
On the Type Structure of Standard ML . 243

tion and typing rules for the form of existential types we need,

r,t:u; +u1D(r:u2

rD3t:U~+U1.m:Uz
(t @ Dom(r)).

There are two differences between existential types in XML and the language

considered by Mitchell and Plotkin [47]. The form given here is more general

in that we quantify over n-ary type constructors, rather than just types. It is

more restrictive in that we only provide predicative quantification in the

sense that the existential type 3 t:U; ~ U1. a belongs to the second, rather

than the first, universe. Expressions of existential type are formed and used

according to the following two rules.

rbM:3t:U; ~U1. cr r,t:U; ~Ul, x:r DN:p

rDabstypet:U~ - Ulwithx:cris Min N;p
(t $EFV(p))

For further discussion of existential types, the reader is referred to Mitchell

and Plotkin [47], Cardelli and Wegner [8], and MacQueen [28].

To account for recursively-defined type constructors, we introduce a fixed-

point operator

fhn:((u; + u,) + (u; + u,)) + (u: + u,)

for each n >0. (For the special case n = O, the fixed-point operator has type

(Ul + Ul) - U1.) Intuitively, for any type functional 0: (U: - Ul) - (U: ~
UI), the type function fix. O, when applied to an n-tuple of types (1-1,. . . . r.),

yields a type isomorphic to (3(fixn (3)(1-1 . . . r,). Formally, the extension of

XML with recursive type functions over UI is completed by adding the

constants

for each n >0, together with equational axioms making them mutually

inverse to one another. Rather than define the solution of type construc-

tor equations only up to isomorphism, it would also be possible to take

fixn O(71,.. ., ~.) to be equal to 6(~ixn 19)(~1, r.), but this would allow
more XML terms to be typable than would be accepted by the usual ML type

checking algorithm.

With this additional machinery in hand we may represent concrete data

types in XML as follows. The concrete data type declaration

datatype (tl,. ... tn)t = cl:~ll”.. lc~:~n ine

is rendered in XML as the elimination form

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

244 . R. Harper and J. C. Mitchell

associated with the existential type 3 t: U? ~ U1. u, where the expressions O,

m, d, and e’ are given below. The main idea behind this representation is

that a concrete data type declaration introduces a “new” recursively-defined

type constructor, together with operations corresponding to each of the value

constructors, and an operation corresponding to the case analysis form

associated with that type. The typing rules governing abstype ensure that the

type constructor t is distinct from both the given definition and from all other

type constructors in that scope. In view of the fact that abstype binds the

variable t in e’ it is always possible to arrange (by an application of

a-conversion) that t is distinct from all other type constructors. Thus the ML

notion of “t ype generativity” is reduced to the more familiar idea of renaming

of bound variables.

The expression H of type (U; ~ UI) + (U: ~ UI) is defined to be

/it:u: + LT1.A(tl:ul,. ... tn:i71(T1T1 + . . . +Tm).

Note that by the definition of 6 and the rules governing recursively-defined

type constructors, the type fix. 6(t~,....tn) is isomorphic (via In and Out) to

the type [fix. ti/t]~l + . . . + [fix. f)/t]~m.The type CT is defined to be the

product UI ~ . . . ~ cr., ~ Um+l, where for each 1 s i ~ m, the type V, is

ntl:u l.. .rrtn:ul. rl+t(tl,tn).

and the type u~ + ~ is

nt,:u l.. .rItm:ul.rIu: ul. t(tl,. ... tn) + (Ot(tl,. ... tn) +U) +U.

Intuitively, CT, is the type of the i th constructor, for 1< i s m, and am, ~ is

the type of the case construct for the data type. The expression d of type

[fix~O\t]a is the tuple (all,..., d~,, d) h

expression d, is
m+l , w ere for each lsi~m, the

Atl; ul . . . At~:U1. AxL:[fix~9\t]rI. In~O(tl, . . .,t~)(inj~x)

and the expression d~ + ~ is

Atl:U1. .. At~:UAu:UI UAx:fix~(?(tl,l,. ... t~). Af:/3(fix~ O)(tl,.. .,t~)

-U. f(outno(tl,tn)x) .

Here inj,m stands for the appropriate combination of inl’s and inr’s to inject

a value of the i th summand into an n -ary disjoint union type. Intuitively,

d, is the implementation of the ith constructor, for 1 s i < m., and dm . ~

provides the case construct for the data type. It is not hard to see for each

1 s i < m + 1, the expression d, is of type [fix. o/t] m, so that the tuple d

has the required type [fix. 8/t] w.

The expression e’ is obtained from e by replacing occurrences of a value

constructor c, with the corresponding projection n,m + lc, and by interpreting

the case analysis form

case rofcl(xl:~l) +ell... lc~(x~:~~) =e~

ACM Transactmns on Programming Languages and Systems, Vol. 15, No. 2, Aprd 1993.

On the Type Structure of Standard ML . 245

as the application n~m++llcpl . . . pnpr~ where r has type t< PI, p.), the
entire expression has type p, and the function f is given by

k:o(fixno) (pi>. ... pn).

case xof’irzl(x1:7~) ~ e11i7m(y1:T~) ~ . . .

caseym_2:7~_2 Ofinl(xm_l: 7-~-1) -em.lliru-(xm: ~;) -em,

where for each 1 ~ i s m, the type ~~ is [fix. o t/t]Tl, and the type ~~ is the

“partial sum” type ~~+~ + . . . + ~~.

For example, the Core-XML expression

datatype t list = nillcons oft x t list in e

is represented by the XML expression

abstype list; UI ~ UI with ncc;~ is {list; UI ~ UI = fixl O, d: w) in e’

where

0= AL:UI e U1. At: Ul.triu + (t XL(t))

g = (rnl~ x O&n,q ‘case

Unll = ~t:U1. triu ~ list(t)

wcon~ = Ht:U1.(t X list(t)) + list(t)

wcask = Ht:U1.Hu: Ul.list(t) ~ (triu + (t X list(t)) - u) ~ u

e = (enll, econ~, ecc~e)

e~,l = At: U1. Ax:triu. Inl O(inl(x))

e~O~. = At: UI. AX: t X (fix113t).In1(3 (inr(x))

ecabe = At: U1. Au: Ul. Ax: fixl Ot. Af:(l + (t X (fixl Ot))) ~ .u.f(Outl Otx)

The expression e’ is obtained from e as described above, replacing occur-

rences of nil and cons by suitable projections of ncc, and replacing case

analyses on terms of type p list by suitable applications of the case analysis

function, Wl(mz ncc).

Abstract type declarations are accounted for in Core-XML by adding

expressions of the form:

abstype(tl,tn)t = c10f711 ””” lc~ of~n with xl: p~ = e~,...,xh:pk ‘eh inc.

Informally, the effect of an abstype declaration is to introduce a “private”

concrete data type for use in the definition of the “public” operations in the

with clause, but hiding this declaration from the “client” expression e, which

has access only to these public operations. More precisely, the scope of the

constructors cl, cm is limited to the definitions el, eh of x~,xh.

even though the scope of the type constructor t includes not only the e,’s but

also the body e, On the other hand, the scope of the variables x1, . . ., xk
naming the public operations is limited to e. (We omit, for simplicity, the

possibility of mutually recursive definitions of the public operations.)

ACM Transactions on Programmmg Languages and Systems, Vol. 15, No 2, April 1993.

246 . R Harper and J. C, Mitchell

The representation of abstype expressions in XML is similar to the repre-

sentation of datatype expressions, except that the recursive type is kept

abstract by making the value constructors and case analysis forms available

only in the definitions of the operations of the abstract type. Thus an abstype

expression of the above form is represented by the expression

abstypet:U~ ~ UI with x:pis(fix~(@):U~ ~ Ul, p:p)ine

where p is the expression

of type p=pl X .“” pk, and where the expressions O, U1,..., Gm+~, and
d 17 ...7 d ~ + ~ are as above.

9.3 Generativity and Sharing

A distinctive feature of the ML module facility is the use of sharing con-

straints to ensure that incrementally constructed systems are built from

compatible components. The typical situation in which sharing specifications

are required arises when defining a functor that builds a structure out of two

argament structures, each of which are to have a third component in com-

mon. (MacQueen [28] gives an example in which a parser module is built

from a lexer module and a symbol table module, each of which make use of a

symbol module. In order for the parser to be well-defined, the lexer and the

symbol table must share the same symbol implementation. See MacQueen

[28] for more details.) Such a situation may be described schematically as

follows. We are to define a functor F taking as argument two structures, R of

signature SIG _ R and S of signature SIG_ S, which have a common compo-

nent T of signature SIG _T. The arguments to F may be packaged into a single

structure of signature SIG defined by

signature SIG =
sig

structure R, SIG_R
structure S: SIG_S

end

so that F may be introduced by a declaration of the form

functor F(X: SIG), SIG_F = . . .

where SIG _ F is the signature of the result of F. But this declaration is

inadequate since it fails to ensure that R and S are built from a common

substructure T. This is achieved by the use of a sharing constraint as follows:

signature SIG_share =

Slg

structure R: SIG_R
structure S: SIG_S
sharing R.T = S,T

functor F(X, SIG_share) SIG_F = . . .

ACM TransactIons on Programming Languages and Systems, Vol. 15, No. 2, April 1993

On the Type Structure of Standard ML . 247

The signature SIG _share specifies that the component structures R and S

share the same substructure T so that their use in the body of F is guaran-

teed to be sensible. An application of F to a structure is well-formed only if

the type checker can determine that the required equational specification

holds.

A simple way to account for sharing specifications in XML would be to

employ the notion of an equality type introduced by Martin-Lof [31]. Infor-

mally, the equality type M = ~ N, for CTa UZ type, is inhabited iff M and N

are equal elements of type a, according to the rules of equality for XML. The

typing and equality rules for the equality type appear in Table XII. Signa-

tures with sharing constraints are represented using equality types as fol-

lows. The signature SIG_ share above is represented by the type

ER:cr~.H3:n~.p(R) =m, q(S)

where a~, as, and m~ represent the corresponding ML signatures, and where

p and q are suitable compositions of projections to select the component of R

and S, respectively, corresponding to their common component T.

Although this approach seems appealing at first glance, equality types fail

to account for ML sharing specifications in two important respects. First,

they are far more expressive than ML sharing specifications since they allow

the imposition of arbitrary equational constraints, in contrast to ML which

admits sharing constraints only between “paths,” which are represented in

XML as compositions of projection functions. This restriction to equations

between paths seems essential, as illustrated by the following example. It is

well known that recursion is definable in the untyped lambda calculus, via

the fixed-point operator Y, and that the untyped lambda calculus may be

interpreted in a typed lambda calculus satisfying an equation t = t + t

between types. (Further discussion of Y may be found in Barendregt [2], for

example, and the relationship between untyped lambda calculus and type (or

domain) equations in Bruce and Meyer [4] and Scott [57].) Given this, and the

fact that equality types allow us to type terms with respect to equational

hypotheses, it is easy to show that equality types give us terms without

normal form, For example, if r is a context containing the typing assump-

tions x: r =U, ~ ~ ~, for any UI type ~, then by the typing rules in Table XII,

we may conclude that r D T = T + T: U1. Therefore, using the type equality

rule from Table III, we may give any term with type ~ type r ~ ~, and vice

versa. This allows us to give any untyped lambda term type ~, including

untyped terms with no normal form. Discharging the typing assumption via

lambda abstraction, we can write a closed, well-typed functor with parameter

x:{ y: triu IT = T + T: Ul} and nonnormalizing body.
A second sense in which equality types are inappropriate is that they

express semantic equivalence of structures, rather than the much more

restricted notion of structure equivalence based on unique names described
in Section 6. The type-theoretic account of modules given above does not

attempt to account for ML notion of generativity, and hence cannot be readily

extended to give a faithful account of ML sharing specifications. We consider

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, Aprd 1993.

248 . R, Harper and J. C. Mitchell

Table XII. Equality Type

I’DM=N:u

r D r-efi(M, N) : M =. N

rvP:M=. N

rDi!f=N:u

rvu=u’:u~ rbkf=~’:o rDN=N’:o

I’DM=DN=M’=0,N’:U2

a proper account of ML notion of generative structure equality to be an
important direction for future work.

10. CONCLUSION AND DIRECTIONS FOR FURTHER INVESTIGATION

We have given a precise description of the type system for much of ML, using

a function calculus called XML. Our analysis is based on the belief that ML is

profitably viewed as an explicitly-typed, predicative language with dependent

product and sum types. Explicit typing is central to giving a single account of

both the core expression language and the module system, and seems useful

for further study. In particular, in papers of Moggi [48] and Harper et al. [21],

which were written after the work described here was completed, XML is

used to study the separation between compile-time and run-time in Standard

ML. The distinction between UI and Uz in XML reflects the typing rules of

ML and leads to a number of significant technical simplifications in the study

of the language. Moreover, universe distinctions seem essential to the charac-

ter of ML, as discussed in Section 8.

Some important aspects of ML have been omitted. With regard to the core

language, we have omitted treatment of recursion, references and exceptions.

These language features raise important theoretical questions. We hope that

an explicitly-typed study of polymorphic references would clarify the relation-

ship between polymorphism and type inference, a continuing trouble spot in

the ML type checker. With regard to the modules system, we have omitted

treatment of the coercive aspects of signature matching, and of sharing

specifications in signatures. It seems likely that the coercions associated with

signature ascription may be accounted for in this framework by giving a

precise account of compile-time elaboration as a process of translation from

the ML concrete syntax into the abstract syntax of the XML calculus. Such a

formalization would provide an interesting alternative to the methods used in

ACM TransactIons on Programmmg Languages and Systems, Vol 15, No 2, Aprd 1993

On the Type Structure of Standard ML . 249

the definition of ML [40]. Sharing specifications, and the associated notion of

“structure generativity,” remain important topics for further research.

Another important direction is to develop an accurate, straightforward

presentation of ML operational semantics. As with other versions of lambda

calculus, equality in XML is given by an equational axiom system. This

equational system may also be formulated as a set of reduction rules, as

usual. However, for the extension of XML obtained by adding exceptions,

references and recursion, capturing the operational semantics of ML relies on

careful consideration of the order in which rewrite rules are applied. (For

example, if f) is a divergent expression, then (A x.O)fl diverges in the current

call-by-value implementation, but (A x.O)fl = O is provable using the usual

A-calculus style reasoning.) It would be interesting to explore a typed calculus

that is faithful to the operational semantics, following the pattern established

by Plotkin’s &-calculus [51] and Martin-Lof’s type theory [32]. Some useful

related ideas are developed in Moggi [49].

ACKNOWLEDGMENTS

Thanks to Dave MacQueen for many insightful discussions of ML, and

comments on this paper in particular. Thanks also to John Greiner, Peter

Lee, Eugenio Moggi, and Andrzej Tarlecki for comments on an earlier draft.

REFERENCES

1. AMADIO, R., BRUCE, K., AND LONGO, G. The finitary projection model for second order lambda

calculus and solutions to higher order domain equations. In Proceedings of the IEEE

Symposmm on Logic in Computer Science, (1986), 122-130.

2. BARENDREG, H. P. The Lambda Calculus: Its Syntax and Semantics. 2nd ed. North-Holland,

Amsterdam, 1984.

3. BREAZU-TANNEN, V., COQUAND, T., GUNTER, C. A., AND SCEDROV, A. Inheritance as explicit

coercion. Inf. Comput. 93, 1 (1991), 172–221.

4. BRUCE, K., AND MEYRR, A. A completeness theorem for second-order polymorphic lambda

calculus, In Proceedings of the International Symposium on Semantics of Data Types

(Sophia-Antipolis, France) Springer Berlin, LNCS 173, 1984, 131-144.

5. BRUCE, K. B., MEYER, A. R., AND MITCHELL, J. C. The semantics of second-order lambda

calculus. Inf. Comput. 85 1(1990),76– 134. Reprinted in Logtcal Foundations of Functional

Programming, G. Huet, Ed., Addison-Wesley, Reading, Mass., 1990, 213-273.

6. CARDELLI, L. A semantics of multiple inheritance. Inf. Cornput. 76 (1988), 138–164. Special

issue devoted to Symposium on Semantics of Data Types (Sophia-Antipolis, France, 1984).

7. CARDELLI, L. Structural subtyping and the notion of powertype. In Proceedings of the 15th

ACM Symposium Principles of Programming Languages (1988), 70-79.

8. CARDELLI, L., AND WEGNER, P. On understanding types, data abstraction, and polymor-

phism, ACM Comput. Surv. 17, 4 (1985), 471-522.

9. CARTWRIGHT, R. Types as intervals. In Proceedings of the 12th ACM Symposium on Princi-

ples of Programming Languages (Jan. 1985), 22-36.
10. CONSTABLE, R. L., ET AL. Implementing mathematics with the Nuprl proof development

system. In Graduate Texts in Mathematics Vol. 37. Prentice-Hallj Englewood Cliffs, N. J.,
1986.

11. COQUAND, T. An analysis of Girards paladox. In Proceedings of the IEEE Symposium on
Logic in Compute. Science (June 1986), 227–236.

12. COQUAND, T., AND HUET, G. The calculus of constructions. Inf. Comput. 76, 2/3 (1988),

95-120.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

250 . R. Harper and J. C. Mitchell

13. DAMAS, L., AND MILNER, R. Principal type schemes for functional programs. In F’roceedmgs

of the 9th ACM Symposlurn on Principles of Programmmg Languages (1982), 207–212.

14. DE BRUIJN, N. G. A survey of the project Automath. In To H B. Curry: Essays cm

Combznatorv Logic, Lambda Calculus and Formahsm. Academic Press, New York, 1980,

579-607.

15. GIRARD, J.-Y. Interpretation fonctlonelle et elimination des coupures de l’arithmetique

d’ordre superieur. These D’Etat, Umversite Paris VII, 1972.

16, GIRARII, J -Y. Une extension de l’interpretation de Godel ii l’analyse, et son application a

l’ehmmation des coupures clans l’analyse et la theorie des types. In %d Scandmazuan Logm

Symposzam, J. E. Fenstad, Ed., (North-Holland, Amsterdam, 1971), 63-92.

17. GORDON, M. J., MILNEX?, R., AND WADSWORTH C. P. Edznburgh LCF. LNCS 78, Springer,

Berhn, 1979

18. HARPER, R., HONSELL, F., AND PLOTKIN, G. A framework for defining logics. In Proceedings

of the IEEE S-ymposlurn on Logw [n Computer Sczence (June 1987), 194–204. To appear m J.

ACM.

19. HARPER, R., MAGQUIiEN, D. B., AND MILNER, R Standard ML Tech. Rep. ECS-LFCS-86-2,

Lab. for Foundations of Computer Science, Univ. of Edinburgh, Mar. 1986.

20. HARPER, R , MILNER, R., AND TCIFTE, M. A type dlsciphne for program modules. In Z’AF-

SOFT 87, LNCS 250, Springer, Berlin, 1987

21. HARPER, R., MITrHELL, J C , AND MOGGI, E. Higher-order modules and the phase distinc-

tion. In Proceedings of the 17th ACM Symposwm on Prmclples of Programmmg Languages

(Jan. 1990), 341-354.

22. Huo~, J., AND HOWE, D. Impredicative strong existential eqmvalent to type type. Tech. Rep.

TR 86-760, Cornell Univ. 1986

23. HOWARD, W. The formulas-as-types notion of construction. In To H. B. Curry: Essays on

Combmatory Logzc, Lambda-Calcalus and Formahsm Academic Press, 1980, 479-490.

24. HOWE, D. J. The computational behavior of Girard’s paradox. In Proceedings of the IEEE

Symposium on Logzc zn Computer ScLence (June 1987), 205-214.

25 KANELLAKM, P. C., MAIRSON, H G., AND MITCHELL, J. C. Unification and ML type recon-

struction In Computational Logzc, Essa.vs [n Honor of Alan Robznson. MIT Press, 1991,
444-478.

26. KFOLTRY, A. J., TIURYN, J., AND URZYCZYN, P. ML typability is Dexptime-complete. In

Proceedings of the 15th Colloqlum on Trees Ln Algebra and Programming. LNCS 431,

Springer, 1990, 206-220. To appear in J ACM. under the title, “An Analysls of ML

Typability.”

27 LEIVANT, D. Polymorphic type inference. In Proceedings of the 10th ACM Symposzum cm

Principles of Programmmg Languages (1983), 88-98.

28. MACQUEEN, D. B. Modules for standard ML. Pol.vmorphzsm 2, 2 (1985), 1–35. An earlier

version appeared in Proceedings of the 1984 ACM Symposium on Lzsp and Functional

Programmmg.

29. MAcQtJ~~N, D. B. Using dependent types to express modular structure. In Proceedings of

the 13th ACM Symposzum on Prmclples of Programmmg Languages (1986), 277–286

30. MACQUEEN, D., PLOTNN. G., AND SETH1, R. An ideal model for recursme polymorphic types.

Znf Control 71, 1/2 (1986), 95-130.

31. MARTIN-L• F, P. An intuitionistic theory of types: Predictive part. In H. E. Rose and J. C.

Shepherdson, Eds. LogZc Co[loquumz, ’73. Amsterdam. 1973, North-Holland, 73-118.

32. MARTIN-LbF, P. Constructive mathematics and computer programming In Sixth Interna-

tional Congress for Logzc, Methodology, and Phdosophy of Science North-Holland, Amster-

dam, 1982, 153–175

33. MARTIN-L• F, P. Zntuztzonzst/c Type Theory. Bibliopolis, Napoh, 1984.

34. MCCRACKEN, N. An investigation of a programming language with a polymorphic type

structure. Ph.D. Thesis, Syracuse Univ., 1979.

35. MEYER, A. R., MITCHELL, J. C., MOGGI, E., AND STATMAN, R. Empty types in polymorphic

lambda calculus. In Proceedings of the 14th ACM Symposlarn on Principles of Programmmg

Languages (Jan. 1987), 253–262. Reprinted with minor revisions in Logzcal Foundations of

Funcfmnal Programming. G. Huet, Ed , Addison-Wesley, 1990, 273-284.

ACM TransactIons on Programmmg Languages and Systems, Vol. 15, No, 2, Aprd 1993.

On the Type Structure of Standard ML . 251

36. MEYER, A. R., AND REINHOLD, M. D. Type is not a type. In Proceedings of the 13th ACM

Symposium on Principles of Programming Languages (Jan. 1986), 287-295.

37. MILNER, R. A theory of type polymorphism in programming. JCSS, 17 (1978), 348-375.

38. MILNER, R. The Standard ML core language. Polymorphism 2, 2 (1985), 1–28. An earlier

version appeared in Proceedings of the 1984 ACM Symposium on Lisp and Functional

Programming.

39. MILNER, R., AND TOFTE, M. Commentary on Standard ML. MIT Press, 1991.
40. MILNER, R., TOFTE, M., AND HARPER, R. The Definition of Standard ML. MIT Press, 1990.

41. MITCHELL, J. C. A type-inference approach to reduction properties and semantics of poly-

morphic expressions. In ACM Conference on LISP and Functional Programmmg (Aug.

1986), 308–319. Reprinted with minor revisions in Logical Foundations of Functional

Programming, G. Huet, Ed., Addison-Wesley, 1990, 195-212.

42. MITCHELL, J. C. Polymorphic type inference and containment. Znf. Comput. 76, 2/3 (1988),

211–249. Reprinted in Logical Foundations of Functional Programming, G. Huet, Ed.,

Addison-Wesley, 1990, 153-194.

43. MITCHELL, J. C. Representation independence and data abstraction. In Proceedings of the

13th ACM Symposium on Principles of Programmmg Languages (Jan. 1986), 263-276.

44. MITCHELL, J. C. Type systems for programming languages. In Handbook of Theoretical

Computer Sczence, Volume B, J. van Leeuwen, Ed., North-Holland, Amsterdam, 1990,

365-458.

45. MITCHELL, J. C., AND MEYER, A. R. Second-order logical relations. In Logics of Programs,

LNCS 193, Springer, Berlin, 1985, 225-236.
46. MITCHELL, J. C., AND MOGGI, E. Kripke-style models for typed lambda calculus. Ann. Pure

Appl. Logic 51 (1991), 99–124. Preliminary version in Proceedings of the IEEE Symposium

on Logic in Computer Science (1987), 303–314.

47. MITCHELL, J. C., AND PLOTKIN, G. D. Abstract types have existential types. ACM Trans.

Program. Lang. Syst. 10, 3 (1988), 470–502. Preliminary version appeared in Proceedings of

the 12th ACM Symposium on Princ~ples of Programming Languages, 1985.

48. MOGGI, E. A category-theoretic account of program modules. Math. Structures Comput. SCZ.

1, 1 (1991), 103-139.

49. MOGGI, E. Computational lambda calculus and monads. In Proceedings of the IEEE Sympo-

szzLm on Logic in Computer Sc~ence (1989), 14–23.

50. OHORI, A. A simple semantics for ML polymorphism. In Functional Programming and

Computer Architecture, 1989, 281-292.

51. PLOTKIN, G. D. Call-by-name, call-by-value and the lambda calculus. Theor. Comput. SCL. 1

(1975), 125-159.

52. PLOTKIN, G. D. LCF considered as a programming language. Theor. Comput. Set. 5 (1977),

223-255.

53. REYNOLDS, J. C. Towards a theory of type structure. In Paris Colloqwm on Programming,

LNCS 19. Springer, Berlin, 1974, 408-425.

54. REYNOLDS, J. C. The essence of Algol. In Algorithnuc Languages, de Bakker and van Vliet,

Eds. IFIP, North-Holland, Amsterdam, 1981, 345-372.

55. REYNOLD, J. C. Types, abstraction, and parametric polymorphism. In Information Process-

ing ’83, North-Holland, Amsterdam, 1983, 5 13–523.

56, REYNOLDS, J. C. Polymorphism is not set-theoretic. In Proceedings of the International

Symposium cm Semantics of Data Types (Sophia-Antirolis, France), LNCS 173, Springer,

Berlin, 1984, 145-156.

57. SCOTT, D. S. Relating theories of the lambda calculus. In To H. B. Curry: Essays on

Combinatory Logic, Lambda Calculus and Formalism. Academic Press, 1980, 403-450.

58. SEELY, R. A. G. Locally cartesian closed categories and type theory. Math. Proc. Carob.

Phil. Sot. 95 (1984), 33-48.

59. SEELY, R. A. G. Categorical semantics for higher-order polymorphic lambda calculus. J.

Symbolic Logic 52 (1987), 969-989.

60. STATMAN, R. Logical relations and the typed lambda calculus. Znf. CWntrol 65 (1985), 85–97.

61. STOUGHTON, A. Fully Abstract Models of Programming Languages. Pitman, London, and

WiIey, New York, 1988.

ACM TransactIons on Programming Languages and Systems, Vol. 15, No 2, Aprd 1993.

252 . R Harper and J, C. Mitchell

62. TROELSTRA, M. Mathematical investigation of intuitiomstic arithmetic and analysis, LNM

.?44, Springer, Berlin, 1973,

63 TOFTE, M. Operational semantics and polymorphic type inference, Ph.D. dissertation, Edin-

burgh Univ., 1988. Available as Edinburgh Univ. Laboratory for Foundations of Computer

Science Tech Rep. ECS-LFCS-88-54

64. WmvD, M. A types-as-sets semantics for Milner-style polymorphism. In I+oceechngs of the

llth ACM Symposium on Principles of Programming Languages (Jan 1984), 158-164.

Received May 1990; revised February 1992; accepted March 1992

ACM Transa.tmns on Programming Languages and Systems, Vol. 15, No. 2, April 1993,

