
Secrecy Analysis in
Protocol Composition Logic

Arnab ROYa, Anupam DATTAb, Ante DEREKc, John C. MITCHELLa, and
Jean-Pierre SEIFERTd

a Stanford University, USA
b Carnegie Mellon University, USA

c Google Corporation, USA
d University of Innsbruck, Austria

Abstract. We present formal proof rules for inductive reasoning about the way that
data transmitted on the network remains secret from a malicious attacker. Extending
a compositional protocol logic with an induction rule for secrecy, we prove sound-
ness for a conventional symbolic protocol execution model, adapt and extend previ-
ous composition theorems, and illustrate the logic by proving properties of two key
agreement protocols. The first example is a variant of the Needham-Schroeder pro-
tocol that illustrates the ability to reason about temporary secrets. The second ex-
ample is Kerberos V5. The modular nature of the secrecy and authentication proofs
for Kerberos make it possible to reuse proofs about the basic version of the protocol
for the PKINIT version that uses public-key infrastructure instead of shared secret
keys in the initial steps.

Keywords. Security protocol analysis, Logic, Secrecy

1. Introduction

Two important security properties for key exchange and related protocols are authentica-
tion and secrecy. Intuitively, authentication holds between two parties if each is assured
that the other has participated in the same session of the same protocol. A secrecy prop-
erty asserts that some data that is used in the protocol is not revealed to others. If a pro-
tocol generates a fresh value, called anonce, and sends it in an encrypted message, then
under ordinary circumstances the nonce remains secret in the sense that only agents that
have the decryption key can obtain the nonce. However, many protocols have steps that
receive a message encrypted with one key, and send some of its parts out encrypted with
a different key. Since network protocols are executed asynchronously by independent
agents, some potentially malicious, it is non-trivial to prove that even after arbitrarily
many steps of independent protocol sessions, secrets remain inaccessible to an attacker.

Our general approach involves showing that every protocol agent that receives data
protected by one of a chosen set of encryption keys only sends sensitive data out under
encryption by another key in the set. This reduces a potentially complicated proof about
arbitrary runs involving arbitrarily many agents and a malicious attacker to a case-by-
case analysis of how each protocol step might save and send data. We formalize this

form of inductive reasoning about secrecy in a set of new axioms and inference rules
that are added to Protocol Composition Logic (PCL) [14,8,9,10,11], prove soundness of
the system over a conventional symbolic protocol execution model, and illustrate its use
with two protocol examples. The extended logic may be used to prove authentication or
secrecy, independently and in situations where one property may depend upon the other.
Among other challenges, the inductive secrecy rule presented here is carefully designed
to be sound for reasoning about arbitrarily many simultaneous protocols sessions, and
powerful enough to prove meaningful properties about complex protocols used in prac-
tice. While the underlying principles are similar to the “rank function method" [20] and
work using the strand space execution model [21], our system provides precise formal
proof rules that are amenable to automation. In addition, casting secrecy induction in
the framework of Protocol Composition Logic avoids limitations of some forms of rank
function arguments and eliminates the need to reason explicitly about possible actions
of a malicious attacker. From a broader point of view, we hope that our formal logic
will help clearly identify the vocabulary, concepts, and forms of reasoning that are most
effective for proving security properties of large-scale practical protocols.

Our first protocol example is a variant of the Needham-Schroeder protocol, used in
[16] to illustrate a limitation of the original rank function method and motivate an exten-
sion for reasoning about temporary secrets. The straightforward formal proof in section
4 therefore shows that our method does not suffer from the limitations identified in [16].
Intuitively, the advantage of our setting lies in the way that modal formulas of PCL state
properties about specific points in protocol execution, rather than only properties that
must be true at all points in all runs.

Our second protocol example is Kerberos V5 [17], which is widely used for authen-
ticated client-server interaction in local area networks. The basic protocol has three sec-
tions, each involving an exchange between the client and a different service. We develop
a formal proof that is modular, with the proof for each section assuming a precondition
and establishing a postcondition that implies the precondition of the following section.
One advantage of this modular structure is illustrated by our proof for the PKINIT [7]
version that uses public-key infrastructure instead of shared secret keys in the initial
steps. Since only the first section of PKINIT is different, the proofs for the second and
third sections of the protocol remain unchanged. While lengthy machine-checked proofs
of Kerberos were previously given [3], and non-formal mathematical proofs have been
developed for other abstractions of Kerberos [5], this is the first concise formal logic
proof of secrecy and authentication for Kerberos and PKINIT.

Compositional secrecy proofs are made possible by the composition theorems de-
veloped in this paper. While these theorems resemble composition theorems for the sim-
pler proof system presented in earlier work [10,15], adapting that approach for reason-
ing about secrecy requires new insights. For example, while proving that a protocol step
does not violate secrecy, it is sometimes necessary to use information from earlier steps.
This history information, which was not necessary in our earlier proofs of authentication
properties, appears as preconditions in the secrecy induction of the sequential and staged
composition theorems.

The rest of the paper is organized as follows. Some background on PCL is given
in section 2, followed by the secrecy-related axioms and proof rules in section 3. The
first protocol example is presented in section 4. Composition theorems are developed in

section 5, and applied in the proofs for Kerberos in section 6. Related work is summarized
in section 7 with conclusions in section 8.

2. Background

Protocol Composition Logic (PCL) is developed in [14,8,9,10], with [11] providing a
relatively succinct overview of the most current form. A simple “protocol programming
language” is used to represent aprotocolby a set ofroles, such as “Initiator”, “Respon-
der” or “Server”, each specifying a sequence of actions to be executed by an honest
participant. Protocol actions include nonce generation, encryption, decryption and com-
munication steps (sending and receiving). A principal can execute one or more copies
of each role, concurrently. We use the wordthread to refer to a principal executing a
particular instance of a role. AthreadX is identified with a pair(X̂, η), whereX̂ is a
principal andη is a unique session id. Arun is a record of all actions executed by honest
principals and the attacker during concurrent execution of one or more instances of the
protocol. Table 1 describes the syntax of the fragment of the logic that we will need in
this paper. Protocol proofs usually use modal formulas of the formψ[P]Xϕ. The infor-
mal reading of the modal formula is that ifX starts from a state in whichψ holds, and
executes the programP , then in the resulting state the security propertyϕ is guaran-
teed to hold irrespective of the actions of an attacker and other honest principals. Many
protocol properties are naturally expressible in this form.

The formulas of the logic are interpreted over protocol runs containing actions of
honest parties executing roles of the protocol and aDolev-Yaoattacker (whose possible
actions are define by a set of symbolic computation rules). We say that protocolQ satis-
fies formulaφ, denotedQ � φ, if in all runsR of Q the formulaφ holds,i.e.,Q, R � φ.
For each run, satisfaction of a formula is defined inductively. For example,Send(X, t)
holds in a run where the threadX has sent the termt. For every protocol action, there is a
corresponding action predicate which asserts that the action has occurred in the run. Ac-
tion predicates are useful for capturing authentication properties of protocols since they
can be used to assert which principals sent and received certain messages.Encrypt(X, t)
means thatX computes the encrypted termt, whileNew(X,n) meansX generates fresh
noncen. Honest(X̂) means thatX̂ acts honestly,i.e., the actions of every thread of̂X
precisely follow some role of the protocol.Start(X) means that the threadX did not
execute any actions in the past.Has(X, t) meansX possesses termt. This is “possess”
in the symbolic sense of computing the termt using Dolev-Yao rules,e.g.receiving it in
the clear or receiving it under encryption where the decryption key is known.

To illustrate the terminology used in this section we describe the formalization of
Kerberos V5, which is a protocol used to establish mutual authentication and a shared
session key between a client and an application server [17]. It involves trusted princi-
pals known as the Kerberos Authentication Server (KAS) and the Ticket Granting Server
(TGS). There are pre-shared long-term keys between the client and the KAS, the KAS
and the TGS, and the TGS and the application server. Typically, the KAS shares long-
term keys with a number of clients and the TGS with a number of application servers.
However, there is no pre-shared long term secret between a given client and an applica-
tion server. Kerberos establishes mutual authentication and a shared session key between
the client and the application server using the chain of trust leading from the client to the
KAS and the TGS to the application server.

Action formulas

a ::= Start(X) | Send(X, t) |Receive(X, t) |New(X, t) | SymEnc(X, t, k) |PkEnc(X, t, k) |
SymDec(X, t, k) |PkDec(X, t, k) | Sign(X, t, k) |Verify(X, t, k) |Hash(X, t, k)

Formulas

φ ::= a |Has(X, t) |Honest(X̂) |φ ∧ φ | ¬φ | ∃V. φ
Modal form

Ψ ::= φ [Actions]X φ

Table 1. Syntax of the logic

Kerberos has four roles, one for each kind of participant -Client, KAS, TGS
andServer. The long-term shared symmetric keys are written here in the formktype

X,Y

whereX andY are the principals sharing the key. Thetype appearing in the superscript
indicates the relationship betweenX andY in the transactions involving the use of the
key. There are threetypes required in Kerberos:c → k indicates thatX is acting as a
client andY is acting as a KAS,t→ k is for TGS and KAS ands→ t is for application
server and TGS. Kerberos runs in three stages with the client role participating in all
three. The description of the roles below is based on the A level formalization of Kerberos
V5 in [5].

In the first stage, the client thread(C) generates a nonce(n1) and sends it to the
KAS (K̂) along with the identities of the TGS(T̂) and itself. The KAS generates a new
nonce (AKey - Authentication Key) to be used as a session key between the client and
the TGS. It then sends this key along with some other fields to the client encrypted under
two different keys - one it shares with the client(kc→k

C,K) and one it shares with the TGS
(kt→k

T,K). The message portion encrypted withkt→k
T,K is called theticket granting ticket

(tgt). The client extractsAKey by decrypting the component encrypted withkc→k
C,K and

using amatch actions to separateAKey from the nonce and̂T .
In the second stage, the client generates another nonce, encrypts its identity with

the session key established in stage one and sends it to the TGS along with the ticket
granting ticket and the nonce. The TGS decryptstgt with the key it shares with KAS and
extracts the session key. It then uses the session key to decrypt the client’s encryption and
matches this with the identity of the client. The TGS then generates a new nonce to be
used as a session key between the client and the application server. It then sends this key
along with some other fields to the client encrypted under two different keys - the session
key derived in the first stage and one it shares with the aplication server. The encryption
with later key is called the service ticket (st). The client extracts this new session key by
decrypting the component encrypted with the previous session key.

In the third stage, the client encrypts its identity and a timestamp withSKey and
sends it to the application server along with the service ticket. The server decryptsst
and extracts theSKey. It then uses the session key to decrypt the client’s encryption,
matches the first component of the decryption with the identity of the client and extracts
the timestamp. It then encrypts the timestamp with the session key and sends it back to
the client. The client decrypts the message and matches it against the timestamp it used.
The control flow of Kerberos exhibits a staged architecture where once one stage has
been completed successfully, the subsequent stages can be performed multiple times or
aborted and started over if an error occurs.

Client = (C, K̂, T̂ , Ŝ, t) [

new n1;

send Ĉ.T̂ .n1;

receive Ĉ.tgt.enckc;

textkc := symdec enckc, k
c→k
C,K ;

match textkc as AKey.n1.T̂ ;

· · · stage boundary · · ·

new n2;

encct := symenc Ĉ, AKey;

send tgt.encct.Ĉ.Ŝ, n2;

receive Ĉ.st.enctc;

texttc := symdec enctc, AKey;

match texttc as SKey.n2.Ŝ;

· · · stage boundary · · ·

enccs := symenc Ĉ.t, SKey;

send st.enccs;

receive encsc;

textsc := symdec encsc, SKey;

match textsc as t;

]C

KAS = (K) [

receive Ĉ.T̂ .n1;

new AKey;

tgt := symenc AKey.Ĉ, kt→k
T,K ;

enckc := symenc AKey.n1.T̂ , k
c→k
C,K ;

send Ĉ.tgt.enckc;

]K

TGS = (T, K̂) [

receive tgt.encct.Ĉ.Ŝ.n2;

texttgt := symdec tgt, kt→k
T,K ;

match texttgt as AKey.Ĉ;

textct := symdec encct, AKey;

match textct as Ĉ;

new SKey;

st := symenc SKey.Ĉ, ks→t
S,T ;

enctc := symenc SKey.n2.Ŝ, AKey;

send Ĉ.st.enctc;

]T

Server = (S, T̂) [

receive st.enccs;

textst := symdec st, ks→t
S,T ;

match textst as SKey.Ĉ;

textcs := symdec enccs, SKey;

match textcs as Ĉ.t;

encsc := symenc t, SKey;

send encsc;

]S

Table 2. Formal description of Kerberos V5, with· · · stage boundary · · · comments.

3. Proof System for Secrecy Analysis

In this section, we extend PCL with new axioms and rules for establishing secrecy. Se-
crecy properties are formalized using theHas(X, s) predicate, which is used to express
that honest principal̂X has the information needed to compute the secrets. In a typ-
ical two party protocol,X̂ is one of two honest agents ands is a nonce generated by
one of them. As an intermediate step, we establish that all occurrences of the secret on

the network are protected by keys. This property can be proved by induction over pos-
sible actions by honest principals, showing that no action leaks the secret if it was not
compromised already.

We introduce the predicateSafeMsg(M, s,K) to assert that every occurrence of
s in messageM is protected by a key in the setK. Technically speaking, there is an
(n + 2)-ary predicateSafeMsgn(M, s,K) for eachn > 0, allowing the elements of set
K to be listed as arguments. However, we suppress this syntactic detail in this paper.
The semantic interpretation of this predicate is defined by induction on the structure of
messages. It is actually independent of the protocol and the run.

Definition 1 (SafeMsg)Given a runR of a protocolQ, we sayQ, R � SafeMsg(M, s,
K) if there exists ani such thatSafeMsgi(M, s, K) whereSafeMsgi is defined by induc-
tion oni as follows:

SafeMsg0(M, s,K) if M is an atomic term different froms

SafeMsg0(HASH(M), s,K) for anyM

SafeMsgi+1(M0.M1, s,K) if SafeMsgi(M0, s,K) andSafeMsgi(M1, s,K)

SafeMsgi+1(Esym[k](M), s,K) if SafeMsgi(M, s,K) or k ∈ K

SafeMsgi+i(Epk[k](M), s,K) if SafeMsgi(M, s,K) or k̄ ∈ K

The axiomsSAF0 to SAF5 below parallel the semantic clauses and follow immedi-
ately from them. Equivalences follow as the term algebra is free.

SAF0 ¬SafeMsg(s, s,K) ∧ SafeMsg(x, s,K),

wherex is an atomic term different froms

SAF1 SafeMsg(M0.M1, s,K) ≡ SafeMsg(M0, s,K) ∧ SafeMsg(M1, s,K)

SAF2 SafeMsg(Esym[k](M), s,K) ≡ SafeMsg(M, s,K) ∨ k ∈ K

SAF3 SafeMsg(Epk[k](M), s,K) ≡ SafeMsg(M, s,K) ∨ k̄ ∈ K

SAF4 SafeMsg(HASH(M), s,K)

The formulaSendsSafeMsg(X, s,K) states that all messages sent by threadX are “safe"
while SafeNet(s,K) asserts the same property for all threads. These predicates are defin-
able in the logic asSendsSafeMsg(X, s,K) ≡ ∀M.(Send(X,M) ⊃ SafeMsg(M, s,K))
andSafeNet(s,K) ≡ ∀X. SendsSafeMsg(X, s,K).

In secrecy proofs, we will explicitly assume that the thread generating the secret and
all threads with access to a relevant key belong to honest principals. This is semantically
necessary since a dishonest principal may reveal its key, destroying secrecy of any data
encrypted with it. These honesty assumptions are expressed by the formulasKeyHonest
andOrigHonest respectively.KOHonest is the conjunction of the two.

• KeyHonest(K) ≡ ∀X. ∀k ∈ K. (Has(X, k) ⊃ Honest(X̂))

• OrigHonest(s) ≡ ∀X. (New(X, s) ⊃ Honest(X̂)).
• KOHonest(s,K) ≡ KeyHonest(K) ∧ OrigHonest(s)

We now have the necessary technical machinery to state the induction rule. At a
high-level, theNET rule states that if each “possible protocol step"P locally sends
out safe messages, assuming all messages in the network were safe prior to that step,
then all messages on the network are safe. A possible protocol stepP is drawn from
the setBS of all basic sequences of roles of the protocol. The basic sequences of a role
arise from any partition of the actions in the role into subsequences, provided that if

any subsequence contains areceive action, then this is the first action of the basic
sequence.

NET ∀ρ ∈ Q.∀P ∈ BS(ρ).

SafeNet(s,K) [P]X Honest(X̂) ∧ Φ ⊃ SendsSafeMsg(X, s,K)
Q ` KOHonest(s,K) ∧ Φ ⊃ SafeNet(s,K)

(∗)

The side condition(∗) is: [P]A does not capture free variables inΦ andK and the variable
s. Φ should be prefix closed (explained in Section 3). TheNET rule is written as a rule
scheme, in a somewhat unusual form. When applied to a specific protocolQ, there is
one formula in the antecedent of the applicable rule instance for each roleρ ∈ Q and for
each basic sequenceP ∈ BS(ρ); see [11].

The axiomsNET0 to NET3 below are used to establish the antecedent of the
NET rule. Many practical security protocols consist of steps that each receive a mes-
sage, perform some operations, and then send a resulting message. The proof strategy in
such cases is to useNET1 to reason that messages received from a safe network are
safe and then use this information and theSAF axioms to prove that the output message
is also safe.

NET0 SafeNet(s,K) []X SendsSafeMsg(X, s,K)

NET1 SafeNet(s,K) [receive M]X SafeMsg(M, s,K)

NET2 SendsSafeMsg(X, s,K) [a]X SendsSafeMsg(X, s,K), wherea is not a send.

NET3 SendsSafeMsg(X, s,K) [send M]X SafeMsg(M, s,K) ⊃ SendsSafeMsg(X, s,K)

Finally, POS andPOSL are used to infer secrecy properties expressed using theHas
predicate. The axiomPOS states that if we have a safe network with respect tos and
key-setK then the only principals who can possess an unsafe message are the generator
of s or possessor of a key inK. ThePOSL rule lets a thread use a similar reasoning
locally.

POS SafeNet(s,K) ∧ Has(X,M) ∧ ¬SafeMsg(M, s,K)

⊃ ∃k ∈ K. Has(X, k) ∨ New(X, s)

POSL
ψ ∧ SafeNet(s,K) [S]X SendsSafeMsg(X, s,K) ∧ Has(Y,M) ∧ ¬SafeMsg(M, s,K)

ψ ∧ SafeNet(s,K) [S]X ∃k ∈ K. Has(Y, k) ∨ New(Y, s)
,

whereS is any basic sequence of actions.

Following are useful theorems which follow easily from the axioms.

SREC SafeNet(s,K) ∧ Receive(X,M) ⊃ SafeMsg(M, s,K)

SSND SafeNet(s,K) ∧ Send(X,M) ⊃ SafeMsg(M, s,K)

The collection of new axioms and rules are summarized in Appendix B. We writeΓ ` γ if
γ is provable from the formulas inΓ and any axiom or inference rule of the proof system,
except the honesty ruleHON from previous formulations of PCL (see Appendix A) and
the secrecy ruleNET. We writeQ ` γ if γ is provable from the axioms and inference
rules of the proof system including the rulesHON andNET for protocolQ.

In the following theorem and proof, the closurẽM of a setM of messages is the
least set containingM and closed under pairing, unpairing, encryption with any public

key or symmetric key, decryption with a private key or a symmetric key not inK, and
hashing.

Theorem 1 If M is a set of messages, all safe with respect to secrets and key-setK then
the closureM̃ contains only safe messages.

Proof. SinceM̃ is the minimal set satisfying the given conditions, any elementm ∈ M̃
can be constructed from elements inM using a finite sequence of the operations enu-
merated. From the semantics ofSafeMsg it is easily seen that all the operations preserve
safeness. Hence by induction, all the elements ofM̃ will be safe. �

Lemma 1 If a threadX possesses an unsafe message with respect to secrets and key-set
K then eitherX received an unsafe message earlier, orX generateds, or X possesses
a key inK.

Proof. Suppose threadX does not satisfy any of the conditions enumerated. Then all
the messages it initially knows and has received are safe messages. Since it does not
have a key inK, the list of operations in theorem 1 enumerates a superset of all the
operations it can do on this initial safe set (in the Dolev-Yao model). Hence, by theorem
1,X cannot compute any unsafe message. So it cannot possess an unsafe message – a
contradiction. �

Theorem 2 (Soundness)If Q ` γ, thenQ � γ. Furthermore, ifΓ ` γ, thenΓ � γ.

Proof. Soundness for this proof system is proved by induction on the length of proofs of
the axioms and rules. The most interesting cases are sketched below, after the following
definition.

A prefix closedformulaΦ is a formula such that if a runR of a protocolQ satisfies
Φ then any prefix ofR also satisfiesΦ. For example, the formula¬Send(X, t) is pre-
fix closed. This is because if in any runR, threadX has not sent the termt, it cannot
have sentt in any prefix ofR. In general, the negation of any action formula is prefix
closed. Another example is∀X. New(X, s) ⊃ X̂ = Â because this can be re-written as
∀X. ¬New(X, s) ∨ X̂ = Â which is a disjunction of the negation of an action formula
and an equality constraint.

NET : Consider a runR of protocolQ such that the consequent ofNET is false.
We will show that the antecedent is false too. We haveQ, R � KOHonest(s,K) ∧
Φ, but Q, R 2 SafeNet(s,K). This implies thatQ, R � ∃m,X. Send(X,m) ∧
¬SafeMsg(m, s,K). Note that there must be a first instance when an unsafe message is
sent out - letm̃ be the first such message. Hence, we can splitR intoR0.R1.R2 such that
Q, R0 � SafeNet(s,K) andR1 = 〈X sends m̃;Y receives m̃〉, for someY .

More formally, let us have:

1. Q, R � KOHonest(s,K) ∧ Φ
2. Q, R 2 SafeNet(s,K)

Condition 2 implies thatQ, R � ∃m,X. Send(X,m) ∧ ¬SafeMsg(m, s,K). Note that
there must be a first instance when an unsafe message is sent out - letm̃ be the first such
message. Hence, we can splitR intoR0.R1.R2 such that:

• Q, R0 � SafeNet(s,K)
• R1 = 〈([receive x;S′]Y | [send m̃;T ′]X −→ [S′(m̃/x)]Y | [T ′]X)〉

Since this is the first send of an unsafe message, thereforeX could not have received
an unsafe message earlier. Therefore, by the lemma, eitherX generateds or, X has a
key inK. In both cases,KOHonest(s,K) implies Honest(X̂). Therefore the fragment
[send m̃]X must be part of a sequence of actions[P]X such thatP is a basic sequence
of one of the roles inQ. That is,R = R′0.R

′
1.R

′
2 such thatR′0 is a prefix ofR0, P

matchesR′1|X with substituitionσ andR′2 is the rest ofR. So we have:

• P matchesR′1|X with substituitionσ
• Q, R′0 � SafeNet(s,K)
• Q, R′0.R′1 � Honest(X̂) ∧ Φ, sinceΦ is prefix closed.
• Q, R′0.R′1 2 SendsSafeMsg(X, s,K)

Hence, we have:Q, R 2 SafeNet(s,K)[P]XHonest(X̂)∧Φ ⊃ SendsSafeMsg(X, s,K),
thus violating the premise.

POS : SafeNet(s,K) implies no thread sent out an unsafe message in the run. Hence no
thread received an unsafe message. Therefore, by lemma 1, any threadX possessing an
unsafe message must have either generateds or possesses a key inK.

POSL : The premise of the rule informally states that starting from a “safe” network
and additional constraintsψ threadX concludes that some threadY possesses an unsafe
messageM in all possible runs of any protocol. Specifically this should be true for a run
where threadX executes the basic sequence[S]X uninterspersed with the actions of any
other thread except the receipt of messages sent byX. Now the premise implies thatX
only sends safe messages - also sinceS is a basic sequence, the only message thatX can
receive in[S]X will be only at its beginning, which, due to the starting “safe” network
precondition will be a safe message. Hence we can conclude that threadY possessed
an unsafe message beforeX started executing[S]X i.e., whenSafeNet(s,K) was true.
Therefore using axiomPOS we derive that threadY either generateds or possesses a
key inK, which establises the conclusion ofPOSL.

Formally, assume that the following formula is valid:

P : ψ∧SafeNet(s,K)[S]X SendsSafeMsg(X, s,K)∧Has(Y,M)∧¬SafeMsg(M, s,K)

ConsiderR, an arbitrary run of the protocolQ such thatR = R0.R1.R2 and the follow-
ing conditions hold:

1. S matchesR1|X with substituitionσ.
2. Q, R0 |= σ(ψ ∧ SafeNet(s,K))

Therefore, from the validity ofP we have:

Q, R0.R1 |= σ(SendsSafeMsg(X, s,K) ∧ Has(Y,M) ∧ ¬SafeMsg(M, s,K))

Now, we construct a runR′1 ∼= σS, that is,R′1 has only actions of the threadX (any
send/receive byX is with a buffer chord). Since the conditions 1 and 2 still hold for the
runR′ = R0.R

′
1.R2, we have:

Q, R0.R
′
1 |= σ(SendsSafeMsg(X, s,K) ∧ Has(Y,M) ∧ ¬SafeMsg(M, s,K))

We have two cases here:Y = X or, Y 6= X. In the first case, sinceQ, R0 |=
σSafeNet(s,K) and[S]X can receive at most once - just afterR0, therefore, if threadX
possesses an unsafe message thenσ(∃k ∈ K. Has(X, k) ∨ New(X, s)) - and this fact
cannot be altered by further actions ofX.

In the second case, we observe thatR′1 does not contain the action of any thread
other thanX, excepting receipt of the messages sent byX, which are safe anyway.
Therefore,Q, R0 |= σ(Has(Y,M) ∧ ¬SafeMsg(M, s,K)). From this, condition 2 and
POS we have:Q, R0 |= σ(∃k ∈ K. Has(Y, k) ∨ New(Y, s)). Again, further actions by
any thread afterR0 cannot alter this fact. Therefore,Q, R0.R1 |= σ(∃k ∈ K.Has(Y, k)∨
New(Y, s)).

Hence, for all runsR the following formula holds:

Q, R |= ψ ∧ SafeNet(s,K) [S]X ∃k ∈ K. Has(Y, k) ∨ New(Y, s)

�

4. Analysis of a variant of NSL

In this section we use the proof system developed in section 3 to prove a secrecy prop-
erty of a simple variantNSLV AR of the Needham-Schroeder-Lowe protocol, proposed
in [16], in which partiesA andB use an authenticated temporary secretna to establish a
secret keyk that is in turn used to protect the actual messagem. The main difference from
the original NSL protocol is that the initiator’s nonce is leaked in the final message. Rea-
soning fromA’s point of view, noncena should be secret betweenA andB at the point
of the run in the protocol whereA is just about to send the last message. This protocol
was originally used to demonstrate a limitation of the original rank function method in
reasoning about temporary secrets. Modal formulas in PCL allow us to naturally express
and prove properties that hold at intermediate points of a protocol execution.

Formally,NSLV AR is a protocol defined by roles{Init,Resp}, with the roles,
written using the protocol program notation, given in Figure 3.

Theorem 3 Let ˜Init denote the initial segment of the initiator’s role ending just before
the last send action. The noncena is a shared secret betweenA andB in every state of
the protocol whereA has executed˜Init and no further actions, as long as botĥA andB̂
are honest. Formally,

NSLV AR ` [˜Init]A Honest(Â) ∧ Honest(B̂) ⊃ (Has(X,na) ⊃ X̂ = Â ∨ X̂ = B̂)

Proof Sketch.To prove the secrecy property, we start off by proving an authentication
property[˜Init]A Honest(Â) ∧ Honest(B̂) ⊃ Φ, whereΦ is the conjunction of the fol-
lowing formulas:

Init = (A, B̂,m) [

new na;

encr1 := pkenc Â.na, B̂;

send encr1;

receive enci;

texti := pkdec enci, Â;

match texti as na.B̂.k;

encr2 := symenc m, k;

send encr2.na;

]A

Resp = (B) [

receive encr1;

textr1 := pkdec encr1, B̂;

match textr1 as Â.na;

new k;

enci := pkenc na.B̂.k, Â;

send enci;

receive encr2.na;

m := symdec encr2, k;

]B

Table 3. Formal description ofNSLVAR

Φ1 : ∀X, Ŷ . New(X,na) ∧ PkEnc(X, X̂.na, Ŷ) ⊃ Ŷ = B̂

Φ2 : ∀X, Ŷ , n. New(X,na) ⊃ ¬PkEnc(X,n.X̂.na, Ŷ)

Φ3 : ∀X, e. New(X,na) ⊃ ¬Send(X, e.na)

Φ4 : Honest(X̂) ∧ Send(X, e.n) ⊃ New(X,n)

Φ5 : Honest(X̂) ∧ PkEnc(X, X̂′.n, Ŷ) ⊃ X̂′ = X̂

Informally, Φ1 andΦ2 hold because from the threadA’s point of view it is known that it
itself generated the noncena and did not send it out encrypted with any other principal’s
public key exceptB̂’s and that too in a specific format described by the protocol.Φ3

holds because we are considering a state in the protocol execution whereA has not yet
sent the last message - sending of the last message will makeSend(A, e.na) true with
e = Esym[k](m). These intuitive explanations can be formalized using a previously
developed fragment of PCL but we will omit those steps in this paper.Φ4 andΦ5 follow
from a straightforward use of the honesty rule.

In the next step we prove the antecedents of theNET rule. We takeK =
{k̄A, k̄B} where the bar indicates private key which makesKeyHon(K) ≡ Honest(Â) ∧
Honest(B̂). In addition, since threadA generatesna, thereforeKOHonest(na,K) ≡
Honest(Â) ∧ Honest(B̂). We show that all basic sequence of the protocol send
“safe” messages, assuming that formulaΦ holds and that the predicateSafeNet holds
at the beginning of that basic sequence. Formally, for every basic sequenceP ∈
{Init1, Init2,Resp1,Resp2} we prove that:

SafeNet(na,K)[P]A′ Honest(Â′) ∧ Φ ⊃ SendsSafeMsg(A′, na,K)

[˜Init]A New(A,na) (1)

(−1),N1 [˜Init]A New(X,na) ⊃ X = A (2)

Start(A)[]A ¬PkEnc(A, Â.na, Ŷ) ∨ Ŷ = B̂ (3)

¬PkEnc(A, Â.na, Ŷ) ∨ Ŷ = B̂ [new na;]A ¬PkEnc(A, Â.na, Ŷ) ∨ Ŷ = B̂ (4)

> [encr1 := pkenc Â.na, B̂;]A PkEnc(A, Â.na, B̂) (5)

¬PkEnc(A, Â.na, Ŷ) ∨ Ŷ = B̂ [send encr1;

receive enci;

texti := pkdec enci, Â;

match texti as na.B̂.k;

encr2 := symenc m, k;]A ¬PkEnc(A, Â.na, Ŷ) ∨ Ŷ = B̂ (6)

[˜Init]A PkEnc(A, Â.na, Ŷ) ⊃ Ŷ = B̂ (7)

(−1) [˜Init]A Φ1 (8)

Table 4. Formal proof of[˜Init]A Φ1

The formal proof is done in Appendix C. The variables used in the basic sequence
we are inducting over are consistently primed so that we do not capture variables inΦ, na

orK. Finally, we use theNET rule andPOS axiom to show thatna is a shared secret
betweenA andB at a state whereA has just finished executing̃Init. �

5. Compositional Reasoning for Secrecy

In this section, we present composition theorems that allow secrecy proofs of compound
protocols to be built up from proofs of their parts. An application of this method to
the Kerberos protocol is given in the next section. We consider three kinds of com-
position operations on protocols—parallel, sequential, and staged—as in our earlier
work [10,15]. However, adapting that approach for reasoning about secrecy requires new
insights. One central concept in our compositional proof methods is the notion of an
invariant. An invariant for a protocol is a logical formula that characterizes the envi-
ronment in which it retains its security properties. While in previous work we had one
rule for establishing invariants (theHON rule [10]), reasoning about secrecy requires,
in addition, theNET rule introduced in this paper. A second point of difference arises
from the fact that reasoning about secrecy requires a certain degree of global knowledge.
Specifically, while proving that a protocol step does not violate secrecy, it is sometimes
necessary to use information from earlier steps. In the technical presentation, this history
information shows up as preconditions in the secrecy induction of the sequential and
staged composition theorems.

Definition 2 (Parallel Composition) The parallel compositionQ1 | Q2 of protocolsQ1

andQ2 is the union of the sets of roles ofQ1 andQ2.

The parallel composition operation allows modelling agents who simultaneously
engage in sessions of multiple protocols. The parallel composition theorem provides a
method for ensuring that security properties established independently for the constituent
protocols are still preserved in such a situation.

Theorem 4 (Parallel Composition) If Q1 ` Γ andΓ ` Ψ andQ2 ` Γ thenQ1 | Q2 `
Ψ, whereΓ denotes the set of invariants used in the proof ofΨ.

One way to understand the parallel composition theorem is to visualize the proof
tree forΨ for protocolQ1 in red and green colors. The steps which use the invariant
rules are colored red and correspond to the partQ1 ` Γ, while all other proof steps are
colored green and correspond to the partΓ ` Ψ. While composing protocols, all green
steps are obviously preserved since they involve proof rules which hold for all protocols.
The red steps could possibly be violated because ofQ2. For example, one invariant may
state that honest principals only sign messages of a certain form, whileQ2 may allow
agents to sign other forms of messages. The conditionQ2 ` Γ ensures that this is not the
case, i.e., the red steps still apply for the composed protocol.

Definition 3 (Sequential Composition)A protocolQ is a sequential composition of two
protocolsQ1 andQ2, if each role ofQ is obtained by the sequential composition of a
role ofQ1 with a role ofQ2.

In practice, key exchange is usually followed by a secure message transmission pro-
tocol which uses the resulting shared key to protect data. Sequential composition is used
to model such compound protocols. Formally, the composed roleP1;P2 is obtained by
concatenating the actions ofP1 andP2 with the output parameters ofP1 substituted for
the input parameters ofP2 (cf. [10]).

Theorem 5 (Sequential Composition)If Q is a sequential composition of protocolsQ1

andQ2 then we can concludeQ ` KOHonest(s,K)∧Φ ⊃ SafeNet(s,K) if the following
conditions hold for allP1;P2 in Q, whereP1 ∈ Q1 andP2 ∈ Q2:

1. (Secrecy induction)

• ∀i.∀S ∈ BS(Pi). θPi
∧ SafeNet(s,K) [S]X Honest(X̂) ∧ Φ ⊃ SendsSafeMsg(X, s,K)

2. (Precondition induction)

• Q1 | Q2 ` Start(X) ⊃ θP1 andQ1 | Q2 ` θP1 [P1]X θP2
• ∀i.∀S ∈ BS(Pi). θPi

[S]X θPi
.

The final conclusion of the theorem is a statement that secrecy ofs is preserved
in the composed protocol. The secrecy induction is very similar to theNET rule. It
states that all basic sequences of the two roles only send out safe messages. This step is
compositional since the condition is proved independently for steps of the two protocols.
One point of difference from theNET rule is the additional preconditionθPi . This
formula usually carries some information about the history of the execution, which helps
in deciding what messages are safe forA to send out. For example, ifθPi says thatA
received some messagem, then it is easy to establish thatm is a safe message forA to

send out again. The precondition induction proves that theθPi
’s hold at each point where

they are assumed in the secrecy induction. The first bullet states the base case of the
induction:θP1 holds at the beginning of the execution andθP2 holds whenP1 completes.
The second bullet states that the basic sequences ofP1 andP2 preserve their respective
preconditions.

Definition 4 (Staged Composition)A protocolQ is a staged composition of protocols
Q1,Q2, . . . ,Qn if each role ofQ is of the formRComp(〈R1, R2, . . . , Rn〉), whereRi

is a role of protocolQi.

Consider the representation of sequential composition ofn protocols as a directed
graph with edges fromQi to Qi+1. The staged composition operation extends sequen-
tial composition by allowing self loops and arbitrary backward arcs in this chain. This
control flow structure is common in practice, e.g., Kerberos [17], IEEE 802.11i [1], and
IKEv2 [6]. A role in this composition, denotedRComp(〈...〉) corresponds to a possible
execution path in the control flow graph by a single thread (cf. [15]). Note that the roles
are built up from a finite number of basic sequences of the component protocol roles.

Theorem 6 (Staged Composition)If Q is a staged composition of protocolsQ1, Q2,
· · · , Qn then we can concludeQ ` KOHonest(s,K) ∧ Φ ⊃ SafeNet(s,K) if for all
RComp(〈P1, P2, · · · , Pn〉) ∈ Q:

1. (Secrecy induction)

• ∀i.∀S ∈ BS(Pi). θPi
∧ SafeNet(s,K) [S]X Honest(X̂) ∧ Φ ⊃ SendsSafeMsg(X, s,K)

2. (Precondition induction)

• Q1 | Q2 · · · | Qn ` Start(X) ⊃ θP1 andQ1 | Q2 · · · | Qn ` ∀i. θPi
[Pi]X θPi+1

• ∀i.∀S ∈
S

j≥i BS(Pj). θPi
[S]X θPi

.

The secrecy induction for staged composition is the same as for sequential compo-
sition. However, the precondition induction requires additional conditions to account for
the control flows corresponding to backward arcs in the graph. The technical distinction
surfaces in the second bullet of the precondition induction. It states that preconditionθPi

should also be preserved by basic sequences of all higher numbered components, i.e.,
components from which there could be backward arcs to the beginning ofPi.

6. Analysis of Kerberos V5

In this section we analyze Kerberos V5, which was described in section 2. The security
properties of Kerberos that we prove are listed in table 5. We abbreviate the honesty
assumptions by definingHon(X̂1, · · · , X̂n) ≡ Honest(X̂1) ∧ · · ·Honest(X̂n). The se-
curity objectives are of two types: authentication and secrecy. The authentication objec-
tives take the form that a message of a certain format was indeed sent by some thread
of the expected principal. The secrecy objectives take the form that a putative secret is
known only to certain principals. For example,AUTHclient

kas states that when the thread
C finishes executing theClient role, some thread of̂K (the KAS) indeed sent the ex-
pected message;SECclient

akey states that the authorization key is secret after execution of
theClient role byC; the other security properties are analogous.

SECakey : Hon(Ĉ, K̂, T̂) ⊃ (Has(X,AKey) ⊃ X̂ ∈ {Ĉ, K̂, T̂})

SECskey : Hon(Ĉ, K̂, T̂ , Ŝ) ⊃ (Has(X,SKey) ⊃ X̂ ∈ {Ĉ, K̂, T̂ , Ŝ})

AUTHkas : ∃η. Send((K̂, η), Ĉ.Esym[kt→k
T,K](AKey.Ĉ).Esym[kc→k

C,K](AKey.n1.T̂))

AUTHtgs : ∃η. Send((T̂ , η), Ĉ.Esym[ks→t
S,T](SKey.Ĉ).Esym[AKey](SKey.n2.Ŝ))

SECclient
akey : [Client]C SECakey AUTHclient

kas : [Client]C Hon(Ĉ, K̂) ⊃ AUTHkas

SECkas
akey : [KAS]K SECakey AUTHtgs

kas : [TGS]T Hon(T̂ , K̂) ⊃ ∃n1. AUTHkas

SECtgs
akey : [TGS]T SECakey

AUTHclient
tgs : [Client]C Hon(Ĉ, K̂, T̂) ⊃ AUTHtgs

SECclient
skey : [Client]C SECskey AUTHserver

tgs : [Server]S Hon(Ŝ, T̂)

SECtgs
skey : [TGS]T SECskey ⊃ ∃n2, AKey. AUTHtgs

Table 5. Kerberos Security Properties

Theorem 7 (KAS Authentication) On execution of theClient role by a principal it is
guaranteed that the intended KAS indeed sent expected response assuming that the both
the client and the KAS are honest. Similar result holds for a principal executing theTGS
role. Formally, KERBEROS̀ AUTHclient

kas , AUTHtgs
kas

Proof Sketch.In the course of executing theClient role, principalĈ receives a message
containing the encrypted termEsym[kc→k

C,K](AKey.n1.T̂). Using axiomENC4, we de-

rive that this message was encrypted by one of the owners ofkc→k
C,K , which is eitherĈ

or K̂. Then, by using the ruleHON we establish that no thread of̂C does this unless
Ĉ = K̂, and so this must be some thread ofK̂. Once again we use theHON rule to
reason that if an honest thread encrypts a message of this form then it also sends out a
message of the form described inAUTHkas. The proof ofAUTHtgs

kas is along identical
lines. In Appendix D.2, we first give atemplateproof for the underlying reasoning and
then instantiate it for bothAUTHclient

kas andAUTHtgs
kas. �

Theorem 8 (Authentication Key Secrecy)On execution of theClient role by a prin-
cipal, secrecy of the Authentication Key is preserved assuming that the client, the KAS
and the TGS are all honest. Similar results hold for principals executing theKAS and
TGS roles. Formally, KERBEROS̀ SECclient

akey , SECkas
akey, SEC

tgs
akey

Proof Sketch.In Appendix D.3 we formally prove the secrecy of the session keyAKey
with respect to the key-setK = {kc→k

C,K , k
t→k
T,K }. The proof is modular and broadly, there

are two stages to the proof:

1. In the first stage we assume certain conditions, denotedΦ, and the honesty of
principalsĈ, K̂ andT̂ and prove that this impliesSafeNet(AKey,K). The proof
of this part uses the Staged Composition Theorem. The components of this proof
are:

• secrecy induction - we will describe this shortly.

• precondition induction - in case ofKERBEROSmost basic sequences do not
need any precondition to facilitate the secrecy induction. For two of the basic
sequences in the Client program, the preconditions are simply of the form that
a certain message was received. Since receiving a message is a monotonic
property, that is - once it is true it is always true thereafter - the precondition
induction goes through simply.

2. In the second stage we prove that execution of theClient,KAS or theTGS
roles discharge the assumptionsΦ. These proofs are derived from the authentica-
tion propertiesAUTHclient

kas , AUTHtgs
kas. Now we combine the two derivations,

use thePOS axiom and concludeSECclient
akey , SECkas

akey andSECtgs
akey.

As the form of the secrecy induction suggests, we do an induction over all the basic
sequences ofKERBEROS. Broadly, the induction uses a combination of the following
types of reasoning:

- The secrecy axioms enumerated in the proof system section. The structure of Ker-
beros suggests that in many of the basic sequences the messages being sent out are func-
tions of messages received. A key strategy here is to useNET1 and the safe network
hypothesis to derive that the message received is safe and then proceed to prove that the
messages being sent out are also safe. Consider as an example the sequence of actions
by an application server thread[Server]S′ : S′ receives a messageEsym[SKey′](Ĉ ′.t′)
and sends out a messageEsym[SKey′](t′). It is provable, just by using theSAF axioms
that the later message is safe if the former message is safe.

- Derivations fromΦ: The structure ofΦ is dictated by the structure of the basic
sequences we are inducing over. A practical proof strategy is starting the induction with-
out figuring out aΦ at the outset and construct parts of theΦ as we do induction over
an individual basic sequence. In case ofKERBEROS, these parts are formulae that state
that the generating thread of the putative secretAKey did not perform certain types of
action onAKey or did it in a restricted form. The motivation for this structure of the
Φ parts is that many of the basic sequences generate new nonces and send them out un-
protected or protected under a set of keys different fromK. TheΦ parts tell us that this
is not the way the secret in consideration was sent out. For example consider one of the
partsΦ1 : ∀X,M. New(X,AKey) ⊃ ¬(Send(X,M) ∧ ContainsOpen(M,AKey)) -
this tells us that the generator ofAKey did not send it out unprotected in the open.

- Derivations from theθ’s, that is, the preconditions. These are conditions which
are true at the beginning of the basic sequence we are inducing over with respect to the
staged control flow thatKERBEROSexhibits. As before, a practical proof strategy is to
find out what precondition we need for the secrecy induction and do the precondition
induction part afterwards. Consider for example the end of the first stage of the client
thread[Client]C′ . We know that at the beginning of the second stage the following
formula always holds -θ : Receive(Ĉ ′, tgt′.Esym[kc→k

C′,K′](AKey′.n′1.T̂ ′)). The reason
this information is necessary is that the second stage sends outtgt′ in the open - in order
to reason that this send is safe, given the safe network hypothesis at the beginning of the
second stage, we use the precondition and the theoremSREC to derive thattgt′ was
safe to begin with. �

Theorem 9 (TGS Authentication) On execution of theClient role by a principal it is
guaranteed that the intended TGS indeed sent the expected response assuming that the

client, the KAS and the TGS are all honest. Similar result holds for a principal executing
theServer role. Formally, KERBEROS̀ AUTHclient

tgs , AUTHserver
tgs

Proof Sketch.The proof ofAUTHserver
tgs can be instantiated from thetemplateproof

for theorem 7 and is formally done in Appendix D.2. The proof ofAUTHclient
tgs uses the

secrecy propertySECclient
akey established in theorem 8 and is formally done in Appendix

D.4. At a high level, the client reasons that sinceAKey is known only toĈ, K̂ andT̂ ,
the termEsym[AKey](SKey.n2.Ŝ) - which it receives during the protocol execution
- could only have been computed by one of them. Some non-trivial technical effort is
required to prove that this encryption was indeed done by a thread ofT̂ and not by
any thread ofĈ or K̂, which could have been the case ife.g., there existed a reflection
attack. After showing that it was indeed a thread ofT̂ who encrypted the term, we use
the honesty rule to show that it indeed sent the expected response toC ’s message. �

Theorem 10 (Service Key Secrecy)On execution of theClient role by a principal,
secrecy of the Service Key is preserved assuming that the client, the KAS, the TGS and
the application server are all honest. Similar result holds for a principal executing the
TGS role. Formally, KERBEROS̀ SECclient

skey , SECtgs
skey

Proof Sketch.The idea here is that the Service KeySKey is protected by the key-set
{ks→t

S,T , AKey}. The proof of this theorem being very similar to the proof of theorem 8
is omitted from this paper. �

Kerberos with PKINIT

We prove theorems for Kerberos with PKINIT [22] that are analogous to theorems 7-10
and are listed in Table 6. The proofs are omitted due to space constraints. In the first
stage of Kerberos with PKINIT, the KAS establishes the authorization key encrypted
with a symmetric key which in turn is sent to the client encrypted with its public key.
For clientĈ and KASK̂ let us denote this symmetric key bykpkinit

C,K . Since the structure
of the rest of the protocol remains the same with respect to the level of formalization
in this paper [7], we can take advantage of the PCL proofs for the symmetric key ver-
sion. In particular, the proofs for the properties of Kerberos with PKINIT analogous to
AUTHtgs

kas, AUTH
client
tgs andAUTHserver

tgs are identical in structure to the symmetric
key version. The proof of the property corresponding toAUTHclient

kas is different because
of the differing message formats in the first stage. There is an additional step of proving
the secrecy ofkpkinit

C,K , after which the secrecy proofs ofAKey andSKey are reused
with only the induction over the first stage of the client and the KAS being redone.

7. Related Work

Some secrecy proofs using the CSP [20] or strand space [21] protocol execution model
use inductive arguments that are similar to the form of inductive reasoning codified in
our formal system. For example, within CSP, properties of messages that may appear on
the network have been identified by defining arank function[20,16], with an inductive
proof used to show that rank is preserved by the attacker actions and all honest parties.

SECk : Hon(Ĉ, K̂) ⊃ (GoodKeyAgainst(X, k) ∨ X̂ ∈ {Ĉ, K̂})

SECakey : Hon(Ĉ, K̂, T̂) ⊃ (GoodKeyAgainst(X,AKey) ∨ X̂ ∈ {Ĉ, K̂, T̂})

SECskey : Hon(Ĉ, K̂, T̂ , Ŝ) ⊃ (GoodKeyAgainst(X,SKey) ∨ X̂ ∈ {Ĉ, K̂, T̂ , Ŝ})

AUTHkas : ∃η. Send((K̂, η), Epk[pkC](CertK .SIG[skK](k.ck)).

Ĉ.Esym[kt→k
T,K](AKey.Ĉ).Esym[k](AKey.n1.tK .T̂))

AUTHtgs : ∃η. Send((T̂ , η), Ĉ.Esym[ks→t
S,T](SKey.Ĉ).Esym[AKey](SKey.n2.Ŝ))

SECclient
k : [Client]C SECk SECkas

k : [KAS]K SECk

SECclient
akey : [Client]C SECakey AUTHclient

kas : [Client]C Hon(Ĉ, K̂) ⊃ AUTHkas

SECkas
akey : [KAS]K SECakey AUTHtgs

kas : [TGS]T Hon(T̂ , K̂)

SECtgs
akey : [TGS]T SECakey ⊃ ∃n1, k, ck, tK . AUTHkas

AUTHclient
tgs : [Client]C Hon(Ĉ, K̂, T̂) ⊃ AUTHtgs

SECclient
skey : [Client]C SECskey AUTHserver

tgs : [Server]S Hon(Ŝ, T̂)

SECtgs
skey : [TGS]T SECskey ⊃ ∃n2, AKey. AUTHtgs

Table 6. PKINIT Security Properties

In comparison, arguments in our formal logic use a conjunction involving theSafeNet
predicate and protocol specific propertiesΦ in our inductive hypotheses. These two for-
mulas together characterize the set of possible messages appearing on the network and
can be viewed as a symbolic definition of a rank function. We believe that our method is
as powerful as the rank function method for any property expressible in our logic. How-
ever, it is difficult to prove a precise connection without first casting the rank function
method in a formal setting that relies on a specific class of message predicates.

One drawback of the rank functions approach is that the induction is performed
by “global” reasoning – trying to capture all possible properties of the system at once.
This makes the method less applicable since it cannot handle protocols which deal with
temporary secrets or use authentication to ensure secrecy properties. Although some of
these issues can be resolved by extensions of the rank function method [13,12], we expect
that the tools available in PCL are more general and may be better suited for application
to real-world protocols.

Our composition theorems allow us to use a divide-and-conquer approach for com-
plex protocols with different parts serving different purposes. By varying the precon-
ditions of the secrecy induction in the staged composition theorem, we are essentially
modifying the rank function as we shift our attention from one protocol stage to the
other.

Because of its widespread deployment and relative complexity, Kerberos has been
the subject of several logical studies. Bella and Paulson use automated theorem proving
techniques to reason explicitly about properties of Kerberos that hold in all traces con-

taining actions of honest parties and a malicious attacker [3]. Our high-level axiomatic
proofs are significantly more concise since we do not require explicit reasoning about
attacker actions. Another line of work uses a multiset rewriting model [4,2] to develop
proofs in the symbolic and computational model. However, proofs in these papers use
unformalized (though rigorous) mathematical arguments and are not modular.

8. Conclusion

We present formal axioms and proof rules for inductive reasoning about secrecy and
prove soundness of this system over a conventional symbolic model of protocol execu-
tion. The proof system uses asafe messagepredicate to express that any secret conveyed
by the message is protected by a key from a chosen list. This predicate allows us to de-
fine two additional concepts: a principalsends safe messagesif every message it sends
is safe, and thenetwork is safeif every message sent by every principal is safe.

Our main inductive rule for secrecy,NET, states that if every honest principal pre-
serves safety of the network, then the network is safe, assuming that only honest princi-
pals have access to keys in the chosen list. The remainder of the system makes it possible
to discharge assumptions used in the proof, and prove (when appropriate) that only hon-
est principals have the chosen keys. While it might initially seem that network safety de-
pends on the actions of malicious agents, a fundamental advantage of Protocol Compo-
sition Logic is that proofs only involve induction over protocol steps executed by honest
parties.

We illustrate the expressiveness of the logic presented in this paper by proving prop-
erties of two protocols, a variant of the Needham-Schroeder protocol that illustrates the
ability to reason about temporary secrets, and Kerberos. The modular nature of the se-
crecy and authentication proofs for Kerberos makes it possible to reuse proofs about the
basic version of the protocol for the PKINIT version that uses public-key infrastructure
instead of shared secret keys in the initial steps. Compositional secrecy proofs are made
possible by the composition theorems developed in section 5 of this paper.

We have also developed a proof system for secrecy analysis that is sound over a
“computational" protocol execution model which involves probabilistic polynomial-time
computation [19]. The proofs of Kerberos security properties in the computationally
sound logic turn out to be syntactically analogous to the symbolic version described in
this paper. However, the proofs for NSL and variants are not entirely analogous to the
symbolic versions. Specifically, these proofs involve axioms capturing some subtle ways
in which cryptographic reduction proofs work which do not seem to have a direct corre-
spondence with the symbolic way of interpreting the cryptographic primitives.

References

[1] IEEE P802.11i/D10.0. Medium Access Control (MAC) security enhancements, amendment 6 to IEEE
Standard for local and metropolitan area networks part 11: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) specifications., April 2004.

[2] M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Cryptographically sound security
proofs for basic and public-key kerberos. InProceedings of 11th European Symposium on Research in
Computer Security, 2006. To appear.

[3] G. Bella and L. C. Paulson. Kerberos version IV: Inductive analysis of the secrecy goals. In J.-J.
Quisquater, editor,Proceedings of the 5th European Symposium on Research in Computer Security,
pages 361–375, Louvain-la-Neuve, Belgium, Sept. 1998. Springer-Verlag LNCS 1485.

[4] F. Butler, I. Cervesato, A. D. Jaggard, and A. Scedrov. A Formal Analysis of Some Properties of
Kerberos 5 Using MSR. InFifteenth Computer Security Foundations Workshop — CSFW-15, pages
175–190, Cape Breton, NS, Canada, 24–26 June 2002. IEEE Computer Society Press.

[5] F. Butler, I. Cervesato, A. D. Jaggard, and A. Scedrov. Verifying confidentiality and authentication in
kerberos 5. InISSS, pages 1–24, 2003.

[6] E. C. Kaufman. Internet Key Exchange (IKEv2) Protocol, 2005. RFC.
[7] I. Cervesato, A. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad. Breaking and fixing public-key ker-

beros. Technical report.
[8] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system for security protocols and its

logical formalization. InProceedings of 16th IEEE Computer Security Foundations Workshop, pages
109–125. IEEE, 2003.

[9] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Secure protocol composition. InProceedings of 19th
Annual Conference on Mathematical Foundations of Programming Semantics, volume 83. Electronic
Notes in Theoretical Computer Science, 2004.

[10] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and compositional logic for
security protocols.Journal of Computer Security, 13:423–482, 2005.

[11] A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol Composition Logic (PCL).Electronic Notes in
Theoretical Computer Science, 172:311–358, 2007.

[12] R. Delicata and S. Schneider. Temporal rank functions for forward secrecy. In18th IEEE Computer
Security Foundations Workshop, (CSFW-18 2005), pages 126–139. IEEE Computer Society, 2005.

[13] R. Delicata and S. A. Schneider. Towards the rank function verification of protocols that use temporary
secrets. InProceedings of the Workshop on Issues in the Theory of Security: WITS ’04, 2004.

[14] N. Durgin, J. C. Mitchell, and D. Pavlovic. A compositional logic for protocol correctness. InProceed-
ings of 14th IEEE Computer Security Foundations Workshop, pages 241–255. IEEE, 2001.

[15] C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A modular correctness proof of ieee
802.11i and tls. InACM Conference on Computer and Communications Security, pages 2–15, 2005.

[16] J. Heather. Strand spaces and rank functions: More than distant cousins. InProceedings of the 15th
IEEE Computer Security Foundations Workshop (CSFW’02), page 104, 2002.

[17] J. Kohl and B. Neuman. The kerberos network authentication service, 1991. RFC.
[18] Z. Manna and A. Pnueli.Temporal verification of reactive systems: safety. Springer-Verlag New York,

Inc., New York, NY, USA, 1995.
[19] A. Roy, A. Datta, A. Derek, and J. Mitchell. Inductive proofs of computational secrecy. InProc. 12th

European Symposium On Research In Computer Security, 2007.
[20] S. Schneider. Verifying authentication protocols with csp.IEEE Transactions on Software Engineering,

pages 741–58, 1998.
[21] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security protocols correct.Journal

of Computer Security, 7(1), 1999.
[22] L. Zhu and B. Tung. Public key cryptography for initial authentication in kerberos, 2006. Internet Draft.

A. Protocol Logic

A.1. Axioms and Inference Rules

A representative fragment of the axioms and inference rules in the proof system are
collected in Table 7. For expositional convenience, we divide the axioms into four groups.

The axioms about protocol actions state properties that hold in the state reached by
executing one of the actions in a state in which formulaφ holds. Note that thea in axiom
AA1 is any one of the actions anda is the corresponding predicate in the logic. Axiom
N1 states that two different threads cannot generate the same nonce while axiomAN2
states that if a thread generates a nonce and does nothing else, only that thread possesses
the nonce.

The possession axioms reflect a fragment of Dolev-Yao rules for constructing or
decomposing messages while the encryption axioms symbolically model encryption. The
generic rules are used for manipulating modal formulas.

A.2. The Honesty Rule

The honesty rule is essentially an invariance rule for proving properties of all roles of a
protocol. It is similar to the basic invariance rule of LTL [18]. The honesty rule is used
to combine facts about one role with inferred actions of other roles.

For example, suppose Alice receives a response from a message sent to Bob. Alice
may wish to use properties of Bob’s role to reason about how Bob generated his reply.
In order to do so, Alice may assume that Bob is honest and derive consequences from
this assumption. Since honesty, by definition in this framework, means “following one
or more roles of the protocol,” honest principals must satisfy every property that is a
provable invariant of the protocol roles. Using the notation just introduced, the honesty
rule may be written as follows.

[]X φ ∀ρ ∈ Q.∀PεBS(ρ). φ [P]X φ

Q ` Honest(X̂) ⊃ φ
HON

no free variable
in φ exceptX
bound in[P]X

In words, ifφ holds at the beginning of every role ofQ and is preserved by all its
basic sequences, then every honest principal executing protocolQ must satisfyφ. The
side condition prevents free variables in the conclusionHonest(X̂) ⊃ φ from becoming
bound in any hypothesis. Intuitively, sinceφ holds in the initial state and is preserved by
all basic sequences, it holds at all pausing states of any run.

Axioms for protocol actions

AA1 φ[a]X a

AA2 Start(X)[]X ¬a(X)

AA3 ¬Send(X, t)[b]X¬Send(X, t) if σSend(X, t) 6= σb for all substitutionsσ

AN2 φ[new x]X Has(Y, x) ⊃ (Y = X)

ARP Receive(X, p(x))[match q(x) as q(t)]X Receive(X, p(t))

P1 Persist(X, t)[a]X Persist(X, t) , for Persist ∈ {Has, Send,Receive}

N1 New(X,n) ∧ New(Y, n) ⊃ X = Y

Possession Axioms

ORIG New(X,x) ⊃ Has(X,x) TUP Has(X,x) ∧ Has(X, y) ⊃ Has(X,x.y)

REC Receive(X,x) ⊃ Has(X,x) PROJ Has(X,x.y) ⊃ Has(X,x) ∧ Has(X, y)

Encryption Axioms

Let Enc ∈ {SymEnc,PkEnc},Dec ∈ {SymDec,PkDec} in the following:

ENC0 [m′ := enc m, k;]X Enc(X,m, k)

ENC1 Start(X) []X ¬Enc(X,m, k)

ENC2 π(X,m, k) [a]X π(X,m, k), for π ∈ {Enc,¬Enc}

where, either a6= enc · · · or, a= (p := enc k′, q), such that(q, k′) 6= (m, k)

ENC3 Enc(X,m, k) ⊃ Has(X, k) ∧ Has(X,m)

ENC4 SymDec(X,E[k](m), k) ⊃ ∃Y. SymEnc(Y,m, k)

PENC4 PkDec(X,E[k](m), k̄) ⊃ ∃Y. PkEnc(Y,m, k)

Generic Rules

θ[P]Xφ θ[P]Xψ
θ[P]Xφ ∧ ψ

G1
θ′ ⊃ θ θ[P]Xφ φ ⊃ φ′

θ′[P]Xφ
′ G2

φ
θ[P]Xφ

G3

Table 7. Fragment of the Proof System

B. New Definitions, Axioms and Rules for Secrecy

SendsSafeMsg(X, s,K) ≡ ∀M. (Send(X,M) ⊃ SafeMsg(M, s,K))

SafeNet(s,K) ≡ ∀X. SendsSafeMsg(X, s,K)

KeyHonest(K) ≡ ∀X. ∀k ∈ K. (Has(X, k) ⊃ Honest(X̂))

OrigHonest(s) ≡ ∀X. (New(X, s) ⊃ Honest(X̂))

KOHonest(s,K) ≡ KeyHonest(K) ∧ OrigHonest(s)

SAF0 ¬SafeMsg(s, s,K) ∧ SafeMsg(x, s,K),

wherex is an atomic term different froms

SAF1 SafeMsg(M0.M1, s,K) ≡ SafeMsg(M0, s,K) ∧ SafeMsg(M1, s,K)

SAF2 SafeMsg(Esym[k](M), s,K) ≡ SafeMsg(M, s,K) ∨ k ∈ K

SAF3 SafeMsg(Epk[k](M), s,K) ≡ SafeMsg(M, s,K) ∨ k̄ ∈ K

SAF4 SafeMsg(HASH(M), s,K)

NET ∀ρ ∈ Q.∀P ∈ BS(ρ).

SafeNet(s,K) [P]X Honest(X̂) ∧ Φ ⊃ SendsSafeMsg(X, s,K)
Q ` KOHonest(s,K) ∧ Φ ⊃ SafeNet(s,K)

(∗)

(∗): [P]A does not capture free variables inΦ,K, s, andΦ is prefix closed.

NET0 SafeNet(s,K) []X SendsSafeMsg(X, s,K)

NET1 SafeNet(s,K) [receive M]X SafeMsg(M, s,K)

NET2 SendsSafeMsg(X, s,K) [a]X SendsSafeMsg(X, s,K), wherea is not a send.

NET3 SendsSafeMsg(X, s,K) [send M]X SafeMsg(M, s,K) ⊃ SendsSafeMsg(X, s,K)

POS SafeNet(s,K) ∧ Has(X,M) ∧ ¬SafeMsg(M, s,K)

⊃ ∃k ∈ K. Has(X, k) ∨ New(X, s)

POSL
ψ ∧ SafeNet(s,K) [S]X SendsSafeMsg(X, s,K) ∧ Has(Y,M) ∧ ¬SafeMsg(M, s,K)

ψ ∧ SafeNet(s,K) [S]X ∃k ∈ K. Has(Y, k) ∨ New(Y, s)
,

whereS is any basic sequence of actions.

SREC SafeNet(s,K) ∧ Receive(X,M) ⊃ SafeMsg(M, s,K)

SSND SafeNet(s,K) ∧ Send(X,M) ⊃ SafeMsg(M, s,K)

C. PCL Proof of NSL Variant Secrecy

As in the theorem, ˜Init is the initial segment of theInit role excluding the last send
action. To prove the secrecy property, we start off by proving an authentication property
[˜Init]A Honest(Â) ∧ Honest(B̂) ⊃ Φ, whereΦ is the conjunction of the following
formulas:

Φ1 : ∀X, Ŷ . New(X,na) ∧ Send(X,Epk[kY](X̂.na)) ⊃ Ŷ = B̂

Φ2 : ∀X, Ŷ , n. New(X,na) ⊃ ¬Send(X,Epk[kY](n.X̂.na))

Φ3 : ∀X, e. New(X,na) ⊃ ¬Send(X, e.na)

Φ4 : Honest(X̂) ∧ Send(X,Esym[k0](m0).n) ⊃ New(X,n)

Φ5 : Honest(X̂) ∧ PkEnc(X, X̂′.n, Ŷ) ⊃ X̂′ = X̂

In the next step we prove the antecedents of theNET rule. We takeK =
{k̄A, k̄B} where the bar indicates private key which makesKeyHon(K) ≡ Honest(Â) ∧
Honest(B̂). In addition, since threadA generatesna, thereforeKOHonest(na,K) ≡
Honest(Â) ∧ Honest(B̂). We show that all basic sequence of the protocol send
“safe” messages, assuming that formulaΦ holds and that the predicateSafeNet holds
at the beginning of that basic sequence. Formally, for every basic sequenceP ∈
{Init1, Init2,Resp1,Resp2} we prove that:

SafeNet(na,K)[P]A′ Honest(Â′) ∧ Φ ⊃ SendsSafeMsg(A′, na,K)

The variables used in the basic sequence we are inducting over are consistently
primed so that we do not capture variables inΦ, na orK. Finally, we use theNET rule
andPOS axiom to show thatna is a shared secret betweenA andB at a state whereA
has just finished executing̃Init.

Let, [Init1]A′ : [new n′a;

enc′r1 := pkenc Â′.n′a, B̂
′;

send enc′r1;]A′

Case 1: n′a 6= na (1)

(1) [Init1]A′ SafeMsg(Epk[kB′](Â′.n′a), na,K) (2)

(2),NET∗ SafeNet(na,K)[Init1]A′ SendsSafeMsg(A′, na,K) (3)

Case 2: n′a = na (4)

[Init1]A′ New(A′, na) ∧ Send(A′, Epk[kB′](Â′.na)) (5)

Φ1 [Init1]A′ B̂′ = B̂ (6)

(6) [Init1]A′ SafeMsg(Epk[kB′](Â′.n′a), na,K) (7)

(7),NET∗ SafeNet(na,K)[Init1]A′ SendsSafeMsg(A′, na,K) (8)

Let, [Init2]A′ : [receive enc′i;

text′i := pkdec enc′i, Â
′;

match text′i as n′a.B̂
′.k′;

enc′r2 := symenc m′, k′;

send enc′r2.n
′
a;]A′

[Init2]A′ Send(A′, Esym[k′](m′).n′a) (9)

Φ4 Honest(X̂) ∧ Send(X,Esym[k0](m0).n) ⊃ New(X,n) (10)

(9), (10) [Init2]A′ New(A′, n′a) ∧ Send(A′, Esym[k′](m′).n′a) (11)

Φ3, (11) [Init2]A′ n′a 6= na (12)

SAF0, (12) [Init2]A′ SafeMsg(n′a, na,K) (13)

SAF0 [Init2]A′ SafeMsg(m′, na,K) (14)

SAF∗, (13), (14) [Init2]A′ SafeMsg(Esym[k′](m′).n′a, na,K) (15)

(15) SafeNet(na,K) [Init2]A′ SendsSafeMsg(A′, na,K) (16)

Let, [Resp1]B′ : [receive enc′r1;

text′r1 := pkdec enc′r1, B̂
′;

match text′r1 as Â′.n′a;

new k′;

enc′i := pkenc n′a.B̂
′.k′, Â′;

send enc′i;]B′

[Resp1]B′ New(B′, k′) ∧ Send(B′, Epk[kA′](n′a.B̂
′.k′)) (17)

Φ2, (17) [Resp1]B′ k′ 6= na (18)

Case 1: SafeMsg(n′a, na,K) (19)

SAF∗, (18) SafeMsg(Epk[kA′](n′a.B̂
′.k′), na,K) (20)

NET∗, (20) SafeNet(na,K) [Resp1]B′ SendsSafeMsg(B′, na,K) (21)

Case 2: ¬SafeMsg(n′a, na,K) (22)

ENC4 [receive enc′r1; match enc′r1 as Epk[kB′](Â′.n′a);]B′

∃X. PkEnc(X, Â′.n′a, B̂
′) (23)

InstX 7→ X0 [receive enc′r1; match enc′r1 as Epk[kB′](Â′.n′a);]B′

PkEnc(X0, Â′.n
′
a, B̂

′) (24)

(24) [receive enc′r1; match enc′r1 as Epk[kB′](Â′.n′a);]B′

Has(X0, n
′
a) (25)

NET∗, (25) SafeNet(na,K)

[receive enc′r1; match enc′r1 as Epk[kB′](Â′.n′a);]B′

SendsSafeMsg(B′, na,K) ∧ Has(X0, n
′
a) ∧ ¬SafeMsg(n′a, na,K) (26)

POSL, (26) SafeNet(na,K)

[receive enc′r1; match enc′r1 as Epk[kB′](Â′.n′a);]B′

∃k ∈ K. Has(X0, k) ∨ New(X0, na) (27)

(27) X̂0 = Â ∨ X̂0 = B̂ (28)

(28) Honest(X̂0) (29)

Φ5 Honest(X̂) ∧ PkEnc(X, X̂′.n, Ŷ) ⊃ X̂′ = X̂ (30)

(24), (28), SafeNet(na,K)

(29), (30) [receive enc′r1; match enc′r1 as Epk[kB′](Â′.n′a);]B′

Â′ = Â ∨ Â′ = B̂ (31)

SAF3, (31) SafeNet(na,K) [Resp1]B′ SafeMsg(Epk[kA′](n′a.B̂
′.k′), na,K) (32)

(32) SafeNet(na,K)[Resp1]B′SendsSafeMsg(B′, na,K) (33)

Let, [Resp2]B′ : [receive enc′r2.n
′
a;

m′ := symdec enc′r2, k
′;]B′

NET∗ SafeNet(na,K)[Resp2]B′SendsSafeMsg(B′, na,K) (34)

NET [˜Init]A Honest(Â) ∧ Honest(B̂) ⊃ SafeNet(na,K) (35)

POS, (35) [˜Init]A Honest(Â) ∧ Honest(B̂) ⊃ (Has(X,na) ⊃ X̂ = Â ∨ X̂ = B̂) (36)

D. Proof of Kerberos Security Properties

D.1. Environmental Assumptions

Long term symmetric keys possessed by pairs of honest principals are possessed by only
themselves.

Γ0 : ∀X,Y, Z, type. Hon(X̂, Ŷ) ∧ Has(Z, ktype
X,Y) ⊃ (Ẑ = X̂ ∨ Ẑ = Ŷ)

D.2. Proofs ofAUTHclient
kas , AUTHtgs

kas andAUTHserver
tgs

Below we give atemplateproof of [Role]X Hon(X̂, Ŷ) ⊃ ∃η. SymEnc((Ŷ , η),
M1, k

type
X,Y), whereRole receives the messageM0.Esym[ktype

X,Y](M1).M2.
Reference to equations by negative numbers is relative to the current equation -e.g.,

(-1) refers to the last equation. Reference by positive number indicates the actual number
of the equation.

[Role]X SymDec(X,Esym[ktype
X,Y](M1), ktype

X,Y) (1)

Hon(X̂, Ŷ),Γ0 [Role]X ∃η. SymEnc((X̂, η),M1, k
type
X,Y)

ENC4, (−1) ∨ ∃η. SymEnc((Ŷ , η),M1, k
type
X,Y) (2)

Case 1: X̂ = Ŷ (3)

(−2,−1) [Role]X ∃η. SymEnc((Ŷ , η),M1, k
type
X,Y) (4)

Case 2: X̂ 6= Ŷ (5)

HON Honest(X̂0) ∧ X̂0 6= Ŷ0 ⊃ ∀M. ¬SymEnc(X0,M, ktype
X0,Y0

) (6)

Hon(X̂), (−1) [Role]X ¬∃η. SymEnc((X̂, η),M1, k
type
X,Y) (7)

(−6,−1) [Role]X ∃η. SymEnc((Ŷ , η),M1, k
type
X,Y) (8)

Instantiating forAUTHclient
kas :

[Client]C ∃η. SymEnc((Ĉ, η), AKey.n1.T̂ , k
c→k
C,K) (9)

HON Honest(X̂) ∧ SymEnc(X,Key.n.T̂0, k
c→k
C0,X)

⊃ Send(X, Ĉ0.Esym[kt→k
T0,X](Key.Ĉ0).Esym[kc→k

C0,X](Key.n.T̂0)) (10)

Hon(K̂), [Client]C ∃η. Send((K̂, η), Ĉ.Esym[kt→k
T,K](AKey.Ĉ).

(−2,−1) Esym[kc→k
C,K](AKey.n1.T̂)) (11)

(−1) AUTHclient
kas (12)

Instantiating forAUTHtgs
kas:

[TGS]T ∃η. SymEnc((K̂, η), AKey.Ĉ, kt→k
T,K) (13)

HON Honest(X̂) ∧ SymEnc(X,Key.Ĉ0, k
t→k
Y,X)

⊃ ∃n. Send(X, Ĉ0.Esym[kt→k
Y,X](Key.Ĉ0).Esym[kc→k

C0,X](Key.n.Ŷ)) (14)

Hon(K̂), [TGS]T ∃η, n. Send((K̂, η), Ĉ.Esym[kt→k
T,K](AKey.Ĉ).

(−2,−1) Esym[kc→k
C,K](AKey.n1.T̂)) (15)

(−1) AUTHtgs
kas (16)

Instantiating forAUTHserver
tgs :

[Server]S ∃η. SymEnc((T̂ , η), Esym[ks→t
S,T](SKey.Ĉ)) (17)

HON Honest(X̂) ∧ SymEnc(X,Key.Ĉ0, k
s→t
Y,X)

⊃ ∃n,Key′. Send(X, Ĉ0.Esym[ks→t
Y,X](Key.Ĉ0).Esym[Key′](Key.n.Ŷ)) (18)

Hon(T̂), [Server]S ∃η, n,Key′. Send((T̂ , η), Ĉ.Esym[ks→t
S,T](SKey.Ĉ).

(−2,−1) Esym[Key′](SKey.n.Ŝ)) (19)

(−1) AUTHserver
tgs (20)

D.3. Proof ofSECclient
akey , SECkas

akey, SEC
tgs
akey

In this section we formally prove the secrecy of the session keyAKey with respect to
the key-setK = {kc→k

C,K , k
t→k
T,K }.

The assumed conditionΦ is the conjunction of the following formulas where the
predicateContainsOpen(m,a) asserts thata can be obtained fromm by a series of
unpairings only - no decryption required.

Φ1 : ∀X,M. New(X,AKey) ⊃ ¬(Send(X,M) ∧ ContainsOpen(M,AKey))

Φ2 : ∀X, Ĉ0, K̂0, T̂0, n. New(X,AKey) ∧ SymEnc(X,AKey.n.T̂0, k
c→k
C0,K0

)

⊃ X̂ = K̂ ∧ Ĉ0 = Ĉ ∧ T̂0 = T̂

Φ3 : ∀X, Ŝ0, Ĉ0. New(X,AKey) ⊃ ¬SymEnc(X,AKey.Ĉ0, k
s→t
S0,X)

Observe thatΦ is prefix closed. The only principals having access to a key inK are
Ĉ, K̂ andT̂ . In addition,Φ2 assumes that some thread ofK generatedAKey. Therefore,
we haveKOHonest(AKey,K) ≡ Hon(Ĉ, K̂, T̂). As the form of the secrecy induction
suggests, we do an induction over all the basic sequences ofKERBEROS.

Let, [Client1]C′ : [new n′1; send Ĉ′.T̂ ′.n′1;]C′

[Client1]C′ New(C′, n′1) ∧ Send(C′, Ĉ′.T̂ ′.n′1) (1)

Φ1, (1) [Client1]C′ n′1 6= AKey (2)

(2) [Client1]C′ SafeMsg(Ĉ′.T̂ ′.n′1, AKey,K) (3)

NET2, (3) SafeNet(AKey,K) [Client1]C′ SendsSafeMsg(C′, AKey,K) (4)

Let, [Client2]C′ : [receive Ĉ′.tgt′.enc′kc;

text′kc := symdec enc′kc, k
c→k
C′,K′ ;

match text′kc as AKey′.n′1.T̂
′;]C′

NET∗ SafeNet(AKey,K) [Client2]C′ SendsSafeMsg(C′, AKey,K) (5)

Preconditionθ3 : Receive(C′, Ĉ′.tgt′.Esym[kc→k
C′,K′](AKey

′.n′1.T̂
′))

Let, [Client3]C′ : [new n′2;

enc′ct := symenc Ĉ′, AKey′;

send tgt′.enc′ct.Ĉ
′.Ŝ′, n′2;]C′

SREC SafeNet(AKey,K) ∧ θ3 ⊃

SafeMsg(Ĉ′.tgt′.Esym[kc→k
C′,K′](AKey

′.n′1.T̂
′), AKey,K) (6)

SAF1 SafeMsg(Ĉ′.tgt′.Esym[kc→k
C′,K′](AKey

′.n′1.T̂
′), AKey,K) ⊃

SafeMsg(tgt′, AKey,K) (7)

(7) θ3 ∧ SafeNet(AKey,K) [Client3]C′ SafeMsg(tgt′, AKey,K) (8)

[Client3]C′ New(C′, n′2) ∧ Send(C′, tgt′.Esym[AKey′](Ĉ′).Ĉ′.Ŝ′.n′2) (9)

Φ1, (9) [Client3]C′ n′2 6= AKey (10)

(8), (10) θ3 ∧ SafeNet(AKey,K) [Client3]C′

SafeMsg(tgt′, AKey,K) ∧ SafeMsg(n′2, AKey,K) (11)

(11) θ3 ∧ SafeNet(AKey,K) [Client3]C′

SafeMsg(tgt′.Esym[AKey′](Ĉ′).Ĉ′.Ŝ′.n′2, AKey,K) (12)

NET∗, (12) θ3 ∧ SafeNet(AKey,K) [Client3]C′ SendsSafeMsg(C′, AKey,K) (13)

· · · proof for following BS similar to (5)· · ·

SafeNet(AKey,K) [receive Ĉ′.st′.enc′tc;

text′tc := symdec enc′tc, AKey
′;

match text′tc as SKey′.n′2.Ŝ
′;]C′

SendsSafeMsg(C′, AKey,K) (14)

Preconditionθ5 : Receive(C′, Ĉ′.st′.Esym[AKey′](SKey′.n′2.Ŝ
′))

· · · proof for following BS similar to (13)· · ·

θ5 ∧ SafeNet(AKey,K) [enc′cs := symenc Ĉ′.t′, SKey′;

send st′.enc′cs;]C′

SendsSafeMsg(C′, AKey,K) (15)

· · · proof for following BS similar to (5)· · ·

SafeNet(AKey,K) [receive enc′sc;

text′sc := symdec enc′sc, SKey
′;

match text′sc as t′;]C′

SendsSafeMsg(C′, AKey,K) (16)

Let, [KAS]K′ : [receive Ĉ′.T̂ ′.n′1;

new AKey′;

tgt′ := symenc AKey′.Ĉ′, kt→k
T ′,K′ ;

enc′kc := symenc AKey′.n′1.T̂
′, kc→k

C′,K′ ;

send Ĉ′.tgt′.enc′kc;]K′

Case 1: AKey′ = AKey

[KAS]K′New(K′, AKey) ∧ SymEnc(K′, AKey.n′1.T̂
′, kc→k

C′,K′) (17)

Φ2, (17) [KAS]K′ Ĉ′ = Ĉ ∧ K̂′ = K̂ ∧ T̂ ′ = T̂ (18)

(18) [KAS]K′kc→k
C′,K′ ∈ K ∧ kt→k

T ′,K′ ∈ K (19)

SAF∗, (19) SafeNet(AKey,K) [KAS]K′ SafeMsg(

Ĉ′.Esym[kt→k
T ′,K′](AKey

′.Ĉ′).Esym[kc→k
C′,K′](AKey

′.n′1.T̂
′),

AKey,K) (20)

Case 2: AKey′ 6= AKey

NET1 SafeNet(AKey,K) [receive Ĉ′.T̂ ′.n′1;]K′ SafeMsg(Ĉ′.T̂ ′.n′1, AKey,K)
(21)

(21) SafeNet(AKey,K) [receive Ĉ′.T̂ ′.n′1;]K′ SafeMsg(n′1, AKey,K) (22)

SAF∗, (22) SafeNet(AKey,K) [KAS]K′ SafeMsg(

Ĉ′.Esym[kt→k
T ′,K′](AKey

′.Ĉ′).Esym[kc→k
C′,K′](AKey

′.n′1.T̂
′)),

AKey,K) (23)

(20), (23),NET∗ SafeNet(AKey,K) [KAS]K′ SendsSafeMsg(K′, AKey,K) (24)

Let, [TGS]T ′ : [receive tgt′.enc′ct.Ĉ
′.Ŝ′.n′2;

text′tgt := symdec tgt′, kt→k
T,K ;

match text′tgt as AKey′.Ĉ′;

text′ct := symdec enc′ct, AKey
′;

match text′ct as Ĉ′;

new SKey′;

st′ := symenc SKey′.Ĉ′, ks→t
S,T ;

enc′tc := symenc SKey′.n′2.Ŝ
′, AKey′;

send Ĉ′.st′.enc′tc;]T ′

NET1,SAF1 SafeNet(AKey,K) [receive enc′ct1.enc
′
ct2.Ĉ

′.Ŝ′.n′2;]K′

SafeMsg(n′2, AKey,K) (25)

[TGS]T ′ New(T ′, SKey′) ∧ SymEnc(T ′, SKey′.Ĉ′, ks→t
S′,T ′) (26)

Φ3, (26) [TGS]T ′ SKey′ 6= AKey (27)

(25), (27), SafeNet(AKey,K) [TGS]T ′ SafeMsg(

SAF∗ Ĉ′.Esym[ks→t
S′,T ′](SKey

′.Ĉ′).Esym[AKey′](SKey′.n′2.Ŝ
′), AKey,K) (28)

NET∗, (28) SafeNet(AKey,K) [TGS]T ′ SendsSafeMsg(T ′, AKey,K) (29)

Let, [Server]S′ : [receive st′.enc′cs;

text′st := symdec st′, ks→t
S,T ;

match text′st as SKey′.Ĉ′;

text′cs := symdec enc′cs, SKey
′;

match text′cs as Ĉ′.t′;

enc′sc := symenc t′, SKey′;

send enc′sc;]S′

NET1,SAF0 SafeNet(AKey,K) [Server]S′ SafeMsg(Esym[SKey′](Ĉ′.t′), AKey,K) (30)

SAF∗, (30) SafeNet(AKey,K) [Server]S′ SafeMsg(t′, AKey,K) ∨ SKey′ ∈ K (31)

SAF1, (31) SafeNet(AKey,K) [Server]S′ SafeMsg(Esym[SKey′](t′), AKey,K) (32)

NET2 SafeNet(AKey,K) [Server]S′ SendsSafeMsg(S′, AKey,K) (33)

Theorem6 Φ ∧ Hon(Ĉ, K̂, T̂) ⊃ SafeNet(AKey,K) (34)

POS, (34) Φ ∧ Hon(Ĉ, K̂, T̂) ⊃

(Has(X,AKey) ⊃ (X̂ = Ĉ ∨ X̂ = K̂ ∨ X̂ = T̂)) (35)

Based onAUTHclient
kas , the actions in[KAS]K ,AUTHclient

tgs and a few additional steps, we can infer
that:

KERBEROS̀ [Client]C Hon(Ĉ, K̂, T̂) ⊃ Φ

KERBEROS̀ [KAS]K Hon(Ĉ, K̂, T̂) ⊃ Φ

KERBEROS̀ [TGS]T Hon(Ĉ, K̂, T̂) ⊃ Φ

Combining these with the secrecy derivation (35) we have:

KERBEROS̀ SECclient
akey , SECkas

akey , SEC
tgs
akey

D.4. Proof ofAUTHclient
tgs

This proof uses the secrecy propertySECclient
akey which established the secrecy ofAKey

amongĈ, K̂ and T̂ assuming their honesty. Again, reference to equations by negative
numbers is relative to the current equation -e.g., (-1) refers to the last equation. Reference
by positive number indicates the actual number of the equation.

[Client]C SymDec(C,Esym[AKey](SKey.n2.Ŝ), AKey) (1)

(−1) [Client]C ∃X. SymEnc(X,SKey.n2.Ŝ, AKey) (2)

InstX 7→ X0, (−1) [Client]C SymEnc(X0, SKey.n2.Ŝ, AKey) (3)

ENC3, (−1) [Client]C Has(X0, AKey) (4)

SECclient
AKey , (−1) X̂0 = Ĉ ∧ X̂0 = K̂ ∧ X̂0 = T̂ (5)

HON Honest(X̂) ∧ SymEnc(X,Key′.n.Ŝ0,Key) ∧Key 6= kc→k
Z,X ⊃

∃K̂0, Ĉ0. SymDec(X,Esym[kt→k
X,K0

](Key.Ĉ0))∧

Send(X, Ĉ0.Esym[ks→t
S0,X](Key′.Ĉ0).Esym[Key](Key′.n.Ŝ0)) (6)

Inst, (−4,−1) [Client]C SymDec(X0, Esym[kt→k
X0,K0

](AKey.Ĉ0))∧

Send(X0, Ĉ0.Esym[ks→t
S,X0

](SKey.Ĉ0).Esym[AKey](SKey.n2.Ŝ)) (7)

(−1) [Client]C ∃Y. SymEnc(Y,AKey.Ĉ0, k
t→k
X0,K0

) (8)

InstY 7→ Y0, (−1) [Client]C SymEnc(Y0, AKey.Ĉ0, k
t→k
X0,K0

) (9)

ENC3, (−1) [Client]C Has(Y0, AKey) (10)

SECclient
AKey , (−1) Honest(Ŷ0) (11)

HON Honest(X̂) ∧ SymEnc(Y,Key.Ŵ , kt→k
X,Z) ⊃ New(X,Key) (12)

(−4,−1) [Client]C New(Y0, AKey) (13)

AUTHclient
kas New(X,AKey) ∧ SymEnc(X,AKey.Ŵ , kt→k

Y,Z)

⊃ Ŷ = T̂ ∧ Ẑ = K̂ ∧ Ŵ = Ĉ (14)

(9,−2,−1) X̂0 = T̂ ∧ K̂0 = K̂ ∧ Ĉ0 = Ĉ (15)

(7,−1) [Client]C ∃η. Send((T̂ , η), Ĉ.Esym[ks→t
S,T](SKey.Ĉ).

Esym[AKey](SKey.n2.Ŝ)) (16)

(−1) AUTHclient
tgs (17)

