message 1, causing the subsequent
handshakes to be blocked because this PTK is different from the
one in the authenticator. The attacker can determine the
appropriate time to send out Message 1 by monitoring the
network traffic or just flooding Message 1 with some modest
frequency.

This attack arises from the vulnerability of Message 1. In the
802.11i documentation [12] the designer seems to be aware of
possible problems in Message 1 and proposes the following
solution to defend against the attacks. The supplicant stores both a
Temporary PTK (TPTK) and a PTK, and updates TPTK upon
receiving Message 1, updating PTK only upon receiving Message
3 with a valid MIC. In this solution the attacker cannot drive the
supplicant to change its shared PTK because it is not feasible to
forge Message 3. However, this approach works only when
different handshake instances (one between the supplicant and the
authenticator, others between the same supplicant and the attacker)
are executed sequentially; that is, the forged Message 1 does not
intervene between the legitimate Message 1 and Message 3 of the
4-Way Handshake. Obviously this will not prevent the problem
shown in Figure 3 because the supplicant still cannot correctly
verify the MIC in Message 3 from the authenticator.

We can modify this approach slightly to store two possible keys in
TPTK and PTK and try verifying the MIC in Message 3 with
either TPTK or PTK. This modification solves the problem in

[Message 1: A → S]
ANonce, msg1

[Message 2: S → A]
SNonce, msg2, MICPTK{SNonce, msg2}

[Message 3: A → S]
ANonce, msg3, MICPTK{ANonce, msg3}

[Message 4: S → A]
msg4, MICPTK{msg4}

[Message 1: A → S]
AA, ANonce, sn, msg1

[Message 2: S → A]
SPA, SNonce, sn, msg2, MICPTK{SNonce, sn, msg2}

[Message 1’: Attacker → S]
AA, ANonce’, sn, msg1

{The supplicant generates SNonce’ and
 derives a new PTK’ from SNonce’ and ANonce’}

[Message 3: A → S]
AA, ANonce, sn+1, msg3, MICPTK{ANonce, sn+1, msg3}

 {PTK and PTK’ not consistent,
 MIC not verified, Protocol blocked}

Figure 2. The simplified 4-Way Handshake protocol

Figure 3. The one-message attack on the 4-Way
Handshake protocol

Figure 3; however, the attacker can still cause problems for the
supplicant side by sending out more forged messages with
different nonces rather than only one. Therefore, in order to assure
the handshake is non-blocking with the legitimate authenticator,
the supplicant must use sufficient memory to store all the received
nonces and the derived PTKs, until it finishes a handshake and
obtains a legitimate PTK. Once the supplicant receives Message 3,
it can use the PTK corresponding to the nonce in the message to
verify the MIC. The derivation of PTKs might not lead to a CPU
exhaustion attack because PTK calculations are not
computationally expensive. However, a memory exhaustion attack
always exists because the number of Message 1s can theoretically
be unbounded. Though this memory exhaustion attack occurs on
the supplicant side, which is not as severe as if it were the server,
this is still a problem because it is quite easy for the attacker to
forge and flood Message 1s.

4.2 Parallel Instances
Some may discount this DoS vulnerability as arising from
insufficient modelling of the characteristics of wireless networks.
Specifically, we have assumed that an attacker may intercept
messages and possibly interfere with the delivery of messages.
The following arguments show that the vulnerability arises instead
from the need to engage in the parallel execution of multiple
instances of the handshake protocol.

It is feasible for the authenticator (initiator) to have at most one
active handshake in progress with each supplicant. The
authenticator expects a correct response for every message it
sends out. It can discard an unexpected response and retry the
previous message or terminate the handshake if the expected
response is not received during a given time interval and certain
number of retries.

However, the supplicant (responder) cannot use a similar strategy.
More specifically, if the supplicant is configured to be stateful and
expects some specific message reply, packet loss or malicious
messages from an attacker can cause deadlock and block the
protocol. The following arguments are intended to clarify this
statement. Assume that the supplicant discards unexpected
messages in the intermediate stage of a handshake execution.
Consider the case in which the supplicant accepts Message 1 and
sends out Message 2, but this message is lost. The authenticator
will never get the expected response (Message 2); thus, it retries
Message 1 after a timeout. However, the supplicant will discard
this retried Message 1 because it is expecting a Message 3. On the
other hand, an attacker can simply initialize a handshake by
sending a forged Message 1 to cause the supplicant to be blocked
for the legitimate Message 1 from the authenticator. Therefore, in
the intermediate stage of a handshake, the supplicant must allow
any Message 1 to ensure the protocol to proceed.

The arguments above show that the supplicant must allow
multiple handshake instances to run in parallel. In other words,
the supplicant should allow Message 1 at any stage. This makes
the one-message attack and DoS attack unavoidable. However,
some fields and mechanisms we omitted when abstracting the
protocols can defend against the attack in some sense, although
they cannot inherently eliminate the attack. The following section

will analyze two limitations from the PMKID and the Link Layer
Data Encryption.

4.3 Limitations
Our basic analysis is based on the idealized handshake protocol
shown in Figure 1. In our Murϕ model we have not considered
the effect of including PMKID in Message 1 or the involvement
of Link Layer Data Encryption for subsequent handshakes.

A PMKID is included in Message 1 and transmitted in clear text
at the beginning of the 4-Way Handshake. It is calculated as
PMKID = HMAC-SHA1-128(PMK, "PMK Name" || AA || SPA).
With the assumption that PMK is secure, this PMKID is not
disclosed to any attacker until the first time it is sent through
vulnerable wireless links. This limits the attacker to a DoS attack
only after the PMKID is seen in the link. When a PSK is
configured for PMK, the attacker may learn the PMKID easily
because the PMK, thus the PMKID, is unchanged for a substantial
period of time. During a re-authentication process, the supplicant
tries to use the cached PMK to communicate with the
authenticator; it is possible for the attacker to know the
corresponding PMKID earlier if the attacker keeps monitoring the
network for some time (The same PMKID might be transmitted in
the previous Message 1; at least the supplicant might include it in
the re-association request message). In both cases, it is easy for
the attacker to construct a forged Message 1. However, when the
802.1X authentication is used to establish a PMK dynamically,
the PMKID will be different for every session; hence, the attacker
cannot know the PMKID until it sees Message 1 from the
authenticator. As a summary, including PMKID in Message 1
makes the attack more difficult, but it does not eliminate the
attack. Instead of blindly flooding Message 1, the attacker has to
read Message 1 from the authenticator first, forge its own
Message 1 with the PMKID, and flood the messages.

When sequential 4-Way Hhandshakes occur under the same PMK,
with the exception of the first handshake, all the following
sessions are protected by the Link Layer Data Encryption. This
mechanism can substantially improve the security of the protocol.
All the handshake messages are transmitted in an EAPOL-Key
format, which are encapsulated into data frames. Once the
supplicant and the authenticator have some shared PTK, the
following data frames will be protected by that PTK through
encryption and authentication code. With the reasonable
assumption that data encryption and MIC computation are
cryptographically perfect, and replays can be detected, the attacker
will not be able to intercept the transmissions. This mechanism
ensures that the subsequent handshake sessions (with the same
PMK) are secure except the first one. The attacker needs to catch
up with the first 4-Way Handshake session and construct the
attack. Obviously, it causes more difficulties for the attacker.

As a result, the Link Layer Data Encryption will limit the attacks
to occur only before the first PTK is established, that is the first 4-
Way Handshake protocol instance. Furthermore, when 802.1X is
used to set up a PMK, the PMKID included in Message 1 can
limit the attacks to occur only after the first legitimate Message 1
is seen in the wireless link. Combinations of the Data Encryption
and the PMKID mitigate the vulnerability to only a limited
duration; thus, the attacker has to interfere with the protocol in a

more timely way. However, these mechanisms do not eliminate
the inherent vulnerability of the protocol; the attack is still
possible.

4.4 Practicality
When a PSK, or cached PMK, is configured to a current PMK,
the attacker can interfere with the 4-Way Handshake either before
Message 1 or after Message 1 because it knows the corresponding
PMKID from previous eavesdropping. Therefore, the attacker
may just send out a forged Message 1 periodically, the attack
succeeding if one of the forged Message 1s falls between the
legitimate Message 1 and Message 3. Even when 802.1X
authentication is used to establish the PMK dynamically, the
attacker can still construct the attack after seeing the legitimate
Message 1 from the authenticator. The attacker can succeed with a
memory DoS attack by increasing the frequency of sending forged
Message 1s. In any case, this is different from a trivial network
jamming or frequency jamming, and it is hard for the
administrator to eliminate the attack because the attacker sends
regular messages in a regular way. The following calculations
indicate why this attack is practical and how it is different from a
network jamming.

Assume that a basic Message 1 is sent (only PMKID included in
the Key Data field of the frame) through 802.11b networks [10].
A MSDU, consisting of 30 bytes MAC header, 6 bytes EAPOL
header, 117 bytes EAPOL-Key frame, and 4 bytes checksum are
given to the Physical Layer to transmit. Consider the short PLCP
frame and an 11Mbps data rate, the DSSS preamble and header
are transmitted in 96 µs, the data are transmitted in 114 µs. Even
more count in DIFS (50µs), SIFS (10µs) and ACK (96µs + 10µs),
Message 1 is sent and ACKed in 376 µs. Assume that a timeout in
the authenticator is set to the default value (100 ms). If the
attacker has a full control on the Network Interface Card (NIC),
and no random backoff time is inserted between two consecutive
messages, a total of 265 Message 1s can be sent. Even if the
random backoff time is included, on average 310 µs, it is still
possible for the attacker to send about 145 messages. This number
may be much larger if the timeout is set to a larger value, if we
take into account the multiple retry times, and if the network
accommodates a higher data rate like 54Mbps in 802.11a/g
networks. Among the possible number of Message 1s, the attacker
only needs one of them to reach the supplicant in order to block
the protocol. Moreover, the large number of messages is sufficient
for launching a DoS attack on the supplicant side in general.

5. EFFECTIVE DEFENCES
This kind of DoS attack also exists in some other protocols where
the responder needs to store states, i.e. IKE [2, 13] and TCP [16,
18]. We can simply repair it by transmitting both ANonce and
SNonce in Message 3; this improves the protocol to a stateless
one [2, 4, 13]. However, even with that improvement, the 4-Way
Handshake might be still vulnerable to replay attacks. On the
other hand, once some mechanism is implemented to defend
against the replay attack, our repairs in Section 5.2 can already
make the handshake secure. Furthermore, adding ANonce to
Message 3 significantly change the format of the packet. Hence,
we do not suggest this approach. Instead, we propose three other

approaches that do not require significant modifications of the
packet format or the protocol itself.

5.1 Random-Drop Queue
The problem here is similar to the well-studied TCP SYN
flooding DoS attacks [16, 18], which can be mitigated in some
known ways. The supplicant can keep a queue of all the initiated,
but incomplete, handshake instances. According to the
calculations in Section 4.4, the queue size might be too large for
the supplicant; the situation becomes even worse if a longer
timeout period or a higher data rate is implemented. Therefore, a
feasible improvement would be to implement the queue with a
random-drop policy. The supplicant maintains a certain size of
queue, say, Q entries to store the states. Once all entries in the
queue are filled, one of them is randomly replaced by the new
state. Denote that the number of malicious Message 1s is n
between the legitimate Message 1 and Message 3, the probability
that the handshake will be blocked by the malicious messages is

P , we have
n

Q
P

−−= 1

11 , as shown in Figure 4.

From Figure 4, when 1=Q , the attacker can block the handshake

with probability 1 by inserting only one message. When Q
increases, the attacker needs to insert more messages in order to
block the handshake with a high probability. However, increasing
Q could be quite expensive and performance reductive for the
supplicant. Furthermore, even a queue of size 10 is not going to
help very much because the attacker can block the handshake with
probability above 0.8 by inserting 16 messages. That is a trivial
number of messages, compared to the total possible number of
Message 1s the attacker can insert between the legitimate Message
1 and Message 3.

Figure 4. Effectiveness of random-drop queue

5.2 Message 1 Authentication
Since there is already some common secret (PMK) shared
between the authenticator and the supplicant, another possible
repair is to add a MIC to Message 1, which will prevent the
attacker from forging that message. In order to exploit the same
hardware or software as in processing other messages, we can
derive a trivial PTK based on the PMK and some specific values
of nonces (e.g., 0), then calculate the MIC with this derived PTK.
Note that after a MIC is added, Message 1 and Message 3 are still
distinguishable by the Secure bit.

If the PMK is dynamically generated through an 802.1X
authentication process, this would solve the problem. However, if
a PSK or a cached PMK is used for the current PMK, the
authenticated Message 1 is still vulnerable to replay attacks since
the PMK is static for a relatively long time. Therefore, the
authenticator should keep a monotonically increasing sequence
counter to defend against the replay attacks. One global sequence
counter per authenticator appears to work for all supplicants. The
supplicant can detect the replayed messages by comparing the
counter of a received message against the counter of the largest-
numbered previous message.

Fortunately, the requirement that the counter must be
monotonically increasing appears feasible since there are
apparently 8 octets set aside for this sequence counter. In fact,
there appears to be sufficient space in the message format so that
clock time could be used as the counter value, eliminating the
possible problem of counter rollover. Furthermore, this specific
sequence counter is also consistent with its usage in the group key
handshakes and imposes no significant influences on other parts
of the standard. Note that we need not worry about the
synchronization of the clock time since only the local time in the
authenticator side is used.

5.3 Nonce Re-use
The third repair is to eliminate the intermediate states on the
supplicant side. Specifically, the supplicant can re-use the values
of SNonce until a legitimate handshake is completed and a shared
PTK is achieved between the supplicant and the authenticator. In
other words, the supplicant does not update its nonce responding
to each received Message 1 until Message 3 is received and
verified. Note that there are no requirements for the authenticator
to re-use the values of ANonce, because the legitimate ANonce
will ultimately reach the supplicant via a valid Message 3.

In this approach the supplicant only needs to remember one
SNonce of its own, which eliminates the memory DoS attack.
Although it is still possible for the attacker to send out forged
Message 1s with different nonces, the supplicant need not store
every received ANonce and the corresponding PTK. It merely
derives a PTK from the stored SNonce and the received ANonce,
then computes a MIC from the derived PTK and sends out the
corresponding Message 2. Upon receiving Message 3, the
supplicant will again derive a PTK from the stored SNonce and
the received ANonce, then verify the MIC using the derived PTK.
Once the MIC is verified, Message 4 is sent out and the
corresponding PTK can be used as the session key.

This approach is a robust solution to the memory exhaustion
attack; however, it uses more computation on the supplicant side.
Specifically, the PTK is calculated twice for each received nonce:
the first time when Message 1 is received, and the second time
when Message 3 is received. If the computation power is poor for
some devices, flooding Message 3 might cause a CPU exhaustion
attack, or substantially decrease the performance because the
supplicant needs to re-compute the PTK first, then verify the MIC.

In practice, the CPU load of calculating the PTK varies
considerably depending on the implementation and the type of
CPU [Moore, email communications, May 11, 2004]. Generally,
the PTK calculation is about 1.5 times slower than the calculation
of MIC. However, the calculation of PTK can be improved about
4~5 times by merging the loops and pre-calculating intermediate
results; the MIC calculation can be improved about 1.5~2 times
by caching intermediate results. Hence, the PTK calculation does
add to the CPU load, but not as much as another MIC calculation.

Of course, the supplicant can store all the received nonces and the
derived PTKs to handle the computation load, but then obviously
the memory exhaustion attack recurs. There is a tradeoff here that
the supplicant needs to make between the memory consumption
and the CPU consumption. If the environment is such that most of
the messages are expected to be legitimate, the supplicant can
store one copy of the derived PTK and received ANonce, and use
them to verify the MIC in received Message 3 directly. The
supplicant re-computes the PTK only if the nonce in the message
does not match the stored ANonce. This combined approach
seems to be the most reasonable solution to the 4-Way Handshake
problems.

6. CONCLUSIONS
The 4-Way Handshake protocol in IEEE 802.11i has been
analyzed using Murϕ. We identify the functionality of each field
in the messages, in some cases supporting assertions made in the
protocol documentation, and in a few cases suggesting
alternatives. A simplified protocol is presented that has the same
authentication properties as the original one under our Murϕ
model. Most significantly, we find and analyze an effective DoS
attack on Message 1 in the protocol. As in many other case studies,
this attack can be prevented by an extremely simple modification
to the protocol. However, this clear improvement in the protocol
was not apparent before our security analysis.

The protocol is supposed to allow only one active handshake at
any time and to generate a shared PTK between a corresponding
supplicant and authenticator. However, upon analysis we show
that the supplicant must allow multiple handshakes to execute in
parallel, in order to ensure protocol completion in the presence of
packet loss. This leads to vulnerabilities, allowing an attacker to
block the handshake by simply inserting one forged message.
Furthermore, the attacker can construct a memory DoS attack if
the supplicant is implemented to store the states of all incomplete
handshakes. When 802.1X authentication is implemented, the
PMKID included in Message 1 will limit the attacker to
constructing this attack only after the first Message 1 is seen in
the link; Link Layer Data Encryption can protect the subsequent
sessions after the first PTK is established. When both of these
mechanisms are implemented, this attack can only be performed

between Message 1 and Message 3 of the first legitimate 4-Way
Handshake instance. These implementations cause more
difficulties, but the attacker can still launch the attack if it keeps
monitoring and intercepting the network in a timely way.
However, since the attack can be prevented simply and completely,
there is no need to live with a protocol subject to this attack.

We discuss and compare three repairs. First, we could use a
random-drop queue of a certain size to avoid memory exhaustion
without any modifications to the protocol. However, our
calculations indicate that the protocol remains quite vulnerable
with reasonable queue sizes. Second, with a more significant
change, a MIC calculated from the PMK can be added to Message
1 to prevent the attacker from forging Message 1. This remedy
also requires a monotonically increasing sequence counter to be
implemented in the authenticator side to prevent replay attacks.
The local clock time of the authenticator appears to be a simple
increasing counter that would do the job. Third, without any
modification to the protocol itself, we can simply re-use the
nonces in the supplicant until one legitimate 4-Way Handshake is
completed. This approach inherently eliminates the vulnerability
but might consume more computation power in the supplicant.
We suggest the combined approach that re-uses nonces and stores
one entry of the received nonce and derived PTK.

7. ACKNOWLEDGEMENTS
We thank Jesse Walker for his interest and feedback. We are
indebted to Tim Moore, who provided many valuable comments
and extensive discussion of 802.11i and the 4-Way Handshake
protocol.

8. REFERENCES
[1] Aboba, B., and Simon, D. PPP EAP TLS authentication

protocol. RFC 2716, October, 1999.

[2] Aiello, W., Bellovin, S. M., Blaze, M., Ioannidis, J.,
Reingold, O., Canetti, R., and Keromytis, A. D. Efficient,
DoS-Resistant, Secure Key Exchange for Internet Protocols.
In Proceedings of the 9th ACM conference on Computer and
communications security, pages 48-58, Washington D. C.,
USA, 2002.

[3] Arbaugh, W. A., Shankar, N., and Wang, J. Your 802.11
Network has no Clothes. In Proceedings of the First IEEE
International Conference on Wireless LANs and Home
Networks, pages 131-144, December, 2001.

[4] Aura, T., and Nikander, P. Stateless Connections. In
Proceedings of International Conference on Information and
Communications Security (ICICS’97), pages 87-97, Beijing,
November, 1997.

[5] AusCERT AA-2004.02. Denial of Service vulnerability in
IEEE 802.11 wireless devices. May 13, 2004. Available at
http://www.auscert.org.au/render.html?it=4091.

[6] Bellardo, J., and Savage, S. 802.11 Denial-of-Service attacks:
real vulnerabilities and practical solutions. In Proceedings of
the USENIX Security Symposium, pages 15-28, August, 2003.

[7] Borisov, N., Goldberg, I., and Wagner, D. Intercepting
mobile communications: the insecurity of 802.11. In
Proceedings of the 7th Annual International Conference on
Mobile Computing and Networking, Rome, Italy, July, 2001.

[8] Dill, D. L. The Murϕ verification system. In the 8th
International Conference on Computer Aided Verification,
pages 390-393, July, 1996.

[9] IEEE Standard 802.11-1999. Information technology –
Telecommunications and information exchange between
systems – Local and metropolitan area networks – Specific
requirements – Part 11: Wireless LAN Medium Access
Control and Physical Layer Specifications. 1999.

[10] IEEE Standard 802.11b-1999. Higher-Speed Physical Layer
Extension in the 2.4 GHz Band, Supplement to IEEE
Standard for Information technology – Telecommunications
and information exchange between systems – Local and
metropolitan area networks – Specific requirements – Part 11:
Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications. September, 1999.

[11] IEEE Standard 802.1X-2001. IEEE Standard for Local and
metropolitan area networks – Port-Based Network Access
Control. June, 2001.

[12] IEEE P802.11i/D10.0. Medium Access Control (MAC)
Security Enhancements, Amendment 6 to IEEE Standard for
Information technology – Telecommunications and
information exchange between systems – Local and
metropolitan area networks – Specific requirements – Part 11:
Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. April, 2004.

[13] Matsuura, K., and Imai, H. Modified Aggressive Mode of
Internet Key Exchange Resistant against Denial-of-Service
Attacks. IEICE Transactions on Information and Systems,
Volume E83-D(5), pages 972-979, May, 2000.

[14] Mitchell, J. C., Mitchell, M., and Stern, U. Automated
Analysis of Cryptographic Protocols Using Murϕ. IEEE
Symposium on Security and Privacy, pages 141-151, 1997.

[15] Mitchell, J. C., Shmatikov, V., and Stern, U. Finite-State
Analysis of SSL 3.0. Seventh USENIX Security Symposium,
pages 201-216, 1998.

[16] Ricciulli, L., Lincoln, P., and Kakkar, P. TCP SYN Flooding
Defense. In Communication Networks and Distributed
Systems Modeling and Simulation (CNDS’99), 1999.

[17] Rigney, C., Willens, S., Rubens, A., and Simpson, W.
Remote Authentication Dial In User Service (RADIUS).
RFC 2865, June, 2000.

[18] Schuba, C. L., Krsul, I. V., Kuhn, M. G., Spafford, E. H.,
Sundram, A., and Zamboni, D. Analysis of a Denial of
Service attack on TCP. 1997 IEEE Symposium on Security
and Privacy, 1997.

