Secrecy Analysis in
Protocol Composition Logic

Arnab ROY#, Anupam DATTAP, Ante DEREK?®, John C. MITCHELL?, and
Jean-Pierre SEIFERT

a Stanford University, USA

b Carnegie Mellon University, USA
¢ Google Corporation, USA

4 University of Innsbruck, Austria

Abstract. We present formal proof rules for inductive reasoning about the way that
data transmitted on the network remains secret from a malicious attacker. Extending
a compositional protocol logic with an induction rule for secrecy, we prove sound-
ness for a conventional symbolic protocol execution model, adapt and extend previ-
ous composition theorems, and illustrate the logic by proving properties of two key
agreement protocols. The first example is a variant of the Needham-Schroeder pro-
tocol that illustrates the ability to reason about temporary secrets. The second ex-
ample is Kerberos V5. The modular nature of the secrecy and authentication proofs
for Kerberos make it possible to reuse proofs about the basic version of the protocol
for the PKINIT version that uses public-key infrastructure instead of shared secret
keys in the initial steps.

Keywords. Security protocol analysis, Logic, Secrecy

1. Introduction

Two important security properties for key exchange and related protocols are authentica-
tion and secrecy. Intuitively, authentication holds between two parties if each is assured
that the other has participated in the same session of the same protocol. A secrecy prop-
erty asserts that some data that is used in the protocol is not revealed to others. If a pro-
tocol generates a fresh value, calledance and sends it in an encrypted message, then
under ordinary circumstances the nonce remains secret in the sense that only agents that
have the decryption key can obtain the nonce. However, many protocols have steps that
receive a message encrypted with one key, and send some of its parts out encrypted with
a different key. Since network protocols are executed asynchronously by independent
agents, some potentially malicious, it is non-trivial to prove that even after arbitrarily
many steps of independent protocol sessions, secrets remain inaccessible to an attacker.
Our general approach involves showing that every protocol agent that receives data
protected by one of a chosen set of encryption keys only sends sensitive data out under
encryption by another key in the set. This reduces a potentially complicated proof about
arbitrary runs involving arbitrarily many agents and a malicious attacker to a case-by-
case analysis of how each protocol step might save and send data. We formalize this

form of inductive reasoning about secrecy in a set of new axioms and inference rules
that are added to Protocol Composition Logic (PCL) [14,8,9,10,11], prove soundness of
the system over a conventional symbolic protocol execution model, and illustrate its use
with two protocol examples. The extended logic may be used to prove authentication or
secrecy, independently and in situations where one property may depend upon the other.
Among other challenges, the inductive secrecy rule presented here is carefully designed
to be sound for reasoning about arbitrarily many simultaneous protocols sessions, and
powerful enough to prove meaningful properties about complex protocols used in prac-
tice. While the underlying principles are similar to the “rank function method" [20] and
work using the strand space execution model [21], our system provides precise formal
proof rules that are amenable to automation. In addition, casting secrecy induction in
the framework of Protocol Composition Logic avoids limitations of some forms of rank
function arguments and eliminates the need to reason explicitly about possible actions
of a malicious attacker. From a broader point of view, we hope that our formal logic
will help clearly identify the vocabulary, concepts, and forms of reasoning that are most
effective for proving security properties of large-scale practical protocols.

Ouir first protocol example is a variant of the Needham-Schroeder protocol, used in
[16] to illustrate a limitation of the original rank function method and motivate an exten-
sion for reasoning about temporary secrets. The straightforward formal proof in section
4 therefore shows that our method does not suffer from the limitations identified in [16].
Intuitively, the advantage of our setting lies in the way that modal formulas of PCL state
properties about specific points in protocol execution, rather than only properties that
must be true at all points in all runs.

Our second protocol example is Kerberos V5 [17], which is widely used for authen-
ticated client-server interaction in local area networks. The basic protocol has three sec-
tions, each involving an exchange between the client and a different service. We develop
a formal proof that is modular, with the proof for each section assuming a precondition
and establishing a postcondition that implies the precondition of the following section.
One advantage of this modular structure is illustrated by our proof for the PKINIT [7]
version that uses public-key infrastructure instead of shared secret keys in the initial
steps. Since only the first section of PKINIT is different, the proofs for the second and
third sections of the protocol remain unchanged. While lengthy machine-checked proofs
of Kerberos were previously given [3], and non-formal mathematical proofs have been
developed for other abstractions of Kerberos [5], this is the first concise formal logic
proof of secrecy and authentication for Kerberos and PKINIT.

Compositional secrecy proofs are made possible by the composition theorems de-
veloped in this paper. While these theorems resemble composition theorems for the sim-
pler proof system presented in earlier work [10,15], adapting that approach for reason-
ing about secrecy requires new insights. For example, while proving that a protocol step
does not violate secrecy, it is sometimes necessary to use information from earlier steps.
This history information, which was not necessary in our earlier proofs of authentication
properties, appears as preconditions in the secrecy induction of the sequential and staged
composition theorems.

The rest of the paper is organized as follows. Some background on PCL is given
in section 2, followed by the secrecy-related axioms and proof rules in section 3. The
first protocol example is presented in section 4. Composition theorems are developed in

section 5, and applied in the proofs for Kerberos in section 6. Related work is summarized
in section 7 with conclusions in section 8.

2. Background

Protocol Composition Logic (PCL) is developed in [14,8,9,10], with [11] providing a
relatively succinct overview of the most current form. A simple “protocol programming
language” is used to represenp@tocolby a set ofroles such as “Initiator”, “Respon-

der” or “Server”, each specifying a sequence of actions to be executed by an honest
participant. Protocol actions include nonce generation, encryption, decryption and com-
munication steps (sending and receiving). A principal can execute one or more copies
of each role, concurrently. We use the wdhiead to refer to a principal executing a
particular instance of a role. faread X is identified with a pair(f(,), whereX is a
principal andy is a unigue session id. Ainis a record of all actions executed by honest
principals and the attacker during concurrent execution of one or more instances of the
protocol. Table 1 describes the syntax of the fragment of the logic that we will need in
this paper. Protocol proofs usually use modal formulas of the #oFi x ¢. The infor-

mal reading of the modal formula is that¥ starts from a state in which holds, and
executes the program®, then in the resulting state the security propeptys guaran-

teed to hold irrespective of the actions of an attacker and other honest principals. Many
protocol properties are naturally expressible in this form.

The formulas of the logic are interpreted over protocol runs containing actions of
honest parties executing roles of the protocol ambev-Yaocattacker (whose possible
actions are define by a set of symbolic computation rules). We say that prQ}aadls-
fies formulag, denoted E ¢, if in all runs R of Q the formulag holds,i.e., 9, R E ¢.

For each run, satisfaction of a formula is defined inductively. For exarfiptel(X, ¢)

holds in a run where the threaf has sent the term For every protocol action, there is a
corresponding action predicate which asserts that the action has occurred in the run. Ac-
tion predicates are useful for capturing authentication properties of protocols since they
can be used to assert which principals sent and received certain me&seggs(X, t)

means thak computes the encrypted tetiwhile New (X, n) meansX generates fresh
noncen. Honest(X) means thafX acts honestlyi.e., the actions of every thread of
precisely follow some role of the protocdtart(X) means that the threadl did not
execute any actions in the palis(X, ¢) meansX possesses term This is “possess”

in the symbolic sense of computing the termsing Dolev-Yao rulese.g.receiving it in

the clear or receiving it under encryption where the decryption key is known.

To illustrate the terminology used in this section we describe the formalization of
Kerberos V5, which is a protocol used to establish mutual authentication and a shared
session key between a client and an application server [17]. It involves trusted princi-
pals known as the Kerberos Authentication Server (KAS) and the Ticket Granting Server
(TGS). There are pre-shared long-term keys between the client and the KAS, the KAS
and the TGS, and the TGS and the application server. Typically, the KAS shares long-
term keys with a number of clients and the TGS with a number of application servers.
However, there is no pre-shared long term secret between a given client and an applica-
tion server. Kerberos establishes mutual authentication and a shared session key between
the client and the application server using the chain of trust leading from the client to the
KAS and the TGS to the application server.

Action formulas

a ::= Start(X) | Send(X, t) | Receive(X, t) | New (X, t) | SymEnc(X, ¢, k) | PkEnc(X, ¢, k) |
SymDec(X, ¢, k) | PkDec(X, t, k) | Sign(X, t, k) | Verify(X, ¢, k) | Hash(X, ¢, k)

Formulas

¢ ::=a|Has(X,t) |Honest(X) | ¢ A ¢| = |IV. ¢

Modal form

U = ¢ [Actions]|x ¢

Table 1. Syntax of the logic

Kerberos has four roles, one for each kind of participa@tlient, KAS, TGS
andServer. The long-term shared symmetric keys are written here in the @fl’if
whereX andY are the principals sharing the key. Thge appearing in the superécript
indicates the relationship betweghandY in the transactions involving the use of the
key. There are thregpes required in Kerberos: — k indicates thatX is acting as a
client andY is acting as a KASt, — k is for TGS and KAS and — t is for application
server and TGS. Kerberos runs in three stages with the client role participating in all
three. The description of the roles below is based on the A level formalization of Kerberos
V5in [5].

In the first stage, the client thregd’) generates a nonde:;) and sends it to the
KAS (K) along with the identities of the TG@") and itself. The KAS generates a new
nonce @K ey - Authentication Key) to be used as a session key between the client and
the TGS. It then sends this key along with some other fields to the client encrypted under
two different keys - one it shares with the cligi ,7?) and one it shares with the TGS

(k}jﬁ). The message portion encrypted Wi&m? is called theticket granting ticket
(tgt). The client extractsi K ey by decrypting the component encrypted V\Iiﬂfl‘}? and

using amatch actions to separaté K ey from the nonce and’.

In the second stage, the client generates another nonce, encrypts its identity with
the session key established in stage one and sends it to the TGS along with the ticket
granting ticket and the nonce. The TGS decryptswith the key it shares with KAS and
extracts the session key. It then uses the session key to decrypt the client’s encryption and
matches this with the identity of the client. The TGS then generates a new nonce to be
used as a session key between the client and the application server. It then sends this key
along with some other fields to the client encrypted under two different keys - the session
key derived in the first stage and one it shares with the aplication server. The encryption
with later key is called the service ticket]. The client extracts this new session key by
decrypting the component encrypted with the previous session key.

In the third stage, the client encrypts its identity and a timestamp $utley and
sends it to the application server along with the service ticket. The server degtypts
and extracts the& Key. It then uses the session key to decrypt the client’s encryption,
matches the first component of the decryption with the identity of the client and extracts
the timestamp. It then encrypts the timestamp with the session key and sends it back to
the client. The client decrypts the message and matches it against the timestamp it used.
The control flow of Kerberos exhibits a staged architecture where once one stage has
been completed successfully, the subsequent stages can be performed multiple times or
aborted and started over if an error occurs.

Client = (C, K, T, 5,1) [
new ni;

send C.1T.ni;

receive C.tgt.encic;
texty. := symdec ency,, kgj?,

match texty. as AKey.ni.T;
- - - stage boundary - - -

new ng;
encet :=symenc C, AKey;

send tgt.encct.é.g, no;

receive C.st.encic;
textie := symdec encic, AKey;

match text:. as SKey.ng.S;

- - - stage boundary - - -

ences ‘= symenc é.t, SKey;

send st.ences;

receive encsc;
textsc := symdec encsc, SKey;
match textsc as t;

lo

KAS = (K) |
receive C.T.ni;
new AKey;
tgt := symenc AKey.C, k%pﬂfé‘,
encye = symenc AKey.ni.T), ké?}?,
send C.tgt.ence;
lx

TGS = (T, K) |
receive tgt.encct.é.g.ng;
textigs == Symdec tgt, kéfff,
match textiq as AKey.C;
textct = symdec encet, AKey;
match texte; as C
new SKey;
st := symenc SKey.C, kg}t;
encie :=symenc SKey.ny.S, AKey;
send é.st.enctc;
Ir

Server = (5,7 |
receive st.ences;
textst := symdec st,k%}t;
match texts; as SKey.C;
textes := symdec ences, SKey;
match text.s as C.t;
encsc 1= symenc t,SKey;
send encsc;

Is

Table 2. Formal description of Kerberos V5, with - stage boundary - - - comments.

3. Proof System for Secrecy Analysis

In this section, we extend PCL with new axioms and rules for establishing secrecy. Se-
crecy properties are formalized using tHes(X, s) predicate, which is used to express
that honest principak has the information needed to compute the secrét a typ-

ical two party protocol,X is one of two honest agents ards a nonce generated by

one of them. As an intermediate step, we establish that all occurrences of the secret on

the network are protected by keys. This property can be proved by induction over pos-
sible actions by honest principals, showing that no action leaks the secret if it was not
compromised already.

We introduce the predicatgafeMsg(M, s, K) to assert that every occurrence of
s in messagéeV! is protected by a key in the sét. Technically speaking, there is an
(n + 2)-ary predicat&SafeMsg™ (M, s, K) for eachn > 0, allowing the elements of set
K to be listed as arguments. However, we suppress this syntactic detail in this paper.
The semantic interpretation of this predicate is defined by induction on the structure of
messages. It is actually independent of the protocol and the run.

Definition 1 (SafeMsg) Given a runR of a protocolQ, we sayQ, R F SafeMsg(M, s,

K) if there exists an such thatSafeMsg, (M, s, K) whereSafeMsg, is defined by induc-
tion on: as follows:

SafeMsg (M, s, K) if M is an atomic term different from
SafeMsg,(HASH (M), s, K) for any M

SafeMsg, , 1 (Mo.Mj, s, K) if SafeMsg, (Mo, s, K) andSafeMsg, (M1, s, K)
SafeMsg, 1 (Esym[k](M), s, K) if SafeMsg,; (M, s, K)ork € K
SafeMsg, ,; (Epk[k](M), s, K) if SafeMsg, (M, s, K) ork € K

The axiomsSAFO to SAF5 below parallel the semantic clauses and follow immedi-
ately from them. Equivalences follow as the term algebra is free.

SAFO0 —SafeMsg(s,s,K) A SafeMsg(z, s, K),
wherez is an atomic term different from
SAF1 SafeMsg(Mo.Mi,s,K) = SafeMsg(Mo, s, K) A SafeMsg(M7, s, K)
SAF2 SafeMsg(Esyml|k](M),s,K) = SafeMsg(M,s,K)VEk € K
SAF3 SafeMsg(E,;[k](M), s, K) = SafeMsg(M, s,K) Vk € K
SAF4 SafeMsg(HASH(M),s,K)

The formulaSendsSafeMsg(X, s, K) states that all messages sent by thr¥aate “safe”
while SafeNet(s, K) asserts the same property for all threads. These predicates are defin-
able in the logic aSendsSafeMsg (X, s, K) = VM.(Send(X, M) D SafeMsg(M, s, K))

andSafeNet(s, K) = VX. SendsSafeMsg(X, s, K).

In secrecy proofs, we will explicitly assume that the thread generating the secret and
all threads with access to a relevant key belong to honest principals. This is semantically
necessary since a dishonest principal may reveal its key, destroying secrecy of any data
encrypted with it. These honesty assumptions are expressed by the foaytasest
andOrigHonest respectivelyKOHonest is the conjunction of the two.

o KeyHonest(K) = VX.Vk € K. (Has(X, k) D Honest(X))

e OrigHonest(s) = VX. (New(X, s) D Honest(X)).
® KOHonest(s, K) = KeyHonest(K) A OrigHonest(s)

We now have the necessary technical machinery to state the induction rule. At a
high-level, theNET rule states that if each “possible protocol stép'locally sends
out safe messages, assuming all messages in the network were safe prior to that step,
then all messages on the network are safe. A possible protocoPstgegrawn from
the setBS of all basic sequences of roles of the protocol. The basic sequences of a role
arise from any partition of the actions in the role into subsequences, provided that if

any subsequence containsezeive action, then this is the first action of the basic
sequence.

NET Vpe QVP € BS(p).

SafeNet(s, K) [P]x Honest(X) A ® D SendsSafeMsg(X, s, K))
O I KOHonest(s,) A ® D SafeNet(s, K)

The side conditiorix) is: [P] 4 does not capture free variablesirandkC and the variable
s. ® should be prefix closed (explained in Section 3). NBT rule is written as a rule
scheme, in a somewhat unusual form. When applied to a specific praydabkre is
one formula in the antecedent of the applicable rule instance for each «l@ and for

each basic sequenéee BS(p); see [11].

The axiomsNETO to NET3 below are used to establish the antecedent of the
NET rule. Many practical security protocols consist of steps that each receive a mes-
sage, perform some operations, and then send a resulting message. The proof strategy in
such cases is to uNET1 to reason that messages received from a safe network are
_saftla and tfhen use this information and 8% F axioms to prove that the output message
is also safe.

NETO SafeNet(s, K) []x SendsSafeMsg(X, s, K)

NET1 SafeNet(s, K) [receive M]x SafeMsg(M, s, K)

NET2 SendsSafeMsg(X, s, K) [a]x SendsSafeMsg(X, s, K), wherea is not a send

NET3 SendsSafeMsg(X,s,K) [send M]x SafeMsg(M,s,K) D SendsSafeMsg(X, s, K)
Finally, POS andPOSL are used to infer secrecy properties expressed usingdhie
predicate. The axionPOS states that if we have a safe network with respect &md
key-setkC then the only Erln(_:lpals who can possess an unsafe message are the generator
of s or possessor of a key iK. The POSL rule lets a thread use a similar reasoning
locally.

POS SafeNet(s, K) A Has(X, M) A =SafeMsg(M, s, K)

D 3k € K. Has(X, k) V New(X, s)

1 A SafeNet(s, K) [S]x SendsSafeMsg(X, s, K) A Has(Y, M) A ~SafeMsg(M, s, K)

POSL
1 A SafeNet(s, K) [S]x Tk € K. Has(Y, k) V New(Y, s) ’

whereS is any basic sequence of actions.
Following are useful theorems which follow easily from the axioms.

SREC SafeNet(s, K) A Receive(X, M) D SafeMsg(M, s, K)
SSND SafeNet(s, K) A Send(X, M) D SafeMsg(M, s, K)

The collection of new axioms and rules are summarized in Appendix B. Welrtite if
~ is provable from the formulas i and any axiom or inference rule of the proof system,
except the honesty ruHON from previous formulations of PCL (see Appendix A) and
the secrecy rulNET. We write Q + ~ if - is provable from the axioms and inference
rules of the proof system including the rulBSON andINET for protocol Q.

In the following theorem and proof, the closutd of a setM of messages is the
least set containing and closed under pairing, unpairing, encryption with any public

key or symmetric key, decryption with a private key or a symmetric key nét,iand
hashing.

Theorem 1 If M is a set of messages, all safe with respect to seaet key-sek then
the closureM contains only safe messages.

Proof. SinceM is the minimal set satisfying the given conditions, any elemert M

can be constructed from elements/irt using a finite sequence of the operations enu-
merated. From the semanticsSffeMsg it is easily seen that all the operations preserve
safeness. Hence by induction, all the element&bivill be safe. O

Lemma 1 If athread X possesses an unsafe message with respect to secrdtkey-set
K then eitherX received an unsafe message earlieroigenerateds, or X possesses
a key ink.

Proof. Suppose thread does not satisfy any of the conditions enumerated. Then all

the messages it initially knows and has received are safe messages. Since it does not
have a key inkC, the list of operations in theorem 1 enumerates a superset of all the
operations it can do on this initial safe set (in the Dolev-Yao model). Hence, by theorem

1, X cannot compute any unsafe message. So it cannot possess an unsafe message — a
contradiction. [

Theorem 2 (Soundness)f O + ~, thenQ E ~. Furthermore, ifl" - ~, thenI" E ~.

Proof. Soundness for this proof system is proved by induction on the length of proofs of
the axioms and rules. The most interesting cases are sketched below, after the following
definition.

A prefix closedormula® is a formula such that if a ruR of a protocolQ satisfies
® then any prefix ofR also satisfie®. For example, the formulaSend(X,t) is pre-
fix closed. This is because if in any rufy threadX has not sent the term it cannot
have sent in any prefix of R. In general, the negation of any action formula is prefix
closed. Another example ¥X. New(X, s) D X = A because this can be re-written as
VX. —New(X,s) V X = A which is a disjunction of the negation of an action formula
and an equality constraint.

NET : Consider a runR of protocol Q such that the consequent ¥ET is false.
We will show that the antecedent is false too. We h&g? E KOHonest(s,) A
®, but Q, R ¥ SafeNet(s,K). This implies thatQ, R E 3m, X. Send(X,m) A
—SafeMsg(m, s,). Note that there must be a first instance when an unsafe message is
sent out - leth be the first such message. Hence, we can &jlito Ry.R;. R, such that
Q, Ry E SafeNet(s,K) andR; = (X sends m;Y receives m), for someY.

More formally, let us have:

1. Q, R E KOHonest(s,) A @
2. Q, R ¥ SafeNet(s, K)

Condition 2 implies tha©, R F Im, X. Send(X, m) A ~SafeMsg(m, s, K). Note that
there must be a first instance when an unsafe message is sent outbdehe first such
message. Hence, we can spliinto Ry.R;.Ro such that:

e O, Ry F SafeNet(s, K)
o Ry = (([receive x;5y | [send ;T x — [S"(m/x)]y | [T']x))

Since this is the first send of an unsafe message, ther&fareuld not have received
an unsafe message earlier. Therefore, by the lemma, eithggnerated or, X has a
key in K. In both casesiKOHonest(s,) implies Honest(X). Therefore the fragment
[send m]x must be part of a sequence of actigR$y such thatP is a basic sequence
of one of the roles inQ. That is, R = R{.R}.R; such thatR;, is a prefix of Ry, P

matchesR | x with substituitions and R}, is the rest ofR. So we have:

P matchesR | x with substituitions

Q, R, F SafeNet(s, K)

Q, R). R} E Honest(X) A @, sinced is prefix closed.
Q, R{,.R} ¥ SendsSafeMsg (X, s, K)

Hence, we haveQ, R ¥ SafeNet(s, K)[P]x Honest(X)A® D SendsSafeMsg(X, s, K),
thus violating the premise.

POS : SafeNet(s, K) implies no thread sent out an unsafe message in the run. Hence no
thread received an unsafe message. Therefore, by lemma 1, any #hmasbessing an
unsafe message must have either generategossesses a key it

POSL : The premise of the rule informally states that starting from a “safe” network
and additional constrainis threadX concludes that some thre&dpossesses an unsafe
messagé/ in all possible runs of any protocol. Specifically this should be true for a run
where threadX executes the basic sequeSgx uninterspersed with the actions of any
other thread except the receipt of messages sent.kiyow the premise implies that
only sends safe messages - also sifit®a basic sequence, the only messageXxhaan
receive in[S]x will be only at its beginning, which, due to the starting “safe” network
precondition will be a safe message. Hence we can conclude that tHrpadsessed
an unsafe message befo¥estarted executingS]x i.e., whenSafeNet(s,) was true.
Therefore using axion?OS we derive that threaldl” either generated or possesses a
key in IC, which establises the conclusionBODSL.

Formally, assume that the following formula is valid:

P : ¢ ASafeNet(s, K)[S]x SendsSafeMsg(X, s,) AHas(Y, M) A—SafeMsg(M, s, K)
ConsiderR, an arbitrary run of the protoc@ such thatR = R,.R;.R» and the follow-

ing conditions hold:

1. S matchesk; | x with substituitiono.
2. Q, Ry = o(¢ A SafeNet(s, K))

Therefore, from the validity oP we have:
Q, Ry.Ry = o(SendsSafeMsg(X, s, K) A Has(Y, M) A —SafeMsg(M, s, K))
Now, we construct a ru} = ¢S, that is, R} has only actions of the threaldl (any

send/receive by is with a buffer chord). Since the conditions 1 and 2 still hold for the
run R’ = Ry.R}.R2, we have:

9, Ry.R}| = o(SendsSafeMsg(X, s, K) A Has(Y, M) A —SafeMsg(M, s,K))

We have two cases her&@ = X or, Y # X. In the first case, sinc&®, Ry E
oSafeNet(s,) and[S] x can receive at most once - just affeg, therefore, if thread
possesses an unsafe message ek € K. Has(X, k) V New(X, s)) - and this fact
cannot be altered by further actionsXf

In the second case, we observe tiR4tdoes not contain the action of any thread
other thanX, excepting receipt of the messages sentdhywhich are safe anyway.
Therefore,Q, Ry = o(Has(Y, M) A =SafeMsg(M, s, K)). From this, condition 2 and
POS we have:Q, Ry | o(3k € K. Has(Y, k) V New(Y, s)). Again, further actions by
any thread aftef?, cannot alter this fact. Therefor@, Ro.R; |= o(3k € K.Has(Y, k)V
New(Y,s)).

Hence, for all runsk the following formula holds:

Q, R = 9 A SafeNet(s, K) [S]x Jk € K. Has(Y, k) V New(Y, s)

4. Analysis of a variant of NSL

In this section we use the proof system developed in section 3 to prove a secrecy prop-
erty of a simple varianiV .S LV AR of the Needham-Schroeder-Lowe protocol, proposed
in [16], in which partiesA and B use an authenticated temporary seetgeto establish a
secret key: that is in turn used to protect the actual messag&he main difference from
the original NSL protocol is that the initiator's nonce is leaked in the final message. Rea-
soning fromA'’s point of view, nonceq, should be secret betweehand B at the point
of the run in the protocol wherd is just about to send the last message. This protocol
was originally used to demonstrate a limitation of the original rank function method in
reasoning about temporary secrets. Modal formulas in PCL allow us to naturally express
and prove properties that hold at intermediate points of a protocol execution.

Formally, NSLV AR is a protocol defined by rolenit, Resp}, with the roles,
written using the protocol program notation, given in Figure 3.

Theorem 3 LetInit denote the initial segment of the initiator’s role ending just before
the last send action. The nongg is a shared secret betweehand B in every state of
the protocol wherel has executedinit and no further actions, as long as bathand B

are honest. Formally,

NSLV AR - [Init] 4 Honest(A) A Honest(B) D (Has(X,n,) D X = AV X = B)

Proof Sketch.To prove the secrecy property, we start off by proving an authentication

property[Init] 4 Honest(A) A Honest(B) > @, where® is the conjunction of the fol-
lowing formulas:

Init = (A, B,m) [Resp = (B) |

new ng; receive encri;

encr1 := pkenc A.nu, B; text,1 := pkdec encr1, B;

send encp1; match text,; as A.ng;
new k;

receve - encg; enc; := pkenc ng.B.k, A;

text; := pkdec enc;, A; send enc;;
match tezt; as nq.B.k;
ency2 := Symenc m,k;
receive encr2.ng;

send encro.ng; m := symdec encr2,k;

la)z

Table 3. Formal description oNSLVAR

@1 : VX, Y. New(X, na) A PKEnc(X, X.na,Y) DY = B
s : VX, Y, n. New(X,ns) O —=PkEnc(X,n.X.ng,Y)
P3: VX, e. New(X,ng) D =Send(X, e.ng)

@4 : Honest(X) A Send(X, e.n) D New(X,n)

®5 : Honest(X) A PkEnc(X, X'.n,Y) D X/ = X

Informally, &, and®, hold because from the threalds point of view it is known that it
itself generated the noneg, and did not send it out encrypted with any other principal’s
public key exceptB’s and that too in a specific format described by the protodgl.
holds because we are considering a state in the protocol execution wina® not yet
sent the last message - sending of the last message will Gzaki¢ A, e.n,) true with

e = Egym[k](m). These intuitive explanations can be formalized using a previously
developed fragment of PCL but we will omit those steps in this papeand®; follow

from a straightforward use of the honesty rule.

In the next step we prove the antecedents of MET rule. We takel =
{k4,kp} where the bar indicates private key which makegHon(K) = Honest(A) A
Honest(B). In addition, since threadl generates:,, thereforeKOHonest(n,,K) =
Honest(A) A Honest(B). We show that all basic sequence of the protocol send
“safe” messages, assuming that form@dolds and that the predicatafeNet holds
at the beginning of that basic sequence. Formally, for every basic seqienee
{Initq, Init,, Resp,, Resp,} we prove that:

SafeNet(nq, K)[P] 4 Honest(A’) A ® D SendsSafeMsg(A’, ng, K)

[Init] 4 New(A,nq) 1)

(—1),N1 [Init]4 New(X,n,) D X = A ®)

Start(A)[|4 =PkEnc(A, Ang,Y)VY = B (3)
—PkEnc(A, Ang,Y) VY = B [new na;]a -PkEnc(A, An., Y)VY =B (4)
T [enc,1 := pkenc A.ng, B;]4 PKEnc(A, A.ng, B) 5)
—PkEnc(A, Ang,Y) VY = Bsend enc,1;

receive enc;;

text; := pkdec enc;, A;

match tezt; as naq.B.k;

encro := symenc m,k;]a “PkEnc(A4, Ang, Y) VY =8 (6)
[Init] 4 PkEnc(A, Ang,Y) DYV = B @
(—1) [Iﬁit]A [oF] 8

Table 4. Formal proof ofInit] 4 ®;

The formal proof is done in Appendix C. The variables used in the basic sequence
we are inducting over are consistently primed so that we do not capture variathles,in
or K. Finally, we use th&NET rule andPOS axiom to show that,, is a shared secret
betweend andB at a state wherd has just finished executidmit. [

5. Compositional Reasoning for Secrecy

In this section, we present composition theorems that allow secrecy proofs of compound
protocols to be built up from proofs of their parts. An application of this method to
the Kerberos protocol is given in the next section. We consider three kinds of com-
position operations on protocolgarallel, sequential and staged—as in our earlier

work [10,15]. However, adapting that approach for reasoning about secrecy requires new
insights. One central concept in our compositional proof methods is the notion of an
invariant An invariant for a protocol is a logical formula that characterizes the envi-
ronment in which it retains its security properties. While in previous work we had one
rule for establishing invariants (tHEON rule [10]), reasoning about secrecy requires,

in addition, theNET rule introduced in this paper. A second point of difference arises
from the fact that reasoning about secrecy requires a certain degree of global knowledge.
Specifically, while proving that a protocol step does not violate secrecy, it is sometimes
necessary to use information from earlier steps. In the technical presentation, this history
information shows up as preconditions in the secrecy induction of the sequential and
staged composition theorems.

Definition 2 (Parallel Composition) The parallel compositio®; | Q» of protocolsQ;
and Q5 is the union of the sets of roles 6f and Q5.

The parallel composition operation allows modelling agents who simultaneously
engage in sessions of multiple protocols. The parallel composition theorem provides a
method for ensuring that security properties established independently for the constituent
protocols are still preserved in such a situation.

Theorem 4 (Parallel Composition)If Q; F T'andl’' - ¥ and Qs F T'thenQ; | Qs F
W, wherel™ denotes the set of invariants used in the proo¥of

One way to understand the parallel composition theorem is to visualize the proof
tree for W for protocol Q; in red and green colors. The steps which use the invariant
rules are colored red and correspond to the gart- T", while all other proof steps are
colored green and correspond to the gatt ¥. While composing protocols, all green
steps are obviously preserved since they involve proof rules which hold for all protocols.
The red steps could possibly be violated becaugg-ofFor example, one invariant may
state that honest principals only sign messages of a certain form, @hileay allow
agents to sign other forms of messages. The cond@eh I" ensures that this is not the
case, i.e., the red steps still apply for the composed protocol.

Definition 3 (Sequential Composition) A protocolQ is a sequential composition of two
protocolsQ; and Q,, if each role ofQ is obtained by the sequential composition of a
role of Q; with a role of Q5.

In practice, key exchange is usually followed by a secure message transmission pro-
tocol which uses the resulting shared key to protect data. Sequential composition is used
to model such compound protocols. Formally, the composedfpl® is obtained by
concatenating the actions #f and P, with the output parameters éf; substituted for
the input parameters @, (cf. [10]).

Theorem 5 (Sequential Composition)lif Q is a sequential composition of protocaly
and 9, then we can conclud@ - KOHonest(s, K)A® DO SafeNet(s, K) if the following
conditions hold for allP;; P, in Q, whereP; € Q1 and P, € Qs

1. (Secrecy induction)

e ViVS € BS(P;). 0p, A SafeNet(s, K) [S]x Honest(X) A ® D SendsSafeMsg(X, s, K)
2. (Precondition induction)

e O ‘ Qs Start(X) D 9p1 andQ1 | Qs + 9p1 [PI]X sz

The final conclusion of the theorem is a statement that secreesyiopreserved

in the composed protocol. The secrecy induction is very similar taNI&T rule. It

states that all basic sequences of the two roles only send out safe messages. This step is
compositional since the condition is proved independently for steps of the two protocols.
One point of difference from th&ET rule is the additional preconditiofip,. This

formula usually carries some information about the history of the execution, which helps

in deciding what messages are safe foto send out. For example, #fp, says that4

received some message then it is easy to establish that is a safe message fat to

send out again. The precondition induction proves thaf th's hold at each point where

they are assumed in the secrecy induction. The first bullet states the base case of the
induction:fp, holds at the beginning of the execution &h¢ holds whenP; completes.

The second bullet states that the basic sequenc®s afid P, preserve their respective
preconditions.

Definition 4 (Staged Composition)A protocol Q is a staged composition of protocols
Q1,9Qs,...,Q, if each role ofQ is of the formRComp({R1, Ra, ..., R,)), whereR;
is a role of protocolQ;.

Consider the representation of sequential compositiom jpfotocols as a directed
graph with edges fron®; to Q,. 1. The staged composition operation extends sequen-
tial composition by allowing self loops and arbitrary backward arcs in this chain. This
control flow structure is common in practice, e.g., Kerberos [17], IEEE 802.11i [1], and
IKEv2 [6]. A role in this composition, denoteRComp({...)) corresponds to a possible
execution path in the control flow graph by a single thread (cf. [15]). Note that the roles
are built up from a finite number of basic sequences of the component protocol roles.

Theorem 6 (Staged Composition)f Q is a staged composition of protocaly;, Qs,
.-+, Q, then we can conclud® + KOHonest(s,) A ® D SafeNet(s, K) if for all
RComp({Py, Ps,--- ,P,)) € Q:

1. (Secrecy induction)
® ViVS € BS(P;). Op, A SafeNet(s, K) [S]x Honest(X) A ® D SendsSafeMsg(X, s, K)
2. (Precondition induction)

[] Ql ‘ QQ | On Start(X) D 0P1 andQl ‘ QQ | O, F Vi. ePi[Pi]X Gpiﬂ
e ViVS € UjZi BS(PJ) Gpi [S]X eP,,-

The secrecy induction for staged composition is the same as for sequential compo-
sition. However, the precondition induction requires additional conditions to account for
the control flows corresponding to backward arcs in the graph. The technical distinction
surfaces in the second bullet of the precondition induction. It states that precomgition
should also be preserved by basic sequences of all higher numbered components, i.e.,
components from which there could be backward arcs to the beginnifRg of

6. Analysis of Kerberos V5

In this section we analyze Kerberos V5, which was described in section 2. The security
properties of Kerberos that we prove are listed in table 5. We abbreviate the honesty
assumptions by definingon(X7,--- , X,,) = Honest(X1) A - - - Honest(X,,). The se-

curity objectives are of two types: authentication and secrecy. The authentication objec-
tives take the form that a message of a certain format was indeed sent by some thread
of the expected principal. The secrecy objectives take the form that a putative secret is
known only to certain principals. For examplél/T H¢ie"t states that when the thread

C finishes executing th€lient role, some thread ok (the KAS) indeed sent the ex-
pected messagé‘,ECgﬁjg;” states that the authorization key is secret after execution of
the Client role by C; the other security properties are analogous.

SECykey : Hon(C, K, T) D (Has(X, AKey) D X € {C,K,T})
SECgey : Hon(C, K, T,8) D (Has(X,SKey) D X € {C,K,T,5Y})
AUT Hpqs : 3. Send((K, 1), C.Esym [k}f}@}(AKey.CA').Esym [kzg_}é](AKeynl’f))

AUTHgs = In. Send((T,n),CA’.Esym[kngt (SKey.C).Esym[AKey](SKey.n2.5))

SECGiH : [Client]c SECage, — AUTH{LE™ - [Client] Hon(C, K) D AUT Hyqs

SECS . [KAS]x SECapey AUTH? : [TGS]7 Hon(T, K) D 3ni. AUT Hyqs

akey kas

SECL : [TGS|p SEC ey

AUTH{Le™ : [Client]c Hon(C, K, T) D AUT Hygs

SECgnt : [Client|c SECspey ~ AUTH;ST" : [Server|s Hon(S, T)

SEczgzy : [TGS]r SEC;)ey D 3na, AKey. AUT Hygs

Table 5. Kerberos Security Properties

Theorem 7 (KAS Authentication) On execution of th€lient role by a principal it is
guaranteed that the intended KAS indeed sent expected response assuming that the both
the client and the KAS are honest. Similar result holds for a principal executirij @:®
role. Formally, KERBEROS AUT Hglient | AUT H9*

kas kas

Proof Sketchlin the course of executing th@lient role, principalC' receives a message
containing the encrypted termsym[kgj?](AKey.nl.T). Using axiomENC4, we de-

rive that this message was encrypted by one of the ownekgj(;(f, which is eitherC

or K. Then, by using the rulON we establish that no thread 6f does this unless

C = K, and so this must be some thread/of Once again we use tHON rule to

reason that if an honest thread encrypts a message of this form then it also sends out a
message of the form describedAt/ T Hy,s. The proof ofAUTHfCZSS is along identical

lines. In Appendix D.2, we first give emplateproof for the underlying reasoning and

then instantiate it for botdUT H " and AUTH}?°. O

kas*®

Theorem 8 (Authentication Key Secrecy)On execution of th€lient role by a prin-

cipal, secrecy of the Authentication Key is preserved assuming that the client, the KAS
and the TGS are all honest. Similar results hold for principals executind<tAes and

TGS roles. Formally, KERBEROS SECclient g pckas g pctas

akey akey> akey

Proof Sketch.In Appendix D.3 we formally prove the secrecy of the sessionAkéiey
with respect to the key-séf = {k& ¥, ki ;¢ }. The proof is modular and broadly, there
are two stages to the proof:

1. In the first stage we assume certain conditions, dendteahd the honesty of
principalsC, K andT and prove that this implieSafeNet(AKey, K). The proof
of this part uses the Staged Composition Theorem. The components of this proof
are;

e secrecy induction - we will describe this shortly.

e precondition induction - in case ®fEERBEROSnost basic sequences do not
need any precondition to facilitate the secrecy induction. For two of the basic
sequences in the Client program, the preconditions are simply of the form that
a certain message was received. Since receiving a message is a monotonic
property, that is - once it is true it is always true thereafter - the precondition
induction goes through simply.

2. In the second stage we prove that execution ofGhient, KAS or the TGS
roles discharge the assumptiohsThese proofs are derived from the authentica-
tion propertiesAUT Hglient, AUT H/?%. Now we combine the two derivations,

kas*

use thePOS axiom and conclud€ EC¢client S ECFas and S ECS

akey akey akey*

As the form of the secrecy induction suggests, we do an induction over all the basic
sequences dKERBEROSBroadly, the induction uses a combination of the following
types of reasoning:

- The secrecy axioms enumerated in the proof system section. The structure of Ker-
beros suggests that in many of the basic sequences the messages being sent out are func-
tions of messages received. A key strategy here is taNIBHa'1 and the safe network
hypothesis to derive that the message received is safe and then proceed to prove that the
messages being sent out are also safe. Consider as an example the sequence of actions
by an application server thregflerver]s/: S’ receives a messade,,,,,[SKey'] (C'.t)
and sends out a messakjg,, [SKey'](t'). Itis provable, just by using tf@AF axioms
that the later message is safe if the former message is safe.

- Derivations from®: The structure ofd is dictated by the structure of the basic
sequences we are inducing over. A practical proof strategy is starting the induction with-
out figuring out a® at the outset and construct parts of thes we do induction over
an individual basic sequence. In caseKkBfRBEROSthese parts are formulae that state
that the generating thread of the putative sedrBtey did not perform certain types of
action onAKey or did it in a restricted form. The motivation for this structure of the
® parts is that many of the basic sequences generate new nonces and send them out un-
protected or protected under a set of keys different flonThe ® parts tell us that this
is not the way the secret in consideration was sent out. For example consider one of the
parts®; : VX, M. New(X, AKey) D —(Send(X, M) A ContainsOpen(M, AKey)) -
this tells us that the generator af< ey did not send it out unprotected in the open.

- Derivations from the&)’s, that is, the preconditions. These are conditions which
are true at the beginning of the basic sequence we are inducing over with respect to the
staged control flow thakERBEROS®xhibits. As before, a practical proof strategy is to
find out what precondition we need for the secrecy induction and do the precondition
induction part afterwards. Consider for example the end of the first stage of the client
thread[Client|c.. We know that at the beginning of the second stage the following
formula always holds 8 : Receive(C", tgt'. Eyym k&5 |(AK ey’ 4. T")). The reason
this information is necessary is that the second stage sendgtbin the open - in order
to reason that this send is safe, given the safe network hypothesis at the beginning of the
second stage, we use the precondition and the theSIR#EC to derive that gt’ was
safe to begin with. O

Theorem 9 (TGS Authentication) On execution of th€lient role by a principal it is
guaranteed that the intended TGS indeed sent the expected response assuming that the

client, the KAS and the TGS are all honest. Similar result holds for a principal executing
theServer role. Formally, KERBEROS AUT H¢'e™t AUT HyeTver

tgs tgs

Proof Sketch.The proof of AUT H;7;”“" can be instantiated from titemplateproof

for theorem 7 and is formally done in Appendix D.2. The prooﬂcﬁfTH{éf;‘f”t uses the

secrecy propertﬁECgﬁjggt established in theorem 8 and is formally done in Appendix
D.4. At a high level, the client reasons that sint& ey is known only toC', K andT’,

the termEym[AK ey](SKey.n,.S) - which it receives during the protocol execution

- could only have been computed by one of them. Some non-trivial technical effort is
required to prove that this encryption was indeed done by a thredd arfd not by

any thread o or K, which could have been the caseeif), there existed a reflection
attack. After showing that it was indeed a thread/ofvho encrypted the term, we use

the honesty rule to show that it indeed sent the expected respo@sernessage. [

Theorem 10 (Service Key SecrecypDn execution of th&lient role by a principal,
secrecy of the Service Key is preserved assuming that the client, the KAS, the TGS and
the application server are all honest. Similar result holds for a principal executing the
TGS role. Formally, KERBEROS SEC¢kient §pCY*

skey skey

Proof Sketch.The idea here is that the Service KE¥<ey is protected by the key-set
{kngt, AKey}. The proof of this theorem being very similar to the proof of theorem 8
is omitted from this paper. O]

Kerberos with PKINIT

We prove theorems for Kerberos with PKINIT [22] that are analogous to theorems 7-10
and are listed in Table 6. The proofs are omitted due to space constraints. In the first
stage of Kerberos with PKINIT, the KAS establishes the authorization key encrypted
with a symmetric key which in turn is sent to the client encrypted with its public key.
For clientC and KASK let us denote this symmetric key B lf}?”. Since the structure

of the rest of the protocol remains the same with respect to the level of formalization
in this paper [7], we can take advantage of the PCL proofs for the symmetric key ver-
sion. In particular, the proofs for the properties of Kerberos with PKINIT analogous to
AUTH,? , AUTHkert and AUT Hy<rve™ are identical in structure to the symmetric
key version. The proof of the property corresponding 6T H¢e"! is different because

of the differing message formats in the first stage. There is an additional step of proving
the secrecy okg’“}?”, after which the secrecy proofs gfKey and SKey are reused

with only the induction over the first stage of the client and the KAS being redone.

7. Related Work

Some secrecy proofs using the CSP [20] or strand space [21] protocol execution model
use inductive arguments that are similar to the form of inductive reasoning codified in
our formal system. For example, within CSP, properties of messages that may appear on
the network have been identified by definingaak function[20,16], with an inductive

proof used to show that rank is preserved by the attacker actions and all honest parties.

SEC) : Hon(C, K) D (GoodKeyAgainst(X, k) v X € {C,K})
SEC,key - Hon(C, K, T) D (GoodKeyAgainst(X, AKey) vV X € {C,K,T})
SEC,gey : Hon(C, K, T, 8) D (GoodKeyAgainst(X, SKey) v X € {C,K,T,8Y})
AUTHyqas : In. Send((K, 1), Epr[pkc](Certi .S1G sk (k.ck)).
C.Esym [k 1) (AK ey.C). Esym k] (AK ey.n1 i .T))

AUTHygs : 3. Send((T',n), C. Esym [k5 71 (SKey.C). Esym [AKey](SKey.n2.S))

SECgEUent . [Client]c SEC) SECF . [KAS]x SEC)

SECHEnt : [Client]c SECukey ~ AUTHEYE™ : [Client]c Hon(C, K) D AUT Hyqs

akey kas
SECERS, « [KAS|k SECqpey AUTH}? : [TGS]r Hon(T, K)
SECLY [TGS|p SEC ey S g, k, ck, tre. AUT Hyqs

AUTH{Le™ : [Client]c Hon(C, K, T) D AUT Hygs

SECSSH : [Client]c SEC gy ~ AUTHSTV" : [Server]s Hon(S,T)

SECY: : [TGS]p SEC;ke, O 3ng, AKey. AUT Hygs

Table 6. PKINIT Security Properties

In comparison, arguments in our formal logic use a conjunction involving #fieNet
predicate and protocol specific propertidn our inductive hypotheses. These two for-
mulas together characterize the set of possible messages appearing on the network and
can be viewed as a symbolic definition of a rank function. We believe that our method is
as powerful as the rank function method for any property expressible in our logic. How-
ever, it is difficult to prove a precise connection without first casting the rank function
method in a formal setting that relies on a specific class of message predicates.

One drawback of the rank functions approach is that the induction is performed
by “global” reasoning — trying to capture all possible properties of the system at once.
This makes the method less applicable since it cannot handle protocols which deal with
temporary secrets or use authentication to ensure secrecy properties. Although some of
these issues can be resolved by extensions of the rank function method [13,12], we expect
that the tools available in PCL are more general and may be better suited for application
to real-world protocols.

Our composition theorems allow us to use a divide-and-conquer approach for com-
plex protocols with different parts serving different purposes. By varying the precon-
ditions of the secrecy induction in the staged composition theorem, we are essentially
modifying the rank function as we shift our attention from one protocol stage to the
other.

Because of its widespread deployment and relative complexity, Kerberos has been
the subject of several logical studies. Bella and Paulson use automated theorem proving
techniques to reason explicitly about properties of Kerberos that hold in all traces con-

taining actions of honest parties and a malicious attacker [3]. Our high-level axiomatic
proofs are significantly more concise since we do not require explicit reasoning about
attacker actions. Another line of work uses a multiset rewriting model [4,2] to develop
proofs in the symbolic and computational model. However, proofs in these papers use
unformalized (though rigorous) mathematical arguments and are not modular.

8. Conclusion

We present formal axioms and proof rules for inductive reasoning about secrecy and
prove soundness of this system over a conventional symbolic model of protocol execu-
tion. The proof system usessafe messageredicate to express that any secret conveyed
by the message is protected by a key from a chosen list. This predicate allows us to de-
fine two additional concepts: a principsgnds safe messagégvery message it sends

is safe, and theetwork is saféf every message sent by every principal is safe.

Our main inductive rule for secrec)ET, states that if every honest principal pre-
serves safety of the network, then the network is safe, assuming that only honest princi-
pals have access to keys in the chosen list. The remainder of the system makes it possible
to discharge assumptions used in the proof, and prove (when appropriate) that only hon-
est principals have the chosen keys. While it might initially seem that network safety de-
pends on the actions of malicious agents, a fundamental advantage of Protocol Compo-
sition Logic is that proofs only involve induction over protocol steps executed by honest
parties.

We illustrate the expressiveness of the logic presented in this paper by proving prop-
erties of two protocols, a variant of the Needham-Schroeder protocol that illustrates the
ability to reason about temporary secrets, and Kerberos. The modular nature of the se-
crecy and authentication proofs for Kerberos makes it possible to reuse proofs about the
basic version of the protocol for the PKINIT version that uses public-key infrastructure
instead of shared secret keys in the initial steps. Compositional secrecy proofs are made
possible by the composition theorems developed in section 5 of this paper.

We have also developed a proof system for secrecy analysis that is sound over a
“computational” protocol execution model which involves probabilistic polynomial-time
computation [19]. The proofs of Kerberos security properties in the computationally
sound logic turn out to be syntactically analogous to the symbolic version described in
this paper. However, the proofs for NSL and variants are not entirely analogous to the
symbolic versions. Specifically, these proofs involve axioms capturing some subtle ways
in which cryptographic reduction proofs work which do not seem to have a direct corre-
spondence with the symbolic way of interpreting the cryptographic primitives.

References

[1] IEEE P802.11i/D10.0. Medium Access Control (MAC) security enhancements, amendment 6 to IEEE
Standard for local and metropolitan area networks part 11: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) specifications., April 2004.

[2] M. Backes, |. Cervesato, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Cryptographically sound security
proofs for basic and public-key kerberos. Rroceedings of 11th European Symposium on Research in
Computer Security2006. To appeatr.

[3]

[4]

5]

6]
[7]

[8]

[9]

(10]
(11]
(12]
(13]
[14]
(15]
[16]

(17]
(18]

(19]
(20]
(21]

(22]

G. Bella and L. C. Paulson. Kerberos version IV: Inductive analysis of the secrecy goals. In J.-J.
Quisquater, editorProceedings of the 5th European Symposium on Research in Computer Security
pages 361-375, Louvain-la-Neuve, Belgium, Sept. 1998. Springer-Verlag LNCS 1485.

F. Butler, I. Cervesato, A. D. Jaggard, and A. Scedrov. A Formal Analysis of Some Properties of
Kerberos 5 Using MSR. Irfrifteenth Computer Security Foundations Workshop — CSFWddges
175-190, Cape Breton, NS, Canada, 24-26 June 2002. IEEE Computer Society Press.

F. Butler, I. Cervesato, A. D. Jaggard, and A. Scedrov. Verifying confidentiality and authentication in
kerberos 5. INSSS$pages 1-24, 2003.

E. C. Kaufman. Internet Key Exchange (IKEv2) Protocol, 2005. RFC.

I. Cervesato, A. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad. Breaking and fixing public-key ker-
beros. Technical report.

A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system for security protocols and its
logical formalization. InProceedings of 16th IEEE Computer Security Foundations Workgreayes
109-125. IEEE, 2003.

A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Secure protocol compositioRrdneedings of 19th
Annual Conference on Mathematical Foundations of Programming Semaviicsne 83. Electronic
Notes in Theoretical Computer Science, 2004.

A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and compositional logic for
security protocolsJournal of Computer Securityt3:423-482, 2005.

A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol Composition Logic (P@lgctronic Notes in
Theoretical Computer SciencE72:311-358, 2007.

R. Delicata and S. Schneider. Temporal rank functions for forward secredgttnlEEE Computer
Security Foundations Workshop, (CSFW-18 20papes 126—139. IEEE Computer Society, 2005.

R. Delicata and S. A. Schneider. Towards the rank function verification of protocols that use temporary
secrets. IrProceedings of the Workshop on Issues in the Theory of Security: WIT3004.

N. Durgin, J. C. Mitchell, and D. Pavlovic. A compositional logic for protocol correctnesBrdneed-

ings of 14th IEEE Computer Security Foundations Workspages 241-255. IEEE, 2001.

C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A modular correctness proof of ieee
802.11i and tls. IACM Conference on Computer and Communications Secpatyes 2—15, 2005.

J. Heather. Strand spaces and rank functions: More than distant cousiRsockedings of the 15th
IEEE Computer Security Foundations Workshop (CSFW’p2ye 104, 2002.

J. Kohl and B. Neuman. The kerberos network authentication service, 1991. RFC.

Z. Manna and A. PnueliTemporal verification of reactive systems: safedpringer-Verlag New York,

Inc., New York, NY, USA, 1995.

A. Roy, A. Datta, A. Derek, and J. Mitchell. Inductive proofs of computational secrecirda. 12th
European Symposium On Research In Computer SecR€67.

S. Schneider. Verifying authentication protocols with d&fEE Transactions on Software Engineering
pages 741-58, 1998.

F.J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security protocolsmireat.

of Computer Security/(1), 1999.

L. Zhu and B. Tung. Public key cryptography for initial authentication in kerberos, 2006. Internet Draft.

A. Protocol Logic
A.1. Axioms and Inference Rules

A representative fragment of the axioms and inference rules in the proof system are
collected in Table 7. For expositional convenience, we divide the axioms into four groups.
The axioms about protocol actions state properties that hold in the state reached by
executing one of the actions in a state in which formtteolds. Note that the in axiom
A A1 is any one of the actions ards the corresponding predicate in the logic. Axiom
N1 states that two different threads cannot generate the same nonce whileaNa@m
states that if a thread generates a nonce and does nothing else, only that thread possesses
the nonce.
The possession axioms reflect a fragment of Dolev-Yao rules for constructing or
decomposing messages while the encryption axioms symbolically model encryption. The
generic rules are used for manipulating modal formulas.

A.2. The Honesty Rule

The honesty rule is essentially an invariance rule for proving properties of all roles of a
protocol. It is similar to the basic invariance rule of LTL [18]. The honesty rule is used
to combine facts about one role with inferred actions of other roles.

For example, suppose Alice receives a response from a message sent to Bob. Alice
may wish to use properties of Bob's role to reason about how Bob generated his reply.
In order to do so, Alice may assume that Bob is honest and derive consequences from
this assumption. Since honesty, by definition in this framework, means “following one
or more roles of the protocol,” honest principals must satisfy every property that is a
provable invariant of the protocol roles. Using the notation just introduced, the honesty
rule may be written as follows.

no free variable
[Jx & Vp€ QVPeBS(p). ¢ [Plx ¢ yoN in » exceptX

Q + Honest(X) D ¢ bound in[P]x

In words, if ¢ holds at the beginning of every role ¢f and is preserved by all its
basic sequences, then every honest principal executing prafboalist satisfyp. The
side condition prevents free variables in the conclugionest(X) > ¢ from becoming
bound in any hypothesis. Intuitively, singeholds in the initial state and is preserved by

all basic sequences, it holds at all pausing states of any run.

Axioms for protocol actions
AAl ¢la]x a
AA2 Start(X)[]x —a(X)
AA3 —Send(X,t)[b]x—Send(X,¢) if 0Send(X,t) # ob for all substitutions>
AN2 ¢[new z]x Has(Y,z) D (Y = X)
ARP Receive(X,p(z))[match g(z)as q(t)]x Receive(X,p(t))
P1 Persist(X,t)[a]x Persist(X,t), for Persist € {Has, Send, Receive}
N1 New(X,n) ANew(Y,n) DX =Y
Possession Axioms
ORIG New(X,z) D Has(X, z) TUP Has(X, z) A Has(X,y) D Has(X, z.y)
REC Receive(X, z) D Has(X, x) PROJ Has(X, z.y) D Has(X, z) A Has(X, y)

Encryption Axioms

Let Enc € {SymEnc, PkEnc}, Dec € {SymDec, PkDec} in the following:
ENCO [m':=enc m,k;]x Enc(X,m,k)
ENC1 Start(X) [|x —Enc(X,m, k)
ENC2 7(X,m,k)[a]x 7(X,m,k), form € {Enc, —~Enc}
where, either g enc --- or,a= (p:=enc k’,q),suchthalq, k') # (m,k)
ENC3 Enc(X,m,k) D Has(X, k) A Has(X,m)
ENC4 SymDec(X, E[k](m),k) D 3Y. SymEnc(Y, m, k)
PENC4 PkDec(X, E[k](m), k) D 3Y. PkEnc(Y,m, k)

Generic Rules

0[Plx¢ O[P]xv D6 6[Plx¢ ¢D¢ ¢
iPlxorw Ot 7 [Plxd G2 gpixs @3

Table 7. Fragment of the Proof System

B. New Definitions, Axioms and Rules for Secrecy

SendsSafeMsg(X, s, VM. (Send(X, M) D SafeMsg(M, s, K))

K
SafeNet(s, K) = VX. SendsSafeMsg(X, s, K)

X. (New(X,s) D Honest(f())

)=
)=
KeyHonest(K) = VX.Vk € K. (Has(X, k) D Honest(X))
OrigHonest(s) =
)=

KOHonest(s, K) = KeyHonest(K) A OrigHonest(s)

SAFO

SAF1
SAF2
SAF3
SAF4

NET

NETO
NET1
NET2
NET3

POS

POSL

SREC
SSND

—SafeMsg(s, s, K) A SafeMsg(z, s, K),

wherez is an atomic term different from

SafeMsg(My.M1, s, K) = SafeMsg(Moy, s, K) A SafeMsg(Mi, s, K)
SafeMsg(Esym[k](M), s, K) = SafeMsg(M,s,K) Vk € K
SafeMsg(Epi[k](M), s, K) = SafeMsg(M, s,K) V k € K
SafeMsg(HASH (M), s, K)

Vp € Q.VP € BS(p).

SafeNet(s, K) [P]x Honest(X) A ® D SendsSafeMsg(X, s, K) (%)
O I KOHonest(s, K) A ® D SafeNet(s, K)

(*): [P] 4 does not capture free variablesdn I, s, and® is prefix closed.

SafeNet(s, K) [|x SendsSafeMsg(X, s, KC)

SafeNet(s, K) [receive M]x SafeMsg(M, s, K)

SendsSafeMsg (X, s, K) [a] x SendsSafeMsg(X, s, K), wherea is not a send
SendsSafeMsg(X, s, K) [send M]x SafeMsg(M, s, K) D SendsSafeMsg(X, s, K)

SafeNet(s, K) A Has(X, M) A —SafeMsg(M, s, K)
D Jk € K. Has(X, k) V New(X, s)
1 A SafeNet(s, K) [S]x SendsSafeMsg(X, s, K) A Has(Y, M) A ~SafeMsg(M, s, K)

1 A SafeNet(s, K) [S]x Ik € K. Has(Y, k) V New(Y, s)

whereS' is any basic sequence of actions.

SafeNet(s, K) A Receive(X, M) D SafeMsg(M, s, K)
SafeNet(s, K) A Send(X, M) D SafeMsg(M, s, K)

)

C. PCL Proof of NSL Variant Secrecy

As in the theoremInit is the initial segment of thénit role excluding the last send
action. To prove the secrecy property, we start off by proving an authentication property

Pﬁit]A Honest(A) A Honest(B) D ®, where® is the conjunction of the following
ormulas:

@1 : VX, V. New(X,n4) A Send(X, Epi[ky](X.na)) DY = B
@y : VX, YV, n. New(X,na) D =Send(X, Ep[ky](n.X 1))
®3: VX, e. New(X,ng) D =Send(X, e.ng)

®,4 : Honest(X) A Send(X, Esym [ko](mo).n) D New(X, n)

@5 : Honest(X) A PkEnc(X, X'.n,Y) D X/ = X

In the next step we prove the antecedents of MET rule. We takelC =
{k4, kp} where the bar indicates private key which makegHon(KC) = Honest(A) A

Honest(B). In addition, since threadl generates:,, thereforeKOHonest(n,,) =

Honest(A) A Honest(B). We show that all basic sequence of the protocol send
“safe” messages, assuming that form@dolds and that the predicafafeNet holds

at the beginning of that basic sequence. Formally, for every basic seqinee
{Init;, Init,, Resp,, Resp,} we prove that:

SafeNet(nq, K)[P] 4/ Honest(A’) A ® D SendsSafeMsg(A’, nq, K)

_ The variables used in the basic sequence we are inducting over are consistently
primed so that we do not capture variable®im,, or K. Finally, we use th&NET rule
andPOS axiom to show that,, is a shared secret betwedrand B at a state wherd

has just finished executifmit.
Let, [Init1] 4/ : [new nl;
encl, :=pkenc A’.n!, B’;

send enchq;]ar

Case L nl, # n, (1)

(1) [Init1] 4 SafeMsg(Epk [kp/|(A".n),), na, K) @

(2), NETx* SafeNet(ng, K)[Init1] 4, SendsSafeMsg(A’, nq, K) (3
Case 2 n/, = n, 4)
[Init1] 4 New(A',na) A Send(A’, Eyp [kp/](A’.na)) ®)

®, [Inity]4 B’ =B (6)

(6) [Init1] 4 SafeMsg(Epxlkp/](A"n}), na, K) 0

(7), NETx* SafeNet(nq, C)[Init1] 4+ SendsSafeMsg(A’, nq, K) (8)

Let, [Initz]A/ :

®y

(9), (10)

®3,(11)

SAFO, (12)
SAF0

SAFx, (13), (14)
(15)

Let, [Resp,]p’ :

Do, (17)

[receive encl;
text, := pkdec enc}, A,
match text; as n!.B'.k;

encly :=symenc m’, k';

send enchy.nl;]ar

[Init2] 4+ Send(A’, Esym [K'](m').n},)

Honest(X) A Send(X, Esym[ko](mo).n) D New(X,n)

[Initz] 4+ New(A’, n}) A Send(A’, Esym [k'](m').n})
[Inita] 47 ny # na

[Inits] 4 SafeMsg(n),, nq, K)

[Inito] 4 SafeMsg(m’, ngq, K)

[Inits] o7 SafeMsg(EBaym k](m’) 1, n0. K)
SafeNet(nq, K) [Inita] 4+ SendsSafeMsg(A’, ng, K)

/ .
rly

[receive enc
text!, := pkdec encly, B/;

match text., as A’.nl;

a
new k’;
enc} := pkenc n&.]ﬁ”.k',fi’;

send enci;]ps

[Resp;] 5/ New(B', k') A Send(B’, Epy [k ar](n)y. B k)

[Resp,|p’ k' # na

Case L SafeMsg(n,, na, K)

SAFx, (18)
NET+, (20)

SafeMsg(Epi[kar](n,, B K'Y, 14, K)

SafeNet(nq, K) [Resp, | g SendsSafeMsg(B’, nq, K)

9)

(10)

(11)
(12)
(13)
(14
(15)
(16)

@an
(18)

(19)
(20)
(21)

Case 2 —SafeMsg(n,, nq, K)

ENC4

InstX — Xo

(24)

NET=, (25)

POSL, (26)

(24),(28),

(29), (30)

SAF3, (31)
(32)

[receive encli;match encly as Epilkp/](A'.n,);]5
3X. PkEnc(X, A’.nl,, B")

[receive encli;maich encly as Epilkp/](A'n);]5
PkEnc(Xo, A’.n/,, B')

[receive enclq;match encly as Epilkp/](A’.nL);] 5
Has(Xo,n})

SafeNet(nq, K)

[receive encl ;match encl, as Epilkp/](A’.nL);] 5
SendsSafeMsg(B’, nq, K) A Has(Xo,n),) A =SafeMsg(n,,, nq, K)
SafeNet(nq, K)

[receive encl ;match enchy as Epglkp](A’.nL);] 5
3k € K. Has(Xo, k) V New(Xo, nq)

XU = A \ XU = B

Honest(X)

Honest(X) A PkEnc(X, X'.n,¥) D X/ = X

SafeNet(nq, K)

[receive encl ;match enchy as Epglkp/](A’.nL);] 5/
A=AvA =B

SafeNet(nq, K) [Resp;] 5/ SafeMsg(Epy[ka/](n}. B k'), nq, K)

SafeNet(nq, K)[Resp; | g SendsSafeMsg(B’, nq, K)

Let, [Resp,y] 5/ : [receive enchg.nl;

m’ := symdec encl.y,k';]p

NETx* SafeNet(ng, K)[Resp,y]grSendsSafeMsg(B’, nq, K)

NET [Init]4 Honest(A) A Honest(B) O SafeNet(n, K)

POS, (35) [Init]4 Honest(A) A Honest(B) D (Has(X,ns) D X = AV X = B)

(22)

(23)

(24)

(25)

(26)

@7
(28)

(29)

(30)

(31)
(32)
(33)

(34

(35)

(36)

D. Proof of Kerberos Security Properties

D.1. Environmental Assumptions

Long term symmetric keys possessed by pairs of honest principals are possessed by only
themselves.

o : VX, Y, Z, type. Hon(X,Y) AHas(Z,k{{55) D (Z =X v Z=Y)

D.2. Proofs ofAUTH{\i™, AUTH[Y" and AUT Hye e

Below we give atemplateproof of [Role]x Hon(X,Y) > 3n. SymEnc((Y,7),
My, k%), whereRole receives the messagdéy. Eqy [k¢5] (M) M.
Reference to equations by negative numbers is relative to the current equation -
(-1) refers to the last equation. Reference by positive number indicates the actual number
of the equation.

[Role]x SymDec(X, Esym [k{5](M1), K¢E) @)

Hon(X,Y),To [Role]x 3n. SymEnc((X,n), M1, kg(yfgf

ENC4,(-1) V 3n.SymEnc((Y,n), M1, k%) %)
Casel X =Y (3)
(—2,—1) [Role]x In. SymEnc((Y,n), M1, kggf;;) @)
Case2 X #Y (%)

HON Honest(Xo) A Xo # Yo D VM. =SymEnc(Xo, M, k3¢S) (6)
Hon(X),(—1) [Role]x —3n. SymEnc((X,n), M1, kég’;f) @

(—6,—1) [Role]x 3n. SymEnc((Y,n), M1, k3¢%S) ®

Instantiating forAUT Hglient:

[Client] ¢ 3n. SymEnc((C,), AKey.n1.T, kcék) 9)

HON Honest(X) A SymEnc(X, KeynTo,kCO)

D Send(X, Co-Esym [k, 5 1(Key.Co). Esym [k, 5 (Key.n.Tp)) (10)

Hon(K), [Client]c 3n.Send((K,n), C.Esym[kr 1] (AKey.C).
(=2,-1) Esym[kG F](AKey.n,.T)) (1)

(-1) AUTH{ ™ (12)

Instantiating forAUT H} 9% :

kas*

[TGS]r 3n. SymEnc((K,n), AKey.C, ktHk) (13)

HON Honest(X) A SymEnc(X, Key.Co, k- ¥)

D 3n. Send(X, Co. Esym [k ¥1(Key.Co). Esym k&, i | (Key.n.Y)) (14)

Hon(K), [TGS|z In,n.Send((K,n),C.Esym [k 1F](AKey.C).

(=2,-1) Esym[kG £1(AKey.n1.T)) (15)
(-1) AUTH;?’ (16)

Instantiating forAUT Hy "

[Server]g 3. SymEnc((T, 1), Esym [kg?Tt (SKey.C)) av7)

HON Honest(X) A SymEnc(X, Key.Co, k5 ¥

D In, Key'. Send(X, Co.E Esym [kéat](Key Co) Egym[Key'|(Key.n. Y)) (18)

Hon(T), [Server]g 3n,n, Key'. Send((T',n),C. Esym[kSHt](SKey e).

(=2,-1) Esym[Key'](SKey.n.3)) (19
(=1) AUTHSve" (20)

D.3. Proof ofS EC¢client g pCkas g pctas

akey akey’ akey

In this section we formally prove the secrecy of the sessionk&ey with respect to
the key-sefC = {kg ¥, k73 }.

The assumed conditiof® is the conjunction of the following formulas where the
predicateContainsOpen(m, a) asserts that, can be obtained fromn by a series of
unpairings only - no decryption required.

®y : VX, M. New(X, AKey) D —(Send(X, M) A ContainsOpen(M, AKey))
®y : VX, Co, Ko, To, n. New (X, AKey) A SymEnc(X, AKey.n. Ty, k%:lf(o)
DX=KACy=CATo=T

@3 : VX, So, Co. New(X, AKey) D =SymEnc(X, AKey.Co, k3,)

Observe thaf is prefix closed. The only principals having access to a key are
C, K andT". In addition,®, assumes that some threaddfjeneratedi K ey. Therefore,
we haveKOHonest(AK ey, K) = Hon(C, K, T)). As the form of the secrecy induction
suggests, we do an induction over all the basic sequende€ERBEROS

Let, [Client1]c : [new nf;send C’.7".n4;])c

[Client;] New(C’,n}) A Send(C’, C". 1" .n}) @

®1,(1) [Clienti]cr ny # AKey (2

(2) [Client;]cr SafeMsg(C’.T".n}, AKey, K) 3)
NET2,(3) SafeNet(AKey, K) [Client;]os SendsSafeMsg(C’, AKey, K) 4)

Let, [Clients] - : [receive C'.tgt'.ench,;
text),. := symdec enc,, k%T:IIC{,;

match text, as AKey'.n}.T";]c

NETx* SafeNet(AKey, K) [Clients]s SendsSafeMsg(C’, AKey, K) (5)

Preconditiorfs :

Let, [Clientg]c/ :

SREC

SAF1

)

@1, (9)
(8), (10)

(11)

NETx, (12)

Preconditiorfs :

Receive(C”, C" tgt'. Esym k& b/ |(AK ey .n) . T"))

[new nh;
encl, := symenc C”, AKey';

send tgt’.enc.,.C'.S",nh;]c

SafeNet(AKey, K) A 63 D

SafeMsg(CA”.tgt'.Esym [kg.T:]I“(,](AKey'.nll A7), AKey, K) (6)
SafeMsg(C" tgt'. Esym k& b/ |(AK ey ny . T7), AK ey, K) D

SafeMsg(tgt’, AKey, K) (7)
03 A SafeNet(AKey, K) [Clients]s SafeMsg(tgt’, AKey, K) (8)
[Clients]cr New(C’,nh) A Send(C”, tgt' . Esym[AKey'|(C").C".8".nb) (9)
[Clients]cr nh # AKey (10)
03 A SafeNet(AKey, K) [Clients]c/

SafeMsg(tgt’', AK ey, KC) A SafeMsg(n}, AKey, K) (11)
03 A SafeNet(AKey, K) [Clients]c/

SafeMsg(tgt’ . Esym[AKey'](C").C".8" b, AK ey, K) 12)
03 A SafeNet(AKey, K) [Clients] s SendsSafeMsg(C’, AKey, K) (13)

- - - proof for following BS similar to (5) - -
SafeNet(AKey, K) [receive C’.st'.enc),;
texty, := symdec encj,, AKey';

match text,, as SKey' .nh.5";]cr

SendsSafeMsg(C’, AKey, K) (14)
Receive(C’, C'.st' . Esym[AKey'|(SKey' .nb.5"))

- - - proof for following BS similar to (13)- -
05 A SafeNet(AKey, K) [encL, := symenc C't', SKey';
send st’.encly;]cr

SendsSafeMsg(C’, AKey, K) (15)

- - - proof for following BS similar to (5) - -
SafeNet(AKey, K) [receive encl,;
text), := symdec ench,, SKey';
match text,, as t';]c

SendsSafeMsg(C’, AKey, K) (16)

Let, [KAS]y : [receive C'.T".n};
new AKey';
tgt' :=symenc AKey .C’ ki k.;
encj,. := symenc AKey'.n'l.T’,kE?’];(,;

send C’.tgt'.ench,;] i

Case I: AKey = AKey

[KAS]x/New(K', AKey) A SymEnc(K', AKey.ny.T", kCCT:I;(/) 17)
3, (17) [KAS|x/C'=CAK =KAT =T (18)
(18) [KAS|xkgr fr € KARR b €K (19)

SAF=x, (19) SafeNet(AKey, K) [KAS] g, SafeMsg(
é,'Esym[k'tI‘TZI}g(/](AKEy/~CA’I)-Esym [ké::};(,](AKey/.nll.T’),

AKey, K) (20)

Case 2 AKey' # AKey

NET1 SafeNet(AKey,K) [receive C'.T".n};]x+ SafeMsg(C'.T".n}, AKey, K)
(21)

(21) SafeNet(AKey, K) [receive C'.T".n);] ;s SafeMsg(n}, AKey,K) (22)
SAF=x, (22) SafeNet(AKey, K) [KAS]/ SafeMsg(
C Boym K7k J(AK ey .C). Bsym[kG7 i) (AK ey’ . T7)),
AKey,K) (23)
(20), (23), NETx SafeNet(AKey, K) [KAS] g+ SendsSafeMsg(K’, AKey, K) (24)

Let, [TGS] :

NET1,SAF1

P3,(26)
(25), (27),
SAFx

NET+, (28)

Let, [Server]g :

NET1,SAF0
SAF+x, (30)
SAF1,(31)

NET2

[receive tgt’.enc.,.C'.5" .nb;

texty,, = symdec tgt’, ki i

match text;,, as AKey' .C';

text!, := symdec encl,, AKey';
match text,, as C’;

new SKey';

st’ := symenc SKey'.(j”,kg}t;

ench, := symenc SKey'.nb.S', AKey';

send C’.st'.ench,;)7

SafeNet(AKey, K) [receive encl,;.enchs.C".S".nb;]k

SafeMsg(nb, AKey, K) (25)
[TGS]7/ New(T”, SKey') A SymEnc(T’, SKey' .C’, kg/_:%/) (26)
[TGS]1 SKey' # AKey (27)

SafeNet(AKey, K) [TGS]r/ SafeMsg(
C! Esym[k&) (SKey' .C"). Esym[AKey'|(SKey' .n.5"), AKey, K) (28)
SafeNet(AKey, K) [TGS]p SendsSafeMsg(T’, AK ey, K) (29)

/

. ,)
[receive st'.encig;

texty, := symdec st’, kg7
match text., as SKey'.C';
text! := symdec enc.,, SKey';
match text! as C'.t';

ench, = symenc t', SKey';

/
send enc,.;lg

SafeNet(AKey, K) [Server]g SafeMsg(Esym[SKey'](C".t'), AKey,K) (30)

SafeNet(AKey, K) [Server]g SafeMsg(t', AKey,K) V SKey' € K (31)

SafeNet(AKey, K) [Server]g: SafeMsg(Esym [SKey'|(t'), AKey, K) (32)
(AKey, K)

SafeNet(AKey, K) [Server]g SendsSafeMsg(S’, AKey, K) (33)

Theorem6 ® A Hon(C, K, T") D SafeNet(AKey, K) (34)
POS, (34) ®AHon(C,K,T) D
(Has(X, AKey) D (X =CVX=KvX="1)) (35)

Based oAUT H{lient, the actions ifKAS] g, AUTH%";M and a few additional steps, we can infer
that:

KERBEROS- [Client]¢ Hon(C, K,T) D &

KERBEROS- [KAS]|x Hon(C, K, T) D &

KERBEROS- [TGS] Hon(C, K,T) D @
Combining these with the secrecy derivation (35) we have:

KERBEROS- SECS)", SECs,, SECS: |

D.4. Proof of AUT Hekient

tgs

This proof uses the secrecy propeStECC”e;t which established the secrecy 4f ey

ake
amongC, K and7" assuming their honesty. Again, reference to equations by negative
numbers is relative to the current equatiang, (-1) refers to the last equation. Reference

by positive number indicates the actual number of the equation.

[Client] o SymDec(C, Esym[AKey](SKey.n2.S), AKey) 1)
(—1) [Client]c 3X. SymEnc(X, SKey.ns.5, AKey))
InstX +— Xg,(—1) [Client]c SymEnc(Xo, SKey.n2.S, AKey) (3)
ENC3,(—1) [Client]c Has(Xo, AKey) 4)
SECSiEm, (-1) Xo=CAXo=KAXo=T (5)
HON Honest(X) A SymEnc(X, Key'.n.So, Key) A Key # k% 3 O
3Ko, Co. SymDec(X, Esym [k %, 1(Key.Co))A
Send(X, Co.Esym k%, % 1(Key'.Co). Esym[Key](Key' m.50)) (6)
Inst, (—4,—1) [Client]c SymDec(Xo, Esym [k, i, 1(AKey.Co))A
Send(Xo, Co.Esym [k%j}?lo](SKeyAéQ).Esym [AKey](SKey.n2.5)) (7)
(1) [Client]c 3Y. SymEnc(Y, AKey.Co, ki %) (8)
InstY — Yp, (—1) [Client]c SymEnc(Yp, AKey.Co, k. ") 9)
ENC3,(—1) [Client]c Has(Yy, AKey) (20)
SECEr, (1) Honest(Y)) (11)
HON Honest(X) A SymEnc(Y, Key. W,k }) D New(X, Key) (12)
(—=4,-1) [Client]c New(Yy, AKey) (13)
AUTHHE™ New(X, AKey) A SymEnc(X, AKey. W, ki)
DY =TANZ=KAW=C (14)
(9,-2,-1) Xo=TAKo=KACy=C (15)
(7,—1) [Client]c 3. Send((T',7),C. Esym[ks_’t](SKey a).
Esym[AKey)(SKey.n2.S)) (16)
(=1) AUTHgkent 7

