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Chapter 1

STeP and deision proedures

This introdutory hapter gives some bakground on STeP and temporal veri�ation. While

the thesis is about developing and integrating deision proedures we will here briey give

the bakground for their appliations in temporal veri�ation.

1.1 STeP

The Stanford Temporal Prover (STeP) is a system for omputer-aided formal veri�ation of

reative, real-time and hybrid systems based on their temporal spei�ations, expressed in

linear-time temporal logi (LTL). STeP integrates model heking and dedutive methods to

allow the veri�ation of a broad lass of systems, inluding parameterized (N -omponent)

iruit designs, parameterized (N -proess) programs, and programs with in�nite data do-

mains.

Figure 1.1 presents an outline of the STeP system. The main inputs are a reative system

and a property to be proven for it, expressed as a temporal logi formula. The system an

be a hardware or software desription and may inlude real-time and hybrid omponents.

Veri�ation is performed by model heking or dedutive means, or a ombination of the

two.

1.1.1 Transition systems

Our omputational model for reative systems is that of a transition system,

S = hV;�;T ;J ; Ci;

1
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Figure 1.1: An outline of the STeP system

where V is a �nite set of system variables, � is a formula haraterizing the set of initial

states, T is a �nite set of transitions, J � T is a set of just transitions, and C � T is a set

of ompassionate transitions. The voabulary V ontains data variables, ontrol variables

and auxiliary variables. The set of states over V is denoted by �, where eah state is

an assignment of values to the variables in V. The initial ondition � is expressed as a

�rst-order assertion. A transition � maps eah state s 2 � into a (possibly empty) set of

� -suessors, �(s) � �. It is de�ned by an assertion �

�

(x; x

0

), alled the transition relation,

whih relates the values x of the variables in state s and the values x

0

in a suessor state

s

0

2 �(s). We require that T ontain a transition �

I

, alled the idling transition, suh that

�(s) = fsg for every state s. A transition � is enabled on state s if �(s) 6= ;.

A omputation of a system S is an in�nite sequene of states s

0

; s

1

; s

2

; : : :, suh that (1)

s

0

is an initial state satisfying �, (2) for every i � 0 there is a transition � 2 T satisfying

s

i+1

2 �(s

i

), (3) for eah � 2 J , if � is enabled on states s

i

; s

i+1

; s

i+2

; : : :, then at some

j � i, �

�

(s

j

; s

j+1

) holds (in automata theory this is known as B�uhi aeptane), (4) for
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eah � 2 C, if � is enabled on in�nitely many states, then � is taken also on in�nitely many

states (in automata theory this is known as Streett aeptane).

Besides supporting input in the format of raw transition systems (atually elaborated

with modularity [FMS98℄), STeP also failitates the representation of systems using a sim-

ple programming language (SPL [MP95, MAB

+

94℄) with onurreny primitives. SPL

statements are translated into transitions in a straightforward manner. For example, the

assignment statement

`

0

: x := y + 1; `

1

:

assigns y + 1 to x when ontrol resides at loation `

0

, and subsequently moves ontrol to

`

1

. Control labels are enoded using ontrol ounters suh that the property being at `

0

is

translated to � = 0 and being at `

1

is translated to � = 1. One of the advantages of using

ounters is that they o�er built-in detetion of oniting loations. In summary, the SPL

ompiler generates the transition � with transition relation

�

�

(�; x; y; �

0

; x

0

; y

0

) : � = 0 ^ x

0

= y + 1 ^ y

0

= y ^ �

0

= 1 :

1.1.2 Linear-time temporal logi

The primary spei�ation language used by STeP is �rst-order logi enhaned by temporal

onnetives [Pnu77℄.

A temporal formula is onstruted from state formulas (alled assertions), whih are

formulas from the �rst-order assertion language. To state formulas we apply boolean on-

netives (suh as _, :), quanti�ers (8, 9) and temporal operators. The temporal operators

used in this paper are future operators 0 (always in the future), W (waiting-for, unless), 2

(next) and their past ounterparts ` (always in the past), B (bak-to) and � (previously).

A model for a temporal formula ' is an in�nite sequene of states � : s

0

; s

1

; s

2

; : : :,

where eah state s

j

provides an interpretation for the variables ourring in '. A temporal

formula ' is S-valid, written S q ', if ' is satis�ed on eah omputation � of S. This is

written h�; 0i q '. We de�ne this relation below for the limited voabulary used in this
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thesis.

h�; ji q ' () s

j

q ' if ' is �rst-order

That is, ' is evaluated loally, using the interpretation in s

j

h�; ji q 0 ' () 8j

0

: j

0

� j � h�; j

0

i q '

h�; ji q 1 ' () 9j

0

: j

0

� j � h�; j

0

i q '

Furthermore we write p) q as a shorthand for 0 (p ! q).

1.2 Temporal veri�ation

As Figure 1.1 indiates, STeP aims to support three veri�ation paradigms: dedutive,

algorithmi, and a hybrid approah: dedutive-algorithmi.

1.2.1 Dedutive veri�ation

The dedutive methods of STeP verify temporal properties of systems by means of ver-

i�ation rules and veri�ation diagrams. Veri�ation rules redue temporal properties of

systems to �rst-order veri�ation onditions [MP95℄. The most widely used veri�ation rule

is inv given in Figure 1.2. It redues the veri�ation of the invariant 0 p to the �rst-order

For assertion p,

B1. �! p

B2. fpg T fpg

S q 0 p

Figure 1.2: Basi invariane rule inv.

veri�ation onditions in premises B1 and B2. The ondition B2 is shorthand for

^

�2T

�

p(x) ^ �

�

(x; x

0

) ! p(x

0

)

�

:

Veri�ation diagrams [MP94, BMS95, Sip98℄ provide a visual language for guiding,

organizing, and displaying proofs. STeP features a diagram editor that takes a system, a

spei�ation, and a diagram and generates the appropriate veri�ation onditions.

Case studies of mainly dedutive veri�ation of in�nite state parameterized systems are

reported in [MAB

+

94, BLM97, BMSU97, BMSU98℄ and on the web at
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http://www-step.stanford.edu/ase-studies .

1.2.2 Algorithmi veri�ation

Model heking [CE81℄ using either state spae enumeration or symboli methods [MM93℄

(using BDDs) an be used to prove temporal properties of systems with �nite state spaes.

An enumerative model heking algorithm for �nite state systems and LTL is desribed

in [MP95℄. Its implementation in STeP applies to some in�nite state systems as well. Sym-

boli model heking algorithms for deiding the general validity of linear time propositional

temporal formulas as well as properties over a reative system are desribed in [Bj�98b℄.

1.2.3 Dedutive-algorithmi veri�ation

A muh disussed topi these days is ombining model heking with dedution. The golden

promise of this integration researh is in adding the expressiveness of dedutive tehniques

to the eÆieny of model heking.

One approah taken within STeP has been Dedutive Model Cheking [SUM96℄. Here,

the state spae exploration is performed symbolially using formulas to represent states and

using deision proedures to inrementally guide the state spae exploration.

A more separated approah is to generate abstrations of systems �rst and then model

hek the abstration. Deision proedures are used to generate abstrations that preserve

as muh information as possible from the in�nite state system. First results on this an be

found in [CU98℄, and independent work within PVS and SMV is found in [BLO98℄. Alter-

natively, one an use a theorem prover to in fat perform the state spae exploration [GS97℄.

In all ases the general approah is only as good as the eÆieny and expressiveness of

the deision proedures. On the other hand, present experiene has been that the abstrated

systems are very small and an be handled within a seond by good model hekers.

Abstration is treated in depth in [Uri98℄.

1.3 Generating and strengthening invariants

An important omponent in bootstrapping dedutive, algorithmi, and dedutive-algorithmi

veri�ation are utilities for generating auxiliary invariants.

Dedutive veri�ation: Invariants that have either been generated automatially, or

established using the inv rule an be used as assumptions when proving other invariants
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using inv. However, the rule inv may fail, even in the presene of auxiliary invariants, that

is

B2 : I

aux

! fpg � fpg

is not valid for some transition � , where p is the invariant to be established, and I

aux

is the

set of auxiliary invariants. In this ase one an strengthen the invariant andidate p to

p := p ^ wp(�; p)

and try again. The operator wp(�; p) is shorthand for 8x

0

: �

�

(x; x

0

) ! p(x

0

). In general,

we seek the greatest �x-point of the operator:

B(X)

def

= I

aux

^ p ^ wp(T ;X) :

The greatest �x-point of B(X) is written as �X : B(X).

To illustrate how auxiliary invariants an be used in onjuntion with invariant strength-

ening onsider a simpli�ed version of Lamport's solution to the mutual exlusion problem

for two proesses, formulated in SPL in Figure 1.3.

loal y

1

; y

2

: integer where y

1

= y

2

= 0

P

1

::

2

6

6

6

6

6

6

6

4

loop forever do

2

6

6

6

6

6

4

`

0

: nonritial

`

1

: y

1

:= y

2

+ 1

`

2

: await (y

2

= 0 _ y

1

� y

2

)

`

3

: ritial

`

4

: y

1

:= 0

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

5

jj P

2

::

2

6

6

6

6

6

6

6

4

loop forever do

2

6

6

6

6

6

4

m

0

: nonritial

m

1

: y

2

:= y

1

+ 1

m

2

: await (y

1

= 0 _ y

2

< y

1

)

m

3

: ritial

m

4

: y

2

:= 0

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

5

Figure 1.3: Program bakery (Program bakery for mutual exlusion)

STeP generates the auxiliary invariants 0 (y

1

� 0) and 0 (y

2

� 0) by propagating onvex

polyhedra.

1

1

In reality STeP generates several other invariants, so the strengthening done here beomes redundant,

but let us pretend that STeP ould only generate these weak assertions (whih an also be inferred and

heked by delaring y

1

and y

2

as natural numbers).
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Bakward propagation starts from an invariant andidate, in this ase

0 :(at `

3

^ at m

3

);

whih expresses mutual exlusion in the ritial setions.

�

�

�

�

`

4

^m

2

! y

2

6= 0

�

�

�

�

`

2

^m

4

! y

1

6= 0

�

�

�

�

`

4

^m

3

! y

2

6= 0

�

�

�

�

`

0

^m

2

! y

2

6= 0

�

�

�

�

`

2

^m

0

! y

1

6= 0

�

�

�

�

`

3

^m

4

! y

1

6= 0

�

�

�

�

`

0

^m

3

! y

2

6= 0

�

�

�

�

`

1

^m

2

! y

2

6= 0

�

�

�

�

`

2

^m

1

! y

1

6= 0

�

�

�

�

`

3

^m

0

! y

1

6= 0

�

�

�

�

`

1

^m

3

! y

2

6= 0

�

�

�

�

`

2

^m

2

! y

2

6= 0 ^ y

1

6= 0

�

�

�

�

`

3

^m

1

! y

1

6= 0

�

�

�

�

`

2

^m

3

! y

2

6= 0 ^ y

1

> y

2

�

�

�

�

`

3

^m

2

! y

1

6= 0 ^ y

1

� y

2

�

�

�

�

:(`

3

^ m

3

)

6�

m

2

6�

`

2

6�

`

0

6�

m

0

6�

`

4

6�

m

4

6�

`

0

6�

m

0

�

�

�

�*

�

`

1

H

H

H

HY

�

m

1

�

���

`

1

�

�I �

m

1

�

�I�

m

2

�

���

`

2

�

�

�

�

�

�1

�

`

2

P

P

P

P

P

Pi

�

m

2

Figure 1.4: Bakward propagation from :(`

3

^ m

3

)

We ompute the terms of the sequene

T

|{z}

'

0

 B('

0

)

| {z }

'

1

 B('

1

)

| {z }

'

2

 � � �

until a limit is found. Applying B one generates '

1

: :(`

3

^ m

3

). In the seond iteration

of B we alulate:

wp(T ; '

1

) =

V

�2T

wp(�; '

1

)

= wp(�

`

2

; '

1

) ^ wp(�

m

2

; '

1

)

= (`

2

^m

3

! y

2

6= 0 ^ y

1

> y

2

)

^ (`

3

^m

2

! y

1

6= 0 ^ y

1

� y

2

):

Continuing mehanially in this fashion we obtain the formulas shown in Figure 1.4. By

alulating wp(�; '), where � labels an edge pointing to a '-node, one obtains the assertion
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labeling the soure of the edge. The onjuntion of the formulas is the greatest �x-point

'

B

of B. Finally, sine � : `

0

^m

0

^ y

1

= y

2

= 0 implies '

B

, we have indeed established

mutual exlusion of the ritial setions.

Algorithmi veri�ation: Model hekers that use expliit state spae exploration build

the set of reahable states on the y, and the use of auxiliary invariants has questionable

advantages in this ontext. Symboli model heking on the other hand, an be treated as

a �nite state instane of general assertional veri�ation.

We will here abuse an older ase study, a parameterized algorithm for mutual exlusion

by Szymanski [SV94℄, in highlighting advantages of using auxiliary invariants in pruning

symboli model heking. The version of Szymanski's algorithm we examine is given in

Figure 1.5.

in N : integer where N � 1

loal a : array [1::N ℄ of boolean where 8i : [1::N ℄::a[i℄

s : array [1::N ℄ of boolean where 8i : [1::N ℄::s[i℄

w : array [1::N ℄ of boolean where 8i : [1::N ℄::w[i℄

N

jj

i=1

P [i℄ ::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

1

: nonritial

`

2

: a[i℄ := T

`

3

: await 8j : [1::N ℄: :s[j℄

||||| doorway ||||

`

4

: (w[i℄; s[i℄) := (t;t)

|||| waiting room |||

`

5

: if 9j : [1::N ℄: (a[j℄ ^ :w[j℄) then

2

6

4

`

6

: s[i℄ := f

`

7

: await 9j : [1::N ℄: (s[j℄ ^ :w[j℄)

`

8

: s[i℄ := t

3

7

5

|||| inner santum |||

`

9

: w[i℄ := f

`

10

: await 8j : [1::N ℄: :w[j℄

`

11

: await 8j : [1::(i � 1)℄: :s[j℄

`

12

: ritial

`

13

: (s[i℄; a[i℄) := (f; f)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 1.5: Program Szy-a (Szymanski's algorithm: atomi version).
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Some of the bottom-up invariants generated by STeP are:

`

5;6;9::13

[i℄ $ s[i℄

`

3::13

[i℄ $ a[i℄

`

5::9

[i℄ $ w[i℄

These are generated using assertion propagation noting that the variables s[i℄, a[i℄, and w[i℄

are onurrently read, but exlusively written by proess P [i℄.

The main spei�ations of the algorithm inlude

mux: `

12

[i℄ ^ `

12

[j℄ ) i = j

a: `

2

[i℄ ) 1 `

12

[i℄

Finite instanes of N an be heked diretly using symboli model heking beause the

system then beomes �nite state. To hek the invariant mux STeP omputes �X : B(X)

using OBDDs to maintain the intermediary assertions. It takes STeP a few seonds (3 on a

SUN Ultra Spar II) to hek mux in the ase with 3 proessors. With 4 proessors, heking

takes about a minute and generates in exess of 1 million BDD nodes, with 5 proessors, the

heking takes about 30 minutes. The ase with 6 proessors takes about 2 hours to hek.

The situation is, on the other hand, muh worse when applying the model-heking without

the bottom-up invariants. With 3 proessors the model heker now takes 3 minutes instead

of 3 seonds. However, a diret omputation of the reahable states takes 1 seond with 3

proessors thanks to the limited size of the example.

The a property an also be established for the ase of 3 proessors. It takes the

symboli model heker 25 minutes to hek this laim. Most of the time is spent on

heking the fairness onstraints imposed by the transition system.

Consider a version of Szymanski's algorithm without the onjunt :w[j℄ in `

5

and with-

out statements `

6

and `

8

. We an hek that this program still satis�es mutual exlusion for

3 proessors, but a is violated beause the program an deadlok, and the model heker

reports a ounter-example:
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It should be noted that in dedutive veri�ation of the algorithm, all veri�ation onditions

fall in the deidable lass wS1S or M2L(str), and the Mona [BK95℄ tool an, in fat, be

invoked from STeP to establish all veri�ation onditions automatially (and in seonds)

given the neessary strengthened invariants. Mutual exlusion for this algorithm an also

be established algorithmially using symmetry redution [SV94℄. Finally, it is possible

to ompute the entire set of reahable states using regular automata used in Mona by

propagating the transitions from the initial state (parameterized transition relations are

modi�ed suh that independent ations an be taken simultaneously).

Dedutive-Algorithmi veri�ation: Auxiliary invariants an also be used to generate

more preise abstrations as done in [CU98℄.

1.3.1 Methods for invariant generation

STeP ontains utilities for propagating assertions based on the abstrat syntax tree of

SPL. These are alled loal invariants. Independent of SPL, STeP also ontains utilities

for generating invariants using tehniques from linear algebra and linear programming.

Theoretial extensions of these ideas an be found in [BBM95, BBM97℄, where abstration

domains and �x-point omputations for general safety formulas are investigated. Several

other reent developments for reative systems are [BLS96, SDB96℄; the notion of reaÆrmed

invariants an be found here. Approximation tehniques with appliations for real-time

systems was developed in [WD95℄. ReaÆrmed invariants an also be used for the modular

veri�ation of real-time systems, as exploited in [BMSU97℄, and speializations to hybrid

systems are studied in [MS98℄. Reent use of partitioned BDDs for hardware invariants are

desribed in [GDHH98, GD98℄. Theoretial foundations for abstration are well presented

in [CC77, LGS

+

95, DGG94, Dam96℄. Invariant generation has naturally had a long story in
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the analysis of sequential and funtional programs [GW75, KM76℄ with roots in the analysis

of Algol68.

1.4 Deision proedures

The integration of deision proedures has a long history dating bak to [NO78, Sho79,

BM79℄, but has enjoyed an exiting time reently [CLS96, BS96, BDL96, Det96, TR98℄ in

both theoretial work and as used in veri�ation systems. This, beause deision proedures

make ommon tasks easy, and (seleted) hard tasks possible

2

. The onurrent researh

around Palo Alto has stimulated the development and identi�ation of faster and more

expressive deision proedures. High quality work around the ultimate veri�ation system

PVS has been an initial soure of inspiration. The highly optimized SVC heker on the

other hand has led the way in impressive benhmarks and set high standards in whih large

examples an be done within reasonable time using deision proedures. The driving fore

behind my involvement in the integration of deision proedures has been a desire to �nd

well-tuned integrations of deision proedures for expressive theories, and widen the sope

of deidable lasses.

From a pragmati point of view, deision proedures should ideally terminate quikly

when the formula is not valid (or not in the sope of the supported theories), and not

monopolize omputing resoures in proving valid formulas. As timing beomes ritial,

when thousands of alls are made to the deision proedures, low overhead is important

for smaller examples; on the other hand, larger examples that are developed by areful

manual modeling should also be handled whenever the used theories are in the sope of the

deision proedures. For non-valid goals, feedbak an be given in a variety of ways: as

an assignment of rationals to the parameters of linear programming problems, for example.

More often, however, a truth assignment to the atomi prediates in the goal may better

ommuniate the soure of the invalidity.

1.5 The rest of the thesis

A high-level framework for the integration of deision proedures is presented in Chapter 2.

It surveys known approahes [Opp80a, Sho84℄ and ends up proposing a onstraint-based

version of Shostak's integration. On the other hand, we augment the Davis-Putnam proe-

dure with rules for reasoning about �rst-order quanti�ation. The ambition here is to blend

�rst-order reasoning with the deision proedures that mainly work for quanti�er-free for-

mulas. The framework is intended to approah onrete problems in veri�ation and the

hapter does not provide deep new theoretial results. Although it extends Shostak's alge-

braially solvable theories, it relies on eah deision proedure to provide what orresponds

to a �nite set of uni�ers and therefore does not enjoy the full generality of the Nelson-Oppen

framework. The rest of the thesis therefore examines theories that are entral to temporal

2

This is an adaption of a quote used to promote Perl.
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veri�ation to demonstrate how deision proedures for these theories �t into the proposed

framework. An attempt is made to demonstrate that the framework does indeed allow the

ombination of an extensive set of theories. The approah, however, requires some insight

to the workings of the individual deision proedures. Thus, the thesis presents:

Chapter 3: a new eÆient ombination of deision proedures based on ongruene lo-

sure. A speial feature is that it supports theories with self-referential (yli) data

types,

Chapter 4: algorithms for integration of general speial relations whih go beyond the

limitations of equality-based theory interfaes,

Chapter 5: ooperating deision proedures for linear and non-linear programming,

Chapter 6: algorithms for yli and ayli reursive data types,

Chapter 7: bit-vetor deision proedures, inluding non-�xed length bit-vetors,

Chapter 8: deision proedures for lists and queues.

A high-level overview of the proposed framework an be found in Figure 1.6.

Setions 2.3 and 2.4 are extrated from joint work withMark Stikel and Tom�as Uribe [BSU97℄,

and Chapter 7 resulted from joint work with Mark Pihora [BP98℄. In partiular, Setion 2.4

is due to Mark Stikel, and only lose ollaboration with Mark Pihora made Chapter 7 pos-

sible. For instane, Mark Pihora provided the neessary number theory to solve non-�xed

size bit-vetors.
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Bit-vectors

Queues

Arithmetic 

Data types

Simplifier

Congruence Closure     Special Relations

First-order validity checker

Chapter 2

Chapter 3 Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Figure 1.6: An overview of the integration of deision proedures



Chapter 2

Combining theories

In this hapter we will �rst review seleted approahes in ombining deision proedures,

arriving at a onstraint-based integration of solvers. Setion 2.3 desribes in a dedutive

style the proof-searh proedure mixing �rst-order reasoning and deision proedures. We

�nish by desribing the highlights of an implementation of the dedutive omponent and

explain where the deision proedures are oupled.

Figure 2.1 gives a rough overview of the proposed searh paradigm.

split

split

closed

'[s = t℄

s = t ^ '[T ℄ s 6= t ^ '[F ℄

'[T ℄�

� = solve(s = t) # = unify(s; t)

(s 6= t ^ '[F ℄)#

Figure 2.1: An overview of the refutation searh

Suppose ' is the negated, skolemized version of some formula we wish to prove valid. The

refutation searh proeeds with a Davis-Putnam style ase splitting. In the left branh

14
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where an equality is asserted a ongruene losure based integration of deision proedures

is used to solve the asserted equality and redue (rewrite) the resulting branh under that

assumption. The right branh an be losed by possibly �nding suitable instantiations of

the skolem variables that unify terms s and t. As usual in tableau searh the uni�er # must

be applied to all branhes in the searh.

The rest of this hapter examines the appropriate tools and rules for realizing this

veri�ation approah.

2.1 Preliminaries

Formulas and expressions: STeP uses a �rst-order language with a rih and exible syn-

tax. Formulas are in nonlausal form, and boolean formulas an be nested inside arbitrary

funtion symbols (for instane, p is under the funtion symbol f in f(if p then t

1

else t

2

)).

An essential onstrut is let-binding , whih expliitly represents struture sharing within an

expression.

Therefore, our expressions will inlude �rst-order quanti�ation, the usual set of boolean

onnetives and relations (_;^;:;!;$; if-then-else;

:

=), and the onstrut let x =

e

1

in e

2

for a variable x and arbitrary expressions e

1

and e

2

. The sope of x is e

2

; ourrenes

of x in e

1

are free.

For a given formula F , the universal losure of F , written 8�:F , is the formula 8x

1

::8x

n

:F

where fx

1

; : : : ; x

n

g are the free variables of F . The existential losure of F , written 9�:F ,

is de�ned similarly.

A substitution � is a mapping � : [x

1

7! t

1

; : : : ; x

n

7! t

n

℄, where x

1

; : : : ; x

n

are distint

variables and t

1

; : : : ; t

n

are terms. For an expression e, e� is the result of simultaneously

replaing all free ourrenes of x

i

by t

i

. Replaement is always safe, in that quanti�ed vari-

ables are renamed to prevent apture, and bound variables are not replaed (see [MW93℄).

For substitutions � and �, � �� is the substitution suh that x(� ��) = (x�)�. The substitution

� is more general than � if � �  = � for some . The empty substitution is written as [ ℄.

An atom is a formula with no boolean onnetives; a literal is an atom or its negation.

A top-level onjunt of a formula F is one of F

i

if F is of the form F

1

^ � � � ^ F

n

, and F

otherwise. A top-level literal is a top-level onjunt that is a literal. We write F [e℄ for a

formula with one or more ourrenes of subexpression e, where e does not our within

the sope of a quanti�er.

Sorts: STeP's objet langauge uses sorts suh as booleans, integers, rationals, reals, reur-

sive data-types, reords, funtion spae, and queues. The symbols �; S

1

; : : : ; S

n

range over

sorts. We use B for booleans, N for naturals, Z for integers, and R for reals, in both the

objet and meta-language.

Polarity: We de�ne the polarity of a subexpression in F in the usual way [MW93℄: an

ourrene of a subexpression e is positive (resp. negative) in F if it ours within an

even (resp. odd) number of negations, written as F [e℄

+

(resp. F [e℄

�

). An ourrene has

both polarities, written as F [e℄

�

, if it appears under the $ boolean onnetive or in the
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if-lause of an if-then-else expression. If e has two ourrenes in F , one positive, and

one negative, we an refer to both ourrenes by F [e℄

�

.

F [e℄

+

, F [e℄

�

and F [e℄

�

respetively denote stritly positive, stritly negative and bipolar

ourrenes of e in F .

Theories and deision proedures: Our goal is to deide general validity with respet

to a bakground theory or ombination of theories T (not neessarily omplete or �rst-order

axiomatizable). Following [BFP92℄, we de�ne the following semanti properties of formulas:

De�nition 2.1.1 A losed sentene F is T -valid if every model of T satis�es F , and T -

unsatis�able if no model of T satis�es F .

De�nition 2.1.2 (T -omplementary) A sentene F is T -omplementary if 9 � :F is

T -unsatis�able.

De�nition 2.1.3 (T -refuter) � is a T -refuter, or T -refuting substitution, for a sentene

F if F� is T -omplementary.

The last two notions are extended to sets of formulas by identifying a set with the

onjuntion of its elements. T -omplementary sets of literals in theory reasoning orrespond

to syntatially omplementary pairs of literals in resolution|no instane is satis�able in

the theory.

A deision proedure for a theory T should always be able to identify the T -omplemen-

tarity of a set of quanti�er-free literals.

1

However, if T is a ombination of theories, eah

with its own deision proedure, we do not expet to obtain a ombined deision proedure

that is omplete for the ombined theory (i.e., not all T -unsatis�able sets will be identi�ed).

On some oasions, deision proedures will also be able to provide T -refuting substitutions

for a given set of literals.

In the rest of this paper, validity and satis�ability will always be understood relative to

a theory T , unless it is expliitly stated otherwise.

Funtion updates: If f : A ! B is a funtion from domain A to range B, a 2 A and

b 2 B, then we write

f y [a 7! b℄

instead of

�x : if x = a then b else f(x)

Operations on sets: We use diag(S) as shorthand for f(x; x) j x 2 Sg. To restrit a

funtion f to domain S we use fdS.

1

Note that deision proedures are not expeted to reason about boolean formulas.
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2.2 Integration of deision proedures

In the veri�ation of reative, real-time, hybrid systems, veri�ation onditions generated

from veri�ation rules, abstration, veri�ation diagrams and dynami ow analysis typi-

ally ontain data-types that are used in the supplied systems. These data-types typially

inlude integers, reals (for hybrid systems), arrays, reursive and o-reursive data-types,

lists, queues, bit-vetors, et.. It therefore beomes natural to provide ustomized support

for the theories of eah of the data-types. The most general and exible approah is to

support axiomati presentation of theories in so-alled theory libraries. As often axioms

an be represented equivalently as rewrite rules (or be ompleted into a set of onuent

rewrite rules) general support for rewriting is a way of giving eÆient generi theory sup-

port. However, the general axiomati approah, even with support from rewriting, annot be

expeted to address deidability questions nor utilize speialized (eÆient) data-strutures

when presented with an arbitrary theory. Even more optimized support an be provided

for seleted theories by providing deision proedures for these individually. While modular

support for eah data-type is desirable for a plug-and-prove ombined deision proedure,

some glue mehanism is required to ahieve a omplete integration of the provided deision

proedures.

The issues involved in ombining deision proedures have been studied deades ago

starting with Nelson and Oppen as well as Shostak [NO79, Sho79, Opp80a, Sho84℄. The

approah taken in this thesis builds on and extends [Sho84℄.

The Nelson-Oppen approah forms today the basis for veri�ation systems like ESC [Det96℄,

and EVES [CKM

+

91℄, and SDVS [LFMM92℄. In theoretial work on the word problem the

Nelson-Oppen approah has reeived attention in [TH96, BT97℄.

Shostak's approah in ombining algebraially solvable theories on the other hand forms

the basis for integration of deision proedures in systems like PVS [ORR

+

96℄, SVC [BDL96℄,

and STeP. Thanks to the analysis in [CLS96℄ it has reeived renewed attention, inluding

noteworthy appliations in deiding bit-vetor onstraints [CMR97, BP98, BDL98℄. The

requirement of algebrai solvability an give the impression that the approah is severely

limited in omparison with the Nelson-Oppen method. It is, for instane, not always lear

how non-equational onstraints should be supported in onjuntion with algebrai solvabil-

ity. Support for yli data-types is also impossible if the ongruene losure algorithm at

the enter of the theory integration requires well-founded substitutions.

Our ambition has thus been to demonstrate how the \blindingly fast" ongruene losure

based approah suggested by Shostak does in fat admit rather expressive generalizations.

In providing a ompositional solution we obtain inreased expressiveness without losing

basi eÆieny for the simpler ases, suh as reasoning about pure uninterpreted funtion

symbols. We an also reason about linear arithmeti onstraints while being able to also

handle non-linear onstraints.
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2.2.1 Modular ombination of theories and deision proedures

A modular approah for handling onstraints over di�erent sorts suh as integers, bit-

vetors, and reursive data-types, is to provide a separate onstraint solver for eah sort

and then glue these together by propagating derived equalities. This approah suÆes when

equality is the only shared relation symbol of the theories. The dispathing of whih deision

proedure should be used is based on the prinipal sort of a onstraint. For example the

prinipal sort of an equality s = t is the sort of s (whih is the sort of t). If this happens to

be a rational, then the appropriate deision proedure is one for rational arithmeti. While

the sort-based assumption an be onsidered a real restrition as we annot deal with

theories sharing funtion symbols, it has not yet surfaed in our experiene with program

veri�ation. However, it has been the subjet of interesting theoretial work in [TR98℄.

Very general approahes in ombining positive existential theories are disussed in [BS98℄.

In Setion 2.2.2 and 2.2.3 we will review two ways of propagating equalities.

2.2.2 The Nelson-Oppen ombination

Nelson and Oppen proposed a fairly general framework for ombining proedures deiding

satis�ability of quanti�er-free sentenes. An early presentation is given in [Opp80a℄, and a

rigorous analysis is performed in [TH96℄. We will borrow notation from the latter soure

whenever possible. Given theories T

1

and T

2

over disjoint signatures �

1

and �

2

and deision

proedures Sat

i

i = 1; 2 that establish satis�ability of quanti�er free formulas using only

funtion symbols from �

i

the Nelson-Oppen ombination provides a way to ombine Sat

1

and Sat

2

to a proedure Sat

1&2

that an establish satis�ability in T = T

1

[ T

2

. While

we obviously assume that T is onsistent (otherwise the deision problem is trivial), a

stronger ondition, stable-in�niteness, is required for the ombination T to have a simple

presentation whih is also omplete.

De�nition 2.2.1 (Stable-in�niteness [Opp80a℄) A onsistent, quanti�er free theory T

with signature � is alled stably-in�nite whenever, for every quanti�er-free �-formula ', if

f'g [ T is onsistent, then there is an in�nite model satisfying f'g [ T .

The ombination proedure establishes satis�ability of ' by �rst introduing an ade-

quate supply of variables suh that there are no terms in ' with funtions nested from

�

1

and �

2

. To separate boolean reasoning from the satis�ability proedures we then split

' to disjuntive normal form and from this point work with onjuntions of literals. A

Deomposition Phase then separates a onjuntion into two parts. One part ontains terms

involving funtion symbols from �

1

, the other funtions from �

2

. They both ontain all

equalities and disequalities of the form u 6= v, u = v, where both u and v are variables.

We allow a non-deterministi step to guess for eah pair of variables hu; vi whether to add

u = v or u 6= v.

A �nal Chek Phase invokes the proedures Sat

1

and Sat

2

independently on eah sepa-

rated onjuntion.
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1. Variable Abstration

For eah sub-term f(t

1

; : : : ; g(s); : : : ; t

n

) in ' where f 2 �

1

and g 2 �

2

, or vie versa,

replae g(s) by a fresh variable z and add the equality z = g(s) to '.

If s = t is a sub-formula of ', and neither s nor t are variables we introdue a variable

u and replae s = t by s = u ^ t = u.

This proess eliminates nested funtions from di�erent signatures at the expense of

adding new equalities.

2. Normal form onversion

' is then onverted into disjuntive normal form, and we guess a disjunt  (whih

is a onjuntion of literals).

3. Deomposition Phase

(a) From  form two onjuntions,  

1

and  

2

, where  

i

ontains all onjunts of  

whih are either equalities between variables, or ontain funtion symbols from

�

i

, i = 1; 2.

(b) Choose a partition P (i.e., P = ffx

1

; x

2

g; fx

3

g; fx

4

; : : : ; x

10

g; : : :g) of the vari-

ables x shared between  

1

and  

2

. Eah equivalene lass should naturally only

ontain variables of the same type.

() Simplify  

1

and  

2

by replaing eah variable in P by an equivalene lass

representative [x℄

P

.

(d) Use � to assert the disequalities

f[x℄

P

6= [y℄

P

j whenever [x℄

P

and [y℄

P

are di�erent equivalene lassesg :

4. Chek Phase

� Chek satis�ability of  

1

^� using Sat

1

.

� Chek satis�ability of  

2

^� using Sat

2

.

The proedure returns satis�able if there is a disjunt in the CNF of ' and a partition P

of shared variables suh that both  

1

^ � and  

2

^ � pass the hek phase. A proof of

soundness and ompleteness for this proedure is given in [TH96℄ when T is stably-in�nite.

A few observations are worth pointing out in onnetion with this approah: (1) Craig's

interpolation theorem tells us that we indeed only need to share equality onstraints on

shared variables, assuming equality is the only shared relation or funtion symbol, (2)

stable in�niteness is essential for restriting the partition P to only shared variables; if

stable in�niteness annot be assumed, a partition of all terms and variables suÆes to obtain

ompleteness [Opp80a℄ (as we will establish in a sorted setting later), (3) the deomposition

phase is required in ase of non-onvex theories.
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De�nition 2.2.2 (Convexity) A set of onstraints C is onvex relative to disequalities

t

i

6= s

i

i = 1; : : : ; n if whenever eah disequality t

i

6= s

i

is onsistent with C, then C [ fs

1

6=

t

1

; : : : ; s

n

6= t

n

g is onsistent.

Similarly, a theory is onvex if any onjuntion of literals expressed over its language is

onvex relative to any set of disequalities.

Examples of onvex theories inlude rationals under addition, equality with uninter-

preted funtion symbols, and ertain theories of S-expressions.

For onvex theories we do not need to guess a partition P . Instead, the Nelson-Oppen

ombination suggests using eah deision proedure Sat

i

to inrementally hek whether

 

i

^ x 6= y is satis�able for shared variables x, y. Consequently, if the deision proedures

Sat

i

for onvex theories run in polynomial time on a onjuntion of literals, the resulting

ombination will also run in polynomial time on inputs expressed as onjuntions of literals.

Shostak's solver-based ombination optimizes the integration of deision proedures for

onvex theories that admit anonizers and solvers. We desribe this next.

2.2.3 Shostak's ombination

Shostak's method of ombining deision proedures allows integrating deision proedures

for theories, suh as arrays, linear arithmeti over rationals, reords, suitable data-types,

simple set-theory and graphs inside Shostak's ongruene losure algorithm [Sho84, CLS96,

Mos88℄. The method requires eah theory T to provide (1) a anonizer (�), whih satis�es

1. �(s) = �(t) whenever T q s = t. It follows that � is idempotent.

2. If �(t) = f(t

1

; : : : ; t

n

) then �(t

i

) = t

i

.

and (2) a solver, whih rewrites an equation s = t to either false (if it is unsatis�able) or

into an equivalent form 9V

aux

:

V

n

i=1

x

i

= t

i

, where

1. eah x

i

is an uninterpreted sub-term from s or t.

2. eah t

i

is anonized, i.e., �(t

i

) = t

i

,

3. no x

i

ours in t

j

,

4. no x

i

is equal to an x

j

, when j 6= i.

5. V

aux

is the olletion of auxiliary variables that our in the t

j

's but not in the original

equation s = t.

In the ase that a theory provides a anonizer and a omputable solver it is said to be

algebraially solvable.

A note on \variables": We shall use the term skolem variable to refer to variables that

are obtained from skolemization of universal fore quanti�ers. Skolem variables an be

instantiated by arbitrary terms to lose the refutation searh. Relative to a �xed theory
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T we also use the term variable (without the quali�ation \skolem") to refer to sub-terms

that are not interpreted in T .

Using the solved form: The advantage of algebraially solvable theories is that we an

write the solution as an idempotent substitution

� = [x

i

7! t

i

j i = 1; : : : ; n℄ :

Explained in a simpli�ed way the substitution an be used to deide veri�ation onditions

of the form s

1

= t

1

^ s

2

= t

2

! s

3

= t

3

by extrating �

1

from s

1

= t

1

, extrating �

2

from

(s

2

= t

2

)�

1

and hek if �(s

3

�

1

�

2

) is idential to �(t

3

�

1

�

2

).

An implementation within Shostak's ongruene losure algorithm allows to proess

equalities and disequalities in any order. The substitutions � are applied immediately and

stored in a union-�nd struture. The e�et of applying � is propagated via ongruene

losure on super-terms of the terms appearing in the domain of �. With the terminology of

rewriting theory the substitutions orrespond to normalization with respet to ground om-

pletions [GNP

+

93℄. In reasonable implementations the heks for unsatis�ability (violation

of disequalities) happen on a all-by-need basis, that is, only when the terms involved in a

disequality are made equal.

Shostak's ongruene losure algorithm ahieving this task was �rst published with

subtle mistakes and without a rigorous orretness argument. It is probably no exaggeration

that it remains mysterious even for experts in automated dedution, if not for Shostak

himself today. What makes it attrative is that ongruene losure here serves in dispathing

deision proedures and ombining them tightly.

2.2.3.1 Combining solvers

To ombine theories over disjoint signatures (every funtion symbol is only interpreted in

at most one theory) the solvers for eah theory treat sub-terms headed by funtion symbols

that are not interpreted in that theory as variables. Solvers for disjoint theories are then

ombined by applying them to a set of equations rather than a single equation until a �x-

point is reahed. Requirement 1 is then no longer suÆient to guarantee termination. For

instane, in the onstraint

CAR(z) = CAR(x) + CDR(y) (2.1)

a solver for S-expressions treats the right-hand side as a variable beause + is not interpreted

in the theory of S-expressions. It ould then produe the solution CAR(x)+CDR(y) = CAR(z);

then a solver for linear arithmeti interprets +, but not CAR, so it hooses to return the

original equation. In this setting a solution ould be to hange requirement 1 to

1. x

i

is a variable from s whenever possible.
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We annot always require x

i

to be a variable from the left-hand side as the following example

suggests:

CONS(NIL; x)

| {z }

s

= CONS(y; z)

| {z }

t

:

A solved form is

y = NIL; x = z

but requires y whih only ours in t on the right-hand side. A lear disadvantage of this

restrition is that by foring the solved form to use primarily the left side of an equation,

unneessarily large expressions may be generated. For example, in solving

CAAAR(x) = y (2.2)

we are required to return

x = CONS(CONS(CONS(y; z

1

); z

2

); z

3

)

instead of just swapping the equality.

Fortunately, our ombination here avoids the problems from (2.1) and (2.2) by allowing

a partial interpretation of the seletors CAR and CDR when they are applied to variables.

Then the onstraint (2.1) an only be solved by the arithmetial onstraint solver, beause

the prinipal sort of that equation is one of N , Q, R, C. The onstraint (2.2) is simplify

solved as [CAAAR(x) 7! y℄.

2.2.3.2 Comparisons

In a very good sense one an regard solvers as uni�ation algorithms and the solver/anonizer

onstraints as requirements on the solver to return most general uni�ers. Shostak's integra-

tion of solvable theories is then in priniple a heuristi optimization of (prominent) speial

ases where the Nelson-Oppen applies: to onvex theories admitting solvers and anonizers.

Shostak's integration is then (obviously sound and) omplete in the same ases and for the

same reasons as Nelson and Oppen's approah. Non-onvex theories an in some ases still

be supported by having the anonizers return ompound expressions ontaining ondition-

als, but this may not always be the best heuristi approah. Furthermore, when onstraints

other than pure equalities are involved the naive use of Shostak's method laks even more

exibility. This has led us to a onstraint-based extension of the method to bene�t from its

advantages while enabling extended expressibility.

2.2.4 Constraint-based ombination of solvers

To provide a more exible framework, still bene�ting from Shostak's ombination of solvers,

we use a notion of onstraint ontexts. Eah ontext stores onstraints that annot be

redued to equalities over a partiular sort. Hene, one ontext is alloated for the domain

of integers, rationals and reals, another for reursive and o-reursive data-types, another
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for bit-vetors et.. The onstraint ontexts are then used to maintain onstraints over the

partiular sorts. A ontext C over sort S an be updated by adding a onstraint  whose

prinipal sort belongs to the sort S. On the other hand, we require that in adding new

onstraints to ontexts we will be able to extrat all newly implied equalities in the form

of a substitution in the same way as Shostak's solve routine. For example, if C ontains

the inequalities x � y; y � z � 1, then adding the onstraint  : z � x + 1 results in the

substitution � : [x 7! y; z 7! y + 1℄ and the redued onstraint ontext C�. Non-onvex

theories are supported via a split operation whih takes a ontext C and splits it into a list of

ontexts and substitutions (C

1

; �

1

); : : : ; (C

n

; �

n

). Informally, we read the list as a disjuntion

of possible simpli�ation of C.

In desribing the requirements on the extended utilities we borrow notation and termi-

nology from the onstraint logi programming literature [JM94℄, as we also here deal with

maintaining onstraints. For the theories we will be studying assume that

� Equality is part of every theory. Hene, for every term s and t whose prinipal sort

belongs to a given theory, s = t is a legal onstraint.

� Constraints are losed under negation: If  is a onstraint, then : is a onstraint too.

Although a set of onstraints C is in pratie maintained by speialized data-strutures, we

interpret them as suitable �rst-order formulas. In partiular, true stands for the empty

onstraint ontext, and false for the unsatis�able onstraint ontext.

The theories and assoiated deision proedures desribed in more detail in hapters 5,

6, 7, and 8 are required to provide the operations addConstraint, split, and a anonizer �.

Reall that for eah theory T is assoiated a language L (disjoint from languages over other

theories, exept for equality) and prinipal sort S (suh as real, bit-vetor, or queue). For

the operations we require:

addConstraint: ontext � onstraint ! ontext � substitution As a generalization of the solve

routine we use addConstraint to update a onstraint ontext. In the ase where C is

the empty ontext, addConstraint and solve should oinide when presented with an

equality. In this ase addConstraint returns the empty ontext and a substitution.

For soundness we require that addConstraint is equivalene-preserving, i.e.,

Let (C

0

; �

0

) = addConstraint (C; ): Then C ^  $ 9V

aux

: C

0

^ �

0

:

We add multiple onstraints 

1

; : : : ; 

n

using the notation

addConstraints (C; f

1

; : : : ; 

n

g) :

For exibility we also admit substitutions that are not idempotent as long as they

represent most general uni�ers. For instane, a most general uni�er for potentially

yli terms an be expressed as a mapping on the term-graphs of terms s and t that

are uni�ed. While previous implementations of Shostak's ongruene losure based
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integration have been unable to handle suh yli terms we will present an integration

in Setion 3 that does handle yli terms, and terminates on suh uni�ers as long as

the non-well-founded solver does not need to introdue new terms.

� : ontext � term ! ontext � term The anonizer an also be made ontext-dependent

whih allows it to ause side-e�ets in ontexts, suh as aumulating splitter andi-

dates. We write �

C

(t) as a shorthand for t

0

, where (C

0

; t

0

) = �(C; t).

For instane, we will make the interpretation of data-type seletors suh as CAR and

CDR dependent on whether they take an argument labeled by a onstrutor (in this

example CONS, ATOM, or NIL). When the anonizer proesses a term of the form CAR(x),

where x is not a CONS, it returns CAR(x), but stores x as a future splitter with the

ases NIL, CONS(y; z), or ATOM(u).

split: ontext ! (ontext � substitution)

�

[ ftrueg Primarily split allows to represent on-

straints over non-onvex theories. Suppose that x

1

; : : : ; x

n

are the variables (terms

whose main funtion symbol is not in L) of sort S in C, and let s; t; s

1

; t

1

; : : : ; s

n

; t

n

below be terms whose variables of sort S are among x

1

; : : : ; x

n

.

From the arity of split it follows that either

split(C) = true

or

split(C) = h(C

1

; �

1

); : : : ; (C

n

; �

n

)i

The �rst ase represents the instane where no impliit equalities an be derived from

C. We require that:

if C [ T q

n

_

i=1

s

i

= t

i

then �

C

(s

i

) = �

C

(t

i

) for some i :

In other words, there is a model of T together with onstraints C di�erentiating all

terms over x

1

; : : : ; x

n

unless the anonizer � entails equality

2

.

In the seond ase:

� For soundness we require that C imply the disjuntion of the terms in split, i.e.,

if C then

n

_

i=1

9V

aux

: C

i

^ �

i

:

� For ompleteness we require lazy equational ompleteness. Let s and t be terms

2

We need this impliit delaration of variables in C for the ase of theories over �nite domains.
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built from delared variables,

if T [ C q

m

_

i=1

s

i

= t

i

then

�

C

(s

i

) = �

C

(t

i

) for some i

or C = false

or T [ C

j

q (

m

_

i=1

s

i

= t

i

)�

j

for eah j = 1; : : : ; n

� For termination we require there be a well-founded ordering �, suh that C

i

� C.

From soundness, ompleteness and termination it follows that split must provide a

deision proedure for determining whether a onjuntion of onstraints 

1

; : : : ; 

n

is

satis�able or not. This follows, as assume 

1

; : : : ; 

n

is unsatis�able, then for fresh

variables x

new

, y

new

that do not appear in 

1

; : : : ; 

n

we have



1

^ : : : ^ 

n

q x

new

= y

new

:

trivially as the assumptions are false. The three requirements imply that if we form

C

0

= true, and for i = 1; : : : ; n and generate (C

i

; �

i

) = addConstraint (C

i�1

; (

i

)�

1

� � � �

i�1

),

then, either C

n

= false or the result of applying split exhaustively to C

n

results in

the empty list (when interpreted as the empty disjuntion this is false).

The availability of split gives us the freedom to require that if C implies some equality it

is presented in a substitution � after some sequene of splits. Implied equality onstraints

may thus be delayed at the disretion of the deision proedure. In plae of lazy equa-

tional ompleteness one an desire eager equational ompleteness, whih requires addCon-

straint to return in � all equalities that are implied in onjuntion with the new onstraint.

Thus, eager equational ompleteness states: If 

1

^ : : : ^ 

n

q s = t and C

0

= true,

(C

i

; �

i

) = addConstraint (C

i

; (

i

)�

1

� � � �

i�1

) for i = 1; : : : ; n, then either C

n

is unsatis�able or

�(s�

1

� � � �

n

) = �(t�

1

� � � �

n

): For the theory of linear arithmeti over the rationals we have

an eager equational omplete algorithm for maintaining arithmetial onstraints.

2.2.4.1 Speial relations

One of our interests will be to integrate deision proedures for theories that are essentially

disjoint exept for some sharing via speial relations axioms of the form

x �

1

y ! f(x) �

2

f(y) (2.3)

That is, assume we are given theories T

1

and T

2

, over languages L

1

, L

2

respetively, where

�

1

2 L

1

and f;�

2

2 L

2

and L

1

\ L

2

= f

:

=g (the languages are disjoint, exept for

sharing equality). We now form the theory

T

1

[ T

2

[ fx �

1

y ! f(x) �

2

f(y)g :

In this ase, Craig's interpolation theorem no longer suÆes for ombining disjoint
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satis�ability proedures as the extra axiom ombines the languages via more than equality

reasoning.

We will treat speial relations and mixed onstraints in two methods (1) uninterpreted

ases of speial relations are handled as an extension of the ongruene-losure algorithm

(Chapter 4), (2) speial relations involving arithmetial onstraints are integrated with a

linear arithmeti solver by adding extra interfae utilities to the solver whih allows other

onstraint solvers to aess seleted ontent (Chapters 5.1.4 and 6.2.6).

2.2.4.2 T -refuting substitutions

To takle instantiation of quanti�ers our proedure will draw on utilities for �nding T -

refuting substitutions. Only skolem variables are used in the domain of the instantiations.

instantiate : ontext ! substitution�set In �nding instantiations of quanti�ed variables the-

ories may provide an instantiate utility whih given a ontext C returns a set of T -

refuting substitutions �, suh that for � 2 �, C� is inonsistent.

In the ase where C is a onjuntion of pure uninterpreted equalities �nding a T -refuting

substitution to s 6= t is an NP-omplete problem, known as the rigid E-uni�ation problem

(see 3.5). For extensions of equational theories with some speial relation theories we show

in Chapter 4 how to redue the problem of �nding T -refuting substitutions to the rigid

E-uni�ation problem.

2.3 First-order refutation searh: A alulus

Having presented generi requirements for integrating a lass of deision proedures we

will here ontinue with presenting the main framework in whih boolean onnetives and

quanti�ers are handled.

Integrating speialized deision proedures into general �rst-order theorem proving sys-

tems is a muh-disussed problem with a long line of researh [Plo72℄. Muh of this work

has been arried out in the ontext of resolution, inluding theory resolution [Sti85℄, on-

strained resolution [B�ur91℄, and the use of speialized uni�ation [Fri91, BS93℄. However,

these methods usually make speial demands on the deision proedures (omputation of

residues or omplete sets of most general uni�ers, identifying T -unsatis�able subsets, et.).

These requirements are not always satis�ed by otherwise fast and eÆient deision proe-

dures. Furthermore, in a resolution setting they perform poorly on large formulas with a

omplex boolean struture.

Note that for some of the theories we onsider, suh as �rst-order logi with arith-

meti, omplete proof systems are impossible to obtain. However, our abstrat proedure

is omplete for pure �rst-order logi (that is, the empty theory) and theories for whih an

appropriate version of Herbrand's theorem holds. This theoretial ompleteness laim holds

for implementations that enumerate all possible substitutions. However, it does not hold for

the muh more e�etive seletive generation of substitutions by uni�ation and inomplete

theory reasoning that we use in pratie.
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sueed ; ! refuted

redue ffalseg [ S ! S

simplify fFg [ S ! fSIMPLIFY (F)g [ S

split fF [e℄g [ S ! fe = d

i

^ F j d

i

2 dom(e)g [ S

instantiate S ! S� : fF� j F 2 Sg

for some substitution �

skolemize

+

fF [8x:'℄

+

g [ S ! fF ['[y=x℄ ^ 8x:'℄

+

g [ S

skolemize

�

fF [8x:'℄

�

g [ S ! fF ['[f

x

(y)=x℄℄

�

g [ S

skolemize

�

fF [8x:'℄

�

g [ S !

8

>

<

>

:

0

B

�

a

x

(y) ^ 8x:'

_

:a

x

(y) ^ :8x:'

1

C

A

^ F [a

x

(y)℄

�

9

>

=

>

;

[ S

let-eliminate fF

"

let x = e

1

in e

2

#

g [ S ! ff

x

(y) = e

1

^ F [e

2

[f

x

(y)=x℄℄g [ S

Figure 2.2: Rules for general T -refuting proedure

Our proedure is an extension of the Davis-Putnam-Loveland-Logemann propositional

satis�ability heker [DP60, DLL62℄. It operates on formulas in nonlausal form, and is

extended to onsider quanti�ers. The proedure is intended to preserve the original stru-

ture of the formula, inluding struture sharing using let- expressions, as muh as possible.

Case splitting, instantiation, skolemization and simpli�ation an all be performed inre-

mentally, in a uniform setting. We take advantage of instantiations suggested by deision

proedures whenever available, but an also use \blak-box" proedures that only provide

yes/no answers.

For an arbitrary losed formula G, satis�ability-preserving skolemization onstruts a

quanti�er-free formula Sk(G) suh that 8�:Sk(G) is satis�able i� G is satis�able. G is valid

i� :G is unsatis�able, whih is the ase i� 8�:Sk(:G) is unsatis�able. This is the ase if (but

not only if) there is a ground-unsatis�able instane Sk(:G)�. Thus, the validity of a �rst-

order formula an be established by �nding a substitution for whih a given quanti�er-free

formula is ground-unsatis�able.

We now present a proedure in whih skolemization, instantiation, quanti�er dupliation

and the refutation searh are all arried out within a uni�ed framework. The proedure

operates on a set S of formulas fF

1

; : : : ;F

n

g, where S is said to be satis�able i� 8�:(F

1

_

: : : _ F

n

) is satis�able. To �nish a proof we need to show that all of the elements of S are,

in fat, unsatis�able, under a ommon instantiation. The abstrat proedure proeeds by

transforming the set S, at eah step applying one of the rules in Figure 2.2.

{ sueed: This rule onludes the refutation searh.
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{ redue: false an be disregarded in the searh for a satis�able disjunt.

{ simplify: F is simpli�ed using equivalene preserving transformations, possibly to false ,

by the available deision proedures and simpli�ation mehanisms (see Setion 2.2).

SIMPLIFY (F) simpli�es F with respet to its top-level literals, produing a formula

T -equivalent to F . Minimal requirements for SIMPLIFY are:

� If e = d

i

is a top-level literal of the formula, then e ours nowhere else in the

simpli�ed formula.

� If the top-level literals of the formula are reognized as T -omplementary, then

the simpli�ed formula is false.

{ split: Subexpressions e taking values from a �nite domain dom(e) an be analyzed

aording to the domain values. This inludes boolean sub-formulas e, whih are

split with e = false and e = true. In this ase, the onjunts added are :e and e,

respetively. Speial ases of this rule are disussed in Setion 2.4.

{ instantiate: The substitution � an instantiate free skolem variables in S by arbitrary

(quanti�er-free) terms.

{ skolemize

+

: y is a fresh variable.

3

{ skolemize

�

: y is a tuple of all the free variables in 8x:' and f

x

is a fresh funtion

symbol.

{ skolemize

�

: a

x

is a fresh prediate symbol, and y is a tuple of all the free variables in

8x:'.

{ let-eliminate: y is a tuple of all the free variables in e

1

and f

x

is a fresh funtion

symbol.

2.3.1 Main properties

We write S !

�

S

0

if one or more rules transform the set S into the set S

0

. We say that a

rule preserves satis�ability when it transforms S to S

0

, if:

8�:

_

F 2 S

F is T -satis�able i� 8�:

_

F 2 S

0

F is T -satis�able:

Lemma 2.3.1 Exept for instantiate, eah rule in Setion 2.3 preserves satis�ability

when applied to any set S. If the original set ontains only losed formulas, and only these

rules are applied, then instantiate preserves satis�ability as well.

Proof:

3

Similar skolemization rules apply to existential quanti�ers, when 9x:' has the opposite polarity.
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We inspet eah transformation rule. For an interpretation I (a model) a ��variant

I

�

is an interpretation that oinides with I exept for the variables in �.

{ redue:8�:false _

W

S is equivalent to 8�:

W

S

{ split: Every I

�

orresponding to a satisfying model I for 8�: fF [e℄g _

W

S satis�es

fF [e℄g_

W

S. Clearly I

�

q e = d

i

for some i, thus I

�

q

W

(fe = d

i

^ F j d

i

2 dom(e)g[

S), and hene also I does.

{ simplify: As the simpli�ation is required to be equivalene preserving it trivially

preserves satis�ability.

{ skolemize

+

: 8x:' ! '[y=x℄ so F [8x:' ^ '[y=x℄℄$ F [8x:'℄.

{ skolemize

�

: Assume I

�

q= 8x:', then there is a d depending only on the free

variables in 8x:', suh that I

�

y [x 7! d℄ q= '. Augment I

�

by skolem funtion f

x

(y)

taking the free variables y in 8x:' as argument suh that whenever I

�

q F [8x:'℄

�

and I

�

q= 8x:', then [[f

x

(y)℄℄ = d suh that I

�

y [x 7! d℄ q= '.

On the other hand assume I

�

q F ['[f

x

(y)=x℄℄, then as 8x:' ! '[f

x

(y)=x℄ the

negative ourrene gives: I

�

q F [8x : '℄

{ let-eliminate:

F [let x = e

1

in e

2

℄ �

9x

0

: x

0

= e

1

^ F [e

2

[x

0

=x℄℄ �

9x

0

: x

0

= e

1

^ F [e

2

[e

1

=x℄℄ �

(9x

0

: x

0

= e

1

) ^ F [e

2

[e

1

=x℄℄ is satis�able if and only if

f

x

(y) = e

1

^ F [e

2

[e

1

=x℄℄ �

f

x

(y) = e

1

^ F [e

2

[f

x

(y)=x℄℄

{ skolemize

�

:

F [8x : '℄ �

9a : (a$ 8x : ') ^ F [a℄ �

9a : (a$ 8x : ') ^ F [8x : '℄ �

(9a : (a$ 8x : ')) ^ F [8x : '℄ is satis�able if and only if

(a

x

(y)$ 8x : ') ^ F [8x : '℄ �

(a

x

(y)$ 8x : ') ^ F [a

x

(y)℄ �

(a

x

(y) ^ 8x : ' _ :a

x

(y) ^ :8x : ')) ^ F [a

x

(y)℄
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In pratie, we are only onerned with the \only if" diretion of satis�ability preser-

vation. This diretion is always maintained by the instantiate rule, as well as the rule

re�nements we onsider later on. If the old set is satis�able only if the new one is, then we

have:

Theorem 2.3.2 (Soundness) For any losed formula F , if f:Fg !

�

refuted then F is

T -valid.

Rules that preserve satis�ability are invertible: if S ! S

0

using an invertible rule, then

S !

�

refuted i� S

0

!

�

refuted. Lemma 2.3.1 tells us that all the rules in Setion 2.3 are

invertible. In partiular, rules redue, skolemize

�

, and let-eliminate should be applied

whenever possible, sine they redue the omplexity of S and preserve satis�ability. Finally,

we have:

Theorem 2.3.3 (First-order ompleteness) Let F be a losed �rst-order formula. If

F is (generally, or ;-) valid then f:Fg !

�

refuted.

This follows, for example, from the ompleteness of the general matings proedure, given

a suitable ampli�ation of the formula [And81℄. As in the ase of resolution [Rob65℄, the

ompleteness of most suh proedures relies on Herbrand's theorem to guarantee that an

appropriate �nite ground instantiation always exists. Herbrand's theorem an be extended

to aount for ertain lasses of bakground theories [Fri91, BFP92, GNRS92℄. Sine pra-

tial implementations will sari�e ompleteness by onsidering only instantiations with a

limited amount of quanti�er dupliation, (see Setion 2.3.2), we will not be onerned with

ensuring that suh an extended Herbrand theorem holds.

Theorem 2.3.4 (Ground deidability) Let F be a losed formula where all ourrenes

of 8 are stritly positive. If f:Fg !

�

fF

0

g [ S and F

0

is T -onsistent, then any T -model

for F

0

is also a model for :F .

Thus, if we an deide the T -onsisteny of a formula F

0

obtained from the analysis of

:F , then we an onlude that F is not valid; a model for F

0

is a ounterexample.

2.3.2 Equations, rewrites and limited quanti�er dupliation

To narrow the searh, one an limit the number of quanti�er dupliations in rule skolemize

+

.

For most pratial appliations the quanti�er need not be dupliated at all, using the fol-

lowing rule:

{ skolemize

+

0

: fF [8x:'℄

+

g [ S ! fF ['[y=x℄g [ S.

In this ase, rules skolemize

+

0

and skolemize

�

should take preedene over split, and the

entire formula is fully skolemized before the searh begins.
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As a speial ase of quanti�er dupliation, onjunts an be added whenever they are

an immediate onsequene of a universally quanti�ed top-level literal.

4

A ommon ase is

that of equalities: if the formula 8 � :(s = t) is known (variables renamed apart), one an

add the rules:

{ rewrite: fF [e℄g [ S ! fe = t� ^ F [e℄g [ S where e = s�.

{ narrow: fF [e℄g [ S ! (fe = t ^ F [e℄g [ S) � where e� = s�.

In this way, equations that are not terminating or onuent an be applied step by step. A

onditional rewrite rule, whih rewrites e to e

0

under ondition , an be applied yielding

f(� ! e = e

0

) ^ F [e℄g[S or adding the equality e = e

0

after ensuring that � holds under

the assumption F [e℄.

2.3.3 Sequent alulus

The above presentation is analogous to proof in a Gentzen-style [Gen69℄ sequent alulus,

where eah transformation orresponds to a rule, and eah element of the set S is a branh

in the proof. To illustrate this, we show how well-founded (trans�nite) indution and a

ut rule an be added in very muh the same way they are added to sequent-style aluli.

(These rules are not part of our implementation, desribed in Setion 2.4.)

indution fF [8x:'℄

�

g [ S !

(

F

"

8x:

 

8y: (y � x! '[y=x℄)

! '

!#)

[ S

ut fFg [ S ! fG ^ F ; :G ^ Fg [ S

for an arbitrary formula G.

In the indution rule, � should be a well-founded order, and y a fresh variable.

A standard proof-theoreti analysis an demonstrate how to transform an arbitrary

Gentzen-style derivation into a derivation of the alulus presented here, and vie-versa.

Furthermore, a ut-elimination theorem holds for the �rst-order alulus presented here

(without the indution rules [Min92℄): derivations involving splits on non-atomi formulas

an be onverted into derivations using only splits on atomi formulas. Uses of rule ut

an also be eliminated from the �rst-order (uninterpreted) alulus using a standard ut-

elimination proedure.

2.4 Refutation searh: Baktraking implementation

Following is a desription of the nondeterministi refutation searh proedure rewritten to

suggest a pratial implementation that uses depth-�rst searh with baktraking. It as-

sumes the formula has already been skolemized. When suessful, REFUTE (F ; [ ℄) returns

4

Quanti�er dupliation in the ESC system [Det96℄ is in the form of suh mathing, limited by a heuristi

bound.
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a T -refuting substitution for F . Our inspiration for this approah is the Davis-Putnam-

Loveland-Logemann (DPLL) propositional satis�ability proedure, whih is e�etive and

requires little memory.

REFUTE (F ; �

1

) =

F

0

 SIMPLIFY (F�

1

)

if F

0

= false then return �

1

else do one of

instantiate: � a substitution

return REFUTE (F

0

; �

1

� �)

split: e; fd

1

; : : : ; d

n

g  an expression and possible values

�

2

 REFUTE (e = d

1

^ F

0

; �

1

)

�

3

 REFUTE (e = d

2

^ F

0

; �

2

)

.

.

.

return REFUTE (e = d

n

^ F

0

; �

n

)

amplify: G  an ampli�ation formula

return REFUTE (G ^ F

0

; �

1

)

The DPLL proedure is an instane of REFUTE when F is in lause form, SIMPLIFY

implements unit resolution and subsumption, only the split operation is used, and e is

an atomi formula that ours in a nonunit lause. The added instantiate and amplify

operations extend the substitution and formula respetively. The approah is reminisent

of the searh for general matings [And81, Bib82, Iss90℄ exept here paths are refuted by

T -omplementary sets of literals instead of syntatially omplementary pairs (f. theory

matings [Sti85℄).

2.4.1 The basi operations

The instantiate operation: instantiate extends the urrent substitution �

1

by a sub-

stitution � hosen \don't know" nondeterministially with baktraking. Ideally, if F

0

is

unsatis�able, then � should be a T -refuting substitution for F

0

. T -refuters for the top-level

literals of F

0

an sometimes be found and used as �.

5

T -refuters inlude substitutions that

make literals omplementary by ordinary uni�ation; others may be proposed by the de-

ision proedures (see Setion 2.2); �nally, others an be found using rigid E-uni�ation

(Setion 3.5). In fat [DV96℄ have shown how to use a partial rigid E-uni�ation proedure

to provide a omplete proedure for a tableau based �rst-order alulus. It an immediately

be adapted to also work for our proedure. The only di�erene being that tableau rules

split on logial onnetives, whereas our proedure splits on atomi sub-formulas.

Saving substitutions �

1

for whih REFUTE fails enables elimination of redundant work

due to dupliate substitutions.

5

When a substitution known to be a T -refuter of the top-level literals is hosen as �, the sueeding all

on REFUTE is guaranteed to sueed immediately and an be optimized away.
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Trying to �nd a refutation using only the T -refuters one knows about may seem overly

optimisti, but it appears to work often enough to be a reasonable approah.

A seond, less optimisti approah entails enumerating in advane possible values for

the variables in the formula. The instantiate operation would then be used to generate

the spae of alternative substitutions. A good, but still inomplete way of �nding possible

values is to look at the positions of variables in the formula and then �nd terms that our

in omplementary positions. For example, t is a possible value for x if x ours as argument

i of P and t as argument i of :P . The notion of omplementary position an be extended

in theory-spei� ways, e.g., t and x are in omplementary positions in s � t and x � y (see

Setion 4.1). Our urrent fous and examples use the �rst approah.

The split operation: split an selet an atom e to split on with possible values true and

false as in the DPLL proedure. When e or :e is a top-level literal the proedure always

prefers the implied unit-split. As an extension of the DPLL proedure, split an also selet a

nononstant term e to split on with the elements of its �nite domain fd

1

; : : : ; d

n

g as values.

Good heuristi seletion of what expression to split on an have a dramati e�et on the

size of the searh spae. Unlike the DPLL proedure, we are using nonlausal, nonground

formulas, but riteria similar to those used in the DPLL proedure [HV95℄ are useful, suh

as number of ourrenes and the length of the shortest lause a literal would our in if the

formula were onverted to lause form. Constraint satisfation heuristis, suh as preferring

expressions with smaller domains to split on �rst, an also be used.

In the DPLL proedure, the seletion of whih atom to split and the order of values to try

are \don't are" nondeterministi hoies that a�et the searh spae but not ompleteness.

However, this seletion an a�et whether REFUTE sueeds or not. For REFUTE , we

assume that T -omplementarity an be reognized, but not that T -refuters an always be

found. For example, the T -omplementarity of P (2)^:P (1+1) may be reognized without

assuming that the deision proedures are also able to propose fx 7! 1g as a T -refuter of

P (2) ^ :P (x + 1). When REFUTE is applied to P (2) ^ Q(1) ^ (:P (x + 1) _ :Q(x)),

some searh orders would sueed, beause fx 7! 1g is disovered as a uni�er for Q(1) ^

:Q(x) before attempting to refute P (2) ^ :P (x + 1), while others would fail when the

latter subproblem is enountered �rst. However, baktraking through alternative orders of

splitting is ombinatorially expensive, so we do not do it and aept this additional soure

of inompleteness.

The amplify operation: Davis [Dav81℄ de�nes obvious inferenes as those that only

require substitution for single instanes of the formulas (i.e., no quanti�er dupliation is

needed). The ombination of split and instantiate is omplete for obvious �rst-order in-

ferenes. It will also make some obvious T -inferenes, though not all. Even if T onsists

only of the theory of equality, the undeidability of simultaneous rigid E-uni�ation [DV95℄

limits ompleteness of obvious T -inferene proedures.

Using only split and instantiate is our preferred approah. They are suÆient for several

examples whih we believe are typial problems for STeP. The searh spae is �nite and

often small. If quanti�er dupliation is allowed, the searh spae would be muh larger

(with limited dupliation) or in�nite (with unlimited dupliation). The single-instane
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restrition is a natural one that is readily understood by the user. The restrition is easily

irumvented by the user's expliit inlusion of additional opies of the formulas (e.g, by

manual appliation of skolemize

+

).

Nevertheless, the amplify operation is allowed to do limited quanti�er dupliation, prin-

ipally for the purpose of applying rewrites. Rather than dupliating a quanti�er \in plae",

amplify is de�ned to add an ampli�ation formula as a onjunt to the formula being re-

futed. The ampli�ation formula may be any formula that an be soundly used in the

refutation; it will typially be a fresh instane of a rewrite or premise (see Setion 2.3.2).

2.4.2 Data strutures

A detailed aount of the data strutures used to repesent terms and formulas is given in the

next Chapter in onnetion with ongruene losure. Similarly to [NO79℄ and [BDL96℄ we

use a digraph representation of both terms and formulas, where the only boolean onnetive

is ite (if-then-else expressions). In fat terms and formulas are not distinguished apart as

we allow ite and quanti�ation nested inside terms. We use the phrase expression to refer

to terms and formulas. Hene, basi expressions are of the form:

ite(n

1

; n

2

; n

3

) if-then-else with sub-terms indexed by n

1

; n

2

; n

3

bind x : �:n � is a sort and bind 2 f�;

R

;

P

;

Q

;8;9;9!g

f(n

1

; : : : ; n

k

) (un)interpreted funtion appliation

true

false

x variable

It is easy to translate let-expressions and standard boolean onnetives to onditional

normal form without inreasing the size of the resulting term-graph. For example ' $  

is translated into ite('; ;: ), where : is translated into ite( ; false; true), and the

same node is used to represent both ourrenes of  . Implementing the translation using

a hash-table makes maximal sharing automati.

Potentially, the onversion into onditional normal form onverts every atomi subfor-

mula into dual polarity position (in the head of an if-then-else test). The standard notions

for unit-literals also break down without a notion of and-or formula representations. It

is however possible to reover polarities and unit-literals based on the onditional normal

form.

The SIMPLIFY operation: To propagate the e�et of splitting, the ongruene losure

algorithm presented in the next Chapter propagates redutions of ite terms using anon-

izations of the form �(ite(true; b; )) = b et..

Polarity: Assume that node n is assigned positive polarity and that n points to ite(n

0

; n

1

; n

2

).

With the usual interpretation of ite both n

1

and n

2

our with positive polarity, but n

0

has dual polarity. We an however assign n

0

positive polarity if the boolean expression

assoiated with n implies a modi�ed version of the boolean expression assoiated with n,

where n

0

has been replaed by true.
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This will be the ase if n

2

implies n

1

. A partial hek for this an be obtained by

heking if the set of positive sub-trees of n

2

form a positive frontier of the tree rooted at

n

1

. Hereby we de�ne the relation spei�ed via the prediate ;:

n

2

; n

1

def

=

n

2

= false

or n

1

= true

or n

2

= ite(a

1

; a

2

; a

3

); a

2

; n

1

^ a

3

; n

1

or n

1

= ite(b

1

; b

2

; b

3

); n

2

; b

2

^ n

2

; b

3

This partial haraterization has the advantage that it an be heked very quikly and

preserves the polarities of standard formulas translated into onditional normal form. For

example ' ^  is represented as n : ite(n

0

: '; n

1

:  ; n

2

: false). If the polarity of n is +,

then we should naturally assign polarity + to n

1

, and sine n

2

= false, we have n

2

; n

1

,

so n

0

should also have positive polarity.

A dual requirement holds for negative polarity.

Literal weight: A ruial heuristi that makes the Davis-Putnam proedure work eÆ-

iently is the ability to hoose unit literals whenever possible to perform unit propagation.

We ompute the weight of literals by assigning the top-most expression degree Æ = 0

and polarity � = +. From the polarity and degree we furthermore ompute a onnetive

on via

on = ^ if Æ is even and � = + or Æ is odd and � = �.

on = _ if Æ is odd and � = + or Æ is even and � = �.

on = 
 otherwise, i.e., � = �

Then assume that a sub-expression n : ite(a; b; ) has assoiated polarity �, degree Æ

and onnetive on. We assign polarities and degrees to subexpressions a, b, and  using

the following rules:

�(a) :=

8

>

<

>

:

� if ; b

�� if b; 

� otherwise

�(b) := �() := �

if b = true; on = ^ or b = false; on = _ : Æ(a) := Æ() := Æ + 1

if b = true; on 6= ^ or b = false; on 6= _ : Æ(a) := Æ() := Æ

if  = true; on = ^ or  = false; on = _ : Æ(a) := Æ(b) := Æ + 1

if  = true; on 6= ^ or  = false; on 6= _ : Æ(a) := Æ(b) := Æ

if b;  =2 ftrue; falseg : Æ(a) := Æ + 2; Æ(b) := Æ() := Æ + 1

The use of a digraph representation of expressions implies that the same sub-expression an

be visited starting from di�erent paths. In this ase the degree is updated to the smallest

one and oniting polarities give rise to a dual polarity marking. Repeated traversal of the

same subtree is naturally avoided when a previous degree is not larger and the polarities

oinide.
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The splitter proedure omputes polarity and literal weight simultaneously and returns

unit literals whenever possible, otherwise hooses literals of smallest possible weights.

Subexpressions of the form 8x : � : n, 9x : � : n are skolemized via unit splits.

Heuristis: Well-known heuristis from propositional and onstraint satisfation solving,

suh as dynami lause addition and onit direted baktraking [Pro93℄ or dilemma

rules [SS98℄ have presently not been added to the implementation.

2.5 Summary

We examined di�erent ways to integrate deision proedures and proposed a onstraint-

based version of Shostak's approah to allow eÆient handling of general onstraints. Based

on a simple proof-alulus we presented a depth-�rst refutation searh implementation.



Chapter 3

Congruene losure

Equality over a voabulary of uninterpreted funtion symbols f , g, : : : is axiomatized via

reexivity x = x

symmetry x = y ! y = x

transitivity x = y ^ z = x ! z = y

ongruene x = y ! f(: : : ; x; : : :) = f(: : : ; y; : : :) for eah funtion f

Satis�ability of a set of ground equalities and disequalities an be deided using ongruene

losure. Given a subterm-losed set T of terms ft

1

; : : : ; t

n

g and a set E � T �T of equations

over T , ongruene losure is the proess of generating the oarsest partition C of T satisfying

1. (s; t) 2 E ! s �

C

t.

2. s �

C

t ! f(s) �

C

f(t).

where

s �

C

t

def

= 9C 2 C : s; t 2 C :

Sine C is a partition it automatially satis�es the equality axioms for reexivity, symmetry

and transitivity. The ongruene axioms are satis�ed by ondition 2. Sine C is the oarsest

suh partition it is guaranteed to only satisfy the onsequenes of the equality axioms for

the terms in T .

Example: Let T = fa; b; ; f(a; b); f(b; ); g(a); f(g(a); b)g and assert E = fa = b; b =

g. Then the ongruene losure C is the partition:

ffa; b; g; ff(a; b); f(b; )g; fg(a)g; ff(g(a); b)gg

Thus, the ground onstraint:

a = b ^ b =  ^ f(a; b) 6= g(a) ^ f(b; ) 6= f(g(a); b)

37
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is satis�able beause every pair of terms in disequalities are in di�erent lasses, but the

onstraint

a = b ^ b =  ^ f(a; b) 6= f(b; ) ^ f(b; ) 6= f(g(a); b)

is unsatis�able beause the terms in the �rst disequality are equal by ongruene lo-

sure.

In this hapter we will not only develop new ongruene losure algorithms (plenty of

eÆient versions of these are already around), but also use the ongruene losure algorithm

to manage the use of other deision proedures.

Shostak's ombination of deision proedures uses a ongruene losure algorithm to

maintain and manage equalities and propagate these through funtion symbols. A main

advantage of this approah is that equality information is kept in one plae: in the union-

�nd struture used by the ongruene losure algorithm. Everywhere else equalities are

propagated using anonization. In analogy with term-rewriting, the ongruene losure

algorithm provides a ompletion proedure, and equalities are propagated using rewriting

into a normal form. It is also easy to proess onstraints inrementally using the ongruene

losure based approah, suh that inonsistenies an be deteted early in a refutation

searh.

Other ongruene losure algorithms are disussed in [CS70, Koz77, NO78, Sho78,

MA91℄. For the ombination of theories various ongruene losure algorithms have been

proposed in [Sho84, CLS96, BDL96℄. They share a ommon restrition of not being able

to handle yli terms. This restrition does not apply here, and we will make use of this

added feature in Chapter 6. The algorithm does not require a reursive path ordering on

solutions in the style of [BDL96℄, and does not need auxiliary signature terms [Sho84℄ and

repeated reursive anonizations. On the less enouraging side, ompleteness of the on-

gruene losure approah still relies on less than obvious properties of the algorithm, and is

highly sensitive to interfae ompatibility with external solvers.

Summary of Results: In the empty theory where all funtion symbols are uninterpreted

our basi ongruene losure algorithm an be tuned to run in average time O(n log(n))

when proessing at most n equalities with a total of n di�erent sub-terms. This is better

than other ongruene losure algorithms aimed at ombining theories, but it is omparable

with the best known bound for ongruene losure algorithms [DST80℄. Our algorithm

di�ers from this by dispensing with a signature table, and uses instead a dynami array to

represent and modify terms. The prie onsists of using O(n log(n)) spae instead of linear

spae. The extra spae onsumption has not been a pratial onern for the examples used

so far and it has the added bene�t of ahing intermediary results.

In the term-rewriting ommunity some interest has been devoted in the generation

of a ground onuent term-rewriting system from a set of ground equalities. For in-

stane [GNP

+

93℄ give an O(n

3

) algorithm for generating suh a set. This is improved

in [Kap97℄ to O(n

2

). Naturally, in Setion 3.3.2 we notie that our algorithm an be used

to generate a ground onuent rewrite system in average time O(n log(n)).

In Setion 3.5 we onnet the ongruene losure algorithm with the rigid E-uni�ation

problem and obtain the nie orollary that a rigid E uni�er an be expressed as an ordered
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set of pairs in the ongruene losure graph.

In Chapter 4 we show how the data strutures that are used an also be augmented to

propagate relational symbols other than equality.

3.1 Union-�nd

A partition of equivalene lasses an onventiently be maintained and updated using a

union-�nd struture. Di�erent union-�nd algorithms are analyzed in depth in [Tar75℄.

A union-�nd struture maintaining a partition over a set of elements Q uses two fun-

tions:

�nd : Q ! Q whih maps elements from the same lass to a unique representative within

that lass. When �nd(q) = q, we say that q is a root node.

union : Q�Q ! unit The funtion union(q; r) takes two root nodes q and r, and merges

their lasses by setting �nd(r) := q and similarly with all other elements in the same

lass as r.

1

We extend the union-�nd struture to also ontain a set of edges Edges between union-

�nd nodes fromQ. Edges are labeled by auxiliary binary prediates, suh as 6=. In Chapter 4

we treat the ase where edges are labeled by binary prediates that represent monotone

relations and partial ordering onstraints.

For now we augment the preondition of union to require that the argument nodes

are not onneted with an edge labeled by 6=. This orresponds to deteting inonsistent

disequalities. The e�et of union(q; r) now also updates the set of edges Edges by re-

pointing edges to and from r to instead enter and leave the new root q. In this way one

maintains the invariant that edges only onnet root nodes.

To dynamially alloate and keep trak of union-�nd nodes, the union-�nd struture

ontains a set Q of alloated nodes, and a funtion new alloating a new node:

Q: Q�set Set of alloated union-�nd nodes. Initially Q = ;.

new : unit! Q Alloates a fresh state q. The e�et is: Q := Q [ fqg for some q 62 Q.

3.2 Terms

Terms are maintained on top of the union-�nd struture by assoiating eah alloated

node in Q with a (unique) pair (f; hq

1

; : : : ; q

n

i) where f is a funtion symbol of arity n

(variables and onstants are treated as a nullary funtion symbols), and q

1

; : : : ; q

n

2 Q.

More suggestively we write f(q

1

; : : : ; q

n

) instead of (f; hq

1

; : : : ; q

n

i) to indiate that the

arguments of f are the terms assoiated with q

1

; : : : ; q

n

.

Thus, the domain T of terms is given by:

1

The type unit is the (trivial) singleton domain.
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T = F �Q

�

F onsists of funtion symbols, onstants and skolem variables.

The labeling of Q is maintained by

L

Q

: Q! T

By keeping L

Q

injetive there is a funtion ating as inverse on the range of L

Q

,

L

T

: T ! Q

It is required to assoiate eah term t in the range of L

Q

with the union-�nd node q suh

that L

Q

(q) = t. While the range of L

T

is Q (that is, oinides with the domain of L

Q

), its

domain will in general only be required to inlude range(L

Q

). In our implementation L

T

is a hash-table mapping terms to array indies, and L

Q

is a dynami array of terms.

use : Q ! Q�set : We also need to maintain a funtion that gives a super-set of the

union-�nd nodes that use a given union-�nd node. That is, we maintain the invariant

fq

0

2 Q j L

Q

(q

0

) = f(q

1

; : : : ; q; : : : ; q

n

)g � use(q)

When a ongruene losure node q is alloated with new , the orresponding value of use(q)

is initialized as ;.

anonial: The ongruene losure algorithm works by rewriting terms into anonial

form aording to the equalities it is supplied with. The boolean tag anonial (q) is used

to indiate whether all subterms of the term L

Q

(q) are roots with respet to the union-�nd

struture.

anonial : Q! B

hildren: As a shorthand we de�ne

hildren(q) = fq

i

j L

Q

(q) = f(q

1

; : : : ; q

n

) ^ i 2 f1; : : : ; ng g

3.3 Uninterpreted ongruene losure

We will now desribe a ongruene losure algorithm for uninterpreted funtion symbols.

The ore algorithm works by merging union-�nd nodes and propagating the equality infor-

mation up through funtion symbols. It onsists of the funtions merge and insert and is

given in Figure 3.1.

Informally, merge asserts equality of nodes a and b by
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1. merge(a; b) =

2. if a 6= b then

3. let

4. (a; b) = if juse(a)j < juse(b)j then (b; a) else (a; b)

5. in

6. union(a; b);

7. for eah u 2 use(b) where anonial (u) do

8. let

9. f(q

1

; : : : ; q

n

) = L

Q

(u)

10. t = f(�nd(q

1

); : : : ;�nd (q

n

))

11. in

12. if t 6= f(q

1

; : : : ; q

n

) then

13. anonial (u) := false;

14. merge(�nd(u); insert (t; u))

15. insert(t; q) =

16. if t 2 dom(L

T

) then return �nd (L

T

(t)) else

17. L

T

:= L

T

y [t 7! q℄;

18. L

Q

:= L

Q

y [q 7! t℄;

19. anonial (q) := true;

20. for eah q

0

2 hildren(t) do use(q

0

) := use(q

0

) [ fqg;

21. return �nd(q)

Figure 3.1: Proedures merge and insert

1. In line 4 a and b are swapped if the use-list of a is longer than the use-list of b. This

auses union to make as root the node with the smallest use-list, and gives the average

running time laimed in Theorem 3.3.2.

2. To propagate the newly obtained equality information every ourrene of pointers to

the non-root b must be replaed by pointers to the root a. Hene eah term potentially

using b must be updated by the new funtionality of �nd .

3. In lines 9 and 10 the terms a�eted by the new funtionality of �nd are generated.

Sine we allow implementations of the use-list as a list with repetitions, or inluding

terms without ourrenes of b, we hek in line 12 whether the update aused any

hanges.

4. insert(t; q) �rst heks if the updated term is already delared and returns the �nd of

the node assoiated with the term in this ase. If the updated term t is not already

present, then insert replaes the previous version of the term labeling q by the new
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t. The anoniity of q is reon�rmed, and the use-list of t's hildren is updated to

inlude q.

5. merge is alled reursively on the results.

There are two observations worth pointing out onerning insert :

1. No new union-�nd nodes are generated by merge and insert .

2. The update L

Q

:= L

Q

y [q 7! t℄ in line 17 assoiates an entirely new term with the

node q. The terms however share the same funtion symbol and only di�er in their

arguments. By onstrution, applying �nd to the arguments of the previous term

gives the arguments of the new term.

A set of equality onstraints

E : s

1

�

= t

1

; s

2

6= t

2

; s

3

�

= t

3

; : : : ; s

n

�

= t

n

where s

i

, t

i

are expressions over F is proessed by �rst onverting the expressions into terms

over T using the anonize funtion, and then invoking merge on the resulting equations

over T �T while onneting nodes orresponding to disequalities by 6=-edges. The funtion

addConstraints fails if a node is ever onneted to itself with a 6=-edge. The utilities for

proessing equations are shown in Figure 3.2.

anonize(f(t

1

; : : : ; t

n

)) = insert(f(anonize(t

1

); : : : ; anonize(t

n

));new ())

addConstraints(E) =

for eah (t

�

= s) 2 E do merge(anonize(t),anonize(s))

for eah (t 6= s) 2 E do onnet anonize(t) and anonize(s) by 6=

Figure 3.2: Canonization and proessing of equalities

Example: Given

E : fg(f(a))

�

= w; w 6= g(a); f(a)

�

= ag;

a left-to right proessing reates the struture (the index on the nodes is not neessarily

hronologial)

L

T

(a) = q

1

use(q

1

) = fq

2

; q

5

g

L

T

(f(q

1

)) = q

2

use(q

2

) = fq

3

g

L

T

(g(q

2

)) = q

3

use(q

3

) = ;

L

T

(w) = q

4

use(q

4

) = ;

L

T

(g(q

1

)) = q

5

use(q

5

) = ;
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Initially �nd := �x:x, and all nodes are anonial . The �rst equality g(f(a))

�

= w

requires merging q

3

and q

4

. This auses the e�et

�nd := [q

4

7! q

3

℄

In other words �nd behaves as the identity on q

1

; q

2

; q

3

, and q

5

, and maps q

4

to q

3

.

Asserting the disequality w 6= g(a) auses �nd(q

4

) = q

3

and q

5

to be onneted by an

edge labeled by 6=. Thus, the e�et is

Edges := f(q

3

; 6=; q

5

)g

Finally, in asserting f(a)

�

= a, q

2

and q

1

are merged ausing �rst the e�et

�nd := [q

4

7! q

3

; q

2

7! q

1

℄

sine q

2

has the smallest use-list, and then, sine q

3

2 use(q

2

) merge requires to set:

t = g(�nd (q

2

)) = g(q

1

) sine g(q

2

) = L

Q

(q

3

)

and invoke insert(t; q

3

), whih sine t 2 dom(L

T

), evaluates to q

5

. A reursive invo-

ation merge(q

3

; q

5

) is now initiated, whih requires a all to union(q

3

; q

5

). This all

fails as (q

3

; 6=; q

5

) 2 Edges , indiating that the entire set of onstraints is unsatis�able.

3.3.1 Corretness

We will here prove that the ongruene losure algorithm is sound and omplete. In terms

that we will make preise later, this means that invoking addConstraints on a set of equalities

produes a struture reeting only the asserted equalities and the onsequenes of the

equality axioms. Equality in the resulting struture is reeted by the funtionality of �nd :

two terms assoiated with nodes q and q

0

are equal if and only if �nd(q) = �nd(q

0

).

First note that a set of equalities E on terms orresponds in a natural way to an initial

partition C

0

of a subset of Q. It is obtained by �rst anonizing every term in E to get

anonize(E) � Q�Q, and then making C

0

be the least equivalene lass where every pair in

anonize(E) is in the same lass. We will therefore for onveniene work with anonize(E)

and the partition C

0

when stating and proving orretness.

In analogy with the de�nition of ongruene losure in the introdution we de�ne

De�nition 3.3.1 (Congruene losure on Q) The ongruene losure of any partition

C

0

of the set of delared nodes Q is the oarsest partition C suh that

1. C

0

is a re�nement of C (i.e., 8C 2 C

0

9C

0

2 C : C � C

0

.)

2. Whenever t; t

0

2 dom(L

T

), t = f(q

1

; : : : ; q

n

), t

0

= f(q

0

1

; : : : ; q

0

n

), and q

1

�

C

q

0

1

,: : : ;

q

n

�

C

q

0

n

, then L

Q

(t) �

C

L

Q

(t

0

).

If we proess anonize(E) by alling merge(�nd(q);�nd (q

0

)) for every pair (q; q

0

) 2

anonize(E), then
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Theorem 3.3.2 (Termination) The funtion merge terminates on all inputs in spae and

average time

O(n log(n));

where n is the number of nodes in the input term-graph (di�erent subterms in the input).

After addConstraints has terminated we have:

Theorem 3.3.3 (Soundness)

q �

C

�nd(q); 8q 2 Q :

Soundness states that �nd respets the ongruene relation �

C

. In partiular, if q and r are

nodes suh that �nd(q) = �nd(r), then q and r are in fat ongruent: q �

C

r. Soundness

is an obvious property of our algorithm: merge only propagates equalities that are implied

by �

C

.

Theorem 3.3.4 (Completeness)

If q �

C

r then �nd(q) = �nd(r) :

Completeness means that �nd ollapses all ongruene lasses in C. To establish om-

pleteness requires a more areful analysis. For this purpose onsider the version of merge in

Figure 3.3 augmented with auxiliary variables U and V , whih are initially the empty sets.

Informally, U onsists of the set of nodes where �nd does not at as identity any longer

as a onsequene of the all to union in line 6. The set V onsists of the nodes whose terms

ontain an element from U . To aommodate for the delay in updating �nd of the use set

of b we therefore de�ne

�nd

U

(q)

def

= if q 2 U then q else �nd(q) :

Completeness now relies on the following invariants whose onjuntion is indutive.

Invariant 3.3.5 If f(q

1

; : : : ; q

n

) 2 dom(L

T

) then

f(�nd

U

(q

1

); : : : ;�nd

U

(q

n

)) 2 dom(L

T

):

Invariant 3.3.6 If L

Q

(q) = f(q

1

; : : : ; q

n

) and q 2 V then

anonial (q) if and only if

n

^

i=1

q

i

= �nd

U

(q

i

):

Invariant 3.3.7 If L

Q

(q) = f(q

1

; : : : ; q

n

) and q 62 V then

anonial (q) if and only if

n

^

i=1

q

i

= �nd(q

i

):
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1. merge(a,b) =

2. if a 6= b then

3. let

4. (a; b) = if juse(a)j < juse(b)j then (b; a) else (a; b)

5. in

6. union(a; b);

7. U := U [ fbg;V := V [ fu 2 use(b) j anonial (u)g;

8. for eah u 2 use(b) where anonial (u) do

9. let

10. f(q

1

; : : : ; q

n

) = L

Q

(u)

11. t = f(�nd(q

1

); : : : ;�nd (q

n

))

12. in

13. if t 6= f(q

1

; : : : ; q

n

) then

14. anonial (u) := false; V := V n fug;

15. merge(�nd (u); insert(t; u))

16. U := U n fbg

Figure 3.3: Augmented version of merge

Invariant 3.3.8 If f(q

1

; : : : ; q

n

) 2 dom(L

T

) then

�nd(L

T

(f(q

1

; : : : ; q

n

))) = �nd(L

T

(f(�nd

U

(q

1

); : : : ;�nd

U

(q

n

)))):

When the ongruene losure algorithm has terminated U = ; and V = ;, thus, �nd

U

=

�nd .

Proof of 3.3.4:

A simple way to onstrut the equivalene relation �

C

is by omputing the least �x-point

obtained by starting with �

C

0

, whih is the equivalene lass obtained from the input

equations. Indutively, the i + 1'st partition �

C

i+1

is obtained from �

C

i

by taking the

oarsest partition satisfying

1. If s �

C

i

t then s �

C

i+1

t.

2. If s �

C

i

t then f(s) �

C

i+1

f(t).

The �nal partition �

C

is then �

C

n

for some (�nite) n beause there are only �nitely

many terms.

We shall establish by indution on i � n, that whenever q �

C

i

r then �nd (q) =

�nd(r).
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1. If q �

C

0

r, then q and r are onneted via equalities in anonize(E) that are

merged in some order. The merging auses eventually that �nd is updated suh

that �nd(q) = �nd(r).

2. Deriving q �

C

r using symmetry, reexivity and transitivity is diret sine a parti-

tion indued by �nd is automatially an equivalene lass.

3. The only other way we an derive q �

C

i+1

r is by the existene of t; s 2 dom(L

T

),

t = f(q

1

; : : : ; q

n

), s = f(r

1

; : : : ; r

n

), and q

1

�

C

i

r

1

,: : : ; q

n

�

C

i

r

n

, suh that q =

L

T

(t), r = L

T

(s). The indution hypothesis asserts that �nd(q

1

) = �nd(r

1

); : : : ;

�nd(q

n

) = �nd(r

n

). From the invariants 3.3.5 and 3.3.8 used for both t and s we

obtain that �nd(L

T

(q)) = �nd(L

T

(r)).

Proof of 3.3.2:

We use same idea that is in [DST80℄ by \proessing the smaller half". This requires

union to hoose as root the state with the largest use-list, suh that the for-loop proesses

the smaller half only. The analysis follows the proof in [DST80℄ losely: (1) every time

merge is alled, one equivalene lass is eliminated, (2) aessing the union-�nd struture

O(n) times takes time O(n logn) sine the hoie of the union root is ditated by the

length of the use-list (whih is stored as a doubly linked list with possible repetitions

and an integer length), but the �nd-struture an be dynamialy updated during the

�nd operations.

A loser omparison with the Downey, Sethi, Tarjan algorithm is in order. Under

the assumption that L

T

is implemented using a hash-table, [DST80℄ require on average

O(n log n) time and O(n) spae. The present algorithm uses more spae. The �rst di�erene

is that the other algorithm reomputes a signature table in eah iteration and deletes entries

after use. Here, all terms are kept in the hash-table. The other di�erene is that the other

algorithm lists the use list for all nodes in the same equivalene lass, whereas here only

the use-list assoiated with the root is listed. Instead, the present algorithm ensures that

new terms are generated for hildren of the root and inserted using insert into the use list

of the root.

3.3.2 Ground rewriting

It is now simple to extrat a onuent rewrite system from the L

T

and L

Q

after a set of

equalities have been proessed. The rewrite system has the same e�et as anonize and

will therefore be able to detet inonsistent disequalities. We extrat the rewrite system as

follows:

1. For eah q 2 dom(L

Q

) introdue a fresh onstant symbol C

q

.
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2. For eah q 2 dom(L

Q

) where anonial (q) and f(q

1

; : : : ; q

n

) = L

Q

(q), add the rewrite

rule:

f(C

q

1

; : : : ; C

q

n

) �! C

�nd(q)

:

When anonial (q) holds eah immediate sub-term is labeled by roots so the rewrite system

does not have any ritial pairs and is obviously terminating as the rewrite rules only replae

old funtions with the fresh onstants. The fresh onstants, on the other hand, are never

at the top-level of the left hand side of the rewrite rules.

3.4 Congruene losure with theories

For inorporating theories in the ongruene losure algorithm we shall not diverge muh in

spirit from Shostak's approah. The resulting algorithm is on the other hand signi�antly

more ompat than Shostak's, but perhaps still subtle. Figure 3.4 presents the modi�ed

version of merge (from Figure 3.1). The modi�ations use new auxiliary funtions solve

and � desribed below. One important hange is that merge is no longer allowed to swap

its arguments beause the direted union now has to be onsistent with the output of solve.

1. merge(a; b) =

2. if a 6= b then

3. union(a; b);

4. for eah u 2 use(b) where anonial (u) do

5. let

6. f(q

1

; : : : ; q

n

) = L

Q

(u)

7. t = �(f(�nd(q

1

); : : : ;�nd (q

n

)))

8. in

9. if t 6= L

Q

(u) then

10. anonial (u) := false;

11. if not interpreted (u)

12. then proess(solve(�nd(u); insert (t; u)))

13. else if u = �nd(u)

14. then merge(u; insert(t; u))

15. proess(�) =

16. for eah [q

1

7! q

2

℄ 2 � do merge(�nd (q

1

);�nd (q

2

))

Figure 3.4: Merge in the presene of theories

The anonizer � : T ! T : The modi�ed merge uses a anonizer � to normalize

terms with respet to the updates of �nd and rewrite the resulting term into normal form.
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High-level requirements for the anonizer are desribed in Setion 2.2.3. For onveniene

we are deviating from the expliit signature for � from Setion 2.2.4 and leave the ontext

argument and update impliit.

While the anonizer may need to aess L

Q

to normalize sub-terms of the normalized

f(�nd(q

1

); : : : ;�nd (q

n

)) a full reursive anonization of this argument is not neessary, as

merge provides eventual anonization of these sub-terms and upwards propagation via the

use-lists. In our implementation, however, the theory-spei� solvers do use �nd on sub-

terms of interpreted arguments to minimize repeated work.

A note of subtlety: In line 17 of the insert funtion, when t is a term that does not already

exist in L

T

, the operation reuses the node u to represent t. The following all to merge

then has no e�et. For almost all reasonable theories this property auses inompleteness,

as terms are anonized di�erently aording to the form of their sub-terms.

For instane, if y is merged with x, and y ours in y+z and y+z ours in �x+(y+z),

then �rst the term y + z is replaed by the fresh term x+ z. Sine x+ z is fresh, the same

union-�nd node is used for it and the hange is not propagated to the super-term�x+(x+z),

whih anonizes di�erently.

To avoid this inompleteness we require that the solver alloates fresh union-�nd nodes

whenever it returns an interpreted term (alternatively we an use an alternative insert , at

the expense of adding additional pseudo ode).

solve : Q � Q ! (Q � Q)

�

: In invoking solve(q; q

0

) the solver alls addConstraints

with the urrent ontext of onstraints and equality onstraint q = q

0

. It returns the set

of derived equalities in form of a substitution � and an updated ontext of onstraints. If

the updated ontext of onstraints is trivially unsatis�able we interrupt the iterated alls

to merge and return false.

We do not require that the substitution be idempotent. This is essential to handle yli

data-strutures. The substitutions should rather orrespond to a most general uni�er.

interpreted : Q ! B: Eah theory determines whih terms are interpreted. In the theory

of linear arithmeti, terms whose main funtion symbol is + or � are interpreted. Diverging

from other approahes we shall not treat data-type seletors (and reord projetors) as

interpreted funtion symbols to obtain heuristi speed-up and to be able to handle satis�able

yli onstraints, suh as CAR(NIL) = NIL.

Comparisons with [Sho84℄: Shostak's ongruene losure uses an auxiliary funtion

anonsig to reursively anonize sub-terms. This funtion is absent from our algorithm

beause the use of a shared term struture enables anonization to eventually be propagated

up through terms. We note the following di�erenes:

� Shostak's algorithm diverges when the interpreted theory allows yli data-strutures

beause anonsig alls itself reursively on arguments of interpreted funtion symbols.

� anonsig is alled twie, both before invoking solve, and after invoking solve. We have

not found this to be neessary.
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� In Shostak's data-type solver, seletors are treated as interpreted funtion symbols,

and may therefore not be in the domain of the result of solve. This auses unsound

and expensive reation of new variables in solved forms.

Comparisons with [BDL96℄: The elegant algorithm from [BDL96℄ requires solutions

x 7! t to satisfy that x is not a subterm of t. However, this requirement prevents a partial

elimination of variables in non-linear onstraints. For instane, given the equality:

y = x � f(y) (3.1)

our approah an detet an inonsisteny among

f(y) > 0 ^ y � x < 0 : (3.2)

If we replae y by x � f(y) in the onstraints we obtain the obviously unsatis�able

f(y) > 0 ^ x

2

� f(y) < 0

without having to maintain the eliminated equality. On the other hand, if we were to

require that all solutions satisfy the subterm relationship, then the equality (3.1) annot be

eliminated in establishing inonsisteny of (3.2).

Naturally, the same restrition to non-yli data strutures also applies to SVC, though

these may not neessarily be interesting for the domain of SVC.

3.5 Rigid E-uni�ation

In this Setion, we �rst present a de�nition of rigid E-uni�ation. By reformulating a deid-

ability proof for rigid E-uni�ation using the data-strutures from the previous setions, we

arrive at Corollary 3.5.4, whih states that a rigid E-uni�er an be found by guessing a set

of pairs from the union-�nd nodes Q. This gives a neat reformulation of rigid E-uni�ation

as a simple onstraint satisfation problem.

De�nition 3.5.1 (Rigid E-uni�ation) Let x be a set of Skolem variables, and let ' be

a Horn formula of the form

s

1

= t

1

^ : : : ^ s

n

= t

n

| {z }

E

! s = t (3.3)

whose free variables are in x. The substitution � with domain x is a rigid E-uni�er for ' if

� applied to ', i.e.,

(s

1

= t

1

^ : : : ^ s

n

= t

n

! s = t)�

is ground valid (i.e., the equality s = t follows from ongruene losure with respet to the

assumed equalities).
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Example: The substitution [x 7! ; y 7! a℄ is a rigid E-uni�er for

f(x) = g(a) ^ h(b) = f() ! g(y) = h(b) :

The substitution [x 7! b; y 7! g(a)℄ is a rigid E-uni�er for

h(a) = a ^ h(x) = a ^ h(b) = f(y) ! y = g(f(y)) :

The substitutions [x 7! g

n

(a)℄ are all rigid E-uni�ers for

g(a) = a ! x = a :

Theorem 3.5.2 [GNRS92, dK94℄ The rigid E-uni�ation problem is NP-omplete.

In fat de Kogel [dK94℄ never laims that his reonstrution of the deidability re-

sult for rigid E-uni�ation also establishes NP -ompleteness, but it does, even ontrary

to the laims in [Be98℄. In his proof a rigid E-uni�er is lassi�ed as either onneting,

non-onneting and reduible, or non-onneting and irreduible. Uni�ers (substitutions)

are represented in triangular form, suh that the triangular substitution thx

1

7! t

1

; x

2

7!

t

2

; : : : ; x

n

7! t

n

i is applied in stages: (: : : ((t[x

1

7! t

1

℄)[x

2

7! t

2

℄) : : : [x

n

7! t

n

℄). We shall de-

�ne reduible and onneting relative to the utilities introdued for our ongruene losure

algorithm.

De�nition 3.5.3 Let E be a set of equalities and Q be the union-�nd nodes in the ongru-

ene losure after E has been proessed.

� The map hx

i

7! v

i

j i = 1; : : : ; n i is onneting if anonize(x

i

), and anonize(v

i

) are

already in Q for eah i.

� The map h: : : ; x 7! u; y 7! v; : : :i is reduible if anonize(u) is in the transitive losure

of use and �nd from anonize(v).

To prove deidability of rigid E-uni�ation de Kogel notes that a rigid E-uni�er �

for (3.3) an be lassi�ed by one of the following onditions:

1. � is non-onneting and reduible. Then a rigid E-uni�er an be found with smaller

terms. By repeatedly eliminating reduible pairs, only ases 2 and 3 need to be

onsidered.

2. � is non-onneting and irreduible. Then by deleting a non-onneting pair x 7! t

(there is at least one), from the substitution we obtain a triangular form of smaller

size.

3. Finally we arrive at a onneting rigid E-uni�er. In this ase � an by de�nition 3.5.3

be equivalently expressed as an ordered list of pairs of ongruene losure nodes.
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A detailed proof justifying these observations is given in [dK94℄ and will not be repeated

here. The main observation we make in onnetion with the formulation based on the

ongruene losure struture is, however:

Corollary 3.5.4 (From ongruene losure to Rigid E-uni�ation) Let Q be a set

of union-�nd nodes after proessing all equalities in E and having anonized the terms s

and t to be uni�ed. A rigid E-uni�er is an ordered set of pairs of Q orresponding to a

triangular substitution. The set of pairs an be guessed and heked in polynomial time.

Guessing suh a triangular substitution an be done in O(jQj) by listing an ordered

set of pairs. The ordered set of pairs then has to be heked for orresponding to a well-

formed triangular substitution by unfolding nodes to variables in the domain and terms

in the range, pair by pair. Finally, it an be heked for being a rigid E-uni�er using the

ongruene losure algorithm by simply merging the nodes in the substitution.

3.6 A benhmark example

Re�nement proofs for pipelined CPUs [BD94℄ are rather stressful benhmarks for reasoning

about uninterpreted funtions, MCarthy's update axiom

read (write(A; i; e); j) = if i = j then e else read (A; j);

and boolean ombinations of equalities. To test the ongruene losure without using the

repository of well-established guiding tehniques (see for instane [LO97℄) the formulation

from [HSG98℄ was taken without the auxiliary rewrite rules spei� for the PVS veri�er.

The validity heker was then allowed to spend its time on it. For the main orretness

laim, nearly one million ase splits were required, using a partiular splitting heuristi

and the entire veri�ation took 150 minutes. Thus, on average, 100 branhes were overed

eah seond. Eah ase required the proessing of a struture with 400 di�erent sub-terms,

though the inremental aumulation of onstraints means that the entire struture did not

have to be rereated for eah branh.

3.7 Summary

We presented a simple and fast ongruene losure algorithm that was extended to integrate

deision proedures. We also demonstrated how the ongruene losure orresponded to

ground ompletion. The onnetions with rigid E-uni�ation were highlighted.



Chapter 4

Speial relations

We use the term speial relation for ertain monotoniity properties binary relational sym-

bols that enjoy with respet to seleted funtions. In the basi form we an reord a speial

relationship between prediates �

1

and �

2

relative to the funtion symbol f whenever the

monotoniity axiom

x �

1

y ! f(: : : ; x; : : :) �

2

f(: : : ; y; : : :) (4.1)

holds. Anti-monotoniity (where x and y are exhanged in the onlusion) axioms are

also onsidered suÆiently speial. Speial relations have been studied within resolution

theorem proving in for instane [MW86, MSW91, MW92℄, and [BG95℄.

The notion of speial relations used here is based on theories axiomatizable using Horn

lauses. A Horn lause is a disjuntion of literals, ontaining at most one positive literal.

Equality itself an be viewed as a speial relation as we saw in Chapter 3. The restrition

to Horn lauses ensures the existene of an initial model satisfying the impliations. The

queries that we wish to resolve against a theory axiomatized using Horn lauses are in the

simplest ase ground formulas. In Chapter 3 we examined a very speial relation, equality,

and gave an optimized deision proedure for it.

Even simple instanes of this sheme annot be algorithmially deided: Horn lauses

with binary relations an be used to enode reahability problems for Turing mahines. In

more restrited ases we an not only deide ground satis�ability, but also solve the rigid

T -uni�ation problem, namely whether there is a substitution � from free variables in ',

suh that T q '�. The existene of a rigid T -uni�er for ' implies that T q 9 � ', while the

onverse is not neessarily the ase. Rigid T -uni�ers an be used to lose branhes in a

tableau searh by providing instantiations of existential fore quanti�ers.

Results: We propose ground deision support and rigid T -uni�ation problems for two

prominent speial relations: Partial orders, and monotone relations given by axioms of the

form (4.1). The ground deision support is provided as a tight extension of ongruene

losure and we reuse the data strutures developed in Chapter 3.

The results developed here apply to theories that are empty apart from the speial

relation axioms. In Chapter 6 we take a look at integrating monotone relations in riher

52



CHAPTER 4. SPECIAL RELATIONS 53

theories.

4.1 Partial orders

A struture is partially ordered by the binary prediate � if it satis�es the three axioms for

every x, y, and z

x � y ^ y � z ! x � z (PO1)

x � y ^ y � x ! x = y (PO2)

x � x (PO3)

A set L

0

of literals an be heked for satis�ablity with respet to the axioms for partial

orders and equality together by extending L

0

to a maximally onsistent set L losed with

respet to the axioms for equalities and partial orders. The set of literals L is maximally

onsistent if for all sub-terms s; t 2 L either s � t or s 6� t, and L is saturated with respet to

the equality and partial ordering axioms. Sine there are only �nitely many subterms in any

set of literals L

0

it follows easily that the satis�ability problem for the set of ground literals

L

0

is deidable. Using this approah we arrive rather painlessly at a deision proedure for

ground formulas with equality and partial orderings.

On the other hand, the full �rst-order theory of partial orderings redues to the the-

ory of a binary, symmetri and irreexive prediate P (x; y) and is therefore undeid-

able [ELTT65℄

1

. Indeed, to model P (x; y) using a partial ordering � in the losed formula

'(P ) replae P everywhere by

�(x; y) : 9z; u : bot(z) ^ z � u ^ u � x ^ u � y ^ x 6= y

where bot(z) = (8v : v 6� z), top(z) = (8v : z 6� v), relativize all quanti�ers 9x :  in ' to

9x : top(x) ^  , and �nally produe  ! ', where  restrits all elements to be either

without suessors, without predeessors, or onneting preisely two elements aording to

P (the rôle of the auxiliary u in the replaement of P above):

 :

8x; y; z; u : x � y ^ x � z ^ x � u ! y = z _ y = u _ u = z

^ 8x : :bot(x) ^ :top(x) ! (9y; z : y 6= z ^ x � y ^ x � z)

^ 8x; y : x � y ! bot(x) _ top(y)

We have now obtained a prediate in the theory of partial orderings whih is valid if and

only if the orresponding prediate over a binary, symmetri, irreexive relation (aka. the

theory of undireted simple graphs) is valid.

On the other hand, the 89-fragment (�

2

-fragment) of the theory of elementary relations

is o-NP omplete as established in [CC90℄. In more detail, the 89-fragment onsists of

1

However, note that the theories of linear and dense linear orderings (with and without end-points) is

deidable [CK90, Hod93℄.
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losed formulas of the form

8x9y'(x; y)

where ' is a quanti�er-free formula whose atomi formulas are of the form

R

(n)

= S

(n)

; x = y; R

(n)

(x

1

; : : : ; x

n

)

where R and S are n-ary relation symbols. Sine the axioms PO1-PO3 an be added as

assumptions to a �

2

-formula without hanging the quanti�er pre�x we obtain that the �

2

-

fragment of the theory of partial orders is o-NP omplete. While this result in priniple

gives a singly exponential time algorithm for deiding �

2

formulas we do not have any

goal-direted proedure at hand (whih is important in heuristially narrowing the searh

spae). The restrition to pure relational symbols (and not admitting funtion symbols)

also limits the diret appliability of the �

2

-theory of elementary relations.

4.1.1 A ground deision proedure for partial orders

The saturation based approah to hek a set of literals L

0

for ground satis�ability in

the theory of partial orders su�ers from two problems: (1) the saturation inludes all

ombinations of partial ordering onstraints on the available terms thereby requiring a

quadrati number of prediates in the number of terms, (2) it only gives a non-determinsti

proedure for saturating a satis�able L

0

to a saturated L. If we furthermore extend the

voabulary with the derived relation x � y := x � y ^ x 6= y, we no longer have a Horn

axiomatization. Naive tableau rules on the extended language then inlude splitting (�)

rules of the form

x � y

x = y j x � y

to obtain a omplete deomposition of all atoms.

We address problem (1) by formulating a system where only required onstraints are

derived. Furthermore onstraints impliitly present by the transitivity of partial orderings

are not represented expliitly. This only gives a heuristi spae saving as for instane the

partial order of n elements where element i is onneted to i + 1; : : : ; n, for i = 1; : : : ; n

requires the worst ase

�

n

2

�

explitly maintained relations, however, as measured in the size

of the input the approah does not require any more spae. Problem (2) is addressed by

maintaining the prediates =, 6=, � and 6� only. Equality is handled by ongruene losure,

6= labels the undireted edges introdued in Setion 3.1. This set of edges is updated to

ontain also the possible labelings � and 6�, resulting in a transitivity graph.

New edges are added inrementally to Edges in the union-�nd struture as follows:

q

1

� q

2

(q

1

6= q

2

, q

1

6� q

2

): Add an edge to Edges between q

1

and q

2

labeled � (resp. 6=,

6�).

q

1

� q

2

: Add edges for both q

1

� q

2

and q

1

6= q

2

.

q

1

6� q

2

: Add edges for both q

1

6� q

2

and q

1

6= q

2

.
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Total orders are a speial ase, where onstraints of the form (t

1

6� t

2

) are treated as t

2

� t

1

,

so 6� edge labels are not used.

Whenever adding an edge from q to q

0

labeled by 6�, we searh for a path of � edges

from q to q

0

labeled by � edges. If suh a path exists, all verties on the path are merged.

On the other hand, when a new q � q

0

edge is added a standard depth-�rst traversal an

be used to searh for a path from q

0

to q onsisting of � edges. In the presene of suh a

path q and q

0

are merged. To keep the graph minimal in adding a q � q

0

edge we also need

to merge q and q

0

if there is a �-path from q

0

to q

1

and from from q

2

to q, where q

2

6� q

1

is

an edge.

A deision proedure results from the following observation: a onjuntion of inequality

onstraints is unsatis�able in the theory of partial orders i� its assoiated transitivity graph

is ollapsed into a ontraditory graph, one that ontains a (v; 6=; v) edge.

Eager Equational ompleteness: On the other hand, one an diretly extrat a model

from a non-ontraditory graph where all distint verties orresponds to di�erent elements.

Thus, the deision proedure given here is eagerly omplete (see Setion 2.2.4).

4.1.2 The rigid PO-uni�ation problem

We will here extend the results presented in Setion 3.5 on rigid E-uni�ation to rigid

uni�ation problems with partial orders.

De�nition 4.1.1 (Rigid PO-uni�ation) Let x be a set of variables, and let ' be a

horn-formula of the form

^

i2I

t

i

� s

i

^

^

j2J

u

j

6� v

j

! s = t (4.2)

whose free variables are in x. The substitution � with domain x is a rigid PO uni�er for '

if '� is ground valid.

Equivalently we an phrase the rigid PO-uni�ation problem in terms of �nding a sub-

stitution establishing unsatis�ability of a onjuntion

 :

^

i2I

s

i

� t

i

^

^

j2J

u

j

6� v

j

^

^

k2K

w

k

6= z

k

: (4.3)

Equalities, � and 6� relations have been eliminated using rewrites from s = t to s � t^t � s,

together with those from Setion 4.1.1. The alternative formulation uses more disequalities,

but only one disequality is required to exhibit unsatis�ability as the theory of partial orders

is stably in�nite (see de�nition 2.2.1). In other words, the onjuntion 4.3 has a rigid PO-

uni�er if and only if there is a k 2 K, suh that  

0

, where K has been set to fkg, has a

rigid PO-uni�er.

We also obtain the following result as an extension of NP-ompleteness for rigid E-

uni�ation:
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Theorem 4.1.2 The rigid PO-uni�ation problem is NP-omplete.

Proof outline:

The proof requires essentially no new ideas besides those that an be found in [dK94℄.

The only ruial dependeny on the properties of ongruene losure is in eliminating

non-onneting irreduible uni�ers.

4.1.3 A heuristi for obtaining PO-refuting substitutions

The transitivity graph is not only able to detet ground unsatis�ability, but an also serve as

a guide for �nding PO-refuters. We say there is a �-edge from u to v if (u;�; v) and (u; 6=; v)

are edges in G. To �nd PO-refuting substitutions for a set of equalities and inequalities, one

an �nd pairs of verties hv; wi that are onneted by a �-edge in the transitivity graph. If

E is the set of known equalities at this point, a substitution � suh that v� = w� under the

equalities E� is a PO-refuter; that is, � should be a rigid E-uni�er [GNRS92℄ of v and w.

This approah to �nding PO-refuters is learly not omplete. A more thorough but

still inomplete approah is to onsider a pair hv

1

; w

1

i onneted by a �-path ontaining a

�-edge, and another pair hw

2

; v

2

i onneted by a �-path. A substitution � that is a rigid

E-uni�er for fv

1

= v

2

; w

1

= w

2

g will also be a PO-refuter.

2

In the general ase, the transitivity graph an be searhed to �nd a sequene of paths

and a uni�er � that onatenates the paths into a loop ontaining a �-edge. Sine � will be

obtained inrementally in a ongruene losure ontext, we de�ne the following:

De�nition 4.1.3 Given a substitution � and a ongruene losure struture CC, a sub-

stitution ' is a �-ompatible rigid CC-uni�er of ongruene lasses v

1

and v

2

i� ' is less

general than � and ' is a rigid E-uni�er of t

1

and t

2

for some t

1

2 v

1

and t

2

2 v

2

,

where E is the set of equations impliit in CC. We write E mgus(CC; �; v

1

; v

2

) for a set of

�-ompatible rigid CC-uni�ers of v

1

and v

2

.

Rigid E-uni�ation is NP-omplete [GNRS92℄. In pratie, we are ontent with quikly

identifying a subset of the rigid E-uni�ers.We ollet E-uni�ers using a fast, but again

inomplete, test to eliminate redundant substitutions.

The proedure EXPAND de�ned below updates a set S of PO�refuting substitutions for

the theory of partial orders. It searhes the set of paths in the transitivity graph examining

one sequene of paths at most one. TC(v) denotes the �-transitive losure from vertex v,

i.e., the set of verties reahable from v by �-edges. TC

+

(v) is TC(v) n fvg. V(G) is the

set of verties of G. CC(G) is the ongruene losure struture assoiated with G. After the

invoation EXPAND (G

0

; v

0

; v

0

; [ ℄), eah reursive all EXPAND (G; v

1

; v

2

; �) maintains the

invariants (a) v

2

2 TC(v

1

) in G, and (b) G is obtained from G

0

by asserting the equalities

given by �. This is ensured by the funtion add substitution, whih merges nodes and

2

Edges labeled 6� and single 6= edges an be similarly used to obtain PO-refuting substitutions. To

simplify the exposition, we omit these ases.



CHAPTER 4. SPECIAL RELATIONS 57

ollapses the graph as desribed above. The verties v

0

1

and v

0

4

are the ounterparts of v

1

and v

4

in G

0

. EXPAND must terminate, sine the size of V

1

dereases with eah reursive

all.

S  ; ; EXPAND (G

0

; v; v; [ ℄) ; return S; where:

EXPAND (G; v

1

; v

2

; �) =

V

1

 V(G) n TC

+

(v

1

)

V

2

 TC

+

(v

2

)

for eah (v

3

; v

4

) 2 V

1

� V

2

do

S

0

 E mgus(CC(G); �; v

3

; v

4

)

for eah �

0

2 S

0

do

G

0

 add substitution(�

0

;G)

if G

0

is a ontraditory graph

then S  S [ f�

0

g

else EXPAND (G

0

; v

0

1

; v

0

4

; �

0

)

In the worst ase, EXPAND will searh exponentially many paths. However, the mod-

erate size of transitivity graphs arising from typial veri�ation onditions, and the inre-

mental uni�ation restrition, make the proedure pratial.

An example: The validity of

(8x:(x � y ! P (x))) ^ (8u:9z:z � u)! 9v:(v � y ^ P (v))

is established in 0.07 seonds using the rigid PO-uni�er [v 7! f

z

(u); x 7! f

z

(u)℄ whih an

be found using the searh proedure.

4.2 Transitive relations

A simpler ase than partial orders is that of transitive relations. A relation R is transitive

if it satis�es the transitivity axiom

R(x; y) ^ R(y; z) ! R(x; z) (T)

4.2.1 Rigid T -uni�ation

When R is a transitive relation, we de�ne the rigid T -uni�ation problem as follows:

De�nition 4.2.1 (Rigid T -uni�ation) Let x be a set of variables, and let ' be a horn-

formula of the form

s

1

= t

1

^ : : : ^ s

n

= t

n

^

m

^

i=1

R(u

i

; v

i

) ! R(s; t) (4.4)

whose free variables are in x. The substitution � with domain x is a rigid T -uni�er for ' if

'� is ground valid.
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Proposition 4.2.2 The rigid T -uni�ation problem is NP-omplete.

Proof:

NP-hardness: Take an instane of rigid E-uni�ation

m

^

i=1

s

i

= t

i

! s = t (4.5)

and translate it to:

s

1

= t

1

^ : : : ^ s

n

= t

n

^R(s; t) ! R(t; s) (4.6)

Membership in NP: To get R(s; t) in the onsequent of formula (4.4) the premises of

the impliation must provide an R-path. The substitution must provide the merging

of states along this path, and thus establish a number of equalities s = u

i

1

, v

i

j

= u

i

j+1

,

v

i

k

= t. Thus, it suÆes to guess a path of length at most m (there are m onjunts

of R in the premise) and verify the following rigid E-uni�ation instane, where h is

a fresh funtion symbol:

s

1

= t

1

^ : : : ^ s

n

= t

n

! h(s; v

i

1

; : : : ; v

i

k

) = h(u

i

1

; : : : ; u

i

k

; t) : (4.7)

4.3 Monotone relations

We will now investigate support for speial relationships that are axiomatized aording

to axiom (4.1). So assume this axiom shema for binary relations �

1

and �

2

and an

uninterpreted funtion symbol f . Thus, whenever x �

1

y holds, then for every set of

auxiliary parameters z, u, we have f(z; x; u) �

2

f(z; y; u). To simplify notation, but without

losing generality, we will assume that f is binary suh that z is empty and u ontains only

one variable.

4.3.1 A ground deision proedure for monotone relations

As in the ase for partial orders we obtain eÆient support for deiding ground onsequenes

of monotone relationships via a ombination with the union-�nd data-struture used in

ongruene losure. We also obtain an inremental algorithm by onsidering the following

two ases ourring when new fats are being asserted, and new terms are generated:

q

1

�

1

q

2

: where q

1

and q

2

are root nodes in the union-�nd struture.

1. If q

1

�

1

q

2

2 Edges we an assume that the ongruene losure struture already

knows about the fat, and we do not perform anything more.
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2. If on the other hand q

1

6�

1

q

2

2 Edges the aumulated onstraints are unsatis-

�able and we notify this.

3. Finally, neither q

1

�

1

q

2

2 Edges, nor q

1

6�

1

q

2

2 Edges, and we add the fresh

edge q

1

�

1

q

2

. For eah q 2 use(q

1

), q

0

2 use(q

2

), where anonial (q), L

Q

(q) =

f(q

1

; q

3

), anonial (q

0

), L

Q

(q

0

) = f(q

2

; q

4

), add an edge �nd (q) �

2

�nd(q

0

).

We hek that there is not already an edge �nd(q) 6�

2

�nd(q

0

), otherwise the

onstraints are unsatis�able.

q

1

6�

1

q

2

; q

1

�

2

q

2

; q

1

6�

2

q

2

: where q

1

and q

2

are root nodes in the union-�nd struture. We

add the edge q

1

6�

1

q

2

(resp. q

1

�

2

q

2

, q

1

6�

2

q

2

) to Edges heking that there is not

already a ontraditory edge. Notie that we do not have to lose the ongruene

losure struture under the ontrapositive of the speial relations rule.

f(q

1

; q

2

) 7! q is inserted into L

T

: First notie that the ongruene losure algorithmmain-

tains that whenever f(q

1

; q

2

) is inserted into L

T

both q

1

and q

2

are roots. We then take

Q

0

1

= f�nd(q

0

) j L

Q

(q

0

) = f(q

0

1

; q

0

2

) ^ q

1

�

1

q

0

1

2 Edgesg and add edges q �

2

q

0

for eah

q

0

2 Q

0

1

. We also need to take Q

0

2

= f�nd(q

0

) j L

Q

(q

0

) = f(q

0

1

; q

0

2

) ^ q

0

1

�

1

q

1

2 Edgesg

and add edges q

0

�

2

q for eah q

0

2 Q

0

2

.

With Q being the number of di�erent union-�nd nodes eah operation desribed above

has running time bounded by O(jQj

2

). The modular way in whih the union-�nd struture

is updated with new onstraints enables independent support for several other speial rela-

tionships�

0

1

;�

0

2

; f

0

: : :, and works well with the inremental way that we will be maintaining

onstraints.

4.3.1.1 Corretness

The utilities for maintaining �

1

, �

2

and f are learly sound, as an examination of eah step

reveals. On the other hand, we establish their ompleteness by extrating a model from

any non-ontraditory union-�nd struture satisfying all asserted speial relations.

Theorem 4.3.1 (Completeness) Any onsistent union-�nd struture saturated with re-

spet to the speial relations rules is satis�able.

Proof:

We onstrut a model satisfying the ground set of literals and all speial relation

axioms from the �nal non-ontraditory state of the union-�nd struture. The model

A = hA;�

A

1

;�

A

2

; f

A

; g

A

; h

A

; : : :i onsists of

1. The domain A, whih we identify with fq

0

g [ f�nd (q) j q 2 Qg, where q

0

is a

union-�nd node not already in Q.

2. The binary relations �

A

1

� A�A and �

A

2

� A� A. We set �

A

1

= f(q; q

0

) j q �

1

q

0

2 Edges _ q = q

0

_ q

0

= q

0

g, and �

A

2

= f(q; q

0

) j q �

2

q

0

2 Edges _ q =

q

0

_ q

0

= q

0

g.
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3. The funtions f

A

, g

A

, et... We set h

A

(q

1

; : : : ; q

n

) = �nd(L

T

(h(q

1

; : : : ; q

n

))) if

h(q

1

; : : : ; q

n

) 2 dom(L

T

), otherwise h

A

(q

1

; : : : ; q

n

) = q

0

.

To establish that the speial relations are satis�ed we will show that f

A

is the ap-

propriate interpretation of f suh that whenever q; r; s 2 A and (q; r) 2�

A

1

, then

(f

A

(q; s); f

A

(r; s)) 2�

A

2

.

For suppose to the ontrary,

A q q �

1

r ^ :(f(q; s) �

2

f(r; s)) :

Then it must be the ase that f(q; s); f(r; s) 2 dom(L

T

). This implies that none

of q, r or s equals q

0

, as this was a fresh union-�nd node that ould not have been

found in the original union-�nd struture. Sine A q q �

1

r and q and r are di�erent

from q

0

it must be the ase that q �

1

r 2 Edges . The union-�nd struture may have

been updated in two di�erent ways:

1. q

0

�

1

r

0

was inserted when both f(q

0

; s

0

) and f(r

0

; s

0

) were present in L

T

, where

�nd(q

0

) = q, �nd(r

0

) = r and �nd(s

0

) = s after all onstraints have been pro-

essed. In this ase the utilities for inrementally maintaining the monotoniity

onstraints would have added an �

2

edge between the �nds of L

T

(f(q

0

; s

0

)) and

L

T

(f(r

0

; s

0

)). The ongruene losure algorithm maintains the invariants that

�nd(L

T

(f(q; s))) = �nd(L

T

(f(q

0

; s

0

))) (Invariant 3.3.8) and similarly for f(r; s),

thus ensuring that the �

2

edge onnets preisely the nodes that were assumed

not to be onneted. A ontradition.

2. At least one of f(q

0

; s

0

) or f(r

0

; s

0

) were inserted after the q

0

�

1

r

0

edge was es-

tablished, where �nd(q

0

) = q, �nd(r

0

) = r and �nd (s

0

) = s after all onstraints

have been proessed. The inremental way speial relations are maintained en-

sures to add an appropriate �

2

edge from the �nd of L

T

(f(q

0

; s

0

)) to the �nd

of L

T

(f(r

0

; s

0

)). This also ontradits the assumption that A q :(f(q; s) �

2

f(r; s)) as the �

2

edges are always propagated to the roots of L

T

(f(q

0

; s

0

)),

L

T

(f(r

0

; s

0

)).

4.3.2 Rigid S-uni�ation

Suppose that we are given a set S of speial relationships

x �

i

1

y ! f

j

1

(: : : ; x; : : :) �

k

1

f

j

1

(: : : ; y; : : :)

x �

i

2

y ! f

j

2

(: : : ; x; : : :) �

k

2

f

j

2

(: : : ; y; : : :)

.

.

.

x �

i

n

y ! f

j

n

(: : : ; x; : : :) �

k

n

f

j

n

(: : : ; y; : : :)
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where i

1

; : : : ; i

n

; k

1

; : : : ; k

n

range over some index set of binary relations and j

1

: : : ; j

n

are

(not neessarily distint) indies of funtion symbols. We extend rigid E-uni�ation to

onstraints over S by de�ning rigid S-uni�ation.

De�nition 4.3.2 (Rigid S-uni�ation) A rigid S-uni�er for the Horn-lause '

^

i

s

i

= t

i

^ u �

1

v ! w �

2

z (4.8)

is a substitution � from the free variables in ' to ground terms suh that '� is valid in the

theory of equality and S.

We establish that the rigid S-uni�ation problem is deidable and in fat NP-omplete.

But, to onvey the main ideas in a simpli�ed way we �rst solve the rigid S-uni�ation

problem when S onsists of a single monotoniity requirement

x � y ! f(: : : ; x; : : :) � f(: : : ; y; : : :) (4.9)

for a �xed (uninterpreted) funtion f of arity m + 1 + n. The general ase an then be

handled by a slight extension of the arguments we give.

To nest a term t inside a number of appliations of f de�ne

De�nition 4.3.3

f

j+1

(t)

def

= f(x

1

; : : : ; x

m

; f

j

(t); y

1

; : : : ; y

n

) where x

i

and y

i

are fresh variables

f

0

(t)

def

= t

For example, for m = 1; n = 2

f

2

(t) = f(x

1

; f(x

2

; t; y

1

; y

2

); y

3

; y

4

) :

Lemma 4.3.4 Let E be a set of equalities, t and u be terms, and n be the number of

sub-terms in E and terms t and u.

Either there is a maximal j � n suh that

E ! u = f

j

(t) (4.10)

has a rigid E-uni�er, or for all m � 0

E ! u = f

m

(t) (4.11)

has no rigid E-uni�er.

Proof outline:

Suppose that there is a j and a rigid E-uni�er for (4.10). We must establish that a

j � n an be hosen for this purpose. From Corollary 3.5.4 the rigid E-uni�er an
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be represented as an ordered set of pairs in the term-graphs of E; u; f

j

(t) and we an

derive

� ^ E ! u = f

j

(t) (4.12)

using ongruene losure. So onsider the partition C of the terms and sub-terms in

�, E, t, and u obtained by ongruene losure with respet to the equalities E and

�. Divide the partition into two parts C

1

and C

2

, where eah lass in C

1

ontains a

term already a sub-term of E, t, or u, and the lasses in C

2

onsists of terms not

from E, t, or u. Suppose that f

i

(t) is not in C

1

, for some 0 < i � j. Then it is

beause � has mapped a variable x in E or u to a term ontaining the lass f

i

(t). The

substitution � is onsequently pumped down to replae the term equivalent to f

i

(t)

by a term equivalent to t instead.

Consequently f

i

(t) 2

S

C

1

, for all i � j. As there are at most n lasses in C

1

,

an index j > n implies that some lass in C

1

is repeated. In this ase we use the fat

that the fresh auxiliary variables in f

j

(t) are all di�erent to modify � at will to pump

j down below n.

Theorem 4.3.5 For a speial relation given by (4.9) the S-uni�ation problem for lauses

of the form:

^

i

s

i

= t

i

^ u � v ! w � z (4.13)

is NP-omplete.

Proof:

We �rst notie that (4.13) has a rigid S uni�er � if and only if there is a j, fresh binary

funtion symbol h, and extension �

0

of �, that agrees with � on the free variables

in (4.13) suh that

 

^

i

s

i

= t

i

! h(f

j

(u); f

j

(v)) = h(w; z)

!

�

0

(4.14)

Thus, a rigid E-uni�er �

0

for (4.14) provides a rigid S-uni�er for the original on-

straint (4.13). Lemma 4.3.4 provides an upper bound on the maximal number it

makes sense to unfold w and z to math u and v, namely up to the number of sub-

terms in the original S-uni�ation problem. The lemma implies that further unfolding

beyond this to test for solvability does not reveal anything new. Therefore, a suÆ-

iently small j and a orresponding rigid E-uni�er an be guessed and heked in

polynomial time. This establishes that the speial ase of rigid S-uni�ation is in NP.

To establish NP -hardness, notie that we an redue the rigid E-uni�ation



CHAPTER 4. SPECIAL RELATIONS 63

problem

^

i

s

i

= t

i

! u = v (4.15)

to the rigid S-uni�ation problem

^

i

s

i

= t

i

^ x � x ! u � v (4.16)

where S is given by equation (4.9), where the monotone funtion f is not in (4.15).

To solve the general S-uni�ation problem for more than a single monotoniity require-

ment one an perform a similar redution as in Theorem 4.3.5 by non-deterministially

examining one of the possible unfoldings leading from �

1

to �

2

whih has length not ex-

eeding the number of sub-terms in the original lause.

4.4 Summary

We gave ground deision support for seleted speial relations with the aim at ombining

these into the deision proedures. We also showed how to extrat uni�ers to lose branhes

in a refutation searh.



Chapter 5

Arithmeti

Constraints over relations with arithmetial operations appear in almost all veri�ation on-

ditions arising from simple sequential programs over reative, real-time and hybrid systems.

Even when hardware is modeled at an ertain level of abstration, arithmetial onstraints

beome a natural part of the system model. Most of these arithmetial onstraints are

linear, in that multipliation is only used when at least one of the operands is a numeral.

In the veri�ation of hybrid systems, however, non-linear onstraints appear naturally as a

by-produt of solving di�erential equations. We therefore aim here at building into a om-

mon framework deision proedures for arithmeti whih (1) aomodates the frequently

ourring linear arithmetial onstraints eÆiently, while (2) deides a reasonable fration

of onstraints involving multipliation.

Sine arithmetial onstraints are so fundamental in system modeling and veri�ation

there is a vast literature on this subjet already. The present exposition does not go into any

impressive depth, but does o�er an all-round treatment of deision proedures for linear and

non-linear arithmeti. In partiular, the fat that the Fourier-Motzkin proedure allows to

extrat equational onstraints eagerly is not obvious from any of the referenes I am aware

of, so we prove this for the purpose of �tting the linear solver into the ombination of deision

proedures. The solver for non-linear arithmetial onstraints is furthermore guided using

a sign-based abstration domain to simplify polynomials and quikly detet redundant and

inonsistent onstraints.

5.1 Linear arithmeti

Linear arithmeti is the alulus obtained by inluding only terms of the form x

i

, a

i

x

i

, t+s,

t� s, and a

0

, where a

0

; : : : are rational onstants x

1

; : : : are rational variables, and s and t

are linear arithmetial terms. Constraints are formed using the relation symbols 6=, =, �

and <. Linear arithmetial terms an be anonized by onverting the terms into summation

normal form:

a

0

+

n

X

i=1

a

i

x

i

64
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This assumes that the set of arithmetial variables x

1

; : : : ; x

n

is ordered with respet to an

aribitrary total ordering �. Assume for notational simpliity that this orresponds to the

indexing, suh that x

1

� x

2

� : : : � x

n

.

5.1.1 Equalities

A pure equality onstraint is either vauously true, unsatis�able, or allows to eliminate one

arithmetial variable by expressing it in terms of the others:

s = t $ 0 = t� s $ 0 = a

0

+

n

X

i=1

a

i

x

i

$ x

1

= �

a

0

a

1

+

n

X

i=2

�

a

i

a

1

x

i

By maintaining a �xed order of all terms and variables the resulting expression for x

1

is

given uniquely.

Example: An example from the onstraint programming literature is to prove that the

sequene

x

i+2

= jx

i+1

j � x

i

starting from arbitrary initial values x

0

and x

1

is periodi and has period of length 9.

This amounts to establishing unsatis�ability of

11

^

i=0

x

i+2

= jx

i+1

j � x

i

^ :(x

0

= x

10

^ x

1

= x

11

) :

Expanding out the de�nition of jx

1

j one redues x

2

= jx

1

j � x

0

to x

1

� 0 ^ x

2

=

x

1

� x

0

_ x

1

< 0 ^ x

2

= �x

1

� x

0

. By isolating x

0

in eah disjuntion redues the

original formula to

x

1

� 0 ^

V

11

i=1

x

i+2

= jx

i+1

j � x

i

^ :(x

1

� x

2

= x

10

^ x

1

= x

11

)

_ x

1

< 0 ^

V

11

i=1

x

i+2

= jx

i+1

j � x

i

^ :(�x

1

� x

2

= x

10

^ x

1

= x

11

) :

Nine more iterations of this expansion redues the formula to false.

5.1.2 Inequalities

While the handling of linear equalities is ompletely standard in the Shostak-style integra-

tion of deision proedures, the question of how linear inequalities may be supported in an

equational deision proedure integration has remained more open-ended.

5.1.2.1 Methods for integrating arithmeti

Shostak suggests in [Sho79℄ to use well established satis�ability heking methods, based on

linear programming, suh as Simplex [Dan62, Sh86, Chv83℄ or the SUP-INF method [Ble75,

Sho77℄ to determine satis�ability of a set of linear arithmeti onstraints, and in the aÆr-

mative ase extrat a model assigning eah variable to a rational. Eah arithmetial term
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appearing in the ombined onstraints is then evaluated with respet to the assignment.

Having assoiated all arithmetial terms with a rational onstant we an invoke the remain-

ing deision proedures on this instane assuming all they need to know about arithmetial

terms are whether two terms are equal or not. The assignment may impose more equali-

ties than implied by the original onstraints. So this requires the arithmetial solver to be

re-invoked should the satis�ability of the instane require two terms equated by the �rst

assignment to be di�erent. The same ideas arry over to linear onstraints over integers

and have been extended to a ground proedure with a permutation prediate in [SJ80℄ (see

also [Mat81, Jaf81℄).

Nelson in his Thesis [Nel81℄ presents an inremental proedure, whih furthermore ex-

trats implied equalities. It is unfortunate that this approah has not been more visible.

Imbert and Hentenryk [IH93℄ elaborate with a similar perspetive. Nelson's approah is

formulated for the Nelon-Oppen ombination of deision proedures, whih does not target

the extration of equalities as substitutions that we require. We state here without proof

that Nelson's approah an also be used to extrat required equalities as substitutions by

extending the proof we give for the Fourier-Motzkin elimination proedure to Nelson's Sim-

plex tableau. Empirial data omparing Nelson's tableau and implementations of Fourier's

algorithm for the integration of deision proedures would be useful.

There are speialized and eÆient proedures for deiding satis�ability of a set of lin-

ear inequalities [Meg83℄ when all inequalities ontain at most two variables. The approah

extends [AS80, Nel82℄ as well as [Sho81℄ whih atually attempts to generalize the method

to handle three and more variables. Unfortunately, serious gaps in [Sho81℄ make an imple-

mentation of the ideas presented there very diÆult if not impossible. The idea of looking

at two variables per onstraint an be traed bak to [Pra77℄, while the onnetions with

�nding all pairs of shortest paths in a graph (via the Floyd-Warshall algorithm) should be

obvious.

5.1.2.2 The Fourier-Motzkin variable elimination method

The approah suggested here is based on the lassial Fourier-Motzkin variable elimination

method, whih gives a fully symboli approah to testing satsi�ability of linear onstraints.

This entails that implied equality onstraints an be extrated and ommuniated with the

other deision proedures. In Nqthm the Fourier-Motzkin proedure is referred to as ross-

multipliation [BM88℄, but the presentation is to a great deal obsured by features spei�

to Nqthm. The Fourier-Motzkin proedure also forms the basis of theory integration in

PVS and SVC [BC98℄

The Fourier-Motzkin proedure eliminates a variable x

1

from a set of linear inequalities

a

j0

+

n

X

i=1

a

ji

x

i

� 0; j = 1; : : : ;m
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by rewriting these �rst to

x

1

� a

j0

+

n

X

i=2

a

ji

x

i

j = 1; : : : ;m

0

x

1

� a

j0

+

n

X

i=2

a

ji

x

i

j = m

0

+ 1; : : : ;m

00

0 � a

j0

+

n

X

i=2

a

ji

x

i

j = m

00

+ 1; : : : ;m

and then replae the �rst m

00

inequalities by m

0

� (m

00

�m

0

) new inequalities, one for eah

j = 1; : : : ;m

0

and k = m

0

+ 1; : : : ;m

00

:

a

j0

+

n

X

i=2

a

ji

x

i

� a

k0

+

n

X

i=2

a

ki

x

i

:

It is immediate that the new set of inequalities is satis�able if and only if the old set

is satis�able. This approah also generalizes to strit inequality onstraints. In fat

the Fourier-Motzkin proedure is a quanti�er elimination method for linear arithmeti.

The elimination of x

1

above was preisely omputing the quanti�er-free equivalent to

9x

1

:

V

m

j=1

a

j0

+

P

n

i=1

a

ji

x

i

� 0. It has been observed that the proedure has exponen-

tial time omplexity [Sh86℄ and it is ommonly perieved as far worse than the Simplex

method. On the other hand, it enjoys some key algebrai properties that we will exploit.

Further theoretial observations are made in [HLL90℄ and by Imbert in [SvH95℄.

5.1.2.3 An inremental equality-extrating Fourier-Motzkin proedure

The Fourier-Motzkin method as it stands does not allow to introdue more onstraints

involving a variable x

1

one it has been eliminated. Furthermore, it does not diretly

suggest whih equality onstraints are implied from a set of inequalities. For example, in

x � y + 2 ^ y � z + 4 ^ z + 6 � x

we would preferably infer x = y + 2 = z + 6. This will allow x and z to be replaed

throughout other onstraints and, for instane, establish veri�ation onditions of the form

x � y + 2 ^ y � z + 4 ^ z + 6 � x ! f(x+ y) = f(z + x+ 4)

by deteting the inonsisteny of

x � y + 2 ^ y � z + 4 ^ z + 6 � x ^ f(x+ y) 6= f(z + x+ 4)
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via the simpli�ed form

x = y + 2 ^ z = y � 4 ^ f(y + 2 + y) 6= f(y � 4 + y + 2 + 4)

l

f(2 + 2y) 6= f(2 + 2y)

To support inremental addition of onstraints we will not be able to eliminate on-

straints over variables that have been formally eliminated, but rely on the total ordering

� of variables to ensure termination. Linear inequalities are thus maintained in one of the

forms:

x

j

� a

0

+

X

i>j

a

i

x

i

x

j

> a

0

+

X

i>j

a

i

x

i

x

j

� a

0

+

X

i>j

a

i

x

i

x

j

< a

0

+

X

i>j

a

i

x

i

where j is the smallest index with non-zero oeÆient in the relevant inequality. We use C

to refer to the olletion of inequality onstraints. Whenever a new inequality t � s is added

to the set of known inequalities we saturate the resulting set of inequalities with respet to

the steps:

1. Isolate the variable with smallest non-zero oeÆient in the inequality t � s to obtain

the equivalent inequality x

j

� u and add this to the set of known inequalities.

2. For eah mathing inequality v � x

j

, resp. w < x

j

form the derived inequalities v � u

(resp. w < u).

3. Repeat step 1 with these newly derived inequalities.

This proedure terminates, sine eah step examines only inequalities whose variables have

stritly higher indies. On the other hand, it may generate exponentially may inequalities

requiring both exponential time and spae.

We an use the approah to also derive all implied equalities by deteting �-loop-residues

in the following way (we all this method a loop-residue aumulation): Whenever we add

a non-strit inequality s � t, maintain the list

(x

j1

; t

1

); (x

j2

; t

2

); : : : ; (x

jn

; t

n

)

where

s � t $ x

j1

� t

1

;

s

1

� x

j1

is used to math x

j1

� t

1

s

1

� t

1

$ x

j2

� t

2

.

.

.

Then, if we derive the tight inequality

0 � 0
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we may infer the triangular form

x

j1

= t

1

; x

j2

= t

2

; : : : ; x

jn

= t

n

:

To see this inspet the last steps whih from s

n

� x

jn

� t

n

forms 0 � t

n

� s

n

= 0. In

partiular t

n

= s

n

so x

jn

= t

n

. By replaing x

jn

by t

n

we may repeat the same eliminations

of x

j(n�1)

up to x

j1

. The triangular form is onverted into a substitution � and C is redued

to C�.

We therefore have

Lemma 5.1.1 (Equational Soundness) Any equality derived by loop-residue aumula-

tion is an equality.

On the other hand, this approah allows to infer all implied equalities:

Lemma 5.1.2 (Eager Equational Completeness) Suppose that the set of inequalities

I entails the equality t = 0, then either I is inonsistent or the substitution � obtained from

loop-residue aumulation on I satis�es t� = 0.

Proof:

The proof is by indution on the number of variables in I of index greater or equal to

the variables in t.

Assume therefore that I q t = 0. Thus both I [ ft < 0g and I [ ft > 0g

are inonsistent. By ompleteness of the Fourier-Motzkin proedure we have that

both augmentations of I lead to an inonsisteny. Let C be the inequality onstraints

obtained from I by saturation, and let � be the substitution obtained by aumulating

loop residues. If I is inonsistent already we are done, otherwise augment C by t� > 0

arriving at an inonsistent inequality r > 0, where r 2 (�1::0℄. Separately we add

t� < 0 to C to arrive at an equally inonsistent inequality.

If t� is a onstant it must be the ase that t� = 0 for both t� < 0 and t� > 0 to

be unsatis�able. If t� is not a onstant we an rewrite the inequality t� > 0 as x

1

> t

1

(or x

1

< t

1

), where x

1

is the variable with smallest index having non-zero oeÆient.

Symmetrially t� < 0 is written as x

1

< t

1

.

We derive a ontradition from these inequalities by mathing x

1

> t

1

with an

inequality s

1

� x

1

(or s

1

> x

1

) in C, and x

1

< t

1

with an inequality s

0

1

� x

1

(or

s

1

< x

1

). Sine C has been saturated with respet to its inequalities it furthermore

ontains all onsequenes of the ombined onstraint s

0

1

� s

1

. On the other hand, both

t

1

< s

1

and s

0

1

< t

1

are inonsistent. This an only be the ase if C implies s

0

1

= s

1

and therefore x

1

= s

1

. Now, the equality s

0

1

= s

1

involves only variables with indies

higher than x

1

, so the indution hypothesis implies s

0

1

� = s

1

� = x

1

� ontraditing the

existene of the onstraints s

1

� x

1

� s

0

1

in C.
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From Lemma 5.1.1 and 5.1.2 we now have all relevant ingredients to obtain the funtion

addConstraint that aumulates arithmetial onstraints inrementally while extrats all

derived equalities.

The formulation hosen here allows us to infer that all intermediate inequalities an

be turned into equalities. This generalizes the observation (Theorem 1) in [LHM93℄ that

an inequality �

i

x � �

i

is an impliit equality in a onstraint set C i� Fourier's algorithm

produes an inequality 0 � 0 as a linear ombination of onstaints ontaining it.

5.1.3 Disequalities

When variables range over rationals and reals it is not neessary to proess disequalities

s 6= t other than heking s� 6= t� for generated substitutions. In the ongruene losure

ombination this redues to heking that 0 never gets onneted with a 6= edge as we form

the disequality onstraint 0 6= s�t. This relies on the following property of linear arithmeti

over the rationals:

Lemma 5.1.3 (Convexity) For every t

1

; : : : ; t

n

, if � is the substitution obtained from

saturating a satis�able set of inequalities I, and �(t

i

) 6= �(t

j

), i 6= j, then I is has a model

where t

i

6= t

j

, for i 6= j.

5.1.4 Extrating models

Suppose that a set of onstraints C ontains the variables x

1

� x

2

� : : : � x

n

, and we wish

to �nd an assignment of rationals to x

1

; : : : ; x

n

satisfying C. Suh an assignment an be

found by �rst olleting the set of inequalities of the form l � x

n

, x

n

� u

1

Sine x

n

is the

variable with highest index l and u must neessarily be onstants satisfying l < u. Any

rational q between l and u an be legally assigned to x

n

and we an repeat the proedure

on C[x

n

7! q℄ to extrat an assignment for x

n�1

until all variables have been assigned a

rational value.

The approah is also used for interfaing with other deision proedures by providing

more general funtions SUP and INF. The domain of both funtions onsists of a onstraint

set C and an arithmetial expression t, and the range of SUP is Q[f1g, whereas the range

of INF is Q [ f�1g. SUP(C; t) is omputed from (C

0

; �

0

) = addConstraint (C; fx

dummy

� tg)

where x

dummy

is a fresh variable whose index is higher than any variables ontained in C.

In the result �

0

is an identity substitution. If the updated onstraint set C

0

ontains an

inequality x

dummy

� q (or x

dummy

< q)

2

we set SUP(C; t) := q otherwise SUP(C; t) := +1.

INF(C; t) is omputed in a dual way via addConstraint (C; fx

dummy

� tg).

Extensions of the Fourier-Motzkin proedure to inlude integer linear arithmeti [Pug91℄

provides the orresponding funtionality for integers.

1

In the absense of an inequality l � x

n

we set l := �1, similarly u := +1.

2

q must neessarily be a rational onstant, sine the new variable has highest index.
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5.1.5 Examples

Hardware modeling: A very good example for benhmarking the linear arithmetial

deision proedures is the veri�ation of the SRT division table presented in [CGZ96℄.

Proedures for linear arithmeti and reords are required to lose most branhes. The main

theorem, that the oeÆient is guessed orretly at eah yle, is veri�ed in less than 60

seonds

3

.

The speed of veri�ation does however depend on the order the axioms are listed. Split-

ting axioms in the wrong order reates linear onstraints that the Fourier eliminationmethod

has obvious problems with. On the other hand, the 60 seonds here improve on the reported

3.5 hours using Matlab or the Mathematia based Analytia.

Program analysis: To hek violations of array bounds, integer linear or linear arithmeti

solvers an be used to resolve onstraints from program analyzers. While the analyzer

from [Diw98℄ has so far used the Omega pakage [Pug91℄ as its onstraint solver for integer

linear onstraints, a olletion of 100 sample data from di�erent experiments gave preisely

the same answers with the rational linear arithmeti as with integer linear arithmeti. This

ould be taken as a heuristi argument for using a rational linear arithmeti solver even for

integer linear arithmeti onstraints.

For reasons most likely onneted to implementation and not theoretial limitations, our

ML solver ould handle at least one larger benhmark not handled by the Fortran based

Omega pakage.

5.2 Non-linear arithmeti

This setion desribes an extension of the linear solver to the non-linear ase, i.e., the ase

where variables an be multiplied to form non-linear multivariate polynomials.

Veri�ation of non-linear, or symboli hybrid systems produes veri�ation onditions

with non-linear polynomials. Small examples from [MS98℄ are listed in Table 5.1. Exper-

iments with the ommerial Redlog pakage were ompetitive for the �rst example, fur-

thermore Redlog provides quanti�er elimination for alternating quanti�ers. Unfortunately,

Redlog is a stand-alone tool and does not integrate smothely with solvers, and does for in-

stane not handle division in inequalities, so it was not possible to use Redlog on examples 2

and 3. It should be noted that other highly optimized tools exist for heking satis�ability of

non-linear inequalities, suh as Numeria [HMD97℄. Support for non-linear arithmeti from

�rst priniples an be found in state of the art veri�ation systems, suh as PVS, where the

prelude inludes well over 250 basi lemmas of non-linear arithmeti over the reals. These

lemmas are all established automatially using the deision proedure desribed here.

It has been known sine Tarski [Tar51℄ that the satis�ability problem for onstraints

over the real-losed �eld are deidable by quanti�er elimination. Although ylindri alge-

brai deomposition [Col75, Hon92℄ an be used to perform quanti�er elimination in doubly

3

Allegedly Intel's SRT implementation for the Pentium proessor ontained bugs in the lookup table

resulting in a 500 million dollar reall
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No: Formula se:

m � l + d � r ^ r < 0 ^ x+ t � d ^ t > 0

1: ! m � l + r � x+ r � t 0:03

 

v

1

> 0 ^ vr > 0 ^ p � a

^ x

2

+ p=v

1

+ i=vr � a=v

1

+ a=vr ^ p � i

!

2: ! a=v

1

+ a=vr + v

1

� t=v

1

� x

2

+ t+ p=v

1

+ i=vr 0:06

 

2 � (a� i)=vr + (a� i)=v

2

< x

1

^ v

2

> 0

^ vr > 0 ^ p � i ^ p � a

!

3: ! (a� i)=vr + (p� i)=vr + (a� i)=v

2

� x

1

0:06

Table 5.1: Sample non-linear onstraints

exponential spae there are still several hallenges in providing \pratial" proedures for full

elimination of quanti�ers. One systemati approah is to use a Gr�obner basis solver [Bu65℄

to simplify polynomials, though even omputing a Gr�obner basis an be ostly. One an also

add more ad ho approahes suh as simplifying non-linear onstraints using a data-base of

rewrite rules [DS97℄ to eliminate trivial redundanies.

The path taken here adapts the partial quanti�er elimination proedure from [Wei97℄

to eliminate variables that our with degree not greater than two, and ouples this tightly

with a sign-based abstration domain and loosely with the linear-arithmeti solver. The

equalities inferred by the linear solver are used to eliminate variables in the onstraint

solver for non-linear arithmeti. On the other hand, the non-linear solver infers polarities

of multiplied terms that are propagated as inequality onstraints to the linear solver. In

this way we aim to exploit the best of both approahes: eÆieny with expressibility.

5.2.1 A partial method for quanti�er elimation

We are given the problem of deiding the satis�ability of a onjuntion of inequalities

between polynomials. Sine the quanti�er-free onjuntion is satis�able if and only if the

existential losure is valid, methods from quanti�er elimination (so-alled projetion) for

polynomials beome a natural tool for establishing satis�ability.

We will here review a partial method for eliminating quanti�ers from multivariate poly-

nomials whose variables our with low degree. It eliminates a variable from a polynomial

inequality by solving the variable to be eliminated symbolially. For example, in the poly-

nomial a � x+ b, where a and b may ontain variables di�erent from x a formal solution for

x in the equality a � x + b = 0 is x = �

b

a

subjet to a 6= 0. In solving a � x + b > 0 we

introdue a symboli parameter � and get x = �

b

a

+ � subjet to a > 0. To model arbitrary

large positive and negative values for the eliminated variable formal symbols �1 are also

added to the language. To allow substitution of expressions involving subterms of the form

b

a

, � and �1 de�ne:
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De�nition 5.2.1 ([LW93℄)

a � (�1) + b = 0

def

= a = 0 ^ b = 0 (5.1)

a � (�1) + b � 0

def

= a = 0 ^ b � 0 _ �a > 0 (5.2)

a � (�1) + b > 0

def

= a = 0 ^ b > 0 _ �a > 0 (5.3)

a � (�1) + b 6= 0

def

= a = 0 ^ b 6= 0 _ a 6= 0 (5.4)

(5.5)

a � (+ �) + b = 0

def

= a = 0 ^ b = 0 (5.6)

a � (+ �) + b � 0

def

=

 

a � 0 ^ a � + b � 0

_ a < 0 ^ a � + b > 0

!

(5.7)

a � (+ �) + b 6= 0

def

= a 6= 0 _ b 6= 0 (5.8)

a � (+ �) + b > 0

def

=

 

a > 0 ^ a � + b � 0

_ a � 0 ^ a � + b > 0

!

(5.9)

Under the the assumption  6= 0, to substitute the formal division of two polynomials

d



for x in a polynomial p(x) one de�nes:

a �

d



+ b � 0

def

= a � d+ b �  � 0 � 2 f=; 6=g (5.10)

a �

d



+ b � 0

def

=

 

a � d+ b �  � 0 ^  > 0

_ 0 � a � d+ b �  ^  < 0

!

� 2 f<;�g (5.11)

(5.12)

a � (

d



+ �) + b � 0

def

= a � (d+ �) + b �  � 0 � 2 f=; 6=g (5.13)

a � (

d



+ �) + b � 0

def

=

 

a � (d+ �) + b �  � 0 ^  > 0

_ 0 � a � (d+ �) + b �  ^  < 0

!

� 2 f<;�g (5.14)

It follows from [LW93℄ that

Theorem 5.2.2 Let x our linearly in the formula '(x) :

^

i2I

a

i

� x+ b

i

= 0 ^

^

j2J

a

j

� x+ b

j

6= 0 ^

^

k2K

a

k

� x+ b

k

� 0 ^

^

l2L

a

l

� x+ b

l

> 0
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Then 9x : '(x) is equivalent to

_

i2I[K

a

i

6= 0 ^ '(�

b

i

a

i

) _

_

i2J[L

a

i

6= 0 ^ '(�

b

i

a

i

+ �) _ '(�1)

Though the branhing fator is linear in the number of literals ontaining x and the

degree of the generated polynomials may inrease, the method an be adapted to work

for surprisingly many appliations and is furthermore extended to seond and third degree

variables [Wei97, Wei94℄, and, more elaborately, to the general ase.

Example: Elimination of x from the equality

'(x; y) : x � y � 5 = 0

produes the onstraint

y 6= 0 ^ '(

5

y

; y) whih simpli�es to y 6= 0

and the substitution [x 7!

5

y

℄. On the other hand, elimination of x from the equality

'(x; y) : x � y = 0

produes the onstraint

y 6= 0 ^ '(0; y) _ '(�1; y) whih simpli�es using (5.1) to

y 6= 0 _ y = 0

The disjuntion orresponds to a split with two branhes. The respetive branhes

generate the substitutions:

�

1

: [x 7! 0℄; �

2

: [x 7! x

�1

; y 7! 0℄

where x

�1

is a fresh variable. The inremental solving allows (in priniple, as the

present implementation does not return substitutions) to establish goals suh as:

x � y � 5 = 0 ! f(x+ 2) = f(

5

y

+ 2)

and

x � y = 0 ! f(2 � x

100

) = f(0) _ g(x � y

2

+ y � 5 + 1) = g(1)

for arbitrary funtions f and g.

In the next setion we desribe our approah to simplify polynomial inequalities and

eliminate redundant branhes generated by the quanti�er elimination proedure.
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5.2.2 Simpli�ation using abstrat interpretation

We propose the use of a simple sign-based abstrat interpretation domain to simplify and

maintain polynomials. Polynomial inequalities are partially evaluated and simpli�ed using

only information about the signs of variables. The sign-evaluation allows to often also

redue the degree of polynomials in polynomial inequalities appearing in the benhmarks

we have enountered so far. Also, its e�et on limiting branhing fators is dramati. Even

small examples produe a large branhing fator when the elimination proedure is used

without the sign-based evaluation. Together with a tight integration with the solver for

linear inequalities this omprises a handy tool for mixed linear and non-linear arithmetial

onstraints.

Besides a onjuntion of polynomial inequalities the non-linear solver maintains a partial

map from variables to signs. The sign of a variable x is one of the following onstraints

x = 0; x 6= 0; x > 0; x � 0; x < 0; x � 0; ?

Signs are partially ordered with respet to impliation suh that sine x < 0 ! x � 0 the

sign x < 0 is preferred for x � 0 as the sign for x. The sign \?" is preferrably avoided as it

imposes no onstraints. The partial order is illustrated in Figure 5.1.

x < 0 x = 0 x > 0

x � 0 x � 0

?

Figure 5.1: A Hasse diagram for the partial order of sign onstraints

Signs for variables are �rst aumulated by inspeting the polynomials presented to the

non-linear solver. For example, a polynomial inequality x

3

> 0 results in the sign onstraint

x > 0. Signs are evaluated using the obvious rules, suh as

(x > 0) � (y < 0) = (x � y < 0)

(x : ?)

2

= (x

2

� 0)

(x > 0) + (y < 0) = (x+ y : ?)
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Sine squaring and multipliation preserve more sign-information than addition we eval-

uate polynomials after multipliation has been distributed outwards as muh as possible.

Polynomial inequalities an then be simpli�ed further based on the sign evaluation. For

instane, if p 6= 0 is required, then eah multipliant that has a stritly non-zero sign (<, 6=,

>) is eliminated. Naturally, sign-evaluation an do early detetion of inonsistenies and

simplify polynomials.

Example: Assume x > 0 and y > 0. We an then simplify

x � y � z + z

2

� x � y > 0

to the equivalent

z + z

2

> 0

beause

x � y � z + z

2

� x � y > 0

$ x � y � (z + z

2

) > 0

$ y � (z + z

2

) > 0

$ z + z

2

> 0

We do use methods that would split the last onstraint to z > 0 _ z < �1, but instead

establish satis�ability diretly by eliminating z.

5.2.3 Integration between linear and non-linear solvers

While asserted inequality onstraints are initially passed to both the linear and non-linear

solvers the best features from eah are transferred to the other.

If possible, equalities derived in the linear solver are written in solved form x = t where

x is a variable that does not our under multipliation in t. Whenever this is possible

the substitution [x 7! t℄ is besides being applied to the ontext in the linear solver also

being applied to the non-linear solver. Sine the linear solver is equationally omplete

(lemma 5.1.2) we obtain a full detetion of impliitly �xed variables. This will therefore

(slightly) generalize the features of the \naive" solver reported in [Col93℄ for Prolog III.

Polarities derived in the non-linear solver are onversely made visible to the linear solver

to for instane make an early detetion of the inonsisteny

x > 0 ^ y > 1 ^ x � y � �x� y

beause the non-linear solver adds the onstraint x � y > 0 based on the polarities x >

0 ^ y > 0. The resulting set of linear onstraints are ontraditory.
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substitutions

constraints

substitutions

constraints

Linear solver

Polarity solver

Non-linear solver

& polarities

Figure 5.2: Integration between the linear and non-linear solvers

5.3 Summary

This hapter presented a ombination of linear and non-linear solvers for arithmetial on-

straints. We used Fourier's method for elimination of variables to deide satis�ability for

inequality onstraints and also extrat implied equalities as substitutions on the y.



Chapter 6

Reursive and o-reursive data

types

In this hapter we investigate deision proedures for reursive and o-reursive data types

and how these an be integrated within the ongruene losure-based deision proedure.

The hapter falls into two parts.

In the �rst part, Setion 6.1, we disuss theoreti properties of data types. Reursive

data types are generated from a set of onstrutors and supplied with indution shemas

ensuring no junk (the data type domain is the least set that an be obtained by applying

onstrutors) and no onfusion (elements are given by a unique sequene of appliations

of onstrutors). Reursive data types orrespond to initial algebras (free term algebras).

Co-reursive data types are onversely supplied with a o-indution shema, whih ensures

maximal junk (the elements of the data type domain is the largest set that an be obtained

by applying the onstrutors), but still no onfusion is required. Co-reursive data types

orrespond to �nal algebras. Co-reursive data types are essentially the in�nite term trees

in Prolog III [Col84℄. In logi programming, so-alled sorted feature trees [Smo92, NP93,

Tre96℄ ontain several similarities with o-reursive data types.

In the seond part, Setion 6.2, our goal is to show how onstraints involving equations,

disequations, inequations (the subterm relationship), and arithmetial onstraints an all

be integrated within the same ombination. In partiular, we present optimized algorithms

for handling disequations, inequations, seletors, and uni�ation of non-well-founded terms.

When the domain of a data type is in�nite we demonstrate how disequations an be tested

for satis�ability in a proessing-by-demand ombination. The data-strutures we use allow

to handle inequations saving some redundant branhing as ompared to [Ven87, Tul94℄.

By treating seletors as uninterpreted within the data type theory, but interpreting them

externally, we obtain a lazy approah to seletor evaluation. This allows a solver-based

deision proedure integration and has also demonstrated signi�ant speedup on benh-

marks using seletors. The onstrutor part of the theory of data types an then be dealt

with using eÆient Robinson-style uni�ation algorithms. The subterm relation for well-

founded data types is �nally oupled with arithmetial onstraints on the size of data types

78



CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 79

in Setion 6.2.6.

6.1 The theory of (o-)reursive data types

The material in this Setion summarizes a number of fats about reursive and o-reursive

data types. Several results may be derived as speial ases from well-known general results.

Other results are partiular to �rst-order theories of data types.

6.1.1 Signatures for sorted data types

By a reursive data type � we understand an impliitly de�ned sort haraterized by a

signature of the form

h�; S

1

; : : : ; S

n

;�i

where S

1

; : : : ; S

n

are di�erent non-empty sorts and � is a �nite set of onstrutors. Eah

onstrutor  in � has an assoiated arity:

 : T

1

� � � � � T

n



! �

where n



� 0, and eah of the sorts T

i

is taken from the list �; S

1

; : : : ; S

n

.

1

With eah onstrutor  2 � we also assoiate a set of seletors s



1

; : : : ; s



n



, and a tester

is : � ! B.

Example: A signature for a domain of binary trees over a base sort S an be spei�ed

using

htree ; S;node : tree � tree ! tree; leaf : S ! treei :

With node we assoiate the seletors left : tree ! tree and right : tree ! tree and

tester isnode : tree ! B. With leaf we assoiate the seletor leaf -ontents : tree ! S

and the tester isleaf : tree ! B.

Various harateristis of signatures lead to important speial ases. We say that a

signature is:

well-founded if there is a onstrutor that does not have � in its domain.

linear if all onstrutors have � ourring in at most one plae.

singular if there is only a single onstrutor  of arity � � � : : :� � ! � .

at if � does not appear in the domain of any onstrutor.

enumerative if eah onstrutor has arity � (does not take any arguments)

1

Thus we limit ourselves to a very simple theory of data types. In partiular, � ours only o-variantly

in the domain of eah onstrutor. data types with ontra-variant dependenies have a muh more involved

model-theory.
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a reord if there is only one onstrutor and � does not appear in the domain of that

onstrutor.

Lists are a speial ase of linear data types. Lists are also a speial ase of queues, treated in

hapter 8. The results in this hapter are therefore aimed exlusively at non-linear and at

data types. Singular data types have only trivial models, so these are ignored. By treating

reords and enumeration types as data types we an reuse the available tools developed

here without having to dupliate e�ort on these types.

6.1.2 Canonial models

We will disuss two natural models for data types: reursive and o-reursive models. Sine

these are in a good sense dual to eah-other we disuss them in the same Setion.

6.1.2.1 Initial algebras

Assume we are given an interpretation I

0

for the sorts S

1

; : : : ; S

n

. The lass of possible

interpretations for � that we shall onsider are all extensions of I

0

. The initial algebra

I

init

is the extension of I

0

suh that for any other extension I there is a homomorphism

h : I

init

! I. This de�nition (whih is a speial ase of the more general one from [Bir35℄)

is well founded as we have

Proposition 6.1.1 ([Gr�a79℄Corollary 24.1, Theorem 24.2) If I

init

exists it is unique

up to isomorphism.

We give a proof for our speial ase, as the same tehniques are used for �nal o-algebras.

Proof:

Let I and J be initial suh that IdS

i

= JdS

i

= I

0

, i = 1; : : : ; n. Then by assumption

homomorphisms h : I ! J and g : J ! I exist, and for every term t(x

1

; : : : ; x

m

) with

x

j

2 S

i

,

g Æ h(t(x

1

; : : : ; x

m

))

I

= g Æ h(t

I

(x

I

1

; : : : ; x

I

m

))

= g(t

J

(x

J

1

; : : : ; x

J

m

))

= t

I

(x

I

1

; : : : ; x

I

m

)

= (t(x

1

; : : : ; x

m

))

I

So g Æ h is an isomorphism on the term universe of h�; S;�i.

To onstrut an initial model I

init

, and later onstrut dual �nal models, we de�ne a � -tree:

De�nition 6.1.2 (�-trees) A � -tree onsists of a hT; �; sort i, where

1. T is a non-empty pre�x-losed subset of f1 : : :maxfarity() j  2 �gg

�

,

2. � : T ! � [ I

0

(S

1

) [ : : : I

0

(S

n

) is a labeling, and
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3. sort : T ! f�; S

1

; : : : ; S

n

g labels the nodes by sorts,

suh that

1. If sort(t) = � , then �(t) =  for some  2 �, and if  has arity T

1

� : : : � T

n



! � ,

then t1; : : : ; tn



2 T; but ti 62 T for i > n



, and sort(tj) = T

j

for j = 1; : : : ; n



.

2. If sort(t) = S

j

for some auxiliary sort S

j

, then �(t) 2 I

0

(S

j

), and ti 62 T for all i.

Finite � -trees are the trees where T has �nite ardinality, and in�nite � -trees are the trees

where T is not restrited ardinal-wise. The set of rational trees is obtained by taking the

� -trees that have only a �nite number of di�erent sub-trees.

Theorem 6.1.3 I

init

exists.

Proof:

The term-algebra over I

0

(S

1

); : : : ; I

0

(S

n

), where every distint term over � orre-

sponds to unique elements is isomorphi to the set of �nite � -trees. Let I be another

interpretation. We onstrut h : I

init

! I by reursion as a union

S

i<!

h

i

. For i = 0

we de�ne h

0

as the identity map on the range of I

0

. Indutively assume that h

i

is

given, and let (t

1

; : : : ; t

n

) be a term where t

1

; : : : ; t

n

are terms of depth at most i.

Then

I(t

j

) = h

i

(I

init

(t

j

)) = h

i

(t

j

) j = 1; : : : ; n

We now set

h

i+1

I

init

((t

1

; : : : ; t

n

)) = h

i+1

((t

1

; : : : ; t

n

)) = I((t

1

; : : : ; t

n

)) = I((h

i

(t

1

); : : : ; h

i

(t

n

)) :

The interpretation of testers is now uniquely given by the axioms

8x 2 � : 8 2 � : is(x) $ 9y 2 dom() : x = (y) : (6.1)

While the interpretation of onstrutors and testers is unique (up to isomorphism) we

admit any extension of I

init

satisfying the seletor axioms:

8 2 � : 8(y

1

; : : : ; y

n

) 2 dom() : s



i

((y

1

; : : : ; y

n

)) = y

i

: (6.2)

This leaves the interpretation of seletors under-spei�ed when the seletor does not math

the onstrutor assoiated with the term where the seletor is applied. Hodges [Hod93℄,

for instane insists that s



i

(

0

(y

1

; : : : ; y

n

)) = 

0

(y

1

; : : : ; y

n

) when  6= 

0

to obtain a unique

interpretation of seletors. This works only in an unsorted setting, however. Treinen [Tre91℄

maps non-mathing seletor appliations to a �xed element ?

S

for eah sort S. If seletors

are guaranteed only to be applied to terms, whose top-most onstrutor mathes the seletor,
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we may get rid of the seletors in an initial phase using transformations of the following

form:

C[s



i

(t)℄ 7! C[x

i

℄ ^ t = (x

1

; : : : ; x

i

; : : : ; x

n

) : (6.3)

where x

1

; : : : ; x

n

are fresh (existentially quanti�ed) variables. We are then bak at the pure

onstrutor theory. This transformation is only sound if t ould only have been generated

as an appliation of . For instane

left(leaf (x )) = y (6.4)

is satis�able if leaf is a total funtion. But the transformation from (6.3) produes the

unsatis�able

9x

1

; x

2

: x

1

= y ^ node(x

1

; x

2

) = leaf (x) :

This situation atually arises in [Sho84℄, where the solver for data types is unsound and

returns false when solving (6.4).

Alternatively, we an haraterize the initial algebras with the axiomatization I in

Figure 6.1.

F(�) � � (introdution)

8X � �: F(X) � X ! � � X (indution)

8

i

; 

j

2 �;8y

1

2 dom(

i

); y

2

2 dom(

j

) : (no onfusion)



i

(y

1

) = 

j

(y

2

) ! i = j ^ y

1

= y

2

8 2 � : is(x) $ 9y 2 dom() : x = (y) (tester)

8 2 �;8(y

1

; : : : ; y

n

) 2 dom() : s



i

((y

1

; : : : ; y

n

)) = y

i

(seletor)

Figure 6.1: Initial algebra axiomatization I

To state these axioms we use the prediate transformer F , de�ned:

F(S)

def

= f(y

1

; : : : ; y

n

) j  2 �; (y

1

; : : : ; y

n

) 2 dom()dSg

where dom()dS is the domain of  where ourrenes of � are restrited to be inluded in

the set S. The analogy with taking the post-ondition from a set of states an be helpful

to keep in mind.

Example: For the data type of trees we have:

F(X) = fnode(x; y) j x; y 2 Xg [ fleaf (x) j x 2 Sg
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So for instane

F(X) � Y $ 8x; y 2 X; s 2 S : node(x; y) 2 Y ^ leaf (s) 2 Y

and

X � F(Y ) $ 8x 2 X : 9y; z 2 Y; s 2 S : x = node(y; z) _ x = leaf (s)

Returning to the axioms in Figure 6.1,

Proposition 6.1.4 The introdution, indution, and no onfusion axioms determine � up

to isomorphism.

Proof:

From the indution axiom we have

� �

\

fX j F(X) � Xg

From the introdution axiom we have the onverse

\

fX j F(X) � Xg � �

In summary

� =

\

fX j F(X) � Xg =

[

�<!

F

�

(;) = �X : F(X) :

In words, � is the least set obtained by applying the onstrutors �nitely many times

to elements from the base sorts S

1

; : : : ; S

n

. Together with the (no onfusion) axioms

we onlude that � oinides with the free term-algebra.

6.1.2.2 Final o-algebras

We now investigate deision proedures for the ase where data types are interpreted as

�nal o-algebras.

An interpretation I

�nal

is a �nal o-algebra in a lass K of interpretations (whih are

as before all extensions of I

0

) if for any I in K there is a homomorphism h : I ! I

�nal

.

The lass K of interpretations we here have in mind are the strongly extensional mod-

els [Az88℄. Strongly extensional models are those where identity oinides with the largest

bisimulation [Mil89℄.

Two elements a; b 2 range(I) are bisimilar if there is a binary relation R � range(I)�

range(I), suh that R n (I(�) � I(�)) = diag(I(S

1

)) [ : : : [ diag(I(S

n

)), and (a; b) 2 R

and for every a; a

0

2 I(�), (a; a

0

) 2 R i� there are b; b

0

2 range(I),  2 � suh that

a = I((b)); a

0

= I((b

0

)); (b

i

; b

0

i

) 2 R; i = 1; : : : ; arity(). The largest bisimulation is as

usual the union of all bisimulations. Alternatively we an appeal to the Anti Foundation

Axioms (AFA) to fator out bisimilar models. The same proof as for Proposition 6.1.1 gives
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Proposition 6.1.5 If I

�nal

exists it is unique up to isomorphism.

To onstrut I

�nal

we will now use the domain of in�nite � -trees. It is straight forward to

verify that equality on in�nite � -terms is a maximal bisimulation. Intuitively, two di�erent

� -trees di�er on a �nite path, establishing that there an be no bisimulation between them.

More formally,

Lemma 6.1.6 Equality on in�nite � -trees is a maximal bisimulation.

Proof:

Take any bisimulation relation R on � -trees and suppose that

(hT

1

; �

1

; sort

1

i; hT

2

; �

2

; sort

2

i) 2 R:

We prove by indution on the length of strings in T

1

and T

2

, that they must oinide.

The base ase requires to establish that � 2 T

1

i� � 2 T

2

, whih is the ase as both

sets are non-empty and pre�x-losed, �

1

(�) = �

2

(�), and sort

1

(�) = sort

2

(�), whih

follows by unfolding the ondition on R one. As the indution hypothesis suppose

that T

1

and T

2

have the same strings of length less than i and that sort

1

and sort

2

as

well as �

1

and �

2

oinide on all strings of length less than i. Now take any string s

of length i� 1 (pre�x losure of T

1

, T

2

makes sure this is not a restrition) and de�ne

for k = 1; 2

T

s

k

def

= ft 2 f1 : : :maxfarity() j  2 �gg

�

j st 2 T

k

g (6.5)

�

s

k

(t)

def

= �

k

(st) (6.6)

sort

s

k

(t)

def

= sort

k

(st) (6.7)

Now either sort

s

1

(�) = S

j

for some sort S

j

or sort

s

1

(�) = � . In the �rst ase T

s

1

=

T

s

2

= f�g, and �

s

1

= �

i

2

= [� 7! s℄ for some s 2 I

0

(S

j

). In the seond ase the

onditions on R require that there is a  2 � suh that �

s

1

(�) = �

s

2

(�) =  and for eah

i = 1; : : : ; arity(), (hT

si

1

; �

si

1

; sort

si

1

i; hT

si

2

; �

si

2

; sort

si

2

i) 2 R.

We will now �x the interpretation I

�nal

as the one that maps every data type term t to

the orresponding (isomorphi) � -tree. Despite the naming I

�nal

, we have yet to establish

whether it is indeed a �nal o-algebra. This will not be the ase when the models may

ontain unneessary junk. To avoid this, we restrit K further to those interpretations

where domain losure holds.

De�nition 6.1.7 (Domain losure) Domain losure holds for I in K if for every a 2

I(�) there are  2 � and b 2 range(I) suh that a = I((b)). In other words we require the

interpretations in K to satisfy

� � F(�) :

Notie that domain losure holds for the onstrution we gave for I

�nal

.



CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 85

Theorem 6.1.8 Let the lass of K interpretations satisfy domain losure and I

�nal

2 K,

then I

�nal

is a �nal o-algebra in K.

Proof:

Take an arbitrary interpretation I in K. As I satis�es domain losure we an for

eah element in I(�) �x an arbitrary one-step unfolding (there is atually preisely

one by the (no-onfusion) axiom). A one-step unfolding of a 2 I(t) hooses a  2 �

and b 2 range(I) suh that a = I((b)). We an now assoiate eah element in I(�)

with a � -tree by building it in stages based on the transitive unfolding obtained by

applying the �xed one-step unfoldings.

To apture �nality axiomatially we an use the solution lemma, whih states that all

(onsistent) sets of equations have (unique) solutions. The solution lemma and its relations

to non-well-founded set-theory are disussed in [Az88℄. Stated using in�nitary onnetives

and index sets I and J , it reads

8x : J ! � : 9!y : I ! � :

^

i2I

y(i) = t

i

(x; y)

where eah t

i

(x; y) is a term over variables x(j); j 2 J , y(i); i 2 I, and there is no hain

i

1

; i

2

; : : : ; i

k

; : : : 2 I, suh that for eah pair (a; b) 2 f(i

1

; i

2

); : : : ; (i

k

; i

k+1

); : : :g, the term t

a

is y(b). This ondition ensures that every variable y(i) is (eventually) de�ned in terms of

some term whih is either of the form x(j) or uses a onstrutor. Notie that this shema

inludes in K trees that are not rational.

We an therefore apture the �nal o-algebra axiomatization by the axioms in Figure 6.2

among strongly extensional models. Dual to indution, whih implies domain losure, the

solution lemma implies the priniple of introdution F(�) � � .

� � F(�) (domain losure)

8x : J ! � : 9!y : I ! � :

V

i2I

y(i) = t

i

(x; y) (solution lemma)

8

i

; 

j

2 �;8y

1

2 dom(

i

); y

2

2 dom(

j

) : (no onfusion)



i

(y

1

) = 

j

(y

2

) ! i = j ^ y

1

= y

2

8 2 � : is(x) $ 9y 2 dom() : x = (y) (tester)

8 2 �;8(y

1

; : : : ; y

n

) 2 dom() : s



i

((y

1

; : : : ; y

n

)) = y

i

(seletor)

Figure 6.2: Final o-algebra axiomatization C

As an alternative to �nality among extensional interpretations K, we an apture I

�nal
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by asserting the priniple of o-indution:

8X � K : X � F(X) ! X � � :

The sort � is onstrained as the greatest �x-point to F as the o-indution priniple asserts

[

fX � K j X � F(X)g � �

and the domain losure ondition ensures the onverse

� �

[

fX � K j X � F(X)g;

so in summary

� =

[

fX � K j X � F(X)g = �X � K : F(X) :

We an relate this to the onstruted I

�nal

by showing that it is a maximal �x-point and any

other �x-point omes with an injetion to I

�nal

. A proof of this observation an be modeled

diretly after Theorem 14.1 in [BM96℄ page 198 where it is formulated for streams assuming

AFA. The expliit use of K in the o-indution priniple is also pervasive in [Pau93, Pau97℄.

Here, o-indution is embedded in HOL using enoding from �rst priniples. For instane,

for eah base type �, K is the type � node set set, and terms are built from primitive

operations 


D

, �

D

, for forming produts and sums over non-well-founded strutures.

One an naturally bypass the entire disussion of �nality by modeling o-reursive data

types diretly using � -trees as the basi notion. This has been done in [Fef96℄ in the ase

of streams.

6.1.3 Mixed data types

We have presented the sorted signatures for (o-)reursive data types for simpliity with

only one data type attahed. Consider now example 6.1.3.

Example: Mutual reursive de�nitions of trees and forests:

*

S;

�

tree

; node : S � �

forest

! �

tree

; branh : �

tree

! �

tree

�

forest

; nil : �

forest

; ons : �

tree

� �

forest

! �

forest

+

In the ase where �

tree

and �

forest

are both interpreted a reursive data types or both

interpreted as o-reursive data types it does not take muh e�ort to extend all de�nitions

to support suh mutually reursively de�ned types.

The more subtle question is to provide meaningful interpretations and support for a

mixture of reursive and o-reursive data types. For instane, if we insist that the domain

of �

tree

may inlude in�nitely long branhes, but that all forests should be �nite one should

be able to onstrain �

tree

as a o-reursive data type and �

forest

as a reursive data type. In
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general terms assume we have a struture

h�



; �

r

; S

1

; : : : ; S

n

;�

r

;�



i

where �

r

and �



are sets of disjoint onstrutors. The onstrutors f 2 �

r

have arity T

1

�

: : :�T

n

f

! �

r

, f 2 �



have arity T

1

�: : :�T

n

f

! �



where T

1

; : : : range over �



; �

r

; S

1

; : : : ; S

n

.

We wish to obtain a reursive interpretation of �

r

and o-reursive interpretation of �



assuming well-foundedness (�

r

ontains a onstrutor that does not have �

r

in its domain).

Alternating � -trees provide a way to obtain suh an interpretation.

De�nition 6.1.9 An alternating � -tree is a possibly in�nite � -tree hT; �; sort i over sorts

�



; �

r

; S

1

; : : : ; S

n

suh that there is no in�nite subset fw

1

; w

2

; w

3

; : : :g of T where 8i9j : w

i+1

=

w

i

j and 8i : sort(w

i

) = �

r

.

Sine in eah ase T is �nitely branhing, K�onig's lemma implies that this requirement is

equivalent to exluding in�nite terms over �

r

.

Alternating � -trees are not neessarily the only meaningful model. In [BS98℄ general

onditions on strutures inluding reursive and o-reursive data types are studied in order

to ahieve meaningful ombinations and integrated deision proedures.

6.1.4 Equational theories

A ground equational formula is built exlusively from boolean ombinations of equalities.

A �rst-order equational formula ' is built from ground equational formulas by adding �rst-

order quanti�ation.

6.1.4.1 Reursive data types

The indution shema from Figure 6.1 is the only non-equational axiom for indutive data

types. It implies two sets of equational axioms, namely domain losure, as well as that

no term is a proper subterm of itself. The latter has to be formulated using an in�nite

supply of equational axioms, one for eah term over � together with auxiliary variables. In

summary we obtain the equational axiomatization in Figure 6.3.

6.1.4.2 Co-reursive data types

The axiomatization of o-reursive data types already ontain axioms for domain losure.

The �nite instanes of the solution lemma looks remarkably dual to the no-yles ondition.

Thus, we state the orresponding equational axiomatization for o-reursive data types in

Figure 6.4.

6.1.5 Beyond equational theories

While a seond-order system allows to de�ne derived relations, suh as the subterm relation,

a pure �rst-order system needs to introdue these separately. Hene, for the subterm relation
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F(�) = � (�x-point)

8x 2 �;8y:x 6= t(x; y) (no-yles)

8

i

; 

j

2 �;8y

1

2 dom(

i

); y

2

2 dom(

j

) : (no onfusion)



i

(y

1

) = 

j

(y

2

) ! i = j ^ y

1

= y

2

8 2 � : is(x) $ 9y 2 dom() : x = (y) (tester)

8 2 �;8(y

1

; : : : ; y

n

) 2 dom() : s



i

((y

1

; : : : ; y

n

)) = y

i

(seletor)

Figure 6.3: Equational system I

E

for reursive data types

F(�) = � (�x-point)

8x 2 �;9!y:

V

i

y

i

= t

i

(x; y) (unique solutions)

8

i

; 

j

2 �;8y

1

2 dom(

i

); y

2

2 dom(

j

) : (no onfusion)



i

(y

1

) = 

j

(y

2

) ! i = j ^ y

1

= y

2

8 2 � : is(x) $ 9y 2 dom() : x = (y) (tester)

8 2 �;8(y

1

; : : : ; y

n

) 2 dom() : s



i

((y

1

; : : : ; y

n

)) = y

i

(seletor)

Figure 6.4: Equational system C

E

for o-reursive data types

s � t, whih holds i� s is a subterm of t is relevant for standard termination arguments of

reursive programs. The single axiom-shema subterm enodes this relation.

A ground deision proedure integration is presented in Setion 6.2.5.

6.1.6 First-order equational deision methods

6.1.6.1 Enodings into S2S

Suppose that eah sort S

i

an be enoded in an enumerable domain. We an then redue

deision problems for the �rst-order theory of onstrutors (but without seletors) to wS2S

(the weak monadi seond-order logi of two suessors) for reursive data types respe-

tively full S2S for o-reursive data types. This onnetion is perhaps not surprising. For

instane [KS97℄ presents an enoding of reursive data types via wS2S and guided tree-

automata. It has however not been possible to �nd a de�nite referene to this onnetion,

so we disuss it in some depth here. The added value of using S2S is that the enoding also



CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 89

8 2 �;8x;8y 2 dom() :

x � (y

1

; : : : ; y

n

) $ x = (y

1

; : : : ; y

n

) _

W

i

x � y

i

(subterm)

Figure 6.5: subterm relation axiom shema

allows quanti�ation over positions. The lost value inludes problems in enoding under-

spei�ed seletors, the apparent need for full S2S for o-reursive data types (it is believed

muh more intratable than wS2S in pratie [Kla98℄), and impossible to extend the S2S-

based representation to handle subterm relations using the same translation (the �rst-order

theory with subterm relations is undeidable).

An enoding of terms using unary prediates is skethed below. The analogy with I

init

and I

�nal

should be kept in mind as we here essentially use binary tress to enode trees of

arbitrary, but bounded branhing. The distintion between the initial and �nal models is

reeted in the type of quanti�ers admitted.

1. Construtors. Assume that prediates P

1

; : : : ; P

n

enode t

1

; : : : ; t

n

. Then P enodes



i

(t

1

; : : : ; t

n

i

), where 

i

is the i'th funtion symbol in � with arity n, if the following

onditions are satis�ed:

(a) P is downwards losed: 8x:P (xL) _ P (xR)! P (x).

(b) P (�).

() The left branh departing � has length i and does not split: P (L

i

) but :P (L

i+1

)

and :P (L

j

R) for 1 � j � i.

(d) The right branh departing � has length n: P (R

n

) but :P (R

n+1

).

(e) The j'th split on the right branh ontains the j'th subterm: 8x:P (xR

j

L) $

P

j

(x) for 1 � i � n.

2. To hek that a prediate enodes a well-formed term we introdue the abbreviation
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enodes-term(P ), whih is de�ned with:

isPath(x; P )

def

= 8y � x : :P (yL) _ :P (yR)

We use isPath to enode values from the data type domains S

i

.

sort

�

(x; P )

def

= P (xL) ^ P (xR) ^ :P (xLR) ^ :P (xRL)

This onstrains P to branh both left and

right, but not followed by a zig-zag. It is il-

lustrated to the right.

sort

S

i

(x; P )

def

= P (xL

i

) ^ :P (xL

i+1

) ^

^

1�j�i

:P (xL

j

R)

^ isPath(P; xRL) ^ P (xRL) ^ :P (xR

2

)

This onstrains P to branh straight left with

a path of length i, and right in a path follow-

ing a zig-zag movement. It is illustrated to

the right.

isGoodRoot

i

(x; P )

def

= P (xL

i

) ^ :P (xL

i+1

) ^

^

1�j�i

:P (xL

j

R)

^ P (xR

n

i

+1

) ^ :P (xR

n

i

+2

)

^

^

1�j�n

i

sort

T

j

(xR

j+1

L; P )

Here 

i

has arity T

1

� � � � � T

n

i

! � .

enodes-term(P )

def

= sort

�

(�; P )

^ 8x : sort

�

(x; P ) !

_



i

2�

isGoodRoot

i

(x; P )

^ 8x : P (xL) _ P (xR)! P (x)

3. Testers are expanded aording to the tester axioms.

4. Equalities of terms are now enoded as prediate equivalene (i.e., set equality).

5. First-order quanti�ation is enoded as seond-order quanti�ation over unary pred-

iates (sets) relativized to enodes-term . For reursive data types quanti�ation is

relativized to �nite sets. This fores all terms to be �nite. This an be aomplished
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diretly by using wS2S or by the prediate �nite(P ), where

�nite(P )

def

= :(9R : R � P ^ esape(R))

esape(R)

def

= R 6= ; ^ 8x 2 R9y 2 R : x < y

The haraterization orresponds to a a weak form of K�onig's lemma (for trees of

branhing degree 2). For o-reursive data types, quanti�ation is unrestrited. Finite

as well as in�nite terms are admitted. Full S2S is required to represent quanti�ation

of in�nite sets.

The freedom to relativize variables in S2S produes as a side-e�et a deision proedure

for �rst-order equational theory of mixed data types. We here have to relativize variables

to those whih do not ontain an esape sequene of reursive onstrutors.

6.1.6.2 First-order quanti�er elimination

An early quanti�er elimination proedure for free term algebras with ommutativity axioms

an be found in [Mal71℄ (the original paper in Russian is from 1961). Maher [Mah88a℄

gives quanti�er elimination proedure for reursive and o-reursive data types. Although

presented in an unsorted setting it an be extended in a straight-forward way to multi-sorted

data types [Mah88b℄. While only equational axiomatizations are disussed, ategoriity of

the seond-order axiomatizations I and C implies:

Corollary 6.1.10 For every �rst-order formula ', where every atomi formula is an equal-

ity between � -terms without seletors:

I q ' i� I

E

q ' i� I

E

` '

and

C q ' i� C

E

q ' i� C

E

` ' :

Unfortunately Maher's deidability results do not extend to seletors when their in-

terpretation is left under-spei�ed. It is for instane straight forward to simulate binary

prediates with a seletor applied to a non-mathing binary onstrutor. This allows to re-

onstrut two-ounter mahines and other Turing-omplete devies. Rako� proves [Ra75℄

and Vorobyov [Vor96℄ reproves that the �rst-order theories of reursive and o-reursive

data types are non-elementary in the sense of Kalmar, i.e., annot be deided within time

bounded by a k-story exponential funtion for any �xed k. Both the quanti�er elimination

proedure and the embedding into S2S provide a omparable upper bound.

6.1.7 Related theories of data types

The theories of feature trees [Smo92℄ are related to the o-reursive data types disussed

here. Sub-feature relationships are for instane studied in [MNT98℄. Features do not have
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the same arity restritions that the data types have here. This makes sub-feature onstraints

harder (omplete for PSPACE, they orrespond to automaton simulations) than the NP-

omplete subterm relations studied here.

6.2 Deision proedure integration for data types

We will here develop proedures that an be used to verify laims like

type sexpr == CONS :: ar : sexpr, dr : sexpr | NIL

value x,y,z : sexpr

NIL <= CONS(NIL,NIL)

x <= y /\ y <= x --> x = y

x < y /\ y <= x --> false

NIL < CONS(NIL,NIL)

x < CONS(x,y)

x <= y --> x < CONS(y,z)

CONS(x,y) = CONS(y,z) --> x = z

ar(x) = NIL /\ x = NIL --> ar(ar(x)) = NIL

length(CONS(NIL,NIL)) = 3

length(A) > length(B) --> !(A <= B)

all in neglible time with the same integration of deision proedures.

Without muh added e�ort we also obtain proedures for automatially verifying laims

for o-reursive data types, suh as

otype sexpr == CONS :: ar : sexpr, dr : sexpr | NIL

value x,y : sexpr

CONS(x,x) = x /\ CONS(y,y) = y --> x = y

CONS(x,y) = x /\ CONS(y,x) = x --> x = y

Due to STeP's fous on reative systems the less trivial examples that these deision pro-

edures have been exposed to have involved only reords. For instane, a possible enoding

of the version of the SRT lookup table presented in [RSS96℄ requires more attention to

how reord projetions are handled. A preliminary version of reord projetion deision

proedures based on Shostak's suggestions [Sho84℄ required 4 minutes to verify the main

laim. With the lazy evaluation of the projetion (seletor) operations we present here it is

veri�ed in 10-30 seonds depending on how the theorem is presented.
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The required mahinery is being developed in the rest of this hapter.

6.2.1 �-automata

The union-�nd struture used in the ongruene losure indues a struture muh like

a top-down deterministi tree automaton, by taking Q as states and suessor funtion

Æ = hildren Æ L

Q

: Q ! Q

�

. In general we an not assume that L

Q

is always up to date

with the union-�nd struture. In the revised de�nition of Æ below, we therefore apply �nd

to eah hild of L

Q

(q) to antiipate a later update of L

Q

. By labeling eah state q by the

head funtion symbol in L

Q

(q) we also obtain a way to aess terms assoiated with the

states.

When interpreting a spei� data type � with onstrutors � � F we will however use a

modi�ed suessor funtion, whih only produes suessors for a state q, when it is labeled

by a funtion symbol in �. Thus,

De�nition 6.2.1 (�-automaton) Given the union-�nd struture with terms desribed in

Setion 3.2 and data type � with onstrutors �, the � -automaton is a tuple

A : hQ; Æ : Q! Q

�

; � : Q! Fi

suh that

�(q)

def

= let (f; q) = L

Q

(q) in f

Æ(q)

def

= if �(q) 2 � then map �nd (hildren(L

Q

(q))) else hi

Sine we have just de�ned � -automata we will sneak in two auxiliary de�nitions assoiated

with these automata. These onern paths in � -automata and reahability.

De�nition 6.2.2 (Paths: �) A path � is a sequene of positive integers. The evaluation

of state q on path � is written �(q) and de�ned via:

�(q) = q

(i � �)(q) = �(Æ(q)

i

)

where Æ(q)

i

is the i'th projetion of Æ(q) de�ned (arbitrarily) as q if jÆ(q)j < i. A path � is

well formed on q if � is � or � = i � �

0

, jÆ(q)j � i and �

0

is well formed on Æ(q)

i

. Paths are

partially ordered by the string pre�x relation.

De�nition 6.2.3 (Reahability) Let q

1

; q

2

be states in Q, then

q

1

� q

2

i� there is a path � suh that q

2

= �(q

1

)

6.2.2 Uni�ation using �-automata

Sine terms are represented by the union-�nd node that orresponds to the top most sub

term we an unify a pair of terms based on a Robinson-style uni�ation algorithm [BS93℄ for
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the pair of orresponding union-�nd nodes. More generally, given a set of pairs of union-�nd

nodes E de�ne unify in Figure 6.6.

unify(E) = unifyPairs(Id; E) where

unifyPairs(�; ;) = return �

unifyPairs(�; fq

1

?

= q

2

g [ E) =

let

q

0

1

= (q

1

)� and q

0

2

= (q

2

)�

in

if q

0

1

= q

0

2

then unifyPairs(�; E) else

if �(q

0

1

) 62 � then unifyPairs(� � [q

0

1

7! q

0

2

℄; E) else

if �(q

0

2

) 62 � then unifyPairs(� � [q

0

2

7! q

0

1

℄; E) else

if �(q

0

1

) = �(q

0

2

) then unifyPairs(� � [q

0

1

7! q

0

2

℄;

E [ fÆ(q

0

1

)

i

?

= Æ(q

0

2

)

i

j i � arity(L

Q

(q

0

1

))g)

else return FAIL

Figure 6.6: Uni�ation using � -automata

The result of unify is either FAIL, in whih ase the input terms do not unify, or a

substitution � mapping union-�nd nodes to union-�nd nodes. The restrition of � where

domain nodes are labeled by variables (i.e., whose head funtion symbols are not in �)

indues a most general uni�er. The easiest way to see this is perhaps by viewing the

present algorithm as a re�nement of Robinson's uni�ation algorithm.

Operations assoiated with the substitution � an be implemented using a union-

�nd data-struture. We then obtain an almost linear-time uni�ation algorithm as noted

in [BN98℄. Zhang [Zha92℄ gives a slightly more eÆient \shell-nut" data-struture that

works as a lazy union-�nd struture and solves the union-�nd problem for uni�ation in

onstant time. Every step eliminates one state or disharges an equality. The entire uni�-

ation proess an therefore be implemented to run in time linearly in �

q2Q

max(1; jÆ(q)j)

(using the Shell-Nut data-struture). In [JK90℄ it is left open whether rational trees ould

be uni�ed in linear time, but the shell-nut proedure does preisely that.

6.2.3 Integration with ongruene losure

Shostak [Sho84℄ proposes a solver for a speial theory of S-expressions (onvex S-expressions,

where the axiom x = CONS(CAR(x),CDR(x)) holds). With some goodwill it an be extended

to other data types. However fundamental to this approah seletors like CAR and CDR are

treated as interpreted symbols and may therefore not beome part of a solved form.

We will use the uni�ation algorithm from Figure 6.6 to solve equalities for reursive as
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well as o-reursive data types. By separating out the treatment of seletors and testers we

will be able to make some theoretial observations on di�erenes in deision omplexities,

and also be able to obtain a solver that works for a maximally exible interpretation of the

seletors.

6.2.3.1 Reursive data types

Presented with an equality onstraint t = s, where s and t are terms over the reursive data

type � , we an invoke the uni�ation algorithm from Figure 6.6 on the pair of union-�nd

nodes fq

s

?

= q

t

g. In ase of failure s and t di�er on a ommon position with inompatible

onstrutors. The equality t = s is then unsatis�able. In ase of suess, the uni�ation

algorithm returns a substitution [q

1

7! q

0

1

; : : : ; q

n

7! q

0

n

℄. We an perform the ours hek �a

posterior in linear time using a topologial sorting algorithm or using Tarjan's algorithm for

�nding strongly onneted omponents in a graph. Tarjan's algorithm produes a partition

of the states Q. We then hek that eah partition is a singleton set, without a looping

state transition. This hek an naturally be interleaved with the generation of strongly

onneted omponents and uni�ation. This gives essentially the ours hek approah

of [RP89℄. Alternatively one an use the linear-time algorithm from [DST80℄ to perform

the ongruene losure of A. This algorithm terminates if the graph ontains a yle. Note

that the graph indued by A and the uni�er ontains a yle if and only if the ours hek

is violated.

Provided the ours hek is not violated the substitution [q

1

7! q

0

1

; : : : ; q

n

7! q

0

n

℄ from

the uni�ation algorithm is equivalent to a solved form

m

^

i=1

x

i

= t

i

where m � n and none of the x

i

our free in the t

i

. As uni�ation does not produe new

states, no new terms need to be presented to the ongruene losure before it an proess

the set of solved equalities [q

1

7! q

0

1

; : : : ; q

n

7! q

0

n

℄ by merging q

i

and q

0

i

for i = 1; : : : ; n.

Notie how the use of direted merge, whih sets the �nd of q

i

to that of q

0

i

, is onsistent

with the fat that if q

i

is labeled by a onstrutor it oinides with the onstrutor labeling

q

0

i

.

6.2.3.2 Co-reursive data types

The ours hek is not required for o-reursive data types. Instead the result of uni�ation

an produe bisimilar nodes that are not merged. For instane take the onstraint

x = node(x; x) ^ y = node(y; y) :

Before taking the equalities into aount the assoiated union-�nd struture would alloate

four nodes, q

1

; q

2

; q

3

; q

4

, where L

Q

(q

1

) = x, L

Q

(q

2

) = node(q

1

; q

1

), L

Q

(q

3

) = y, L

Q

(q

4

) =

node(q

3

; q

3

). Asserting the equality x = node(x; x) requires to unify q

1

and q

2

resulting
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in the substitution [q

1

7! q

2

℄. Separately the equality y = node(y; y) auses merging q

3

with q

4

. The resulting union-�nd struture now has �nd(q

1

) = q

2

, �nd (q

3

) = q

4

, L

Q

(q

2

) =

node(q

2

; q

2

), and L

Q

(q

4

) = node(q

4

; q

4

). In the assoiated � -automaton A, q

2

and q

4

are

di�erent but bisimilar states, so therefore represent the same element in any model. To

merge q

2

and q

4

(in other words ensure that terms are all in anonial form) we need

to lose A aording to the maximal bisimulation relation satisfying (the Myhill-Nerode

priniple):

q � q

0

i� �(q) = �(q

0

) ^ 8i � jÆ(q)j : Æ(q)

i

� Æ(q

0

)

i

EÆient algorithms for partition re�nement [PT87℄ an minimize � -automata in time bounded

by O(nlog(n)), where n is the size of Q. In an early paper Oppen [Opp80b℄ gives an

O(nlog

2

(n)) bound based on other algorithms.

6.2.3.3 Satis�ability of equations and disequalities

The two re�nements of the uni�ation algorithm above give eÆient proedures for deiding

satis�ability of onjuntions of equalities and disequalities over reursive and o-reursive

data types. Given a onjuntion L of equalities t = s and disequalities u 6= v where all

terms range over a data type � , we an perform the steps of the algorithm in Figure 6.7.

1. Produe a union-�nd struture by applying anonize to eah term in L.

2. Extrat the � -automaton A from the union-�nd struture.

3. Form the set E : fq

s

?

= q

t

j s = t in Lg and apply unify on E .

4. In the ase of reursive data types a linear-time ongruene losure algorithm is

suÆient to do ours hek and ollapse nodes that must be equal. In the ase of

o-reursive data types, automaton minimization in O(nlog(n)) suÆes in order to

ollapse states that must be interpreted equally.

5. If the uni�ation or minimization merges two nodes that are assoiated with a

disequality or di�erent onstrutors the original set L is unsatis�able.

Figure 6.7: Algorithm for heking onsisteny of equalities and disequalities

When � is non-singular, and not at with all parameter sorts S

i

being �nite domain

it is simple to generate in�nitely many di�erent terms of type � . For instane, if � is a

well-founded reursive data type we an hoose an assignment of \fresh" terms to root-

nodes that are not labeled by onstrutors (the �rst non-onstrutor node is labeled by a

term of size jf�nd (q) j q 2 Qgj + 1, the seond by a term twie the size, et.., This entails

that the algorithm in Figure 6.7 is omplete for well-founded reursive data types. When

the data type is an enumeration type, however, it is easy to redue the graph k-oloring

problem to the satis�ability problem by representing nodes in a given graph by di�erent

variables ranging over a data type of k elements and asserting disequalities orresponding to

edges. The graph 3-oloring problem is NP-omplete, so this leaves little hope for obtaining
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eÆient algorithms for the enumeration ase. The proedure in Figure 6.7 therefore only

serves as a partial onsisteny hek when splitting is not employed.

The algorithm an also be used diretly to solve the deision problems studied in [Col84℄.

The theoretial running time of our algorithm seems however better (O(nlog(n)) as opposed

to at least O(n

2

), if not O(n

3

)

2

).

6.2.4 Seletors and testers

The eÆient algorithmi results do not arry over to onstraints inluding testers or sele-

tors. Consider for example the data type

h�; T : �; F : �; ons : � � � ! �i (6.8)

with seletors ar : � ! � , dr : � ! � and testers isT , isF and isons . Then given

an instane ' :

V

i

(l

i

_ k

i

_ m

i

) of 3-SAT where l

i

; k

i

;m

i

are literals over the alphabet

fx

1

; : : : ; x

n

g, we introdue fresh variables x̂

i

and

^

x

i

for the positive and negative literals

respetively. Now ' is satis�able if and only if

V

i

ons(ons(F; F ); F ) 6= ons(ons(

^

l

i

;

^

k

i

); m̂

i

)

^

V

x2V

x̂ 6=

^

x

^

V

x2V

:isons(x̂) ^ :isons(

^

x)

is satis�able, if and only if

V

i

ons(ons(F; F ); F ) 6= ons(ons(

^

l

i

;

^

k

i

); m̂

i

)

^

V

x2V

x̂ 6=

^

x

^

V

x2V

ons(ar (x̂); dr (x̂)) 6= x̂ ^ ons(ar (

^

x); dr (

^

x)) 6=

^

x

is satis�able.

Nelson and Oppen [NO78℄ notied that when S has in�nite ardinality, then equalities

and disequalities over

h�; S; atom : S ! �; ons : � � � ! �i (6.9)

with seletors ar : � ! � , dr : � ! � and testers isatom , and isons , an be deided in

time O(n

2

). The omplexity for these domains is also obtained using the present integration

with ongruene losure. Seletors are evaluated using the anonizer �, whih eliminates

pairs of mathing seletors and onstrutors.

To handle the general ase we propose the approah in Figure 6.8. It suggests to delay

interpretation of seletors as a last resort. For example, onsider Shostak's approah when

solving

#1 x

1

= 1 ^ #1 x

2

= 1 ^ : : : ^ #1 x

100

= 1 ^ #1 x

100

6= 1

2

That artile does not provide a preise running time analysis
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where x

i

are tuples of length 100. This will �rst solve #1 x

1

= 1, whih redues to

x

1

= (1; y

2

; : : : ; y

100

), introduing 99 fresh variables. The solution for x

1

may be propagated

to other onstraints before the seond equality an be proessed, introduing another 99

fresh variables. In the end, 9900 fresh variables are introdued before the ontradition is

deteted.

1. Whenever the assoiation [q 7! s(q

0

)℄ is inserted into L

Q

, where s is a seletor, we

reord the seletor redex s(q

0

) provided �(q

0

) 62 � (that is, if q

0

is not labeled by a

onstrutor).

To loalize data type reasoning in the data type solver, this reording is provided

by the anonizer �, whih takes s(q

0

) and attempts to simplify it if q

0

labels a

mathing onstrutor. As a side-e�et it noties if q

0

was not a onstrutor.

2. The data type reasoner now has the option on splitting for eah seletor redex s(q)

introduing the splits q = 

1

(x

1

new

); : : : ; q = 

n

(x

n

new

) for eah data type onstrutor



1

; : : : ; 

n

provided with fresh variables as arguments.

Figure 6.8: Algorithm for heking onsisteny in the presene of seletors.

We proeed with a somewhat involved argument for the ompleteness of this approah

and introdue the following notation:

De�nition 6.2.4 (Redex losure) The automaton A is losed under seletor/onstrutor

redexes i� for every q in A if use(q) ontains a node q

0

, where L

Q

(q

0

) = s



i

(q) then �(q) 2 �.

Furthermore if �(q) = , then Æ(q)

i

= q

0

, whih means that the seletor applied aording to

its de�nition.

To witness the di�erene between states q

1

and q

2

in a � -automaton losed under sele-

tor/onstrutor redexes we introdue the notion of a state di�erentiator.

De�nition 6.2.5 (State di�erentiator) A state di�erentiator for states q

1

and q

2

in

automaton A is a pair (�; T ), where

� A is losed under seletor/onstrutor redexes.

� � is a set of integer sequenes f�

0

; �

1

; �

2

; : : :g.

� T � ��Q�Q is a relation satisfying.

1. T (�

0

; q

1

; q

2

)

2. For every path � and states q

1

, q

2

: T (�; q

1

; q

2

) i�

�(�(q

1

)) 6= �(�(q

2

)) and

for every pre�x �

0

of �, and nodes q

1

and q

2

, if L

T

(s(q

1

)) = �

0

(q

1

),

L

T

(s(q

2

)) = �

0

(q

2

), for some seletor s, then there is a �

00

2 � suh that

T (�

00

; q

1

; q

2

).
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We an then introdue a ongruene relation ' on states:

De�nition 6.2.6 (Congruene with seletors: ') States q

1

' q

2

i� they have no dif-

ferentiator (�; T ).

An automaton is redued if ' partitions Q into singletons:

De�nition 6.2.7 (Redued automata) The automaton A is redued if:

for every q

1

; q

2

2 Q, if q

1

6= q

2

then q

1

6' q

2

,

The de�nition of a state di�erentiator implies diretly that when an automaton is redued

it is losed under ongruenes.

On the other hand an automaton is ground if all states labeled by the data type � are

also labeled by one of � 's onstrutors.

De�nition 6.2.8 (Ground states and ground automata) A state q in the automaton

A is ground if for every state r, where r � q and sort(r) = � then �(r) 2 �.

The automaton A is ground if all its states are ground.

We use minimal ground redued automata that are losed under seletor/onstrutor

redexes to extrat models where all nodes in Q have di�erent interpretations.

Lemma 6.2.9 Let A be (1) minimal, (2) losed under onstrutor/seletor redexes, (3)

ground, and (4) redued, and assume that base sorts S

1

; : : : ; S

n

eah have in�nitely many

elements, then there is an injetive model M : hM;�

M

i of A:

Injetivity q

M

1

= q

M

2

! q

1

= q

2

8q

1

; q

2

2 Q

Construtors q

M

= �(q)

M

(hildren(q)

M

) 8q 2 Q;�(q) 2 �

Seletors 

M

(a) = q

M

^ s



i

(q) 2 use(q) ! a

i

= q

M

8q 2 Q; a 2M

Proof:

Not very surprising we an identifyM with A setting M = Q. First, sine eah S

i

is in�nite-state, we an assoiate a distint element with eah state in Q whose sort

belongs to one of the parameters. Sine A is

1. minimal, then M is extensional (losed under ongruene with respet to the

onstrutors),

2. redex losed, then seletors are neessarily interpreted aording to their de�ni-

tion,

3. ground, then every node of sort � orresponds unambiguously to a onstrutor

term inM,

4. redued, thenM is losed under ongruenes with respet to the seletors.
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While ground automata orrespond naturally to injetive models, we do not need a

ground automaton to detet the existene of an injetive model. The premises of the

following lemma suÆe:

Lemma 6.2.10 Let A be a � -automaton. If

1. A is losed under onstrutor/seletor redexes,

2. A is redued,

3. � is non-at and non-singular,

then there is a ground redued automaton losed under onstrutor/seletor redexes A

0

and

embedding { : A ,! A

0

. By embedding we understand an A

0

that oinides with A where

�(q) 2 � in A, but may relabel non-onstrutor states by onstrutors and add extra states.

Proof:

We onstrut A

0

as in the pure onstrutor ase. Namely for eah state q

i

in A of sort

� not labeled by a onstrutor we alloate a fresh ground automaton A

i

with state

q

0

i

, suh that the term assoiated with q

0

i

is not isomorphi with any term in A. We

then merge q

i

and q

0

i

to eliminate the non-onstrutor state. Repeated eliminations

of non-onstrutor states in A produes the ground automaton A

0

and embedding

{ : A ,! A

0

. This gives us the embedding, and that A

0

is ground.

We have to verify

1. A

0

is redued. For this purpose we will extend every state di�erentiator (�; T )

for A to a state di�erentiator (�

0

; T

0

) for A

0

by extending paths in � that may in

A end in a variable to paths in A

0

that witness the di�erene between the ends.

In more detail, suppose the triple (�; q

1

; q

2

) 2 T , and �(q

1

) ends in a node labeled

by a non-onstrutor. Then �(q

2

) does not end in the same node. In A

0

, �(q

1

)

may again be labeled by a onstrutor, and in the worst ase it may oinide

with the onstrutor labeling �(q

2

). But by the onstrution of A

0

these nodes

an be di�erentiated by extending �.

2. A

0

is losed under onstrutor/seletor redexes. This follows as the new states

in A

0

do not introdue any new redexes.

Lemma 6.2.10 now implies that if the data type is in�nite domain, the elimination of

seletor redexes in algorithm 6.8 produes either an automaton A from whih a model for

onstraints inluding disequalities an be extrated, or establishes the unsatis�ability of the

given onstraints.
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6.2.5 Subterm relations

We now move to adding ground support for subterm relationships of the form s � t, meaning

s is a subterm of t. Negated onstraints s 6� t are naturally also admitted.

The ground ase for reursive onstrutor terms is shown NP-omplete in [Ven87℄. Mem-

bership in NP is established by showing that every satis�able set of onstraints has a model

of ubi size. Compared to searh-based deision proedures, this is highly impratial. NP-

hardness arries diretly over to o-reursive data types. A searh-based deision method

for o-reursive terms is presented in [Tul94℄, whih shows how this deision proedure an

also be modi�ed to handle the reursive ase. However, that deision proedure requires

normalized terms of the following form:

t = v; t 6= v; t � v; t 6� v : (6.10)

A onjuntion L of these terms is satis�able (for the lass of non-degenerate o-reursive

data types) if and only if the following two tests are passed:

T1 It is not the ase that v v w and v 6� w 2 L.

T2 It is not the ase that t � v 2 L, s 6� w 2 L, v v w, and q

s

� q

t

.

where

De�nition 6.2.11

� vRw i� there is a t � w 2 L and v 2 FV (t).

� ! � R

+

� v � R

�

Using the � -automaton data-struture we will present a realization of the deision pro-

edures for reursive and o-reursive data types. Our proedure transforms onjuntions

of onstraints of the form:

t = s; t 6= s; t � s; t 6� s :

into a disjuntion of solved form onstraints

W

i

L

i

, where eah L

i

is a onjuntion of:

t 6= s; t � v; t 6� s : (6.11)

together with a � -automaton A representing all equalities. To represent suh onstraints

we will use the tuple

hA; D; I; Ni (6.12)

where

� A is a minimized automaton representing all terms and equalities in the onstraint

set L.
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� D � Q�Q orresponds to disequalities.

� I � Q�Q orresponds to inequalities t � s.

� N � Q�Q orresponds to negated inequalities t 6� s.

Notie here, that the only solved form onversion required is of t � s into ases t � v.

The solved form onversion onsists of saturating with respet to the following steps:

1. Using the proedures for handling equalities and disequalities we an represent A as

the minimal automaton satisfying all equalities in L, and di�erentiating all asserted

disequalities D. Thus, A is the resulting automaton after an invoation of the algo-

rithm in Figure 6.7 applied to equalities and disequalities. If it reports failure, then

the onstraints L are trivially unsatis�able.

2. We need to onvert I into a subset of Q� fq 2 Q j �(q) 62 �g. This an be ahieved

using a onversion into disjuntions using the haraterization of �:

s � t $

0

B

B

B

B

B

B

�

_

q � q

t

,

�(q) 2 �

q

s

= q _

_

q � q

t

,

�(q) 62 �

q

s

� q

1

C

C

C

C

C

C

A

This step splits the original set of onstraints L into

W

i

L

i

, and onstitutes the om-

putationally expensive step (the deision problem is after all NP-omplete). Notie

that some of the branhes impose equality onstraints, that modify A further.

3. For eah L

i

we build an auxiliary graph G, whose verties are Q (the same states as

A), and whose edges E are indued by Æ as well as the literals asserting inequalities

(the set I):

(q

1

; q

2

) 2 E $ Æ(q

2

) = h: : : q

1

: : :i or (q

1

; q

2

) 2 I

The tests T1 and T2 are now replaed by the test

N: For eah pair (q; r) 2 N (orresponding to q 6� r) if there is a path hq; q

1

; : : : q

n

; ri

in G, then the set of onstraints is unsatis�able.

It may not be impossible to establish a orrespondene between Tulipani's tests and

the above saturation rules and then reuse Tulipani's results. The heavy notation in [Tul94℄

resulting in some onfusion as to what assumptions are used to establish whih properties

makes a diret and straight-forward proof of ompleteness more desirable.

Soundness is obvious by inspeting eah step.
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Theorem 6.2.12 (Soundness) L is inonsistent in the theory of reursive and o-reursive

data types if all branhes obtained by applying rules 1-3 are unsatis�able.

For the theory of o-reursive data types (rational and in�nite trees) we an state:

Theorem 6.2.13 (Co-reursive Completeness I) Suppose � is non-linear, and on-

tains either two non-linear onstrutors or has a onstrutor  : � � � � S � � � � ! � , where

jSj is in�nite, then L is satis�able if and only if some branh obtained by saturating with

respet to rules 1-3 is non-ontraditory.

Proof:

Let X = fx

1

; : : : ; x

m

g be the states in A that are not labeled by onstrutors. We

extend A to a ground automaton A

0

by assigning di�erent ground terms to eah

variable inX suh that every subterm relation in I is satis�ed, and suh that whenever

for nodes q; r in A, there is a path from q to r in A

0

if and only if there is a path from

q to r in A already. This ensures that all onstraints in N are satis�ed by A

0

.

Sine � is non-singular there is a binary onstrutor f : � � � � � � � � � � � � � ! � .

For future notational onveniene we �x a binary version of f , by hoosing arbitrary

parameters for the domain values of f that are not of sort � and group the arguments

of sort � in two parts. For example if f

0

has arity f

0

: S

1

� � � � � � ! � , and s

1

2 S

1

,

we set f(x; y) := f

0

(s

1

; x; y; y).

If � ontains two non-linear onstrutors f

0

and g

0

, let f and g be their binary

versions and for eah natural number n, onsider the system:

y

n

0

= g(y

n

1

; y

n

1

)

y

n

1

= f(y

n

2

; y

n

2

)

.

.

.

y

n

n

= f(y

n

0

; y

n

0

)

The ase n = 3:

f

 g

f

f

Eah system has a unique solution by the solution lemma, and furthermore

y

i

j

= y

k

l

$ i = k ^ j = l (6.13)

y

i

j

� y

k

l

$ i = k (6.14)

We therefore have a suÆient supply of di�erent terms to alloate fresh signature

terms sig

1

; : : : sig

m

for eah variable in X, none being a subterm of eah other or of

any term in A (by hoosing instanes of y

n

0

to represent sig

i

where n � jQj).

If � on the other hand ontains a onstrutor  whose domain ontains an in�nite

S we reate signatures by hoosing fresh elements from S. For example, if  : � �S�
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� ! � , set for eah i = 1; : : : ;m, sig

i

the unique term satisfying sig

i

= (sig

i

; s

i

; sig

i

)

where the s

i

are di�erent.

We an now onstrut ground realizations for the variables X by building terms

suh that q is a subterm of x 2 X if and only if there is a path from q to x already in

A. Simply, let q

1

; : : : ; q

k

be the states in A where (q

1

; x) 2 I; : : : ; (q

k

; x) 2 I and set

Æ(x) := f(q

1

; f(q

2

; : : : ; f(q

k

; sig

x

))) :

This de�nes A

0

.

By onstrution all onstraints in I are satis�ed. Also the signature terms ensure

that di�erent states in A

0

are not bisimilar, so A

0

is minimal. Finally, we have to

verify that all onstraints in N are satis�ed. Let (q; r) 2 N , then by saturation step

3, q 6= r, and there is no path in A from q to r. We must show that there is no path

in A

0

from q to r. But by the onstrution of A

0

this ould only be the ase if q is a

subterm of one of the new states. However q is not a subterm of sig

x

for any x, and

sine sig

x

is only a subterm of q if there is a path in A from x to q, so q is a subterm

of x in A

0

i� there is a path from x to q in A.

The assumptions of the theorem are neessary. For instane with the signature

h�; NIL : �; CONS : � � � ! �i (6.15)

the following onstraints


 = CONS(
;
) ^ NIL 6� x ^ 
 6� x

are not satis�able, but saturation fails to detet this. The remaining ases thus onsists of

signatures of the form

h�; NIL

1

: �; : : : ; NIL

k

: �; CONS : � � � ! �i (6.16)

The onstant atomi terms of this signature is the set

onstants : fNIL

1

; : : : ; NIL

k

;
g where 
 = CONS(
;
) :

These are the terms that must be part of any minimal ground automaton.

To over the remaining ases we maintain a set sigAvoid(x) with eah state in A, whih

is initially empty, and add an additional saturation rule:

4. When (q; r) 2 N and q is ground, let x

1

; : : : ; x

n

be the variables that an reah r in

G. Set

sigAvoid(x

i

) := sigAvoid(x

i

) [ fqg for eah i

If for any x

i

onstants n sigAvoid(x

i

) = f
g
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assert x

i

= 
.

If for any x

i

onstants n sigAvoid(x

i

) = ;

report unsatis�ability.

The ompleteness proof 6.2.13 an now be extended

Theorem 6.2.14 (Co-reursive Completeness II) Suppose � is non-linear and has a

signature isomorphi to (6.16), then L is satis�able if and only if some branh obtained by

saturating with respet to rules 1-4 is non-ontraditory.

The proof is analogous, exept this time we use the supply

y

n

0

= CONS(NIL

i

; y

n

1

)

y

n

1

= CONS(y

n

2

; NIL

i

)

.

.

.

y

n

n

= CONS(y

n

0

; NIL

i

)

The ase n = 3:

CONS(  ,  )

CONS(  ,  )

CONS(  ,  )

CONS(  ,  )

NIL

NIL

NIL

NIL

of di�erent inompatible terms for sig

x

, when NIL

i

2 onstants n sigAvoid(x).

In the ase of reursive data types, the subterm relationship is a partial order, and

may imply additional equality onstraints. Thus, strongly onneted omponents of G

are ollapsed by asserting equalities between the nodes in eah omponent. As disussed

in 6.2.3.1 the uni�ation algorithm for reursive data types provides a built-in ours hek

whih reports unsatis�ability in the presene of a yle traversing a onstrutor.

In omplete analogy with o-reursive ompleteness we have:

Theorem 6.2.15 (Reursive Completeness I) Suppose � is non-linear and ontains a

non-reursive onstrutor  : S

i

1

� � � � � S

i

k

! � where one of the domain sorts is in�nite,

then L is satis�able if and only if some branh obtained by saturating with respet to rules

1-3 is non-ontraditory.

When it is only possible to supply a �nite set of non-reursive onstrutor terms the set

onstants is �nite and we an under ertain irumstanes use step 4 (without the ondition

involving 
) and easily state:

Theorem 6.2.16 (Reursive Completeness II) Suppose � is non-linear and ontains

a onstrutor  : � � � �S�� � � � � �� � � ! � , where jSj is in�nite, then L is satis�able if and

only if some branh obtained by saturating with respet to rules 1-4 is non-ontraditory.

This follows as we an here build unique sig

x

using the non-reursive onstrutors that are

not in sigAvoid(x) to form the leaves of sig

x

and by using unique versions of  to distinguish

the signatures.
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The most ompliated ase is when there is essentially only a �nite number of on-

strutors (both reursive and non-reursive). For instane, the onstraints below of the

signature (6.15) are unsatis�able

CONS(NIL; NIL) 6� x ^ NIL 6= x

beause every �nite tree ontains a CONS(NIL,NIL) leaf. In general we need an essentially

stronger version of saturation step 4 to handle these ases:

4' When (q; r) 2 N and q is ground, let x

1

; : : : ; x

n

be the variables that an reah r in

G. Set

sigAvoid(x

i

) := sigAvoid(x

i

) [ fqg for eah i

Suppose

1. sigAvoid(x

i

) 6= ;,

2. q 2 sigAvoid(x

i

) is a term of maximal size in that set,

3. for all terms of length jqj there is some r 2 sigAvoid(x

i

) suh that r � q.

split L into branhes, one for eah term t of length less than jqj that is not a subterm

of any term in sigAvoid(x

i

).

The extra ase splitting ensures that every remaining variable x

i

in a non-ontraditory

branh admits arbitrary large signatures by hoosing a term t

i

not in sigAvoid(x

i

) of max-

imal length and extending it using the non-linear onstrutor  as muh as desired. For

instane, (t

i

; (t

i

; : : : ; (t

i

; t

i

))). To ensure that none of the signatures are subterms of eah

other let n be the size of A (jQj) and reate the signatures

sig

1

: ((t

1

; t

1

); (t

1

; (t

1

; : : : ; (t

1

; t

1

)))

| {z }

n+1

); (6.17)

sig

2

: ((t

2

; t

2

); (t

2

; (t

2

; : : : ; (t

2

; t

2

)))

| {z }

n+2

);

.

.

.

sig

i

: ((t

i

; t

i

); (t

i

; (t

i

; : : : ; (t

i

; t

i

)))

| {z }

n+i

)

This leads us to the �nal result:

Theorem 6.2.17 (Reursive Completeness III) If � is non-linear then L is satis�able

if and only if some branh obtained by saturating with respet to rules 1,2,3, and 4' is

non-ontraditory.

6.2.5.1 The �rst-order theory of subterms

The �rst-order theory of equality and subterm relations annot be easily enoded into wS2S.

In fat it is undeidable [Ven87, Tre92℄ when there is at least one ternary onstrutor.
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Undeidability is established by reduing arbitrary instanes of the Post orrespondene

problem to a statement in the �rst-order theory of reursive data types with the subterm

relation. See also [Com90℄, whih provides ground deision proedures of lexiographi

orderings. The �rst-order extension is later proved undeidable by the same author. A

onjeture raised in [Ven87℄ is that the �rst-order theory of �nite binary trees with subterm

relation (hNIL; CONS;=;�i) is deidable. It is somewhat surprising that neither [Ven87℄

nor [Tre92℄ realize that the Post orrespondene problems an also be redued to the �rst-

order theory of �nite binary trees with subterms. The onstrution given below is di�erent

from the ase when the signature ontains a ternary onstrutor, so we give it here in all

details to settle the onjeture (in the negative).

Theorem 6.2.18 The �rst-order theory of �nite binary trees with subterm relation is un-

deidable.

Proof:

Take an instane of the Post orrespondene problem (a Post system), whih onsists

of a �nite set of pairs of strings (v

1

; w

1

); : : : ; (v

n

; w

n

) over the alphabet f0; 1g and

asks if there is a sequene i

1

; : : : ; i

k

of indies ranging over f1; : : : ; ng, suh that

v

i

1

v

i

2

� � � v

i

k

= w

i

1

w

i

2

� � �w

i

k

. There is no e�etive proedure whih takes as input an

arbitrary Post system and provides an answer whether there exists suh a sequene or

not. For eah Post system we now onstrut a formula over the theory of �nite binary

trees with subterm relations whih is valid if and only if there is a solution to the

given system. For this purpose we will give an enoding proedure whih an reord

the set of string pairs (v; w) that are obtained from a �nite set of indies i

1

; : : : ; i

k

suh that v = v

i

1

v

i

2

� � � v

i

k

and w = w

i

1

w

i

2

� � �w

i

k

. The given Post system is then

solvable if there is a tree with a pair (v; w) where v = w 6= �.

De�ne string(u) if u is not NIL and every branhing point in u has at least one

branh being NIL.

string(u)

def

= u 6= NIL ^ 8x � u : x = NIL _ 9y : x = CONS(y; NIL) _ x = CONS(NIL; y)

The binary trees that are strings will be used to enode strings over the alphabet

f0; 1g, and the empty string is enoded via CONS(NIL; NIL). If u is any term and v is

a sequene of 0's and 1's we de�ne the onatenation u � v by:

u � �

def

= u

u � 0v

def

= CONS(u; NIL) � v

u � 1v

def

= CONS(NIL; u) � v

Clearly if u satis�es string(u) then also string(u � v). We an �nally onvert an entire

string u into a binary tree representing it by de�ning �

def

= CONS(NIL; NIL) and ompute

� � u. Sample enodings of strings 101 and 100 are illustrated below.
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CONS

CONS

CONS

NIL

NIL

NILCONS

CONS

CONS

NIL

NIL

NIL

NIL

CONS

NIL NIL

CONS

NIL

101 100

Trees representing a pair (v; w) and sequene i

1

; : : : ; i

k

with v = v

i

1

v

i

2

� � � v

i

k

and

w = w

i

1

w

i

2

� � �w

i

k

are aptured by the prediate Root . To make the de�nition of Root

less painful to read we will also introdue two auxiliary prediates LHS, RHS for the

immediate left and right branhes of terms satisfying Root. Informally Root (u) holds

if and only if u reords a pair (v; w) and orresponding history of indies used to form

v and w.

Root (u)

def

= 9

x;

v;

w;

v

0

;

w

0

:

u = CONS

 

CONS(x; CONS(v; w));

CONS(x; CONS(v

0

; w

0

))

!

^ LHS (x; v; w)

^ RHS (v; w; v

0

; w

0

)

(6.18)

LHS(x; v; w)

def

=

v = w = � ^ x = NIL

_ 9x

0

; y

0

:

x = CONS

 

CONS(x

0

; y

0

);

CONS(x

0

; CONS(v; w))

!

^ string(v) ^ string(w)

(6.19)

RHS(v; w; v

0

; w

0

)

def

=

n

_

i=1

v � v

i

= v

0

^ w � w

i

= w

0

(6.20)

The branhing on a Root is illustrated below
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x x

v w vv wwi i

We an require reursively that the repeated branh x in the de�nition of Root

by requiring that every non-NIL subterm of u satisfying LHS for some v; w, is again a

Root. This form of impliit reursion is muh similar to the S2S enoding of reursive

and o-reursive data types. Hene, de�ne

GoodRoot (u)

def

=

Root (u)

^

0

B

�

8x � u :

 

9

v;

w

: LHS (x; v; w) ^ x 6= NIL

!

! Root (x)

1

C

A

(6.21)

Finally, the given Post system is solvable if and only if

9u : GoodRoot (u) ^ 9x; y; v : v 6= � ^ u = CONS(x; CONS(y; CONS(v; v)))

One diretion is trivial, given a solution to a Post system we onstrut a GoodRoot

enoding the sequene of produtions that led to the solution. In the other di-

retion well-founded indution on terms satisfying GoodRoot establishes that they

represent only legal appliations of the Post prodution rules and whenever u =

CONS(x; CONS(y; CONS(v; w))) for some x; y; v; w, then string(v) and string(w).

6.2.6 Taking lengths of reursive data types

While the subterm relation is a natural speial relation to support for (o-)reursive data

types, a length aessor seems to be a reasonable utility to add to reursive data types. It

is espeially relevant in termination arguments for reursive programs. The length of term

t, written jtj, is interpreted as the number of onstrutors used to form the term t. Thus,

we have the orresponding axiomatization in (6.9).

The thrill in adding this seemingly innoent utility is that onstraints with equality,

disequality, and subterm relationships on data types an now depend diretly on the theory

of integer (linear) arithmeti and reursive data types. While eah ground theory is de-

idable, heking satis�ability in isolation no longer suÆes. For example given the hybrid
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8 2 �;8(y

1

; : : : ; y

n

) 2 dom() : j(y

1

; : : : ; y

n

)j = 1 +

n

X

i=1; sort(y

i

)=�

jy

i

j (length)

Figure 6.9: Length aessor axiomatization

onstraint

jaj < jbj ^ b � a; (6.22)

where a and b are variables over a reursive data type, the �rst onstraint jaj < jbj is most

naturally maintained by an integer linear arithmeti solver, whereas b � a is maintained

by the solvers presented in Setion 6.2.5. Eah onstraint in isolation is satis�able, but the

ombined onstraint is learly not. In an initial attempt we an saturate onstraints via the

speial relation rule

x � y ! jxj � jyj : (6.23)

Saturating with this speial relationship on (6.22) we obtain a ontradition as jbj � jaj is

added. But this does not provide in itself a omplete integration.

Example: Consider the data type of trees, from example 6.1.1, where S is a singleton sort

with only element �, and the onstraints

jxj = 5

^ x 6= node(node(leaf (�); leaf (�)); leaf (�))

^ x 6= node(leaf (�);node(leaf (�); leaf (�))) :

These are unsatis�able as the only terms of length 5 are the ones x is required to be

di�erent from.

Example: Regardless of the hoie of reursive data type the onstraints

t � x ^ s � x ^ jxj < jtj+ jsj ^ t 6� s ^ s 6� t

are unsatis�able.

Example:

h�; NIL : �; f : � � � � � � � ! �i

All terms of � have length 1 + 4x for some x.
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6.2.6.1 Deidability

The �rst question is naturally whether the ombined theory is deidable. We laim it is,

though the outline we provide does not enourage a searh oriented implementation.

Theorem 6.2.19 Validity in the universal theory of integer linear arithmeti and reursive

data types with lengths is deidable.

As usual, validity of a formula is established by heking unsatis�ability of a negation of

that formula. To hek satis�ability of a set of data type and arithmetial onstraints C we

will perform a olletion of saturation rules, that split C into a �nite number of disjuntions.

Eah disjuntion is normalized to the form L ^ LA, where L is a set of data type onstraints

saturated with respet to the proedure from 6.2.5, and L is satis�able in some model for

the theory of data types; LA is a set of linear arithmeti inequalities, is satis�able in a

model for the theory of integer (linear) arithmeti. We then establish that if we reah a

disjunt L ^ LA that annot be split any further, then the ombined set of onstraints for

that disjunt is satis�able.

We shall onsider the ase where � is non-linear and has a �nite number of onstrutors

(f. Theorem 6.2.17). To simplify the disussion, but without losing generality, we shall

onsider signatures for � with two non-linear onstrutors and an arbitrary number of

non-reursive onstrutors. This summarizes the general ase. Suppose therefore that the

signature of � is of the form

h�; NIL

1

: �; : : : ; NIL

k

: �; f : � � � � � � �

| {z }

a

! �; h : � � � � � � �

| {z }

b

! �; i

� Eulid's algorithm for omputing greatest ommon divisors provides m and n suh

that

gd(a; b) = ma� nb

Set g = gd(a; b), then we an reate terms of length 1+

a

g

nb; 1+

a

g

nb+g; 1+

a

g

nb+2g; : : :

using onstrutors f and h, beause we an write the numbers

a

g

nb;

a

g

nb + g; : : : as

linear ombinations of a and b:

a

g

nb;

a

g

nb+ g = ma+ (

a

g

� 1)nb;

a

g

nb+ 2g = 2ma+ (

a

g

� 2)nb;

: : : ;

a

g

nb+

a

g

g =

a

g

ma =

a

g

nb+ a

and eah linear ombination of a and b orresponds to a term using f and h by

applying f and h as many times as the oeÆients of a and b ditate.

For future referene abbreviate

k

def

=

a

g

nb :
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� Let x

1

; : : : ; x

n

be a permutation of the variables in L, and guess an ordering:

0 < jx

1

j = jx

2

j < jx

3

j < : : : = jx

n

j

The amount of guessing is �nite as there are n! permutations of the x

i

and 2

n�1

ways

to hoose between equality or strit inequality. Add the ordering onstraints to LA.

� Saturate L with respet to rules 1,2,3,4'.

� For jx

i

j = jx

i+1

j split on the onstraints

1. x

i

= x

i+1

. This eliminates one variable.

2. x

i

6� x

i+1

; x

i+1

6� x

i

. This ensures that they annot be subterms of eah other.

� Saturate with respet to the speial relations rule (6.23).

� We will now eliminate the variables in the same order as the size ordering onstraints

that were guessed above.

jsig

1

j+

X

(q;x

1

)2I

(jqj+ a� 1) + k = l

1

.

.

.

jsig

i

j+

X

(q;x

i

)2I

(jqj+ a� 1) + k = l

i

+

i�1

X

j=1

a

j

i

jx

j

j

.

.

.

1. The fator jsig

i

j provides the spae required to build a unique signature as de�ned

in (6.17).

2. The fator

X

(q;x

i

)2I

(jqj+ a� 1) provides the spae required to satisfy the subterm

relations on top of the signature.

3. The fator k provides the spae to build on top of 2 to generate terms within

distane g.

Now split into the ases:

ase 1 : jx

1

j < l

1

ase 2 : jx

1

j � l

1

^ jx

1

j = 1 + y

1

new

g

In the �rst ase there are �nitely many ways to onstrut x

1

, so x

1

an be eliminated

from these branhes produing onstraints with fewer variables.
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In general we split on the ases

ase 1 : jx

i

j < l

i

+

i�1

X

j=1

a

j

i

jx

j

j

ase 2 : jx

i

j � l

1

+

i�1

X

j=1

a

j

i

jx

j

j ^ jx

i

j = 1 + y

i

new

g

In every instane i the �rst branh eliminates a variable by enumerating all possible

ways to form x

i

.

Suppose therefore that all branhes hoose the seond ase and that the integer on-

straints are satis�able. Then, the onstraints are satis�able in a model where all lower

bounds are respeted. But, the lower bounds were hosen suh that di�erent x

i

ould

be realized of any size exeeding the lower bound and suh that none of the x

i

's were

subterms of eah other unless expliitly required by the onstraints in L.

6.2.6.2 An inomplete searh-oriented proedure

Our implementation uses an inomplete proedure based on the saturation rules:

subterm saturation Whenever s � v; t � v are in L, then either t � s or t 6� s are in or

implied by L.

lower bounds Whenever jvj 2 dom(L

T

), then 0 � jvj is implied by LA.

speial relation: forward Whenever t � v is in L and jvj 2 dom(L

T

), then �

�

(jtj) � jvj

is implied by LA.

speial relation: bakward Assuming subterm and lower bound saturation, if t

1

� v;

: : : ; t

n

� v are the (di�erent and inompatible) lower bounds on v in L, n � 0 (n = 0

is allowed) and

i = INF(LA; jvj �

n

X

i=1

jt

i

j) s = SUP(LA; jvj �

n

X

i=1

jt

i

j) :

If s is �nite, i.e.,

0 � i � s < 1

then for eah term skeleton t(x

1

; : : : ; x

n

) with unique ourrenes of the free variables

x

1

; : : : ; x

n

, suh that jt(x

1

; : : : ; x

n

)j = k + jx

1

j+ : : :+ jx

n

j for some i � k � s replae

v by t(t

1

; : : : ; t

n

) to obtain a set of new onstraints without v. Thus, set the updated

onstraints to (L ^ LA)[v 7! t(t

1

; : : : ; t

n

)℄ for eah of the possible ts.

If the set of terms satisfying jt(x

1

; : : : ; x

n

)j = k + jx

1

j+ : : : + jx

n

j for some i � k � s

is empty, then the set of onstraints is unsatis�able. This ould for instane be the

ase when s < 0.
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The saturation rules are not omplete as the example with the 4-ary onstrutor wit-

nesses. The single onstraint jxj = 2y is simply not satis�able.

6.3 Open problems

1. Is the full �rst-order theory of in�nite trees deidable when all onstrutors have arity

no larger than 1? The problem is posed in [Tul94℄.

6.4 Summary

This hapter presented deision proedures for data-types, inluding the sub-term relation

and length onstraints. Both reursive as well as o-reursive data-types have been examined

and we have shown how these theories an be integrated within the solver-based ombination

of deision proedures.



Chapter 7

Bit-vetors

Bit-vetors are the natural data-type for hardware desriptions. To handle bit-vetors in

omputer-aided veri�ation, it is onvenient to have speialized deision proedures to solve

onstraints involving bit-vetors and their operations.

To verify hardware designs, Mark Pihora developed a ompiler from the Verilog hard-

ware desription language to fair transition systems. Sine bit-vetors are pervasive in

Verilog we have found it useful to develop the deision proedures for bit-vetors desribed

in this hapter. The presented proedure is easy to integrate tightly within the ombination

deision proedures for other theories, whih �ts well into the wide sope of STeP.

An algorithm that addresses bit-vetors from a perspetive similar to ours has been

reported in [CMR97℄. In an e�ort to use that algorithm we were unable to reonstrut the

rutines neessary to handle bit-wise boolean operations. We devised an algorithm where bit-

wise boolean operations ould be easily handled. The key feature of the proedure is that it

often only splits ontiguous bit-vetors on demand. Its performane is often independent of

the length of the bit-vetors in the input. We also briey disuss non-equational bit-vetor

onstraints, whih had not reeived proper attention elsewhere.

Legal inputs to the STeP-Verilog veri�ation tool inlude parameterized hardware de-

signs where the bit-vetor size is not �xed at veri�ation time. The potential need then

arises for a method that an handle both �xed and non-�xed size bit-vetors. In ertain

ases our simple proedure for �xed size bit-vetors an be used diretly for non-�xed size

bit-vetors. To handle more ases, we �rst present an optimized deision proedure for

equations s = t, where s and t do not ontain bit-wise boolean operations, and then extend

it to handle bit-vetors whose sizes are parameterized (still without supporting boolean

operations). To our knowledge this was the �rst reported deision proedure that handles

onatenation of a non-trivial lass of non-�xed size bit-vetors. Independent of this e�ort,

however, M�oller and Rue� [MR98℄ developed muh similar transformation rules applying to

a larger set of equality onstraints, but without being able to give a termination argument

(albeit, it is a non-trival problem). With a di�erent starting point [BDL98℄ give optimized

proedures for handling bit-vetor arithmeti.

115



CHAPTER 7. BIT-VECTORS 116

7.1 Bit-vetors

Bit-vetor terms are of the form

t ::= x j t[i : j℄ j t

1

Æ t

2

j 

[m℄

j t

1

op t

2

op ::= & (bitwise and) j ^ (bitwise xor) j \j" (bitwise or)

 ::= 1 j 0

t[i : j℄ denotes sub�eld extration, and Æ onatenates two bit-vetors. The onstant 0 is

synonymous with false and 1 with true. For larity, a term may be annotated by a length,

suh that t

[m℄

indiates that t has length m.

Terms are well-formed when for every subterm t

[m℄

[i : j℄, 0 � i � j < m, and for every

s

[m℄

op t

[n℄

, n = m. Terms without ourrenes of op are alled basi bit-vetor terms.

Bit-vetors an be interpreted as �nite funtions from an initial segment of the natural

numbers to booleans. Hene, if � is a mapping from bit-vetor variables x

[m℄

to an element

of the funtion spae f0; : : : ;m� 1g ! B we interpret omposite terms as follows:

[[x℄℄

�

= �(x)

[[t[i : j℄℄℄

�

= �k 2 f0; : : : ; j � ig:[[t℄℄

�

(i+ k)

[[s

[m℄

Æ t

[n℄

℄℄

�

= �k 2 f0; : : : ;m+n�1g:if k < m then [[s℄℄

�

(k) else [[t℄℄

�

(k�m)

[[s

[m℄

op t℄℄

�

= �k 2 f0; : : : ;m� 1g:[[s℄℄

�

(k) [[op℄℄ [[t℄℄

�

(k)

[[

[m℄

℄℄

�

= �k 2 f0; : : : ;m� 1g: = 1

Bit-vetor terms from the above grammar appear, for instane, throughout the system

desription and veri�ation onditions from a split-transation bus design from SUN Miro-

systems [Kam96℄. A sample proof obligation enountered during STeP's veri�ation of

a safety property of the bus (namely, proesses are granted exlusive and non-interfering

aess to the bus) takes the form

l wires = 4 ^ request 6= 0

[8℄

!

(request h ^ request) 6= 0

[8℄

_ (request 6= 0

[8℄

) ^ request = request h

(7.1)

where request and request h are bit-vetor variables of length 8. While this proof obligation

is evidently valid, a simple enoding of bit-vetors as tuples auses examination of multiple

branhes when establishing the veri�ation ondition. The proedure developed here avoids

this enoding and its potential ase splitting. This and similar veri�ation onditions an

then be established independently of the bit-vetor length (and in a fration of a seond).

Thus, our proedure is able to establish this veri�ation ondition when the length 8 is

replaed by an arbitrary parameter N .

While other logial operations like shifting an easily be enoded in the language of bit-

vetors we analyze, the arithmetial (signed, unsigned and IEEE-ompliant oating point)

operations are not treated at all here.
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7.2 Alternative approahes

As usual, a diret axiomatization an be used to establish all veri�ation onditions we

onsider. Better than a raw axiomatization, proof assistants like ACL2 and PVS provide

sophistiated libraries ontaining relevant bit-vetor lemmas. But, although highly useful,

libraries do not provide a deision method.

In the symboli model heking ommunity, BDDs [Bry86℄ (binary deision diagrams)

are used to eÆiently represent and reason about bit-vetors. Purely BDD based represen-

tation of bit-vetors requires alloating one variable for every position in a bit-vetor. (Just

two bit-vetor variables eah of length 64 require alloation of 128 variables, pushing the

limits of urrent BDD tehnology). A BMD-based (binary moment diagram) representa-

tion [BC95℄ optimizes on this while being able to eÆiently perform arithmetial operations

on bit-vetors. Unfortunately it is nontrivial to ombine BMDs eÆiently into the Shostak

ombination.

Sine the values of bit-vetors range over strings of 0's and 1's it is possible to use

regular automata to onstrain the possible values of bit-vetors. Using this approah the

mona tool [BK95℄ an e�etively represent addition of parameterized bit-vetors using M2L

(Monadi Seond-Order Logi). The expressive power of M2L also allows a diret and pra-

tial deision proedure of �xed size bit-vetors enoded either as tuples of boolean variables

or as unary prediates with a onstant domain. Furthermore M2L allows quanti�ation over

bit-vetors (with non-elementary omplexity as the prie). The approah based on regular

automata, however does not admit an enoding of onatenations of parameterized bit-

vetors. For suppose the regular language R

x

(say 10

�

1) enodes evaluations of bit-vetor

x that satisfy onstraint '(x). Then the pumping lemma tells us that the evaluations of y

onsistent with '(x) ^ y = x Æ x is not in general (ertainly fww j w 2 10

�

1g is not) a reg-

ular language. Automata with onstraints [CDG

+

98℄ (see hapter 4) is a possible remedy,

but this imposes even more hallenges in obtaining a diret ground integration with other

deision proedures, whih we seek here. Our proedure addresses this problem and solves

satis�ability of ground equalities.

7.3 A deision proedure for �xed size bit-vetors

We present a normalization funtion T , whih takes a bit-vetor term t

[m℄

and a subrange

(initially [0 : m� 1℄) and normalizes it to a bit-vetor term F

1

Æ F

2

Æ : : : Æ F

n

where eah F

i

is of the form

F ::= F op F j x j 

[m℄

:

A normalization routine with a similar sope an be found in [BEFS89℄. In words, T

produes a term without ourrenes of sub�eld extration where every Æ is above every op.

The translation furthermore maps every original variable x

[m℄

to a onatenation x

1

Æ x

2

Æ

: : : Æx

n

, and maintains a deoding of the auxiliary variables into subranges deode([i

k

: j

k

℄),

suh that i

1

= 0, j

n

= m� 1, and j

k

+ 1 = i

k+1

for k = 1 : : : n� 1.
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The normalization funtion shown in Figure 7.3 is designed to satisfy the basi orre-

spondene

[[t

[n℄

℄℄� = [[T (t; [0 : n� 1℄)℄℄�

0

for every �, where �

0

oinides with � on the free variables in t and, furthermore, if T rewrites

x to x

1

Æ: : :Æx

k

Æ: : :Æx

n

, with deode(x

k

) = [i : j℄, then �

0

(x

k

) = �k 2 f0; : : : ; j�ig:�(x)(k+i).

Normalization works by reursive desent on the syntax tree of t, pushing a sub�eld

extration [i : j℄ downwards. By maintaining only one opy of eah variable, the proedure

may update a variable ourrene x to a onatenation x

1

Æ x

2

Æ x

3

globally in the ases

where only the sub�eld [3 : 5℄ needs to be extrated from x

[8℄

. The result of normalizing

x[3 : 5℄ then beomes x

2

, suh that deode(x

2

) = [3 : 5℄. Sine the variable x may our in

a di�erent subterm under the sope of a boolean operator x & y the utting of x rewrites

this to (x

1

Æx

2

Æx

3

) & y. The auxiliary proedure ut (that takes a term and a ut-point as

argument) shown in Figure 7.1 reursively uts y in the same proportions as x, and forms

the normalized onatenation x

1

& y

1

Æ x

2

& y

2

Æ x

3

& y

3

. It uses a set parents

assoiated with eah variable x to ollet the maximal boolean subterms involving x that

have already been normalized. Initially parents(x) = ; for eah variable. Subterms an

also be marked. By default (and initially) they are unmarked. To avoid luttering the

pseudoode we have suppressed variable dereferening. To normalize boolean operators, T

uses the auxiliary proedure slie shown in Figure 7.2, whih aligns the normalized terms s

and t into onatenations of equal length boolean subterms. Operator appliation an then

be distributed over eah of the equally sized portions. The auxiliary symbol � is used for

the empty onatenation.

The proper funtioning of T relies on the preondition that every time T (t

[n℄

; [i : j℄)

is invoked, then 0 � i � j < n. This ensures that whenever ut(t

[n℄

;m) is invoked then

m < n.

Example: As an example of the translation of an bit-vetor expression, onsider:

s : w

[7℄

& (y

[7℄

[0 : 3℄ Æ x

[3℄

)

t : y

[7℄

j (x

[3℄

Æ 1

[1℄

Æ w

[7℄

[0 : 2℄)

We �rst apply T (s; [0 : 6℄) whih results in utting y into y

1

Æ y

2

, where deode(y

1

) = [0 :

3℄; deode(y

2

) = [4 : 6℄. w is ut similarly. The translation of t results in further utting

y

1

into y

3

Æ y

4

, where deode(y

3

) = [0 : 2℄, in order to align with x

[3℄

Æ 1

[1℄

. The variable

w

[7℄

is also ut into w

1

Æ w

2

Æ w

3

overing the same intervals as the parts of y, namely

[0 : 2℄; [3 : 3℄; [4 : 6℄. The result of translation is then:

s : w

1

& y

3

Æ w

2

& y

4

Æ w

3

& x t : y

3

j x Æ y

4

j 1

[1℄

Æ y

2

j w

1

7.3.1 Interfaing to the Shostak ombination

To anonize a term t

[m℄

we �rst obtain F

1

Æ : : : Æ F

n

= T (t; [0 : m � 1℄). We will identify

a free variable x

k

in F

i

with x[i : j℄, where deode(x

k

) = [i : j℄. Eah F

i

is represented
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1. ut(F;m) =

2. mark(F );

3. let

4. (F

1

(x

1

); F

2

(x

2

)) = die(F;m)

5. in

6. for eah j = 1; 2; x

j

2 x

j

do

7. parents(x

j

) := parents(x

j

) [fF

j

g

8. return (F

1

(x

1

); F

2

(x

2

))

1. die(s op t;m) =

2. let

3. (s

1

; s

2

) = die(s;m);

4. (t

1

; t

2

) = die(t;m);

5. in

6. return (s

1

op t

1

; s

2

op t

2

)

7. die(

[l℄

;m) = return (

[m℄

; 

[l�m℄

)

8. die(x

1

[m℄

Æ x

2

[n℄

;m) = return (x

1

; x

2

)

9. die(x;m) =

10. let

11. [i : j℄ = deode(x)

12. x

1

; x

2

be fresh variables with ; parents

13. in

14. deode(x

1

) := [i : i+m� 1℄;

15. deode(x

2

) := [i+m : j℄;

16. x := x

1

Æ x

2

17. for eah unmarked s 2 parents(x) do

18. s := s

1

Æ s

2

where (s

1

; s

2

) = ut(s;m)

19. return (x

1

; x

2

)

Figure 7.1: Basi utting and diing



CHAPTER 7. BIT-VECTORS 120

1. apply(op ; F (x); G(y)) =

2. for eah x 2 x [ y do

3. parents(x) := parents(x) n fF;Gg [ fF (x) op G(y)g

4. return F (x) op G(y)

1. slie(op; �; �) = �

2. slie(op; F (x)

[n℄

Æ s;G(y)

[m℄

Æ t) =

3. if m = n then

4. apply(op; F (x); G(y)) Æ slie(op; s; t)

5. else if m > n then

6. (G

1

(y

1

); G

2

(y

2

)) := ut(G(y); n);

7. apply(op; F (x); G

1

(y

1

)) Æ slie(op; s;G

2

(y

2

) Æ t)

8. else

9. (F

1

(x

1

); F

2

(x

2

)) := ut(F (y);m);

10. apply(op; F

1

(x); G(y)) Æ slie(op; F

2

(x

2

) Æ s; t)

Figure 7.2: Sliing and operator appliation

T (s op t; [i : j℄) = slie(op ;T (s; [i : j℄);T (t; [i : j℄))

T (s[k : l℄; [i : j℄) = T (s; [k + i : k + j℄)

T (s

[n℄

Æ t

[m℄

; [i : j℄)= if n � i then T(t; [i� n : j � n℄) else

if n > j then T(s; [i : j℄) else T (s; [i : n� 1℄) Æ T (t; [0 : j � n℄)

T(x

[m℄

; [i : j℄) = if 0 < i then T (seond(die(x; i)); [0 : j � i℄) else

if j < m� 1 (i = 0) then �rst(die(x; j + 1)) else x

T (

[m℄

; [i : j℄) = 

[j�i+1℄

Figure 7.3: Normalization proedure T
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in a anonial form (for instane an ordered BDD) based on a total order of the variables.

A onseutive pair F

i

and F

i+1

an now be ombined whenever F

i

is equivalent to the

boolean expression obtained from F

i+1

by replaing eah variable x[k : l℄ by x[k�n : l�1℄,

where n is the length of F

i

.

To deide the satis�ability of an equality s

[n℄

= t

[n℄

and extrat a anonized substitution

� we notie that s = t is equivalent to s ^ t = 0

[n℄

. Hene the equality is satis�able if and

only if T (s ^ t; [0 : n� 1℄) = F

1

Æ : : : ÆF

m

and

V

m

i=1

:F

i

is satis�able. At this point we an

apply the tehnique used in [CMR97℄, whih extrat equalities from BDDs using equivalene

preserving transformations of the form ite(x;H;G) � (H _ G) ^ 9Æ:x = H ^ (:G _ Æ).

This produes a substitution �

0

with subranges of the original variables in the domain and

auxiliary Æ's in the range. The resulting substitution an then be extrated by generating

� as follows:

�

1

: [x 7! �

0

(x

1

) Æ : : : Æ �

0

(x

n

) j x

i

2 dom(�

0

) ^ x = x

1

Æ : : : Æ x

n

℄

�

2

: [x

k

7! x[i : j℄ j x = x

1

Æ : : : Æ x

n

; k � n; [i : j℄ = deode(x

k

); 8i : [1::n℄:x

i

62 dom(�

0

)℄

� : [x 7! �(�

2

(�

1

(x))) j x 2 dom(�

1

)℄

Example: Continuing with the translated versions of our example terms s and t we will

extrat a substitution from the equality onstraint s = t. We therefore omplete the

translation to get:

s ^ t : (w

1

& y

3

) ^ (y

3

j x) Æ (w

2

& y

4

) ^ (y

4

j 1

[1℄

) Æ (w

3

& x) ^ (y

2

j w

1

)

By negating the onatenations, the onstraints needed to extrat a substitution are

obtained. The seond onstraint is easiest as it simply imposes w

2

= y

4

= 1

[1℄

. The

onjuntion of the �rst and third onstraint is transformed:

:((w

1

& y

3

) ^ (y

3

j x)) & :((w

3

& x) ^ (y

2

j w

1

)) = 1

[3℄

$ ite(x; w

1

& y

3

& w

3

; :y

2

& :w

1

& :y

3

) = 1

[3℄

$ (x = w

1

& y

3

& w

3

) ^ ((w

1

& y

3

& w

3

) j (:y

2

& :w

1

& :y

3

)) = 1

[3℄

$ (x = w

1

& y

3

& w

3

) ^ (w

1

= y

3

& w

3

) ^ ((y

3

& w

3

) j (:y

2

& :y

3

)) = 1

[3℄

$ (x = w

1

& y

3

& w

3

) ^ (w

1

= y

3

& w

3

) ^ (y

3

= w

3

) ^ (w

3

j :y

2

) = 1

[3℄

$ (x = w

1

& y

3

& w

3

) ^ (w

1

= y

3

& w

3

) ^ (y

3

= w

3

) ^ 9Æ:y

2

= w

3

& Æ

The omposition of the extrated equalities gives an idempotent substitution:

� : [w

1

7! w

3

& Æ; x 7! w

3

& Æ; y

2

7! w

3

& Æ; y

3

7! w

3

℄

From this we generate a substitution, where V

aux

= fw

3

; Æg.

h

x 7! w

3

& Æ; w 7! (w

3

& Æ) Æ 1

[1℄

Æ w

3

; y 7! w

3

Æ 1

[1℄

Æ (w

3

& Æ)

i

:
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7.3.2 Equational running time

For input s = t

[n℄

not involving op subterms (basi bit-vetors) the presented algorithm an

be tuned to run in time:

O(m+ nlog(n));

where m is the number of Æ and sub�eld extration ourrenes in s and t. First sub�eld

extration is pushed to the leaves in time O(m), then the Æ subterms are arranged in a

balaned tree and T is applied to the balaned terms while maintaining balane in the tree.

The translated equality s = t is proessed in a style similar to slie, but the auxiliary funtion

apply has been replaed by one that builds a graph by onneting verties representing

the equated onstants or variables. If some onneted omponent ontains two di�erent

onstants there is a ontradition and the equality is unsatis�able. Otherwise an equivalene

lass representative is appointed for eah onneted omponent, hoosing a onstant if one

is present, or an arbitrary variable vertex otherwise. The extrated substitution then maps

every variable to a onatenation of equivalene lass representatives.

A anonized solution for satis�able equalities an be extrated in time O(n) (whih is

dominated by the running time of T ). An algorithm with the same funtionality is presented

in [CMR97℄. That algorithm has running time O(mlog(m) + n

2

), but o�ers some essential

shortuts that we don't address. Both proedures may still depend heavily on the parameter

n. For instane, the equality

0

[1℄

Æ 1

[1℄

Æ x

[m℄

= x

[m℄

Æ 0

[1℄

Æ 1

[1℄

(7.2)

requires (the maximal) m uts of x, and is only satis�able if m is even. The same funtion-

ality an, as [CMR97℄ notied, be ahieved in O(m+n) time, but at the expense of having

this as the minimal running time as well.

Another advantage of our algorithm is that it an be extended (with a few modi�ations)

to the ase where bit-vetors of parameterized length are either exlusively on the right or

exlusively on the left of every onatenation. This exludes ases like (7.2), whih we will

address in Setion 7.4.

7.3.3 Beyond equalities

The satis�ability problem for onstraints involving disequalities is NP-omplete in the ase

of basi bit-vetors. Membership in NP follows from the fat that we an easily hek

in polynomial time that a given instantiation of bit-vetor variables satis�es presribed

onstraints. NP-hardness follows from a redution from 3-SAT to onjuntions of disequality

onstraints: take an instane of 3-SAT

V

i

(l

i

_k

i

_m

i

) where l

i

; k

i

andm

i

are literals over the

voabulary V of boolean variables. Translate this into

V

i

(l

i

Æ k

i

Æm

i

6= 000)^

V

x2V

(x 6= x),

where for eah boolean variable x we assoiate two bit-vetor variables x

[1℄

representing x

and x

[1℄

representing the negation of x.

We therefore settle here by handling t 6= s as j(t ^ s), and onverting jt

[n℄

to t[0 :

0℄ j : : : j t[n� 1 : n� 1℄ = 1

[1℄

. The onnetives < and �, as well as operations like + and �
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an be handled similarly, though the advantages of this approah are questionable. Natu-

rally these onstraints are only analyzed when all equational onstraints have been proessed

and the resulting substitutions have been applied to the non-equational onstraints.

Veri�ation onditions of the form

f(A) 6= f(B) ^ f(A) 6= f(C) ! f(B) = f(C);

where f is an uninterpreted funtion symbol, are handled using a omplete ase analysis

on bit-vetors A, B and C (it is valid only when A, B and C are bit-vetors of length 1).

Shostak's approah to ombining equational theories misses ases like this as it is originally

designed for theories admitting in�nite models (see for example [NO79℄).

7.4 Uni�ation of basi bit-vetors

In this setion we fous on the problem of �nding uni�ers for basi bit-vetor terms s and

t. The restrition to basi bit-vetor terms allows us to develop a more eÆient proedure

and at the same time widen its sope to bit-vetors whose lengths are parameterized.

7.4.1 ext-terms

To more ompatly represent solutions to equations like (7.2) we introdue a new bit-

vetor term onstrut ext(t

[n℄

;m) (the extension of t up to length m), whih is well-formed

whenever m > 0. The meaning of ext is given by the equation

[[ext(t

[n℄

;m)℄℄� = [[t Æ :: Æ t

| {z }

k

Æt[0 : l�1℄℄℄� where (k+1)n � m > kn and l = m�kn

Thus, ext(t

[n℄

;m) repeats t up to the length m. To map ext -terms to terms in the base

language we use the unfolding funtion unf

unf (t

[n℄

;m) = t Æ :: Æ t

| {z }

k

ÆT (t; [0 : l�1℄) where (k+1)n � m > kn and l = m�kn

A solution to equation (7.2) an now be given ompatly whenm is even as x = ext(0

[1℄

Æ

1

[1℄

;m).

7.4.2 Uni�ation with ext-terms

To deide the satis�ability of equalities s = t of basi bit-vetor terms extended with ext -

subterms we will develop a Martelli-Montanari style uni�ation algorithm [MM82℄ whih

takes the singleton set E

0

: fs = tg as input and works by transforming E

0

to intermediary

sets E

1

; E

2

; : : : by equivalene preserving transformations whih simplify, delete or propagate

equalities. It ultimately produes either FAIL, when s = t is unsatis�able, or a substitution

E

�nal

: fx

1

= t

1

; : : : ; x

n

= t

n

g.
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Sine our proedure uses T to deompose terms, every auxiliary variable in E

�nal

fur-

thermore orresponds to a unique disjoint subrange of one of the original variables. The

obviously satis�able onjuntion of equalities is equivalent to the original equality.

A anonizer an be obtained by �rst eliminating the ext -terms by using unfold and then

using the anonizer of Setion 7.3.1.

Example: Antiipating the algorithm we will present, onsider the following equality as-

sertion:

y

[3℄

Æ x

[16℄

Æ x

[16℄

Æ z

[2℄

= x

[16℄

Æ w

[4℄

Æ 0

[1℄

Æ x

[16℄

:

In proessing the implied equality y

[3℄

Æx

[16℄

= x

[16℄

Æ : : : we obtain x

[16℄

= ext(y

[3℄

; 16) as

a solution for x

[16℄

. Continuing with the remaining equalities we get the intermediate

set of equations:

x

[16℄

= ext(y

[3℄

; 16); y

[3℄

[1 : 2℄ Æ y

[3℄

[0 : 0℄ = w

[4℄

[0 : 2℄;

z

[2℄

= w

[4℄

[3 : 3℄ Æ 0

[1℄

; ext(w

[4℄

[3 : 3℄ Æ 0

[1℄

; 16) = x

[16℄

:

The two equations involving x are ombined to produe the implied onstraint

ext(y

[3℄

; 16) = ext(w

[4℄

[3 : 3℄ Æ 0

[1℄

; 16) :

This equality is evidently equivalent to its unf -unfolding, but as we will later formulated

in a general setting, we an do better and only need to assert:

y

[3℄

Æ y

[3℄

[0 : 0℄ = w

[4℄

[3 : 3℄ Æ 0

[1℄

Æ w

[4℄

[3 : 3℄ Æ 0

[1℄

:

In fat this implies y[0 : 0℄ = y[1 : 1℄ = y[2 : 2℄ = w[3 : 3℄ = 0

[1℄

. After propagating the

resulting onstraints we obtain the �nal result:

w

[4℄

= 0

[4℄

; x

[16℄

= 0

[16℄

; y

[3℄

= 0

[3℄

; z

[2℄

= 0

[2℄

:

While the full uni�ation algorithm is given in Figure 7.4 we highlight and explain the

more deliate ases below.

x

[n℄

Æ s = t

[m℄

Æ y

[l℄

Æ u whenm+l > n > m, x 6= y. The situation is desribed in the piture

below, whih suggests that the equality is equivalent to x = t Æ y

1

and s = y

2

Æ u for

suitable splits y

1

and y

2

of y. We use T to ut y into the appropriate piees. This

replaes y everywhere in E by y

1

Æ y

2

.

y1 y2

x

t y u

s
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x

[n℄

Æ s = t

[m℄

Æ x

[n℄

Æ u when n > m. For example we are given the on�guration:

x

u

s

t x

Thus, the original equality onstraint is equivalent to x = t Æ t Æ t Æ t[0 : 0℄ and

t[1 : 2℄ Æ t[0 : 0℄ Æ u = s. To more ompatly desribe the �rst equality we use the

ext -onstrut to obtain x = ext(t; 10).

ext(s

[m℄

; l) = ext(t

[n℄

; l) The e�et of replaing x by s in the variable elimination step may

introdue equality onstraints between ext -terms. Although the equality onstraint is

by de�nition equivalent to unf (s

[m℄

; l) = unf (t

[n℄

; l), we an be even more eonomial

in the unfolding as the following lemma suggests.

Lemma 7.4.1 Assume l � n+m� gd(m;n) and let g = gd(m;n) then

ext(s

[m℄

; l) = ext(t

[n℄

; l) $ unf (s;m+ n� g) = unf (t;m+ n� g)

Proof:

First divide s and t into slies eah of size g and let p =

m

g

and q =

n

g

. Assume

without loss of generality that p < q. With s is divided into p piees and t into

q piees, unf (s;m+ n� g) = unf (t;m+ n� g) now reates p+ q � 1 equalities

between slies from s and slies from t. The assertion is no stronger than the

original equality as the assumptions of the lemma guarantee that m+n� g < l.

The bipartite graph assoiated with these slies and equalities has p+ q verties

and p+ q � 1 edges.

If the graph had a yle of length 2k, then k < p as only the p � 1 �rst

t slies are repeated. Sine the hypothetial yle starts and ends at the same

position in s and two onseutive verties of the yle are in distane q mod p

of eahother it would also imply that p divides k � (q mod p). But then sine p

and q are relatively prime 1 = gd(p; q) = gd(p; q mod p) and so p divides k

whih is impossible.

Hene, the bipartite graph is a spanning tree and all s slies are equated

with all t slies. It is therefore suÆient to equate the unfoldings of s and t up

to m+ n� g as the e�et of unfolding is unhanged from this point on.

Thus, we will ensure that our algorithm maintains the invariant 2n � l for every

ext(t

[n℄

; l) term, and the equality onstraint ext(s

[m℄

; l) = ext(t

[n℄

; l) is replaed by

unf (s;m+ n� g) = unf (t;m+ n� g).

Other simpler ases are summarized in Figure 7.4. It omits ases that an be obtained using

symmetry of equality.
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Construtor elimination

R1 fs

[m℄

Æ u = t

[m℄

Æ vg [ E ! fs = t; u = vg [ E

R2 f

[m℄

Æ s = 

0

[n℄

Æ tg [ E ! FAIL where  6= 

0

R3 f

[m℄

Æ s = 

[n℄

Æ tg [ E ! fs = 

[n�m℄

Æ tg [ E where n > m

R4 fx

[n℄

Æ s = t

[m℄

Æ y

[l℄

Æ ug [ E ! fx = t Æ y

1

; s = y

2

Æ ug [ E

where m+ l > n > m > 0, x 6= y,

y

1

= T (y; [0 : m� n� 1℄), y

2

= T (y; [m� n : l � 1℄),

R5 fx

[n℄

Æ s = t

[m℄

Æ x

[n℄

Æ ug [ E ! fs = wrap(t; n) Æ u; x = mk-ext(t; n)g [ E

where n > m > 0

R6 fx

[n℄

Æ s = t

[m℄

Æ 

[l℄

Æ ug [ E ! fx = t Æ 

[m�n℄

; s = 

[l+n�m℄

Æ ug [ E

where m+ l > n > m � 0

R7 fs

[m℄

Æ t = ext(u

[l℄

; n) Æ vg [ E !

(

s

[m℄

= mk-ext(u;m);

t = mk-ext(wrap(u;m); n�m) Æ v

)

[ E

where m < n

R8 fext(s

[l

1

℄

;m) = ext(t

[l

2

℄

;m)g [ E ! funf (s; l) = unf (t; l)g [ E

where l = l

1

+ l

2

� gd(l

1

; l

2

)

Equality and variable elimination

R9 ft = tg [ E ! E

R10 fx = sg [ E ! fx = sg [ E [x 7! s℄

Figure 7.4: Rules for uni�ation with ext -terms

The auxiliary funtion wrap splits the term t at position k and swaps the two piees.

The funtion mk-ext produes either an ext -term when the length of t is suÆiently small

or unfolds t. It ensures that every ext(t

[n℄

;m) term generated by the algorithm satis�es

2n � m. These are de�ned more preisely below:

wrap(t

[n℄

;m) = let k = m mod n in

if k = 0 then t else T (t; [k : n� 1℄) Æ T (t; [0 : k � 1℄)

mk-ext(t

[n℄

;m) = if 2n � m then ext(t;m) else unf (t;m)

The uni�ation algorithm terminates sine the variable elimination step removes du-

pliate onstraints involving x and every other step produes equalities of smaller size (in

terms of the number of bitwise omparisons) than the one eliminated. For instane, in the

R8 rule we rely on m � 2 �max(l

1

; l

2

) > l.

7.4.3 Non�xed size bit-vetors

The most prominent feature of the uni�ation algorithm in Figure 7.4 is that it an be

used to deide bit-vetor equality onstraints s = t, where lengths and projetions are not
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restrited to �xed naturals, but are of the form aN + b, where a and b are integers and N

is a parameter (where we assume without loss of generality that N > 0). This allows us

to apply the algorithm in the Shostak ombination for deiding veri�ation onditions with

non-�xed bit-vetor equalities. The uni�ation problem for non-�xed bit-vetors is also

reminisent of the word uni�ation problem, see Setion 8.2.2. The main di�erene with

word uni�ation is that variables ranging over words in that problem do not have assoiated

size onstraints whih bit-vetors have. By performing omparisons and arithmeti on

these lengths symbolially and allowing admissible answers to be paired with aumulated

onstraints (as explained later), we an deal with the following example:

Example: By performing the uni�ation of

fw

[2℄

Æ 0

[1℄

Æ x

[N+6℄

Æ y

[N+7℄

= x

[N+6℄

Æ 1

[1℄

Æ z

[3℄

Æ x

[N+6℄

g (7.3)

we obtain as an intermediate step

8

>

<

>

:

x

[N+6℄

= ext(w

[2℄

Æ 0

[1℄

; N + 6);

y

[N+7℄

= z

[3℄

[2 : 2℄ Æ x

[N+6℄

1

[1℄

Æ z

[3℄

[0 : 1℄ = wrap(w

[2℄

Æ 0

[1℄

; N + 6)

9

>

=

>

;

and �nally two ases:

x

[N+6℄

= ext(1

[1℄

Æ �

[1℄

Æ 0

[1℄

; N + 6);

y

[N+7℄

= �

[1℄

Æ ext(1

[1℄

Æ �

[1℄

Æ 0

[1℄

; N + 6);

z

[3℄

= �

[1℄

Æ 0

[1℄

Æ �

[1℄

;

w

[2℄

= 1

[1℄

Æ �

[1℄

if N � 0 (mod 3)

x

[N+6℄

= ext(�

[1℄

Æ 1

[1℄

Æ 0

[1℄

; N + 6);

y

[N+7℄

= �

[1℄

Æ ext(�

[1℄

Æ 1

[1℄

Æ 0

[1℄

; N + 6);

z

[3℄

= 0

[1℄

Æ �

[1℄

Æ �

[1℄

;

w

[2℄

= �

[1℄

Æ 1

[1℄

if N � 1 (mod 3)

WhenN � 0 (mod 3), the evaluation of the wrap funtion simpli�es the seond equation

of the intermediate result to 1

[1℄

Æ z

[3℄

[0 : 1℄ = w

[2℄

Æ 0

[1℄

. The ase that orresponds to

N � 2 (mod 3) requires 1

[1℄

Æ z

[3℄

[0 : 1℄ = 0

[1℄

Æ w

[2℄

whih results in an inonsisteny.

The �

[1℄

,�

[1℄

are auxiliary variables that are introdued to represent unknown segments

of the bit-vetor variables.

Thus, the result produed by the uni�ation algorithm will now be a set of onstraints,

eah of the form

(ax+ b > ; [N 7! ax+ b℄ Æ [x

i

7! t

i

j i = 1; : : : ; n℄)
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where x is a fresh variable and the �rst onstraint is passed on to deision proedures for

linear arithmeti, and the seond onstraint is a substitution. We are thus faed with a

�nitary as opposed to unitary uni�ation problem (see [BS93℄ for a survey on uni�ation

theory).

The ruial observation that allows lifting the algorithm to parameterized bit-vetor

expressions is that all operations and tests on the lengths and projetions are of the form

m+ n; m� n; m > n; m � n; m = n; m mod n:

Sine terms of the form aN + b are losed under addition and subtration, the �rst two

operations an be performed diretly in a symboli way.

The omparison m > n is rewritten to m�n > 0, m � n to m�n+1 > 0, and n = m to

n�m+1 > 0 ^ m�n+1 > 0. This redues the evaluation of omparisons to aN + b > 0.

Sine

aN + b > 0 $ (a = 0 ^ b > 0 _ a > 0) i�

(a > 0 > b _ a < 0 < b) ! N � jbj div jaj (7.4)

tests an be evaluated using a = 0^b > 0 _ a > 0 and aumulating auxiliary lower bounds

on N for a separate treatment. Our algorithm then produes answers for all N greater than

the largest aumulated lower bound. For values of N smaller than the aumulated bounds

we instantiate N and run the �xed size version.

The auxiliary funtion wrap requires us to ompute m mod n. To simplify this ase our

algorithm will maintain the invariant that m mod n is only invoked when n is a onstant

b

0

, whereas m may be of the form N + b. The ase N � b

0

� b auses ase-splitting on eah

of the possible solutions k = 0; : : : ; b

0

� 1.

We ould represent eah ase in Presburger arithmeti as 9x � 0 : xb

0

= N + b� k and

use a Presburger deision proedure [Coo72℄ to hek satis�ability of onjuntions of suh

onstraints. However, in order to manage these onstraints more eÆiently we an use the

Chinese Remainder Theorem (see [NZM91℄). If �

i

p

�

i

i

is a prime fatorization of b

0

(with

p

1

; p

2

; : : : the sequene of all primes), then

N + b � k (mod b

0

) i� N + b � k (mod p

�

i

i

) for every i.

Let D(p; �; l) be the prediate that N � l (mod p

�

) is true. Let C

mod

=

V

i

D(p

i

; �

i

; b

i

)

be the onjuntion of divisibility onstraints imposed on the urrent system. Only one

prediate is needed for eah p

i

, sine:

D(p; �; l

0

) ^D(p; �; l) ^ � � � i� D(p; �; l

0

) ^ l

0

� l (mod p

�

) : (7.5)

In order to split on the ase N + b � k (mod b

0

) for di�erent values of k = 0; : : : ; (b

0

� 1) we

an form the produt of the ase splits on N + b � k

i

(mod p

�

i

i

) for k

i

= 0; : : : ; (p

�

i

i

� 1)

(the produt is over i = 1; 2; : : :). The situation is not as bad as it seems, sine we an use
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the existing C

mod

to merge the new onstraints in an optimal way:

C

0

mod

=

^

i

P (i) where P (i) =

8

>

>

<

>

>

:

p

�

i

��

i

i

�1

_

j=0

D(p

i

; �

i

; b

i

+ jp

�

i

i

) if �

i

� �

i

D(p

i

; �

i

; b

i

) if �

i

< �

i

The prediate P (i) represents the enumeration of valid ongruenes modulo a power of p

i

.

Statement (7.5) suggests the form of the enumeration for eah ase in the de�nition of P (i).

Expressing C

0

mod

in disjuntive normal form

W

i

C

i

mod

the onstraints for the di�erent ases

are obtained. The value of k for a partiular ase of C

mod

an be reonstruted using the

ongruene

k �

 

X

i

n

i

b

i

!

� b (mod b

0

)

where n

i

= z

i

z

i

, z

i

= �

j 6=i

p

�

i

j

, and z

i

satis�es z

i

z

i

� 1 (mod p

�

i

i

) (it exists sine gd(p

�

i

i

; z

i

) =

1).

Given expressions s and t our algorithm now engages in the following steps:

1. Apply T to both s and t, i.e., let (s; t) := (T (s; [0 : m � 1℄);T (t; [0 : m � 1℄)).

This generates bit-vetor expressions without sub�eld extration and an assignment

to eah original variable x to a onatenation x

1

Æ x

2

Æ : : : Æ x

n

of distint variables,

where deode(x

i

) over disjoint intervals of x. Using equivalene (7.4) the tests in T

are evaluated unambiguously, and possibly generating a new lower bound on N . The

ases where N is smaller than this bound are proessed later.

2. Every variable x

[aN+b℄

remaining in s or t, where a > 0, is replaed by a onatenation

of a fresh variables: x

(1)

[N ℄

Æ x

(2)

[N ℄

Æ : : : Æ x

(a)

[N+b℄

. Constants are ut in a similar way

1

. If b

is negative the lower bound 1� b on N is added.

Every variable ourring in s and t now has length N + k or k, where k is an integer.

3. The algorithm in Figure 7.4 is invoked on the equality fs = tg. Eah omparison au-

mulates a lower bound on N and eah invoation of mod may ause a multi-way ase

split while aumulating modulus onstraints on N . The uni�ation algorithm there-

fore generates onstraints of the form (E

1

; C

1

); : : : ; (E

n

; C

n

), where the E

i

are equalities

and C

i

is a onjuntion of N � k and D(p

i

; �

i

; a

i

) onstraints.

We need to ensure that every step is well de�ned: in partiular that unf (t;m) and, as

we assumed, n mod m are only invoked when m is a onstant. This is a onsequene

of the following invariant:

Invariant 7.4.2 For every ourrene of ext(t

[aN+b℄

; n): a = 0 ^ 2b � n.

1

This step is not stritly neessary, but simpli�es the further presentation of the algorithm.
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This holds as ext terms are only generated when mk-ext(t

[aN+b℄

; a

0

N + b

0

) is invoked

and 2(aN + b) � a

0

N + b

0

. Sine both a and a

0

are either 0 or 1, this inequality an

only hold if a = 0 or N is bounded above by (b

0

� 2b) div (2a� a

0

). The ases where

N is bounded above by a onstant are treated separately.

4. The solved form an now be extrated. For eah (E ; C) generated from the previous

step let C be of the form N � k^

V

l

i=1

D(p

i

; �

i

; a

i

). The Chinese Remainder Theorem

tells us how to �nd n

i

suh that the onstraints an be rewritten to the equivalent

form

N � k ^ 9x:N = Ax+B where A =

Q

l

i=1

p

�

i

i

B =

�

P

l

i=1

n

i

a

i

�

mod A

Sine we extrat the Shostak substitution � from E as in the �xed-length ase the

ombined onstraint returned for this ase is

(Ax+B � k; [N 7! Ax+B℄ Æ �):

For eah k less than the least lower bound aumulated above we instantiate N by

k and extrat �

k

by running the �xed-size version of the algorithm (that is, running

fs = tg[N 7! k℄). For these ases the returned onstraints have the form

(true; [N 7! k℄ Æ �

k

):

The algorithm now onludes by returning the entire set of the onstraints extrated

above.

As we have argued above we now have

Theorem 7.4.3 (Corretness) When the non-�xed uni�ation algorithm terminates on the

input onstraint s = t with a set of onstraints f('

i

(x); �

i

) j i = 0; : : : ng then s = t $

n

_

i=0

9x; V

aux

:'

i

(x) ^ �

i

:

Finally we must ensure that we an make the uni�ation algorithm modi�ed for param-

eterized lengths terminate. To this end we apply the transformation rules from Figure 7.4

by preferring the variable and equality elimination rules to the other rules.

We will proeed to prove the termination by indution on the number of distint non-

�xed variables k in E that partiipate in some equality where rule R1-R8 an be applied.

The base ase (k = 0) operates only on �xed-size variables, and so it terminates.

Whenever a variable x has been isolated using one of the rules R4-R6, it is eliminated

from the rest of E . Indeed it is eliminated as x annot be a proper subterm of t in the equality

onstraint x = t, sine the length of t is the sum of the lengths of its variable and onstant

subterms, whih equals the length of x. Sine rules R1-R8 produe equalities between

smaller bit-vetors we annot repeatedly apply these rules without eventually eliminating

a non-�xed size variable. Rule R4 may split a non-�xed length variable y into two parts
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1. equation (7.3) from page 127 satis�able 0.06 s

2. 0

[1℄

Æ 1

[1℄

Æ 0

[1℄

Æ x

[N+7℄

Æ 1

[1℄

Æ 0

[1℄

Æ 1

[1℄

Æ y

[N+1℄

unsatis�able 0.06 s

= x

[N+7℄

Æ x

[N+7℄

3. x

[N+4℄

Æ 0

[1℄

Æ 1

[1℄

Æ 0

[1℄

Æ y

[N+9℄

unsatis�able 0.09 s

= y

[N+9℄

Æ 1

[1℄

Æ 0

[1℄

Æ 1

[1℄

Æ x

[N+4℄

4. (7.3) ! z

[3℄

[0 : 0℄ = 0

[1℄

_ z

[3℄

[1 : 1℄ = 0

[1℄

valid 0.07 s

Table 7.1: Non-�xed bit-vetors examples

y

1

and y

2

, but only one of these parts will have non-�xed length, so the overall number of

non-�xed length variables is onstant.

We therefore have

Theorem 7.4.4 (Termination) The non-�xed uni�ation algorithm terminates.

A redution from the problem of simultaneous inongruenes [SM73℄ an establish that

the uni�ation problem for non-�xed bit-vetors is NP-hard. As it is formulated in Garey

and Johnson [GJ79℄: given a olletion f(a

1

; b

1

); : : : ; (a

n

; b

n

)g of ordered pairs of positive

integers with a

i

� b

i

for 1 � i � n the question whether there is an integer N suh that

for q � i � n, N 6� a

i

(mod b

i

) is NP-omplete. This problem is redued to basi bit-

vetor uni�ation using auxiliary bit-vetor variables x

i

of length 2b

i

� 1 and y

i

of length

2N � 2a

i

+ 2b

i

� 1 for 1 � i � n. (the fator 2 is used to guarantee that all lengths are

positive). Now N exists if and only if the equations

ext(x

i

Æ 1

[1℄

; 2N � 2a

i

+ 2b

i

) = y

i

Æ 0

[1℄

are satis�able (an be uni�ed). Naturally the n equalities an be ombined to form one

equality by onatenating all left-hand sides and all right-hand sides. On the other hand,

a simple analysis of the termination argument an establish that a satisfying uni�er an be

veri�ed in time polynomial in the onstant parameter sizes and number of subterms.

The uni�ation algorithm �nally needs to be supplied also with a anonizer that works

on ext -terms of non-�xed length to enable an integration with other deision proedures.

While simple unfoldings annot be performed this time our implementation normalizes terms

into a onatenation of variables, onstants and ext-terms whose arguments are �xed size

terms in anonial form. The ourrenes of ext in the resulting expression are then shifted

as muh as possible to the left. This step annot be performed unambiguously without

asserting ongruene onstraints on the parameter and hene also leads to ase splits.

Table 7.1 gives a list of examples that were presented to our prototype implementation.

The tests were made on a 200MHz Sun Ultra II.
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7.5 Problems

Problem 7.5.1 Integrate arithmetial reasoning \eÆiently" with bit-wise boolean opera-

tions.

Problem 7.5.2 Extend non-�xed solving to bit-wise boolean operations.

Problem 7.5.3 Solve arithmetial onstraints over the p-adis instead of over �eld of �xed

size (say 2

32

).

Problem 7.5.4 Find a terminating solver for non-�xed bit-vetor onstraints for bit-vetors

whose lengths are given in quanti�er-free Presburger (integer linear) arithmeti.

7.6 Summary

This hapter presented two algorithms: one algorithm handles boolean operations on �xed-

size bit-vetors, the other handles equational onstraints in the absene of boolean opera-

tions on parameterized bit-vetors. A ompleted piture would ombine the algorithms to

handle boolean operations on parameterized bit-vetors.



Chapter 8

Queues

This hapter o�ers a solver-oriented deision proedure for queues. We �rst solve equational

onstraints. In analogy with reursive data-types we also develop deision methods for queue

pre�x, suÆx, and sub-queue relations. We �rst motivate the deision proedures for queues

with a small example.

8.1 Veri�ation with queues

A generi situation for network routers and ontrollers whose input is a sequene of bits,

is to ongest the bit sequene in some way for a onsumer. Take for instane the situation

where a random sequene of bits has to be ordered in equal valued hunks of length N > 0

to the onsumer. After the router has emitted N bits of the same value it is required to emit

the other value, but it may only emit bits that have been reeived. Although seemingly

arti�ial, this very senario has been used to model a traÆ ontroller along the Californian

oast in [Bj�98a℄.

It should be noted that linear time temporal logi provides a onvenient formalism for

apturing more preise requirements of the router. In this hapter we will only onentrate

on how queues are used to model the protool and how deision proedures are used to au-

tomatially establish properties for queues. We will not disuss how temporal requirements

may be aptured for this example, but proeed to present a sample implementation diretly.

Figure 8.1 suggests an implementation of suh a router. It uses a stak to keep trak of

bits that annot be sent immediately, a ounter i to maintain how many bits of the same

value have been sent, and a ag turn to reord whose turn it is. The use of a stak allows

to adapt the implementation to the ase where the bits are replaed by reords where only

one of the �elds ontains the bits used in this simpli�ation. The asynhronous hannels

produer and onsumer are modeled using queues, suh that the statement

onsumer (= v

133
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onst N : [1::℄

in produer : hannel [1::℄ of boolean where produer = �

out onsumer : hannel [1::℄ of boolean where onsumer = �

loal stak : boolean list where stak = �

loal turn : boolean where :turn

loal i : integer where i = 0

proedure emit(v) =

2

6

4

onsumer (= v;

i := if i+ 1 � N then 0 else i+ 1;

turn := if i = 0 then :turn else turn

3

7

5

Produer ::

"

loop forever do

h

p

1

: produer (= false or p

2

: produer (= true

i

#

jj

Router ::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

loal x : boolean

loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: if head(stak) = turn ^ � 6= stak

then

"

`

1

: emit(head(stak))

`

2

: stak := tail(stak)

#

else

2

6

6

6

4

`

3

: produer =) x;

`

4

: if x = turn

then `

5

: emit(x )

else `

6

: stak := ons(x ; stak)

3

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 8.1: Program Router
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has as e�et to put v in the end of onsumer. The statement

produer =) x

an be exeuted when produer is non-empty, and has the e�et of dequeueing the �rst

element from produer and updating x to it.

It is a property of the implementation that the stak variable ontains only bits of the

same value. We an hek this by postulating the invariant:

(:head(stak)) 62 stak (8.1)

The invariant is not indutive, but it is possible to use the automatially generated loal

invariants:

at `

3;4

^ (head(stak) $ turn)) stak = � (8.2)

at `

5;6

) (x$ turn) ^ ((head(stak) $ turn)! stak = �) (8.3)

We an use rule inv from Figure 1.2 and the deision proedures presented later in this

hapter to automatially prove the property.

Suppose now that we wish to express that the bits in the onsumer do not hange value

within distane N . Pitorially, if x and y are the same in onsumer, and the distane

between x and y does not exeed N , then any z between x and y must have the same value.

ZX Y

< N

consumer

Using a sub-queue relation symbol �, operations head, and last, whih pik �rst and last

elements in a queue, and a length measure j j we an express this onsisely using the

invariant:

(8s)

0

B

�

0

B

�

s � onsumer

^ 1 � jsj � N

^ head(s) = last(s)

1

C

A

) (:head(s)) 62 s

1

C

A

(8.4)

The invariant is unfortunately not indutive, but an be established using the auxiliary

invariants below. The prediate suÆx states that s is a suÆx of the queue onsumer.

0 (0 � i < N) (8.5)
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i > 0 ) last(onsumer) = turn (8.6)

i = 0 ^ onsumer 6= � ) last(onsumer) 6= turn (8.7)

(8s)

 

�

suÆx (s; onsumer) ^ 1 � jsj � N

�

) if jsj � i then :turn 62 s else (i = 0 ! turn 62 s)

!

(8.8)

The good news is on the other hand that veri�ation of both the auxiliary invariants and

the main spei�ation proeeds pratially automatially thanks to the deision proedures

for queues that we develop in the following. The veri�ation ondition below is one of the

proof-obligations that is established in 22 seonds using the deision proedures.

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

(0 � i ^ i < N)

^ (0 < i! last(onsumer ) = turn)

^

 

i = 0 ^ :(onsumer = �)!

:(last(onsumer ) = turn)

!

^

0

B

B

B

B

B

B

B

�

suÆx(first(s); onsumer )

^ 1 � jfirst(s)j ^ jfirst(s)j � N

!

if jfirst(s)j � i

then (:turn) 62 first(s)

else (i = 0! turn 62 first(s))

1

C

C

C

C

C

C

C

A

^

 

s � onsumer ^ 1 � jsj ^ jsj � N !

head(s) = last(s)! (:head(s)) 62 s

!

^ head(s) = last(s)

^ s � revons(onsumer ; turn)

^ 1 � jsj ^ jsj � N

^

0

B

B

B

�

first(s) � onsumer ^

1 � jfirst(s)j ^ jfirst(s)j � N !

head(first(s)) = last(first(s))!

(:head(first(s))) 62 first(s)

1

C

C

C

A

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

! (:head(s)) 62 s

Finally, we an verify that elements in distane N +1 in the onsumer are always di�erent

using the auxiliary invariant (8.9) in establishing (8.10).

(8s) (suÆx (s; onsumer) ^ i < jsj � N ) head(s) 6= last(s)) (8.9)

(8s) (s � onsumer ^ jsj = N + 1 ) head(s) 6= last(s)) (8.10)
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8.2 A theory of queues

We use the sort S queue to refer to queues over the base sort S, and admit the following

operations and relations:

� : S queue;

head : S queue! S;

tail : S queue! S queue;

last : S queue! S;

first : S queue! S queue;

revons : S queue� S ! S queue;

ons : S � S queue ! S queue

:

=: S queue� S queue ! B

pre�x : S queue� S queue ! B

suÆx : S queue� S queue ! B

�: S queue� S queue ! B

2: S queue� S queue ! B
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head

first last

tail

revcons

cons

Figure 8.2: Queue onstru-

tors and seletors

The empty queue is written �, and the usual list oper-

ations, head, tail and ons are supplemented with dual

operations last, first, and revons. The e�et of the

onstrutors and seletors is summarized in Figure 8.2.

Thus, if x is not �, and a = head(x), y = tail(x),

then x = ons(a; y), and symmetrially for the operators

revons, first, and last. Figure 8.3 summarizes the �rst-

order theory of the queue seletors and onstrutors. The

operations are supplemented by the equality relations, as

well as the binary relations pre�x, suÆx, �, and 2. We

write pre�x(x; y) if x is a pre�x of y, suÆx(x; y) if x is a

suÆx of y, and x � y if x is a subsequene of y. Taking Æ

as the onatenation of sequenes we an de�ne these relations using

pre�x(x; y)

def

= 9z : x Æ z = y suÆx(x; y)

def

= 9z : z Æ x = y

x � y

def

= 9z; u : z Æ x Æ u = y a 2 y

def

= [a℄ � y

where [a℄ is shorthand for ons(a; �).

The deision proedures that we develop here will for instane be able to establish

validity of formulas suh as

q 6= � ! q

:

= ons(head(q); tail(q)) (8.11)

q 6= � ! head(revons(q; a))

:

= head(q) (8.12)

a 62 q ^ br � q ! b 6= a (8.13)

8.2.1 First-order deision proedures

In the full �rst-order theory of queues we an eliminate seletors ompletely by introduing

four fresh onstants: a

head

, q

tail

, a

last

, q

first

, and replaing subformulas with seletors
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For all a; b : S; x; y : S queue

seletors first(revons(x; a)) = x last(revons(x; a)) = a

head(ons(a; x)) = a tail(ons(a; x)) = x

onstrutors revons(x; a) = revons(y; b) ! x = y ^ a = b

ons(a; x) = ons(b; y) ! a = b ^ x = y

exhange revons(�; a) = ons(a; �)

revons(ons(a; x); b) = ons(a; revons(x; b))

ayliity revons(x; a) 6= � ons(a; x) 6= �

x 6= revons(::revons(ons(a

1

; ::; ons(a

n

; x)::); b

1

); ::; b

m

); n+m > 0

domain losure x = � _ 9a : S; y : S queue : x = ons(a; y)

Figure 8.3: Equational axioms for queue operations

using transformations of the form:

'[head(t)℄ 7! t = � ^ '[a

head

℄ _ 9a; x : t = ons(a; x) ^ '[a℄ (8.14)

When the base sort S is �nite one an use wS1S (weak S1S, where set variables range over

�nite sets) to enode queue operations revons, ons, �, pre�x, and suÆx [KMS98℄. A

diret enoding automatially gives the ability to quantify over queues, as well as aessing

elements from queues by their index. On the other hand, onatenation of queues annot

be enoded when these are non-lossy and of unbounded length as the results reviewed in

the next Setion imply. A diret enoding of queue onstraints into wS1S also does not

support subsequene relations.

8.2.2 Queues as a sub-theory of onatenation

Instead of taking ons and revons as primitive queue onstrutors one ould alternatively

base a theory of queues on onatenation and formation of singleton queues, and de�ne

ons and revons as derived operations: ons(a; q) = [a℄ Æ q, revons(q; a) = q Æ [a℄. Solv-

ing equalities over sequenes with onatenation is known as the word uni�ation problem.

Speial ases of the word uni�ation problem were addressed in [Hme76℄. Makanin [Mak77℄

gives an algorithm for word uni�ation showing that word uni�ation problem is deidable.

Ja�ar [Jaf90℄ provides a modi�ation of Makanin's algorithm for generating all minimial

word uni�ers. He notes that in�nitely many minimal uni�ers may exist. An example is the

word equation ax = xa, whih has uni�ers a

�

. This equation is also a legal onstraint be-

tween queues, and we show how to represent the in�nitely many uni�ers with one onstraint.
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Our solver based approah in the integration of deision proedures is preisely limited to

theories where the set of possibly implied equalities an be represented by a �nite quotient.

gives a more streamlined and bug-free presentation with generalizations. Although 3-SAT

an be immediately redued to word uni�ation with a one-harater alphabet, showing

that word uni�ation is NP-hard, the general word uni�ation problem has aused more

pains to implement eÆiently. Makanin's algorithm requires at most doubly exponential

time [Gut98℄. B�uhi and Senger [BS86℄ show that the word disuni�ation problem is re-

duible to the word uni�ation problem. I.e., given a disequation v 6= w we an e�etively

(and very simply) onstrut words v

0

and w

0

suh that

(9 � : v 6= w) � (9 � : v

0

= w

0

)

The full �rst-order equational theory of words is unfortunately undeidable as shown by

Quine [Qui46℄. The paper gives a number of onstrutions in this end. The �rst and simplest

uses onatenation for addition. Multipliation is enoded using a string-based enoding of

�nite relations. To enode that x� y = z he enodes a �nite relation of pairs onsisting of

�nite relations. To enode that x� y = z he enodes a �nite relation of pairs onsisting of

( a

|{z}

x

; a

|{z}

y

); ( a

|{z}

x�1

; a

|{z}

2y

); : : : ; ( a

|{z}

1

; a

|{z}

x�y

)

The entire �nite binary relation an be enoded in a single string w by segments of the form

bzbubzbvbzb where (u; v) is a pair in the relation and z is a string of a's longer than any

of the u's and v's. Intuitively, this an be ahieved by requireing the existene of substring

bzbubzbvbzb in w, suh that any substring of pure a's in w is a substring of z. Notie that

the enoding uses onatentation of strings in an essential way.

We do not at present know of a way to redue negated subsequene relations to the

existential fragment of word equations.

8.3 A deision proedure for queues

To present the ground deision proedure for queues we use onatenation as primitive

onstrutor rather than ons and revons. Queues are then simply sequenes with a at

most one non-atomi omponent. In fat all transformations by the solver are sound for

sequenes that ontain more than one non-atomi omponent.

We write queue terms suintly as strings with the following onventions: a, b range

over individual atoms; A, B range over possibly empty strings of atoms; x, y range over

queue variables; v, w range over arbitrary queues (i.e., are of the form A or AxB); let

A = a

1

a

2

: : : a

k

then A[i : j℄ denotes the sequene a

l

a

l+1

: : : a

u

, when l = max(1; i) �

min(k; j) = u, and when max(1; i) > min(k; j), then A[i : j℄ = �. If v is a queue, then jvj is

the length of v. To reverse a sequene of atoms A we write (A)

R

.
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8.3.1 Seletors

The anonizer � is used to handle seletors. Given a onstraint over queue expressions

the anonizer � tries where possible to evaluate seletors when applied to queues. If a

seletor is applied to a term where it is not possible to immediately evaluate the seletor we

aumulate in C disjuntions of new onstraints for later splitting. In the end all seletors

have been eliminated or are applied only to terms of the form:

head(�); tail(�); first(�); last(�) :

The rest of the solver treats terms whose main onnetive is a seletor as uninterpreted.

The e�et of anonization on seletors is summarized in Figure 8.4, where the immediate

arguments of the seletors are assumed anonized.

�(C; head([a℄ Æ q

2

)) = (C; a)

�(C; head(q

1

Æ [a℄ Æ q

2

)) = (C [ fq

1

:

= � _ q

1

:

= [b℄ Æ yg; head(q

1

Æ [a℄))

�(C; head(q

1

)) = (C [ fq

1

:

= � _ q

1

:

= [b℄ Æ yg; head(q

1

))

�(C; head(�)) = (C; head(�))

�(C; tail([a℄ Æ q

2

)) = (C; q

2

)

�(C; tail(q

1

Æ [a℄ Æ q

2

)) = (C [ fq

1

:

= � _ q

1

:

= [b℄ Æ yg; tail(q

1

Æ [a℄) Æ q

2

)

�(C; tail(x Æ q

1

)) = (C [ fx

:

= � _ x

:

= [b℄ Æ yg; tail(x Æ q

1

))

�(C; tail(�)) = (C; tail(�))

Figure 8.4: Canonization of seletors

In the �gure, q and q

1

are of the form x

1

Æ x

2

Æ : : : Æ x

n

i.e., onatenations of queue

variables, and q

2

is an arbitrary onatenation of queue expressions, i.e., of the form x

1

Æ

[a

1

℄ Æ � � � Æx

n

Æ [a

m

℄. The atom b and queue variable y are fresh. Canonization rules for dual

operators first and last are similar to the rules for head and tail and are therefore not

listed.

8.3.2 Equations

Equations are solved in three stages. Assume that the onstraint ontext C is of the form E^

D , where E is a set (interpreted as a onjuntion) of residue equalities (unsolved equalities),

and D onsists of disjuntions or other non-equational onstraints. When adding a new

equality onstraint v

:

= w, as well as any other onstraint, we set the default e�et of

addConstraint (C; ) to (C [ fg; [ ℄), and then normalize the residue equalities E relative to

the new onstraint to extrat a substitution and updated residue equalities. Invoations of
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split �nally eliminates all equalities in E produing a ontext C without residue equalities.

Normalizing residue equalities: In augmenting C : E [ D with an equality onstraint

v

:

= w we apply the transformations in Figure 8.5 with the initial onstraint

(E [ fv

:

= wg; [ ℄) :

to produe either FAIL or the pair (E

0

; �

0

). In the �rst ase we set the e�et of addConstraint(C; v

:

= w)

to (false; [ ℄). In the other ase we set addConstraint (E [ D; v

:

= w) to ((E

0

[D)�

0

; �

0

).

(fail) (E [ fv

:

= wg ; �) 7! FAIL if v is a proper subterm of w

(deompose) (E [ fav

:

= bwg ; �) 7! (E [ fv

:

= wg ; �)[a 7! b℄

(deompose) (E [ fva

:

= wbg ; �) 7! (E [ fv

:

= wg ; �)[a 7! b℄

(simplify) (E [ fv

:

= vg ; �) 7! (E ; �)

(redue) (E [ fx

:

= wg ; �) 7! (E ; �)[x 7! w℄

Figure 8.5: Rules for deomposing equalities

Rules (fail), (deompose), (simplify), and (redue) are applied in dereasing order of

preferene. When no rules from Figure 8.5 apply to E , eah remaining equality takes the

form

Ax

:

= yB

where A and B are non-empty sequenes of atoms.

Elimination of onneting residues: A ontext C ontaining the onstraint Ax

:

= yB,

where jAj � jBj and x and y are di�erent queue variables, an be simpli�ed using the

following appliation of split:

split(C) = haddConstraint (C; y

:

= A[1 : j℄) j j = 0 : : : jAj � 1i; (8.15)

haddConstraint (C; x

:

= zB)i where z is fresh

By maintaining substitutions in a triangular form eah desendent requires the same or

less spae as the parent as lemma 8.3.1 shows:

Lemma 8.3.1 (Complexity) Let

M

E

=

X

x2Vars(E)

max fjAj; jBj j AxB 2 Eg

and let (E

0

; �

0

) be a branh obtained by eliminating a variable in E, then

M

E

0

�M

E

:
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Proof:

Given any pair (E ; �), let

M =

X

x2Vars(E )

max fjAj; jBj j AxB 2 Eg

Then

1. Eah simpli�ation step in Figure (8.5) does not inrease M . Trivially (deom-

pose) an not inrease M . In the (redue) step, assume that we are applying the

substitution x 7! AyB, where

k = max fjAj; jBj j AxB 2 Eg

l = max fjAj; jBj j AyB 2 Eg

then M

0

orresponding to (E ; �)[x 7! AyB℄ satis�es

M

0

= M � k � l+

max(fjA

0

Aj; jBB

0

j j A

0

xB

0

2 Eg [ fjAj; jBj j AyB 2 Eg)

� M � k � l +max(max(jAj; jBj) + k; l)

� M

2. Variable elimination does not inreaseM . In a variable elimination step we apply

the substitutions x 7! zB; y 7! Az orresponding to the onstraint Ax

:

= yB.

Then

jAj � k = max fjAj; jBj j AxB 2 Eg

jBj � l = max fjAj; jBj j AyB 2 Eg

and

M

0

= M � k � l +max(fjCAj; jDj j CyD 2 Eg [ fjCj; jBDj j CxD 2 Eg)

� M � k � l +max(l + jAj; k + jBj)

� M

Elimination of looping residues: The �rst two transformations on C leave us with

residues of the form Ax

:

= xB, where A;B an be assumed to be non-empty sequenes of

atoms of the same length. If A and B are not of the same length then C is unsatis�able and

replaed by false. We eliminate residues of this form using split with the e�et:

split(fAx

:

= xBg [ C) =

haddConstraints (C; fx

:

= A[1 : j℄; B = wrap(A; j)g j j = 0 : : : jAj � 1i; (8.16)

haddConstraints (C; fperiodi(x; j; A; jAj); B = wrap(A; j)g) j j = 0 : : : jAj � 1i
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where we use a new prediate periodi. It is treated as a primitive relation, but we intend

the interpretation

periodi(x; j; A; l) : l � jxj ^ jxj � j (mod jAj) ^ x = ext(A; jxj)

where

wrap(A; j)

def

= if j = 0 then A else A[j + 1 : jAj℄A[1 : j℄ (8.17)

ext(A; l)

def

= if jAj � l then A[1 : l℄ else Aext(A; l � jAj) (8.18)

Combinations of periodi: We an maintain at most one ourrene of periodi(x; j; A; l)

for every x by supplying the splitting rule:

split(fperiodi(x; j; A; l); periodi(x; k;B;m)g [ C) = (8.19)

*

addConstraints (C;

(

x

:

= ext(A; i);

x

:

= ext(B; i)

)

)

�

�

�

�

�

�

�

i = max(l;m) : : : n� 1;

i � j (mod jAj)

� k (mod jBj)

+

haddConstraints (C;

8

>

<

>

:

periodi(x; k;A[1 : g℄; n);

A

:

= ext(A[1 : g℄; jAj);

B

:

= ext(B[1 : g℄; jBj)

9

>

=

>

;

) j j � k (mod g)i

where

g

def

= gd(jAj; jBj) n

def

= jAj+ jBj � g :

We see that the �rst branhes over the ases where jxj ranges from max(l;m) to n � 1.

The ases where jxj � n have been ollapsed into a single branh. To establish that this

preserves soundness we use a lemma whih has also been useful in [BP98℄:

Lemma 8.3.2 With A, B, n, and g as above, and m � n, then

ext(A;m) = ext(B;m) $ ext(A;n) = ext(B;n)

Thus, unfolding A and B beyond n does not introdue any new onstraints. The extended

Chinese Remainder Theorem is used to ombine the length onstraints on x.

Fatorization of periodi: When a substitution replaes a variable x by a ompound term

we normalize periodi using transformations

periodi(�; i; A; n) 7! i = 0 ^ n < 0

periodi(wa; i; A; n) 7! a

:

= A[i : i℄ ^ periodi(w; i�1 mod jAj; A; n�1)

periodi(aw; i; A; n) 7! a

:

= A[1 : 1℄ ^ periodi(w; i�1 mod jAj;wrap(A; 1); n�1)

Context dependent anonization: Sine the prediate periodi has been introdued to

summarize onstraints of the form Ax

:

= xB we need to instrument the anonizer � with
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this information in order to anonize Ax and xB to the same term. This an be ahieved

by shifting queue variables to the left as muh as possible:

�(C; Bx) = (C; xext(wrap(A; j); jBj)) (8.20)

if (B)

R

= ext((A)

R

; jBj) and periodi(x; i; A; l) 2 C :

Theorem 8.3.8 implies that the resulting e�et of � derives all implied equalities. In

partiular a disequality q 6

:

= r is inonsistent if and only if q and r anonize to the same

terms one all onstraints in C have been proessed.

8.3.3 Subsequenes

Having solved equational onstraints we are ready to solve disequational onstraints. These

onstraints are solved using appliations of split, whih transforms disequational onstraints

into normal form, from whih an injetive model an be extrated.

Unontextual simpli�ations: The most basi suh transformations are given in Fig-

ure 8.6 and for negated onstraints in Figure 8.7. We have used the shorthand

 7! 

1

_ 

2

^ 

3

to enode that

split(fg [ C) = haddConstraint (C; 

1

); addConstraints (C; f

2

; 

3

g)i :

The rules for suÆx follow a similar pattern as for pre�x.

These transformations turn an ourrene of v � w into a disjuntion of onjuntions,

where eah onjunt is either an equality onstraint or of the form

AxB � y; pre�x(xA; y); suÆx(Ax; y);

AxB 6� y; :pre�x(xA; y); :suÆx(Ax; y)

The ombined e�et so far an be summarized as

Lemma 8.3.3 Let C be a onjuntion of literals suh that none of the rules in Figures 8.6,

8.7, 8.5, apply, then the literals in C are of the form:

AxB � y; pre�x(xA; y); suÆx(Ax; y); v 6

:

= w;

AxB 6� y; :pre�x(xA; y); :suÆx(Ax; y); periodi(x; i; C; l) :

Contextual simpli�ations: A ontextual transformation rule depends on at least two

onstraints in C and simplify the set of onstraints. For instane, if C ontains pre�x(u;w)

and pre�x(v; w) for two di�erent u and v, then as pre�x is a linear order, we an simplify C

by replaing these onstraints with either

pre�x(u; v) ^ pre�x(v; w) or pre�x(v; u) ^ pre�x(u;w) :
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v � aw 7! pre�x(v; aw) _ v � w w � w 7! true

v � wa 7! suÆx(v; wa) _ v � w � � w 7! true

w � � 7! w

:

= � pre�x(v; v) 7! true

pre�x(v; wb) 7! v

:

= wb _ pre�x(v; w) pre�x(v; �) 7! �

:

= v

pre�x(av; bw) 7! a

:

= b ^ pre�x(v; w) pre�x(�; v) 7! true

pre�x(xA; bw) 7!

 

x

:

= � ^ pre�x(A; bw)

_ x

:

= by ^ pre�x(yA;w)

!

x 62 w; y is fresh

pre�x(av; x) 7! x

:

= ay ^ pre�x(v; y) x 62 v; y is fresh

pre�x(Ax; x) 7! jAj = 0

pre�x(xA;Bx) 7! jAj � jBj ^

jBj�1

_

j=0

Bx

:

= xAext(wrap(B; j); jBj � jAj)

Figure 8.6: Unontextual positive simpli�ations

We refer to Figure 8.8 for the omplete set of ontextual transformation rules.

Rules for periodi suÆx and suÆx

2

are similar to periodi pre�x respetively pre�x

2

and have not been inluded in Figure 8.8.

An e�et of the ontextual transformation rules is that they ensure that pre�x and suÆx

are linear orders and � is a partial order, whih we desribe below.

De�nition 8.3.4 (Partial variable ordering <) Let C be a onjuntion of onstraints,

then < is the transitive losure of the binary relation de�ned by

x < y

def

= pre�x(xA; y) 2 C; suÆx(Ax; y) 2 C; or AxB � y 2 C

We now have:

Lemma 8.3.5 Let C be a onjuntion of onstraints losed under equality, disequality, un-

ontextual simpli�ations and the ontextual simpli�ations from Figure 8.8, then

� The relation < is a partial ordering of the queue variables.

� For every queue variable y there is at most one onstraint pre�x(w; y) and at most

one onstraint suÆx(w; y) in C.

� If C ontains a onstraint periodi(x; j; A; l), then there are no onstraints of the form

:pre�x(w; x);:suÆx(w; x), or w 6� x in C.
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v 6� aw 7! :pre�x(v; aw) ^ v 6� w

v 6� wa 7! :suÆx(v; wa) ^ v 6� w

� 6� w 7! false

w 6� � 7! w 6

:

= �

w 6� w 7! false

:pre�x(av; bw) 7! a 6

:

= b _ :pre�x(v; w)

:pre�x(v; wb) 7! v 6

:

= wb ^ :pre�x(v; w)

:pre�x(xA; bw) 7!

 

x

:

= � ^ :pre�x(A; bw)

_ 9y;  : x

:

= y ^ :pre�x(yA; bw)

!

x 62 w

:pre�x(av; x) 7!

 

x

:

= �

_ 9y; b : x

:

= by ^ :pre�x(av; by)

!

x 62 v

:pre�x(v; �) 7! � 6

:

= v

:pre�x(�; v) 7! false

:pre�x(Ax; x) 7! jAj > 0

:pre�x(xA;Bx) 7! jAj > jBj _

jBj�1

^

j=0

xAext(wrap(B; j); jBj � jAj) 6

:

= Bx

Figure 8.7: Unontextual negative simpli�ations

Saturation rules: Using 

1

^ 

2

,!

3

as shorthand for 

1

^ 

2

7! 

1

^ 

2

^ 

3

we �nally

saturate C with rules suh as

periodi(y; i; C; l) ^ pre�x(xA; y) ,!

jCj�1

_

j=0

xAwrap(C; j)

:

= CxA

to guarantee that the following lemma holds

Lemma 8.3.6

� If periodi(y; i; C) 2 C and w � y 2 C, then w is onstrained by periodi(w; j;wrap(C; k))

in C for some j and k. Similar statements hold for pre�x(w; y) and suÆx(w; y).

� If w 6� y, then for every subsequene v of y C implies that w is not a subsequene of

v.

The full set of saturation rules required for Lemma 8.3.6 is given in Figure 8.9.



CHAPTER 8. QUEUES 147

pre�x

2

pre�x(u;w) ^ pre�x(v; w) 7!

 

pre�x(u; v) ^ pre�x(v; w)

_ pre�x(v; u) ^ pre�x(u;w)

!

Cyle

pre�x(u

0

; u

1

) ^ : : : ^ suÆx(u

i

; u

i+1

) ^ : : : ^ u

n

� u

0

7!

u

0

:

= u

1

^ : : : ^ u

n

:

= u

0

periodi-:pre�x

periodi(y; i; C) ^ :pre�x(xA; y) 7!

periodi(y; i; C) ^

0

�

jCj�1

^

j=0

CxA 6

:

= xAwrap(C; j) _ pre�x(y; xA) ^ y 6

:

= Ax

1

A

periodi-6�

periodi(y; i; C) ^ AxB 6� y 7!

periodi(y; i; C) ^

0

�

jCj�1

^

j;k=0

wrap(C; j)AxB 6

:

= AxBwrap(C; k) _ y � AxB ^ y 6

:

= AxB

1

A

Figure 8.8: Contextual simpli�ations

8.3.4 Corretness, Complexity and Completeness

A simple inspetion reveals:

Theorem 8.3.7 (Soundness) All rules preserve satis�ability.

The aumulated e�et of the splits works both as a satis�ability heker and generator

of an injetive model, whih is important for obtaining a omplete integration.

Theorem 8.3.8 (Completeness) If a ontext C is losed under all splitting rules, then

1. C is satis�able.

2. For any terms q

i

and r

i

, C q

_

i

q

i

= r

i

i� �

C

(q

i

) = �

C

(r

i

) for some i.

Proof:

Outline From a ontext C losed under all splitting rules we onstrut an injetive

model by di�erentiating all atoms that have not been eliminated, and starting with

the smallest elements in the partial order < we build di�erent realizations for the

queue variables.
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periodi pre�x

periodi(y; i; C; l) ^ pre�x(xA; y) ,!

jCj�1

_

j=0

xAwrap(C; j)

:

= CxA

periodi-�

periodi(y; i; C; l) ^ AxB � y ,!

jCj�1

_

j;k=0

AxBwrap(C; j)

:

= wrap(C; k)AxB

:pre�x-pre�x :pre�x(v; y) ^ pre�x(w; y) ,! :pre�x(v; w)

:suÆx-suÆx :suÆx(v; y) ^ suÆx(w; y) ,! :suÆx(v; w)

6�-� v 6� y ^ w � y ,! v 6� w

6�-pre�x v 6� y ^ pre�x(w; y) ,! v 6� w

6�-suÆx v 6� y ^ suÆx(w; y) ,! v 6� w

Figure 8.9: Saturation rules

Initially let �

0

: V 7! �

�

be a map with empty domain. A full evaluation of

all queue variables is extrated in stages starting from a queue variable that has no

sub-queues. Let �

n

be the partial evaluation of queue variables extrated at stage n,

and y be the n'th queue variable to be proessed. We distinguish two ases:

Periodi periodi(y; i; C) 2 C for some i and C. Then whenever w � y 2 C, then by

Lemma 8.3.6 C implies periodi(w; j;wrap(C; k)) for some j and k.

Also by Lemma 8.3.5 there are no onstraints AxB 6� y, :pre�x(xA; y) or

:suÆx(Ax; y).

Let

m = max

 

fj�

n

(CzD)j j CzD 6

:

= AyB 2 C; z � yg

[ fj�

n

(w)j j w � y; pre�x(w; y); or suÆx(w; y) 2 Cg

!

and set

�

n+1

:= �

n

[ [y 7! ext(C;mjCj+ i)℄

It is then straight-forward to verify that �

n+1

satis�es all disequalities and sub-

queue relations between queue expressions whose variables are in the domain of

�

n+1

.

Aperiodi If it is not the ase that y is onstrained by periodi(y; i; C), then assume
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we have the following onstraints on y:

pre�x(x

0

A

0

; y); A

i

x

i

B

i

� y; for i = 1; : : : ; k; suÆx(A

k+1

x

k+1

; y)

Set

�

n+1

:= �

n

[ [y 7! x

0

A

0

z

1

A

1

x

1

B

1

: : : z

k

A

k

x

k

B

k

z

k+1

A

k+1

x

k+1

℄;

where z

i

are queues of length at least one ontaining fresh atoms suh that jyj is

longer than max fjCzDj j CzD 6

:

= AyB 2 C; z � yg.

The saturation rules ensure that wheneverAxB 6� y, :pre�x(xA; y) or :suÆx(Ax; y)

is asserted, then we may assume by indution on n that that these are not sub-

queues of the sub-queues of y. The use of fresh atoms in the z

i

prevents any of

these queues to be sub-queues of any other part of y.

Theorem 8.3.9 (Complexity) The satis�ability problem for onstraints over queues is

NP-omplete, and our proedure is in NP.

Proof outline:

By inspeting the onstraint solving steps we see that eah branh an be represented

in spae bounded by the size of the input. The disjuntive splitting auses branhes of

at most polynomial depth. The theory is on the other hand NP-hard. We an redue

an arbitrary instane (V; E) of the graph 3 oloring problem to the onstraints:

r 6= g ^ g 6= b ^ b 6= r ^

^

v2V

vv

0

v

00

x

v

= x

v

rgb ^

^

(v;w)2E

v 6= w

8.4 Implementation

The present prototype implementation of the deision proedures for queues uses onate-

nation as the basi onstrutor. Consequently onstraints of the form

x Æ [a℄ Æ y

:

= [b℄ Æ x Æ z

are legal inputs and are deomposed to

fx Æ [a℄

:

= [b℄ Æ x; y

:

= zg :

Presently the onstraints involving the prediate periodi are not generated.
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8.4.1 Arithmetial integration

Similarly to reursive data-types one an add a length funtion on queues. The empty queue

is given length zero, and every appliation of revons and ons ontributes by inrementing

the length by one. This is summarized by the e�et of anonization in Figure 8.4.

Unfortunately we do not have a omplete integration of arithmeti and sub-queue rela-

tions. Instead we use an inomplete ombination with the arithmeti solver via SUP and INF

to aess lower and upper bounds on variables. If a variable has a positive lower bound it

is replaed by a fresh instane of the length of the bound. If the length of a queue variable

has a �nite upper bound we enumerate the possible instanes.

Besides being essential in establishing the example from Setion 8.1, support for the

length funtion was noted essential in small lemmas from [NG98℄. They are established

automatially here using the deision proedures. In general one should note that the

automati support allows to avoid having to state and prove suh lemmas separately.

maro adr(l) = head(tail(l))

maro addr(l) = head(tail(tail(l)))

jlj � 1 ! l = ons(head(l); tail(l)) 0:01

ons(m

1

; l

1

) = ons(m

2

; l

2

) ! m

1

= m

2

^ l

1

= l

2

0:00

jlj = 1 ! l = [head(l)℄ 0:01

jlj = 2 ! l = [head(l); adr(l)℄ 0:02

jlj = 3 ! l = [head(l); adr(l); addr(l)℄ 0:03

jl

1

Æ l

2

j = jl

1

j+ jl

2

j 0:00

jl

1

j = 2 ^ jl

2

j � 1 ! addr(l

1

Æ l

2

) = head(l

2

) 0:05

jl

1

j � 2 ! adr(l

1

Æ l

2

) = adr(l

1

) 0:03

l

2

= ons(m; l

1

) ! jl

2

j = jl

1

j+ 1 0:00

ons(m; l

1

) = l

2

! jl

2

j � 2 !

adr(l

2

) = head(l

1

) ^ tail(l

2

) = l

1

0:01

jl

2

j � 1 _ jl

1

j � 1 ! head(l

1

Æ l

2

) =

if l

1

= empty then head(l

2

) else head(l

1

) 0:06

Figure 8.10: Lemmas from [NG98℄

8.4.2 Other examples

The bu�er system disussed in [Sha93℄ provided some of the early motivation for developing

deision support for queues. The deision proedures developed in this hapter trivially
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establishes all veri�ation onditions assoiated with this example, inluding:

Initially � = � Æ � Æ ?

read input h = output h Æ b Æ input ^ input 6= ? !

input h = output h Æ revons(b; input) Æ ?

write input h = output h Æ b Æ input ^ b 6= � !

input h = revons(output h; head(b)) Æ tail(b) Æ input

where

x

def

= if x = ? then � else [x℄

whih need not be established using indution, but diretly using the deision proedures.

In [Fis98℄ a software retrieval system for funtions manipulating lists is disussed. Bernd

Fisher kindly provided around 15,000 formulas inluding the relations �, pre�x(; ), and

suÆx(; ); and funtions head, tail, ons, and Æ. A large fragment of the formulas inluded

also prediates for ordered lists. These prediates were left uninterpreted in our tests. Our

implementation of the deision proedures given in this Chapter together with the quan-

ti�er instantiation heuristis was able to automatially establish 1,266 of the 1,800 valid

formulas, while spending in average 0.20 seonds on eah formula, valid or not. Of the

remaining veri�ation onditions it was possible to identify only four valid formulas that

were in the sope of the deision proedures, but where quanti�er instantation had failed to

properly �nd the right instantiations. In ontast a good resolution theorem prover (SPASS,

Gandalf, or SETHEO) requires about ten seonds to prove as many veri�ation onditions

given appropriate sets of axioms to work with. With a time limit of 90 seonds, however,

SPASS and Gandalf outperform our implementation proving up to 1,500 of the 1,800 on-

ditions. One an therefore be tempted to onlude that even simple deision proedures

o�er ompetitive performane for the ommon ase to well-tuned general theorem provers

as they tend to provide well-direted pruning of the searh-spae.

8.5 Open problems

Problem 8.5.1 How expressive is the �rst-order theory of queues with the sub-queue rela-

tion? In partiular, how does this ompare with the theory of onatenation?

Problem 8.5.2 Give a omplete deision proedure for a ombination of integer linear

programming and sub-queue relations.

Problem 8.5.3 Extend queue deision proedures with onstraints for lists over an ordered

domain.

Problem 8.5.4 Represent uni�ers for the word uni�ation problem using �nitely many

uni�ers as done with bit-vetors.
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8.6 Summary

We gave deision proedures for the universal theory of queues inluding the sub-queue

relationship. Along the way we established that the satis�ability problem for quanti�er free

formulas with queue onstraints is NP-omplete.
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