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Chapter 1

STeP and de
ision pro
edures

This introdu
tory 
hapter gives some ba
kground on STeP and temporal veri�
ation. While

the thesis is about developing and integrating de
ision pro
edures we will here brie
y give

the ba
kground for their appli
ations in temporal veri�
ation.

1.1 STeP

The Stanford Temporal Prover (STeP) is a system for 
omputer-aided formal veri�
ation of

rea
tive, real-time and hybrid systems based on their temporal spe
i�
ations, expressed in

linear-time temporal logi
 (LTL). STeP integrates model 
he
king and dedu
tive methods to

allow the veri�
ation of a broad 
lass of systems, in
luding parameterized (N -
omponent)


ir
uit designs, parameterized (N -pro
ess) programs, and programs with in�nite data do-

mains.

Figure 1.1 presents an outline of the STeP system. The main inputs are a rea
tive system

and a property to be proven for it, expressed as a temporal logi
 formula. The system 
an

be a hardware or software des
ription and may in
lude real-time and hybrid 
omponents.

Veri�
ation is performed by model 
he
king or dedu
tive means, or a 
ombination of the

two.

1.1.1 Transition systems

Our 
omputational model for rea
tive systems is that of a transition system,

S = hV;�;T ;J ; Ci;

1
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Figure 1.1: An outline of the STeP system

where V is a �nite set of system variables, � is a formula 
hara
terizing the set of initial

states, T is a �nite set of transitions, J � T is a set of just transitions, and C � T is a set

of 
ompassionate transitions. The vo
abulary V 
ontains data variables, 
ontrol variables

and auxiliary variables. The set of states over V is denoted by �, where ea
h state is

an assignment of values to the variables in V. The initial 
ondition � is expressed as a

�rst-order assertion. A transition � maps ea
h state s 2 � into a (possibly empty) set of

� -su

essors, �(s) � �. It is de�ned by an assertion �

�

(x; x

0

), 
alled the transition relation,

whi
h relates the values x of the variables in state s and the values x

0

in a su

essor state

s

0

2 �(s). We require that T 
ontain a transition �

I

, 
alled the idling transition, su
h that

�(s) = fsg for every state s. A transition � is enabled on state s if �(s) 6= ;.

A 
omputation of a system S is an in�nite sequen
e of states s

0

; s

1

; s

2

; : : :, su
h that (1)

s

0

is an initial state satisfying �, (2) for every i � 0 there is a transition � 2 T satisfying

s

i+1

2 �(s

i

), (3) for ea
h � 2 J , if � is enabled on states s

i

; s

i+1

; s

i+2

; : : :, then at some

j � i, �

�

(s

j

; s

j+1

) holds (in automata theory this is known as B�u
hi a

eptan
e), (4) for
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ea
h � 2 C, if � is enabled on in�nitely many states, then � is taken also on in�nitely many

states (in automata theory this is known as Streett a

eptan
e).

Besides supporting input in the format of raw transition systems (a
tually elaborated

with modularity [FMS98℄), STeP also fa
ilitates the representation of systems using a sim-

ple programming language (SPL [MP95, MAB

+

94℄) with 
on
urren
y primitives. SPL

statements are translated into transitions in a straightforward manner. For example, the

assignment statement

`

0

: x := y + 1; `

1

:

assigns y + 1 to x when 
ontrol resides at lo
ation `

0

, and subsequently moves 
ontrol to

`

1

. Control labels are en
oded using 
ontrol 
ounters su
h that the property being at `

0

is

translated to � = 0 and being at `

1

is translated to � = 1. One of the advantages of using


ounters is that they o�er built-in dete
tion of 
on
i
ting lo
ations. In summary, the SPL


ompiler generates the transition � with transition relation

�

�

(�; x; y; �

0

; x

0

; y

0

) : � = 0 ^ x

0

= y + 1 ^ y

0

= y ^ �

0

= 1 :

1.1.2 Linear-time temporal logi


The primary spe
i�
ation language used by STeP is �rst-order logi
 enhan
ed by temporal


onne
tives [Pnu77℄.

A temporal formula is 
onstru
ted from state formulas (
alled assertions), whi
h are

formulas from the �rst-order assertion language. To state formulas we apply boolean 
on-

ne
tives (su
h as _, :), quanti�ers (8, 9) and temporal operators. The temporal operators

used in this paper are future operators 0 (always in the future), W (waiting-for, unless), 2

(next) and their past 
ounterparts ` (always in the past), B (ba
k-to) and � (previously).

A model for a temporal formula ' is an in�nite sequen
e of states � : s

0

; s

1

; s

2

; : : :,

where ea
h state s

j

provides an interpretation for the variables o

urring in '. A temporal

formula ' is S-valid, written S q ', if ' is satis�ed on ea
h 
omputation � of S. This is

written h�; 0i q '. We de�ne this relation below for the limited vo
abulary used in this
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thesis.

h�; ji q ' () s

j

q ' if ' is �rst-order

That is, ' is evaluated lo
ally, using the interpretation in s

j

h�; ji q 0 ' () 8j

0

: j

0

� j � h�; j

0

i q '

h�; ji q 1 ' () 9j

0

: j

0

� j � h�; j

0

i q '

Furthermore we write p) q as a shorthand for 0 (p ! q).

1.2 Temporal veri�
ation

As Figure 1.1 indi
ates, STeP aims to support three veri�
ation paradigms: dedu
tive,

algorithmi
, and a hybrid approa
h: dedu
tive-algorithmi
.

1.2.1 Dedu
tive veri�
ation

The dedu
tive methods of STeP verify temporal properties of systems by means of ver-

i�
ation rules and veri�
ation diagrams. Veri�
ation rules redu
e temporal properties of

systems to �rst-order veri�
ation 
onditions [MP95℄. The most widely used veri�
ation rule

is inv given in Figure 1.2. It redu
es the veri�
ation of the invariant 0 p to the �rst-order

For assertion p,

B1. �! p

B2. fpg T fpg

S q 0 p

Figure 1.2: Basi
 invarian
e rule inv.

veri�
ation 
onditions in premises B1 and B2. The 
ondition B2 is shorthand for

^

�2T

�

p(x) ^ �

�

(x; x

0

) ! p(x

0

)

�

:

Veri�
ation diagrams [MP94, BMS95, Sip98℄ provide a visual language for guiding,

organizing, and displaying proofs. STeP features a diagram editor that takes a system, a

spe
i�
ation, and a diagram and generates the appropriate veri�
ation 
onditions.

Case studies of mainly dedu
tive veri�
ation of in�nite state parameterized systems are

reported in [MAB

+

94, BLM97, BMSU97, BMSU98℄ and on the web at



CHAPTER 1. STEP AND DECISION PROCEDURES 5

http://www-step.stanford.edu/
ase-studies .

1.2.2 Algorithmi
 veri�
ation

Model 
he
king [CE81℄ using either state spa
e enumeration or symboli
 methods [M
M93℄

(using BDDs) 
an be used to prove temporal properties of systems with �nite state spa
es.

An enumerative model 
he
king algorithm for �nite state systems and LTL is des
ribed

in [MP95℄. Its implementation in STeP applies to some in�nite state systems as well. Sym-

boli
 model 
he
king algorithms for de
iding the general validity of linear time propositional

temporal formulas as well as properties over a rea
tive system are des
ribed in [Bj�98b℄.

1.2.3 Dedu
tive-algorithmi
 veri�
ation

A mu
h dis
ussed topi
 these days is 
ombining model 
he
king with dedu
tion. The golden

promise of this integration resear
h is in adding the expressiveness of dedu
tive te
hniques

to the eÆ
ien
y of model 
he
king.

One approa
h taken within STeP has been Dedu
tive Model Che
king [SUM96℄. Here,

the state spa
e exploration is performed symboli
ally using formulas to represent states and

using de
ision pro
edures to in
rementally guide the state spa
e exploration.

A more separated approa
h is to generate abstra
tions of systems �rst and then model


he
k the abstra
tion. De
ision pro
edures are used to generate abstra
tions that preserve

as mu
h information as possible from the in�nite state system. First results on this 
an be

found in [CU98℄, and independent work within PVS and SMV is found in [BLO98℄. Alter-

natively, one 
an use a theorem prover to in fa
t perform the state spa
e exploration [GS97℄.

In all 
ases the general approa
h is only as good as the eÆ
ien
y and expressiveness of

the de
ision pro
edures. On the other hand, present experien
e has been that the abstra
ted

systems are very small and 
an be handled within a se
ond by good model 
he
kers.

Abstra
tion is treated in depth in [Uri98℄.

1.3 Generating and strengthening invariants

An important 
omponent in bootstrapping dedu
tive, algorithmi
, and dedu
tive-algorithmi


veri�
ation are utilities for generating auxiliary invariants.

Dedu
tive veri�
ation: Invariants that have either been generated automati
ally, or

established using the inv rule 
an be used as assumptions when proving other invariants
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using inv. However, the rule inv may fail, even in the presen
e of auxiliary invariants, that

is

B2 : I

aux

! fpg � fpg

is not valid for some transition � , where p is the invariant to be established, and I

aux

is the

set of auxiliary invariants. In this 
ase one 
an strengthen the invariant 
andidate p to

p := p ^ wp(�; p)

and try again. The operator wp(�; p) is shorthand for 8x

0

: �

�

(x; x

0

) ! p(x

0

). In general,

we seek the greatest �x-point of the operator:

B(X)

def

= I

aux

^ p ^ wp(T ;X) :

The greatest �x-point of B(X) is written as �X : B(X).

To illustrate how auxiliary invariants 
an be used in 
onjun
tion with invariant strength-

ening 
onsider a simpli�ed version of Lamport's solution to the mutual ex
lusion problem

for two pro
esses, formulated in SPL in Figure 1.3.

lo
al y

1

; y

2

: integer where y

1

= y

2

= 0

P

1

::

2

6

6

6

6

6

6

6

4

loop forever do

2

6

6

6

6

6

4

`

0

: non
riti
al

`

1

: y

1

:= y

2

+ 1

`

2

: await (y

2

= 0 _ y

1

� y

2

)

`

3

: 
riti
al

`

4

: y

1

:= 0

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

5

jj P

2

::

2

6

6

6

6

6

6

6

4

loop forever do

2

6

6

6

6

6

4

m

0

: non
riti
al

m

1

: y

2

:= y

1

+ 1

m

2

: await (y

1

= 0 _ y

2

< y

1

)

m

3

: 
riti
al

m

4

: y

2

:= 0

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

5

Figure 1.3: Program bakery (Program bakery for mutual ex
lusion)

STeP generates the auxiliary invariants 0 (y

1

� 0) and 0 (y

2

� 0) by propagating 
onvex

polyhedra.

1

1

In reality STeP generates several other invariants, so the strengthening done here be
omes redundant,

but let us pretend that STeP 
ould only generate these weak assertions (whi
h 
an also be inferred and


he
ked by de
laring y

1

and y

2

as natural numbers).
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Ba
kward propagation starts from an invariant 
andidate, in this 
ase

0 :(at `

3

^ at m

3

);

whi
h expresses mutual ex
lusion in the 
riti
al se
tions.

�

�

�

�

`

4

^m

2

! y

2

6= 0

�

�

�

�

`

2

^m

4

! y

1

6= 0

�

�

�

�

`

4

^m

3

! y

2

6= 0

�

�

�

�

`

0

^m

2

! y

2

6= 0

�

�

�

�

`

2

^m

0

! y

1

6= 0

�

�

�

�

`

3

^m

4

! y

1

6= 0

�

�

�

�

`

0

^m

3

! y

2

6= 0

�

�

�

�

`

1

^m

2

! y

2

6= 0

�

�

�

�

`

2

^m

1

! y

1

6= 0

�

�

�

�

`

3

^m

0

! y

1

6= 0

�

�

�

�

`

1

^m

3

! y

2

6= 0

�

�

�

�

`

2

^m

2

! y

2

6= 0 ^ y

1

6= 0

�

�

�

�

`

3

^m

1

! y

1

6= 0

�

�

�

�

`

2

^m

3

! y

2

6= 0 ^ y

1

> y

2

�

�

�

�

`

3

^m

2

! y

1

6= 0 ^ y

1

� y

2

�

�

�

�

:(`

3

^ m

3

)

6�

m

2

6�

`

2

6�

`

0

6�

m

0

6�

`

4

6�

m

4

6�

`

0

6�

m

0

�

�

�

�*

�

`

1

H

H

H

HY

�

m

1

�

���

`

1

�

�I �

m

1

�

�I�

m

2

�

���

`

2

�

�

�

�

�

�1

�

`

2

P

P

P

P

P

Pi

�

m

2

Figure 1.4: Ba
kward propagation from :(`

3

^ m

3

)

We 
ompute the terms of the sequen
e

T

|{z}

'

0

 B('

0

)

| {z }

'

1

 B('

1

)

| {z }

'

2

 � � �

until a limit is found. Applying B on
e generates '

1

: :(`

3

^ m

3

). In the se
ond iteration

of B we 
al
ulate:

wp(T ; '

1

) =

V

�2T

wp(�; '

1

)

= wp(�

`

2

; '

1

) ^ wp(�

m

2

; '

1

)

= (`

2

^m

3

! y

2

6= 0 ^ y

1

> y

2

)

^ (`

3

^m

2

! y

1

6= 0 ^ y

1

� y

2

):

Continuing me
hani
ally in this fashion we obtain the formulas shown in Figure 1.4. By


al
ulating wp(�; '), where � labels an edge pointing to a '-node, one obtains the assertion
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labeling the sour
e of the edge. The 
onjun
tion of the formulas is the greatest �x-point

'

B

of B. Finally, sin
e � : `

0

^m

0

^ y

1

= y

2

= 0 implies '

B

, we have indeed established

mutual ex
lusion of the 
riti
al se
tions.

Algorithmi
 veri�
ation: Model 
he
kers that use expli
it state spa
e exploration build

the set of rea
hable states on the 
y, and the use of auxiliary invariants has questionable

advantages in this 
ontext. Symboli
 model 
he
king on the other hand, 
an be treated as

a �nite state instan
e of general assertional veri�
ation.

We will here abuse an older 
ase study, a parameterized algorithm for mutual ex
lusion

by Szymanski [SV94℄, in highlighting advantages of using auxiliary invariants in pruning

symboli
 model 
he
king. The version of Szymanski's algorithm we examine is given in

Figure 1.5.

in N : integer where N � 1

lo
al a : array [1::N ℄ of boolean where 8i : [1::N ℄::a[i℄

s : array [1::N ℄ of boolean where 8i : [1::N ℄::s[i℄

w : array [1::N ℄ of boolean where 8i : [1::N ℄::w[i℄

N

jj

i=1

P [i℄ ::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

1

: non
riti
al

`

2

: a[i℄ := T

`

3

: await 8j : [1::N ℄: :s[j℄

||||| doorway ||||

`

4

: (w[i℄; s[i℄) := (t;t)

|||| waiting room |||

`

5

: if 9j : [1::N ℄: (a[j℄ ^ :w[j℄) then

2

6

4

`

6

: s[i℄ := f

`

7

: await 9j : [1::N ℄: (s[j℄ ^ :w[j℄)

`

8

: s[i℄ := t

3

7

5

|||| inner san
tum |||

`

9

: w[i℄ := f

`

10

: await 8j : [1::N ℄: :w[j℄

`

11

: await 8j : [1::(i � 1)℄: :s[j℄

`

12

: 
riti
al

`

13

: (s[i℄; a[i℄) := (f; f)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 1.5: Program Szy-a (Szymanski's algorithm: atomi
 version).
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Some of the bottom-up invariants generated by STeP are:

`

5;6;9::13

[i℄ $ s[i℄

`

3::13

[i℄ $ a[i℄

`

5::9

[i℄ $ w[i℄

These are generated using assertion propagation noting that the variables s[i℄, a[i℄, and w[i℄

are 
on
urrently read, but ex
lusively written by pro
ess P [i℄.

The main spe
i�
ations of the algorithm in
lude

mux: `

12

[i℄ ^ `

12

[j℄ ) i = j

a

: `

2

[i℄ ) 1 `

12

[i℄

Finite instan
es of N 
an be 
he
ked dire
tly using symboli
 model 
he
king be
ause the

system then be
omes �nite state. To 
he
k the invariant mux STeP 
omputes �X : B(X)

using OBDDs to maintain the intermediary assertions. It takes STeP a few se
onds (3 on a

SUN Ultra Spar
 II) to 
he
k mux in the 
ase with 3 pro
essors. With 4 pro
essors, 
he
king

takes about a minute and generates in ex
ess of 1 million BDD nodes, with 5 pro
essors, the


he
king takes about 30 minutes. The 
ase with 6 pro
essors takes about 2 hours to 
he
k.

The situation is, on the other hand, mu
h worse when applying the model-
he
king without

the bottom-up invariants. With 3 pro
essors the model 
he
ker now takes 3 minutes instead

of 3 se
onds. However, a dire
t 
omputation of the rea
hable states takes 1 se
ond with 3

pro
essors thanks to the limited size of the example.

The a

 property 
an also be established for the 
ase of 3 pro
essors. It takes the

symboli
 model 
he
ker 25 minutes to 
he
k this 
laim. Most of the time is spent on


he
king the fairness 
onstraints imposed by the transition system.

Consider a version of Szymanski's algorithm without the 
onjun
t :w[j℄ in `

5

and with-

out statements `

6

and `

8

. We 
an 
he
k that this program still satis�es mutual ex
lusion for

3 pro
essors, but a

 is violated be
ause the program 
an deadlo
k, and the model 
he
ker

reports a 
ounter-example:
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It should be noted that in dedu
tive veri�
ation of the algorithm, all veri�
ation 
onditions

fall in the de
idable 
lass wS1S or M2L(str), and the Mona [BK95℄ tool 
an, in fa
t, be

invoked from STeP to establish all veri�
ation 
onditions automati
ally (and in se
onds)

given the ne
essary strengthened invariants. Mutual ex
lusion for this algorithm 
an also

be established algorithmi
ally using symmetry redu
tion [SV94℄. Finally, it is possible

to 
ompute the entire set of rea
hable states using regular automata used in Mona by

propagating the transitions from the initial state (parameterized transition relations are

modi�ed su
h that independent a
tions 
an be taken simultaneously).

Dedu
tive-Algorithmi
 veri�
ation: Auxiliary invariants 
an also be used to generate

more pre
ise abstra
tions as done in [CU98℄.

1.3.1 Methods for invariant generation

STeP 
ontains utilities for propagating assertions based on the abstra
t syntax tree of

SPL. These are 
alled lo
al invariants. Independent of SPL, STeP also 
ontains utilities

for generating invariants using te
hniques from linear algebra and linear programming.

Theoreti
al extensions of these ideas 
an be found in [BBM95, BBM97℄, where abstra
tion

domains and �x-point 
omputations for general safety formulas are investigated. Several

other re
ent developments for rea
tive systems are [BLS96, SDB96℄; the notion of reaÆrmed

invariants 
an be found here. Approximation te
hniques with appli
ations for real-time

systems was developed in [WD95℄. ReaÆrmed invariants 
an also be used for the modular

veri�
ation of real-time systems, as exploited in [BMSU97℄, and spe
ializations to hybrid

systems are studied in [MS98℄. Re
ent use of partitioned BDDs for hardware invariants are

des
ribed in [GDHH98, GD98℄. Theoreti
al foundations for abstra
tion are well presented

in [CC77, LGS

+

95, DGG94, Dam96℄. Invariant generation has naturally had a long story in
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the analysis of sequential and fun
tional programs [GW75, KM76℄ with roots in the analysis

of Algol68.

1.4 De
ision pro
edures

The integration of de
ision pro
edures has a long history dating ba
k to [NO78, Sho79,

BM79℄, but has enjoyed an ex
iting time re
ently [CLS96, BS96, BDL96, Det96, TR98℄ in

both theoreti
al work and as used in veri�
ation systems. This, be
ause de
ision pro
edures

make 
ommon tasks easy, and (sele
ted) hard tasks possible

2

. The 
on
urrent resear
h

around Palo Alto has stimulated the development and identi�
ation of faster and more

expressive de
ision pro
edures. High quality work around the ultimate veri�
ation system

PVS has been an initial sour
e of inspiration. The highly optimized SVC 
he
ker on the

other hand has led the way in impressive ben
hmarks and set high standards in whi
h large

examples 
an be done within reasonable time using de
ision pro
edures. The driving for
e

behind my involvement in the integration of de
ision pro
edures has been a desire to �nd

well-tuned integrations of de
ision pro
edures for expressive theories, and widen the s
ope

of de
idable 
lasses.

From a pragmati
 point of view, de
ision pro
edures should ideally terminate qui
kly

when the formula is not valid (or not in the s
ope of the supported theories), and not

monopolize 
omputing resour
es in proving valid formulas. As timing be
omes 
riti
al,

when thousands of 
alls are made to the de
ision pro
edures, low overhead is important

for smaller examples; on the other hand, larger examples that are developed by 
areful

manual modeling should also be handled whenever the used theories are in the s
ope of the

de
ision pro
edures. For non-valid goals, feedba
k 
an be given in a variety of ways: as

an assignment of rationals to the parameters of linear programming problems, for example.

More often, however, a truth assignment to the atomi
 predi
ates in the goal may better


ommuni
ate the sour
e of the invalidity.

1.5 The rest of the thesis

A high-level framework for the integration of de
ision pro
edures is presented in Chapter 2.

It surveys known approa
hes [Opp80a, Sho84℄ and ends up proposing a 
onstraint-based

version of Shostak's integration. On the other hand, we augment the Davis-Putnam pro
e-

dure with rules for reasoning about �rst-order quanti�
ation. The ambition here is to blend

�rst-order reasoning with the de
ision pro
edures that mainly work for quanti�er-free for-

mulas. The framework is intended to approa
h 
on
rete problems in veri�
ation and the


hapter does not provide deep new theoreti
al results. Although it extends Shostak's alge-

brai
ally solvable theories, it relies on ea
h de
ision pro
edure to provide what 
orresponds

to a �nite set of uni�ers and therefore does not enjoy the full generality of the Nelson-Oppen

framework. The rest of the thesis therefore examines theories that are 
entral to temporal

2

This is an adaption of a quote used to promote Perl.
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veri�
ation to demonstrate how de
ision pro
edures for these theories �t into the proposed

framework. An attempt is made to demonstrate that the framework does indeed allow the


ombination of an extensive set of theories. The approa
h, however, requires some insight

to the workings of the individual de
ision pro
edures. Thus, the thesis presents:

Chapter 3: a new eÆ
ient 
ombination of de
ision pro
edures based on 
ongruen
e 
lo-

sure. A spe
ial feature is that it supports theories with self-referential (
y
li
) data

types,

Chapter 4: algorithms for integration of general spe
ial relations whi
h go beyond the

limitations of equality-based theory interfa
es,

Chapter 5: 
ooperating de
ision pro
edures for linear and non-linear programming,

Chapter 6: algorithms for 
y
li
 and a
y
li
 re
ursive data types,

Chapter 7: bit-ve
tor de
ision pro
edures, in
luding non-�xed length bit-ve
tors,

Chapter 8: de
ision pro
edures for lists and queues.

A high-level overview of the proposed framework 
an be found in Figure 1.6.

Se
tions 2.3 and 2.4 are extra
ted from joint work withMark Sti
kel and Tom�as Uribe [BSU97℄,

and Chapter 7 resulted from joint work with Mark Pi
hora [BP98℄. In parti
ular, Se
tion 2.4

is due to Mark Sti
kel, and only 
lose 
ollaboration with Mark Pi
hora made Chapter 7 pos-

sible. For instan
e, Mark Pi
hora provided the ne
essary number theory to solve non-�xed

size bit-ve
tors.
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Bit-vectors

Queues

Arithmetic 

Data types

Simplifier

Congruence Closure     Special Relations

First-order validity checker

Chapter 2

Chapter 3 Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Figure 1.6: An overview of the integration of de
ision pro
edures



Chapter 2

Combining theories

In this 
hapter we will �rst review sele
ted approa
hes in 
ombining de
ision pro
edures,

arriving at a 
onstraint-based integration of solvers. Se
tion 2.3 des
ribes in a dedu
tive

style the proof-sear
h pro
edure mixing �rst-order reasoning and de
ision pro
edures. We

�nish by des
ribing the highlights of an implementation of the dedu
tive 
omponent and

explain where the de
ision pro
edures are 
oupled.

Figure 2.1 gives a rough overview of the proposed sear
h paradigm.

split

split

closed

'[s = t℄

s = t ^ '[T ℄ s 6= t ^ '[F ℄

'[T ℄�

� = solve(s = t) # = unify(s; t)

(s 6= t ^ '[F ℄)#

Figure 2.1: An overview of the refutation sear
h

Suppose ' is the negated, skolemized version of some formula we wish to prove valid. The

refutation sear
h pro
eeds with a Davis-Putnam style 
ase splitting. In the left bran
h

14
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where an equality is asserted a 
ongruen
e 
losure based integration of de
ision pro
edures

is used to solve the asserted equality and redu
e (rewrite) the resulting bran
h under that

assumption. The right bran
h 
an be 
losed by possibly �nding suitable instantiations of

the skolem variables that unify terms s and t. As usual in tableau sear
h the uni�er # must

be applied to all bran
hes in the sear
h.

The rest of this 
hapter examines the appropriate tools and rules for realizing this

veri�
ation approa
h.

2.1 Preliminaries

Formulas and expressions: STeP uses a �rst-order language with a ri
h and 
exible syn-

tax. Formulas are in non
lausal form, and boolean formulas 
an be nested inside arbitrary

fun
tion symbols (for instan
e, p is under the fun
tion symbol f in f(if p then t

1

else t

2

)).

An essential 
onstru
t is let-binding , whi
h expli
itly represents stru
ture sharing within an

expression.

Therefore, our expressions will in
lude �rst-order quanti�
ation, the usual set of boolean


onne
tives and relations (_;^;:;!;$; if-then-else;

:

=), and the 
onstru
t let x =

e

1

in e

2

for a variable x and arbitrary expressions e

1

and e

2

. The s
ope of x is e

2

; o

urren
es

of x in e

1

are free.

For a given formula F , the universal 
losure of F , written 8�:F , is the formula 8x

1

::8x

n

:F

where fx

1

; : : : ; x

n

g are the free variables of F . The existential 
losure of F , written 9�:F ,

is de�ned similarly.

A substitution � is a mapping � : [x

1

7! t

1

; : : : ; x

n

7! t

n

℄, where x

1

; : : : ; x

n

are distin
t

variables and t

1

; : : : ; t

n

are terms. For an expression e, e� is the result of simultaneously

repla
ing all free o

urren
es of x

i

by t

i

. Repla
ement is always safe, in that quanti�ed vari-

ables are renamed to prevent 
apture, and bound variables are not repla
ed (see [MW93℄).

For substitutions � and �, � �� is the substitution su
h that x(� ��) = (x�)�. The substitution

� is more general than � if � � 
 = � for some 
. The empty substitution is written as [ ℄.

An atom is a formula with no boolean 
onne
tives; a literal is an atom or its negation.

A top-level 
onjun
t of a formula F is one of F

i

if F is of the form F

1

^ � � � ^ F

n

, and F

otherwise. A top-level literal is a top-level 
onjun
t that is a literal. We write F [e℄ for a

formula with one or more o

urren
es of subexpression e, where e does not o

ur within

the s
ope of a quanti�er.

Sorts: STeP's obje
t langauge uses sorts su
h as booleans, integers, rationals, reals, re
ur-

sive data-types, re
ords, fun
tion spa
e, and queues. The symbols �; S

1

; : : : ; S

n

range over

sorts. We use B for booleans, N for naturals, Z for integers, and R for reals, in both the

obje
t and meta-language.

Polarity: We de�ne the polarity of a subexpression in F in the usual way [MW93℄: an

o

urren
e of a subexpression e is positive (resp. negative) in F if it o

urs within an

even (resp. odd) number of negations, written as F [e℄

+

(resp. F [e℄

�

). An o

urren
e has

both polarities, written as F [e℄

�

, if it appears under the $ boolean 
onne
tive or in the
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if-
lause of an if-then-else expression. If e has two o

urren
es in F , one positive, and

one negative, we 
an refer to both o

urren
es by F [e℄

�

.

F [e℄

+

, F [e℄

�

and F [e℄

�

respe
tively denote stri
tly positive, stri
tly negative and bipolar

o

urren
es of e in F .

Theories and de
ision pro
edures: Our goal is to de
ide general validity with respe
t

to a ba
kground theory or 
ombination of theories T (not ne
essarily 
omplete or �rst-order

axiomatizable). Following [BFP92℄, we de�ne the following semanti
 properties of formulas:

De�nition 2.1.1 A 
losed senten
e F is T -valid if every model of T satis�es F , and T -

unsatis�able if no model of T satis�es F .

De�nition 2.1.2 (T -
omplementary) A senten
e F is T -
omplementary if 9 � :F is

T -unsatis�able.

De�nition 2.1.3 (T -refuter) � is a T -refuter, or T -refuting substitution, for a senten
e

F if F� is T -
omplementary.

The last two notions are extended to sets of formulas by identifying a set with the


onjun
tion of its elements. T -
omplementary sets of literals in theory reasoning 
orrespond

to synta
ti
ally 
omplementary pairs of literals in resolution|no instan
e is satis�able in

the theory.

A de
ision pro
edure for a theory T should always be able to identify the T -
omplemen-

tarity of a set of quanti�er-free literals.

1

However, if T is a 
ombination of theories, ea
h

with its own de
ision pro
edure, we do not expe
t to obtain a 
ombined de
ision pro
edure

that is 
omplete for the 
ombined theory (i.e., not all T -unsatis�able sets will be identi�ed).

On some o

asions, de
ision pro
edures will also be able to provide T -refuting substitutions

for a given set of literals.

In the rest of this paper, validity and satis�ability will always be understood relative to

a theory T , unless it is expli
itly stated otherwise.

Fun
tion updates: If f : A ! B is a fun
tion from domain A to range B, a 2 A and

b 2 B, then we write

f y [a 7! b℄

instead of

�x : if x = a then b else f(x)

Operations on sets: We use diag(S) as shorthand for f(x; x) j x 2 Sg. To restri
t a

fun
tion f to domain S we use fdS.

1

Note that de
ision pro
edures are not expe
ted to reason about boolean formulas.
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2.2 Integration of de
ision pro
edures

In the veri�
ation of rea
tive, real-time, hybrid systems, veri�
ation 
onditions generated

from veri�
ation rules, abstra
tion, veri�
ation diagrams and dynami
 
ow analysis typi-


ally 
ontain data-types that are used in the supplied systems. These data-types typi
ally

in
lude integers, reals (for hybrid systems), arrays, re
ursive and 
o-re
ursive data-types,

lists, queues, bit-ve
tors, et
.. It therefore be
omes natural to provide 
ustomized support

for the theories of ea
h of the data-types. The most general and 
exible approa
h is to

support axiomati
 presentation of theories in so-
alled theory libraries. As often axioms


an be represented equivalently as rewrite rules (or be 
ompleted into a set of 
on
uent

rewrite rules) general support for rewriting is a way of giving eÆ
ient generi
 theory sup-

port. However, the general axiomati
 approa
h, even with support from rewriting, 
annot be

expe
ted to address de
idability questions nor utilize spe
ialized (eÆ
ient) data-stru
tures

when presented with an arbitrary theory. Even more optimized support 
an be provided

for sele
ted theories by providing de
ision pro
edures for these individually. While modular

support for ea
h data-type is desirable for a plug-and-prove 
ombined de
ision pro
edure,

some glue me
hanism is required to a
hieve a 
omplete integration of the provided de
ision

pro
edures.

The issues involved in 
ombining de
ision pro
edures have been studied de
ades ago

starting with Nelson and Oppen as well as Shostak [NO79, Sho79, Opp80a, Sho84℄. The

approa
h taken in this thesis builds on and extends [Sho84℄.

The Nelson-Oppen approa
h forms today the basis for veri�
ation systems like ESC [Det96℄,

and EVES [CKM

+

91℄, and SDVS [LFMM92℄. In theoreti
al work on the word problem the

Nelson-Oppen approa
h has re
eived attention in [TH96, BT97℄.

Shostak's approa
h in 
ombining algebrai
ally solvable theories on the other hand forms

the basis for integration of de
ision pro
edures in systems like PVS [ORR

+

96℄, SVC [BDL96℄,

and STeP. Thanks to the analysis in [CLS96℄ it has re
eived renewed attention, in
luding

noteworthy appli
ations in de
iding bit-ve
tor 
onstraints [CMR97, BP98, BDL98℄. The

requirement of algebrai
 solvability 
an give the impression that the approa
h is severely

limited in 
omparison with the Nelson-Oppen method. It is, for instan
e, not always 
lear

how non-equational 
onstraints should be supported in 
onjun
tion with algebrai
 solvabil-

ity. Support for 
y
li
 data-types is also impossible if the 
ongruen
e 
losure algorithm at

the 
enter of the theory integration requires well-founded substitutions.

Our ambition has thus been to demonstrate how the \blindingly fast" 
ongruen
e 
losure

based approa
h suggested by Shostak does in fa
t admit rather expressive generalizations.

In providing a 
ompositional solution we obtain in
reased expressiveness without losing

basi
 eÆ
ien
y for the simpler 
ases, su
h as reasoning about pure uninterpreted fun
tion

symbols. We 
an also reason about linear arithmeti
 
onstraints while being able to also

handle non-linear 
onstraints.
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2.2.1 Modular 
ombination of theories and de
ision pro
edures

A modular approa
h for handling 
onstraints over di�erent sorts su
h as integers, bit-

ve
tors, and re
ursive data-types, is to provide a separate 
onstraint solver for ea
h sort

and then glue these together by propagating derived equalities. This approa
h suÆ
es when

equality is the only shared relation symbol of the theories. The dispat
hing of whi
h de
ision

pro
edure should be used is based on the prin
ipal sort of a 
onstraint. For example the

prin
ipal sort of an equality s = t is the sort of s (whi
h is the sort of t). If this happens to

be a rational, then the appropriate de
ision pro
edure is one for rational arithmeti
. While

the sort-based assumption 
an be 
onsidered a real restri
tion as we 
annot deal with

theories sharing fun
tion symbols, it has not yet surfa
ed in our experien
e with program

veri�
ation. However, it has been the subje
t of interesting theoreti
al work in [TR98℄.

Very general approa
hes in 
ombining positive existential theories are dis
ussed in [BS98℄.

In Se
tion 2.2.2 and 2.2.3 we will review two ways of propagating equalities.

2.2.2 The Nelson-Oppen 
ombination

Nelson and Oppen proposed a fairly general framework for 
ombining pro
edures de
iding

satis�ability of quanti�er-free senten
es. An early presentation is given in [Opp80a℄, and a

rigorous analysis is performed in [TH96℄. We will borrow notation from the latter sour
e

whenever possible. Given theories T

1

and T

2

over disjoint signatures �

1

and �

2

and de
ision

pro
edures Sat

i

i = 1; 2 that establish satis�ability of quanti�er free formulas using only

fun
tion symbols from �

i

the Nelson-Oppen 
ombination provides a way to 
ombine Sat

1

and Sat

2

to a pro
edure Sat

1&2

that 
an establish satis�ability in T = T

1

[ T

2

. While

we obviously assume that T is 
onsistent (otherwise the de
ision problem is trivial), a

stronger 
ondition, stable-in�niteness, is required for the 
ombination T to have a simple

presentation whi
h is also 
omplete.

De�nition 2.2.1 (Stable-in�niteness [Opp80a℄) A 
onsistent, quanti�er free theory T

with signature � is 
alled stably-in�nite whenever, for every quanti�er-free �-formula ', if

f'g [ T is 
onsistent, then there is an in�nite model satisfying f'g [ T .

The 
ombination pro
edure establishes satis�ability of ' by �rst introdu
ing an ade-

quate supply of variables su
h that there are no terms in ' with fun
tions nested from

�

1

and �

2

. To separate boolean reasoning from the satis�ability pro
edures we then split

' to disjun
tive normal form and from this point work with 
onjun
tions of literals. A

De
omposition Phase then separates a 
onjun
tion into two parts. One part 
ontains terms

involving fun
tion symbols from �

1

, the other fun
tions from �

2

. They both 
ontain all

equalities and disequalities of the form u 6= v, u = v, where both u and v are variables.

We allow a non-deterministi
 step to guess for ea
h pair of variables hu; vi whether to add

u = v or u 6= v.

A �nal Che
k Phase invokes the pro
edures Sat

1

and Sat

2

independently on ea
h sepa-

rated 
onjun
tion.
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1. Variable Abstra
tion

For ea
h sub-term f(t

1

; : : : ; g(s); : : : ; t

n

) in ' where f 2 �

1

and g 2 �

2

, or vi
e versa,

repla
e g(s) by a fresh variable z and add the equality z = g(s) to '.

If s = t is a sub-formula of ', and neither s nor t are variables we introdu
e a variable

u and repla
e s = t by s = u ^ t = u.

This pro
ess eliminates nested fun
tions from di�erent signatures at the expense of

adding new equalities.

2. Normal form 
onversion

' is then 
onverted into disjun
tive normal form, and we guess a disjun
t  (whi
h

is a 
onjun
tion of literals).

3. De
omposition Phase

(a) From  form two 
onjun
tions,  

1

and  

2

, where  

i


ontains all 
onjun
ts of  

whi
h are either equalities between variables, or 
ontain fun
tion symbols from

�

i

, i = 1; 2.

(b) Choose a partition P (i.e., P = ffx

1

; x

2

g; fx

3

g; fx

4

; : : : ; x

10

g; : : :g) of the vari-

ables x shared between  

1

and  

2

. Ea
h equivalen
e 
lass should naturally only


ontain variables of the same type.

(
) Simplify  

1

and  

2

by repla
ing ea
h variable in P by an equivalen
e 
lass

representative [x℄

P

.

(d) Use � to assert the disequalities

f[x℄

P

6= [y℄

P

j whenever [x℄

P

and [y℄

P

are di�erent equivalen
e 
lassesg :

4. Che
k Phase

� Che
k satis�ability of  

1

^� using Sat

1

.

� Che
k satis�ability of  

2

^� using Sat

2

.

The pro
edure returns satis�able if there is a disjun
t in the CNF of ' and a partition P

of shared variables su
h that both  

1

^ � and  

2

^ � pass the 
he
k phase. A proof of

soundness and 
ompleteness for this pro
edure is given in [TH96℄ when T is stably-in�nite.

A few observations are worth pointing out in 
onne
tion with this approa
h: (1) Craig's

interpolation theorem tells us that we indeed only need to share equality 
onstraints on

shared variables, assuming equality is the only shared relation or fun
tion symbol, (2)

stable in�niteness is essential for restri
ting the partition P to only shared variables; if

stable in�niteness 
annot be assumed, a partition of all terms and variables suÆ
es to obtain


ompleteness [Opp80a℄ (as we will establish in a sorted setting later), (3) the de
omposition

phase is required in 
ase of non-
onvex theories.
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De�nition 2.2.2 (Convexity) A set of 
onstraints C is 
onvex relative to disequalities

t

i

6= s

i

i = 1; : : : ; n if whenever ea
h disequality t

i

6= s

i

is 
onsistent with C, then C [ fs

1

6=

t

1

; : : : ; s

n

6= t

n

g is 
onsistent.

Similarly, a theory is 
onvex if any 
onjun
tion of literals expressed over its language is


onvex relative to any set of disequalities.

Examples of 
onvex theories in
lude rationals under addition, equality with uninter-

preted fun
tion symbols, and 
ertain theories of S-expressions.

For 
onvex theories we do not need to guess a partition P . Instead, the Nelson-Oppen


ombination suggests using ea
h de
ision pro
edure Sat

i

to in
rementally 
he
k whether

 

i

^ x 6= y is satis�able for shared variables x, y. Consequently, if the de
ision pro
edures

Sat

i

for 
onvex theories run in polynomial time on a 
onjun
tion of literals, the resulting


ombination will also run in polynomial time on inputs expressed as 
onjun
tions of literals.

Shostak's solver-based 
ombination optimizes the integration of de
ision pro
edures for


onvex theories that admit 
anonizers and solvers. We des
ribe this next.

2.2.3 Shostak's 
ombination

Shostak's method of 
ombining de
ision pro
edures allows integrating de
ision pro
edures

for theories, su
h as arrays, linear arithmeti
 over rationals, re
ords, suitable data-types,

simple set-theory and graphs inside Shostak's 
ongruen
e 
losure algorithm [Sho84, CLS96,

Mos88℄. The method requires ea
h theory T to provide (1) a 
anonizer (�), whi
h satis�es

1. �(s) = �(t) whenever T q s = t. It follows that � is idempotent.

2. If �(t) = f(t

1

; : : : ; t

n

) then �(t

i

) = t

i

.

and (2) a solver, whi
h rewrites an equation s = t to either false (if it is unsatis�able) or

into an equivalent form 9V

aux

:

V

n

i=1

x

i

= t

i

, where

1. ea
h x

i

is an uninterpreted sub-term from s or t.

2. ea
h t

i

is 
anonized, i.e., �(t

i

) = t

i

,

3. no x

i

o

urs in t

j

,

4. no x

i

is equal to an x

j

, when j 6= i.

5. V

aux

is the 
olle
tion of auxiliary variables that o

ur in the t

j

's but not in the original

equation s = t.

In the 
ase that a theory provides a 
anonizer and a 
omputable solver it is said to be

algebrai
ally solvable.

A note on \variables": We shall use the term skolem variable to refer to variables that

are obtained from skolemization of universal for
e quanti�ers. Skolem variables 
an be

instantiated by arbitrary terms to 
lose the refutation sear
h. Relative to a �xed theory
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T we also use the term variable (without the quali�
ation \skolem") to refer to sub-terms

that are not interpreted in T .

Using the solved form: The advantage of algebrai
ally solvable theories is that we 
an

write the solution as an idempotent substitution

� = [x

i

7! t

i

j i = 1; : : : ; n℄ :

Explained in a simpli�ed way the substitution 
an be used to de
ide veri�
ation 
onditions

of the form s

1

= t

1

^ s

2

= t

2

! s

3

= t

3

by extra
ting �

1

from s

1

= t

1

, extra
ting �

2

from

(s

2

= t

2

)�

1

and 
he
k if �(s

3

�

1

�

2

) is identi
al to �(t

3

�

1

�

2

).

An implementation within Shostak's 
ongruen
e 
losure algorithm allows to pro
ess

equalities and disequalities in any order. The substitutions � are applied immediately and

stored in a union-�nd stru
ture. The e�e
t of applying � is propagated via 
ongruen
e


losure on super-terms of the terms appearing in the domain of �. With the terminology of

rewriting theory the substitutions 
orrespond to normalization with respe
t to ground 
om-

pletions [GNP

+

93℄. In reasonable implementations the 
he
ks for unsatis�ability (violation

of disequalities) happen on a 
all-by-need basis, that is, only when the terms involved in a

disequality are made equal.

Shostak's 
ongruen
e 
losure algorithm a
hieving this task was �rst published with

subtle mistakes and without a rigorous 
orre
tness argument. It is probably no exaggeration

that it remains mysterious even for experts in automated dedu
tion, if not for Shostak

himself today. What makes it attra
tive is that 
ongruen
e 
losure here serves in dispat
hing

de
ision pro
edures and 
ombining them tightly.

2.2.3.1 Combining solvers

To 
ombine theories over disjoint signatures (every fun
tion symbol is only interpreted in

at most one theory) the solvers for ea
h theory treat sub-terms headed by fun
tion symbols

that are not interpreted in that theory as variables. Solvers for disjoint theories are then


ombined by applying them to a set of equations rather than a single equation until a �x-

point is rea
hed. Requirement 1 is then no longer suÆ
ient to guarantee termination. For

instan
e, in the 
onstraint

CAR(z) = CAR(x) + CDR(y) (2.1)

a solver for S-expressions treats the right-hand side as a variable be
ause + is not interpreted

in the theory of S-expressions. It 
ould then produ
e the solution CAR(x)+CDR(y) = CAR(z);

then a solver for linear arithmeti
 interprets +, but not CAR, so it 
hooses to return the

original equation. In this setting a solution 
ould be to 
hange requirement 1 to

1. x

i

is a variable from s whenever possible.
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We 
annot always require x

i

to be a variable from the left-hand side as the following example

suggests:

CONS(NIL; x)

| {z }

s

= CONS(y; z)

| {z }

t

:

A solved form is

y = NIL; x = z

but requires y whi
h only o

urs in t on the right-hand side. A 
lear disadvantage of this

restri
tion is that by for
ing the solved form to use primarily the left side of an equation,

unne
essarily large expressions may be generated. For example, in solving

CAAAR(x) = y (2.2)

we are required to return

x = CONS(CONS(CONS(y; z

1

); z

2

); z

3

)

instead of just swapping the equality.

Fortunately, our 
ombination here avoids the problems from (2.1) and (2.2) by allowing

a partial interpretation of the sele
tors CAR and CDR when they are applied to variables.

Then the 
onstraint (2.1) 
an only be solved by the arithmeti
al 
onstraint solver, be
ause

the prin
ipal sort of that equation is one of N , Q, R, C. The 
onstraint (2.2) is simplify

solved as [CAAAR(x) 7! y℄.

2.2.3.2 Comparisons

In a very good sense one 
an regard solvers as uni�
ation algorithms and the solver/
anonizer


onstraints as requirements on the solver to return most general uni�ers. Shostak's integra-

tion of solvable theories is then in prin
iple a heuristi
 optimization of (prominent) spe
ial


ases where the Nelson-Oppen applies: to 
onvex theories admitting solvers and 
anonizers.

Shostak's integration is then (obviously sound and) 
omplete in the same 
ases and for the

same reasons as Nelson and Oppen's approa
h. Non-
onvex theories 
an in some 
ases still

be supported by having the 
anonizers return 
ompound expressions 
ontaining 
ondition-

als, but this may not always be the best heuristi
 approa
h. Furthermore, when 
onstraints

other than pure equalities are involved the naive use of Shostak's method la
ks even more


exibility. This has led us to a 
onstraint-based extension of the method to bene�t from its

advantages while enabling extended expressibility.

2.2.4 Constraint-based 
ombination of solvers

To provide a more 
exible framework, still bene�ting from Shostak's 
ombination of solvers,

we use a notion of 
onstraint 
ontexts. Ea
h 
ontext stores 
onstraints that 
annot be

redu
ed to equalities over a parti
ular sort. Hen
e, one 
ontext is allo
ated for the domain

of integers, rationals and reals, another for re
ursive and 
o-re
ursive data-types, another
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for bit-ve
tors et
.. The 
onstraint 
ontexts are then used to maintain 
onstraints over the

parti
ular sorts. A 
ontext C over sort S 
an be updated by adding a 
onstraint 
 whose

prin
ipal sort belongs to the sort S. On the other hand, we require that in adding new


onstraints to 
ontexts we will be able to extra
t all newly implied equalities in the form

of a substitution in the same way as Shostak's solve routine. For example, if C 
ontains

the inequalities x � y; y � z � 1, then adding the 
onstraint 
 : z � x + 1 results in the

substitution � : [x 7! y; z 7! y + 1℄ and the redu
ed 
onstraint 
ontext C�. Non-
onvex

theories are supported via a split operation whi
h takes a 
ontext C and splits it into a list of


ontexts and substitutions (C

1

; �

1

); : : : ; (C

n

; �

n

). Informally, we read the list as a disjun
tion

of possible simpli�
ation of C.

In des
ribing the requirements on the extended utilities we borrow notation and termi-

nology from the 
onstraint logi
 programming literature [JM94℄, as we also here deal with

maintaining 
onstraints. For the theories we will be studying assume that

� Equality is part of every theory. Hen
e, for every term s and t whose prin
ipal sort

belongs to a given theory, s = t is a legal 
onstraint.

� Constraints are 
losed under negation: If 
 is a 
onstraint, then :
 is a 
onstraint too.

Although a set of 
onstraints C is in pra
ti
e maintained by spe
ialized data-stru
tures, we

interpret them as suitable �rst-order formulas. In parti
ular, true stands for the empty


onstraint 
ontext, and false for the unsatis�able 
onstraint 
ontext.

The theories and asso
iated de
ision pro
edures des
ribed in more detail in 
hapters 5,

6, 7, and 8 are required to provide the operations addConstraint, split, and a 
anonizer �.

Re
all that for ea
h theory T is asso
iated a language L (disjoint from languages over other

theories, ex
ept for equality) and prin
ipal sort S (su
h as real, bit-ve
tor, or queue). For

the operations we require:

addConstraint: 
ontext � 
onstraint ! 
ontext � substitution As a generalization of the solve

routine we use addConstraint to update a 
onstraint 
ontext. In the 
ase where C is

the empty 
ontext, addConstraint and solve should 
oin
ide when presented with an

equality. In this 
ase addConstraint returns the empty 
ontext and a substitution.

For soundness we require that addConstraint is equivalen
e-preserving, i.e.,

Let (C

0

; �

0

) = addConstraint (C; 
): Then C ^ 
 $ 9V

aux

: C

0

^ �

0

:

We add multiple 
onstraints 


1

; : : : ; 


n

using the notation

addConstraints (C; f


1

; : : : ; 


n

g) :

For 
exibility we also admit substitutions that are not idempotent as long as they

represent most general uni�ers. For instan
e, a most general uni�er for potentially


y
li
 terms 
an be expressed as a mapping on the term-graphs of terms s and t that

are uni�ed. While previous implementations of Shostak's 
ongruen
e 
losure based
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integration have been unable to handle su
h 
y
li
 terms we will present an integration

in Se
tion 3 that does handle 
y
li
 terms, and terminates on su
h uni�ers as long as

the non-well-founded solver does not need to introdu
e new terms.

� : 
ontext � term ! 
ontext � term The 
anonizer 
an also be made 
ontext-dependent

whi
h allows it to 
ause side-e�e
ts in 
ontexts, su
h as a

umulating splitter 
andi-

dates. We write �

C

(t) as a shorthand for t

0

, where (C

0

; t

0

) = �(C; t).

For instan
e, we will make the interpretation of data-type sele
tors su
h as CAR and

CDR dependent on whether they take an argument labeled by a 
onstru
tor (in this

example CONS, ATOM, or NIL). When the 
anonizer pro
esses a term of the form CAR(x),

where x is not a CONS, it returns CAR(x), but stores x as a future splitter with the


ases NIL, CONS(y; z), or ATOM(u).

split: 
ontext ! (
ontext � substitution)

�

[ ftrueg Primarily split allows to represent 
on-

straints over non-
onvex theories. Suppose that x

1

; : : : ; x

n

are the variables (terms

whose main fun
tion symbol is not in L) of sort S in C, and let s; t; s

1

; t

1

; : : : ; s

n

; t

n

below be terms whose variables of sort S are among x

1

; : : : ; x

n

.

From the arity of split it follows that either

split(C) = true

or

split(C) = h(C

1

; �

1

); : : : ; (C

n

; �

n

)i

The �rst 
ase represents the instan
e where no impli
it equalities 
an be derived from

C. We require that:

if C [ T q

n

_

i=1

s

i

= t

i

then �

C

(s

i

) = �

C

(t

i

) for some i :

In other words, there is a model of T together with 
onstraints C di�erentiating all

terms over x

1

; : : : ; x

n

unless the 
anonizer � entails equality

2

.

In the se
ond 
ase:

� For soundness we require that C imply the disjun
tion of the terms in split, i.e.,

if C then

n

_

i=1

9V

aux

: C

i

^ �

i

:

� For 
ompleteness we require lazy equational 
ompleteness. Let s and t be terms

2

We need this impli
it de
laration of variables in C for the 
ase of theories over �nite domains.
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built from de
lared variables,

if T [ C q

m

_

i=1

s

i

= t

i

then

�

C

(s

i

) = �

C

(t

i

) for some i

or C = false

or T [ C

j

q (

m

_

i=1

s

i

= t

i

)�

j

for ea
h j = 1; : : : ; n

� For termination we require there be a well-founded ordering �, su
h that C

i

� C.

From soundness, 
ompleteness and termination it follows that split must provide a

de
ision pro
edure for determining whether a 
onjun
tion of 
onstraints 


1

; : : : ; 


n

is

satis�able or not. This follows, as assume 


1

; : : : ; 


n

is unsatis�able, then for fresh

variables x

new

, y

new

that do not appear in 


1

; : : : ; 


n

we have




1

^ : : : ^ 


n

q x

new

= y

new

:

trivially as the assumptions are false. The three requirements imply that if we form

C

0

= true, and for i = 1; : : : ; n and generate (C

i

; �

i

) = addConstraint (C

i�1

; (


i

)�

1

� � � �

i�1

),

then, either C

n

= false or the result of applying split exhaustively to C

n

results in

the empty list (when interpreted as the empty disjun
tion this is false).

The availability of split gives us the freedom to require that if C implies some equality it

is presented in a substitution � after some sequen
e of splits. Implied equality 
onstraints

may thus be delayed at the dis
retion of the de
ision pro
edure. In pla
e of lazy equa-

tional 
ompleteness one 
an desire eager equational 
ompleteness, whi
h requires addCon-

straint to return in � all equalities that are implied in 
onjun
tion with the new 
onstraint.

Thus, eager equational 
ompleteness states: If 


1

^ : : : ^ 


n

q s = t and C

0

= true,

(C

i

; �

i

) = addConstraint (C

i

; (


i

)�

1

� � � �

i�1

) for i = 1; : : : ; n, then either C

n

is unsatis�able or

�(s�

1

� � � �

n

) = �(t�

1

� � � �

n

): For the theory of linear arithmeti
 over the rationals we have

an eager equational 
omplete algorithm for maintaining arithmeti
al 
onstraints.

2.2.4.1 Spe
ial relations

One of our interests will be to integrate de
ision pro
edures for theories that are essentially

disjoint ex
ept for some sharing via spe
ial relations axioms of the form

x �

1

y ! f(x) �

2

f(y) (2.3)

That is, assume we are given theories T

1

and T

2

, over languages L

1

, L

2

respe
tively, where

�

1

2 L

1

and f;�

2

2 L

2

and L

1

\ L

2

= f

:

=g (the languages are disjoint, ex
ept for

sharing equality). We now form the theory

T

1

[ T

2

[ fx �

1

y ! f(x) �

2

f(y)g :

In this 
ase, Craig's interpolation theorem no longer suÆ
es for 
ombining disjoint
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satis�ability pro
edures as the extra axiom 
ombines the languages via more than equality

reasoning.

We will treat spe
ial relations and mixed 
onstraints in two methods (1) uninterpreted


ases of spe
ial relations are handled as an extension of the 
ongruen
e-
losure algorithm

(Chapter 4), (2) spe
ial relations involving arithmeti
al 
onstraints are integrated with a

linear arithmeti
 solver by adding extra interfa
e utilities to the solver whi
h allows other


onstraint solvers to a

ess sele
ted 
ontent (Chapters 5.1.4 and 6.2.6).

2.2.4.2 T -refuting substitutions

To ta
kle instantiation of quanti�ers our pro
edure will draw on utilities for �nding T -

refuting substitutions. Only skolem variables are used in the domain of the instantiations.

instantiate : 
ontext ! substitution�set In �nding instantiations of quanti�ed variables the-

ories may provide an instantiate utility whi
h given a 
ontext C returns a set of T -

refuting substitutions �, su
h that for � 2 �, C� is in
onsistent.

In the 
ase where C is a 
onjun
tion of pure uninterpreted equalities �nding a T -refuting

substitution to s 6= t is an NP-
omplete problem, known as the rigid E-uni�
ation problem

(see 3.5). For extensions of equational theories with some spe
ial relation theories we show

in Chapter 4 how to redu
e the problem of �nding T -refuting substitutions to the rigid

E-uni�
ation problem.

2.3 First-order refutation sear
h: A 
al
ulus

Having presented generi
 requirements for integrating a 
lass of de
ision pro
edures we

will here 
ontinue with presenting the main framework in whi
h boolean 
onne
tives and

quanti�ers are handled.

Integrating spe
ialized de
ision pro
edures into general �rst-order theorem proving sys-

tems is a mu
h-dis
ussed problem with a long line of resear
h [Plo72℄. Mu
h of this work

has been 
arried out in the 
ontext of resolution, in
luding theory resolution [Sti85℄, 
on-

strained resolution [B�ur91℄, and the use of spe
ialized uni�
ation [Fri91, BS93℄. However,

these methods usually make spe
ial demands on the de
ision pro
edures (
omputation of

residues or 
omplete sets of most general uni�ers, identifying T -unsatis�able subsets, et
.).

These requirements are not always satis�ed by otherwise fast and eÆ
ient de
ision pro
e-

dures. Furthermore, in a resolution setting they perform poorly on large formulas with a


omplex boolean stru
ture.

Note that for some of the theories we 
onsider, su
h as �rst-order logi
 with arith-

meti
, 
omplete proof systems are impossible to obtain. However, our abstra
t pro
edure

is 
omplete for pure �rst-order logi
 (that is, the empty theory) and theories for whi
h an

appropriate version of Herbrand's theorem holds. This theoreti
al 
ompleteness 
laim holds

for implementations that enumerate all possible substitutions. However, it does not hold for

the mu
h more e�e
tive sele
tive generation of substitutions by uni�
ation and in
omplete

theory reasoning that we use in pra
ti
e.
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su

eed ; ! refuted

redu
e ffalseg [ S ! S

simplify fFg [ S ! fSIMPLIFY (F)g [ S

split fF [e℄g [ S ! fe = d

i

^ F j d

i

2 dom(e)g [ S

instantiate S ! S� : fF� j F 2 Sg

for some substitution �

skolemize

+

fF [8x:'℄

+

g [ S ! fF ['[y=x℄ ^ 8x:'℄

+

g [ S

skolemize

�

fF [8x:'℄

�

g [ S ! fF ['[f

x

(y)=x℄℄

�

g [ S

skolemize

�

fF [8x:'℄

�

g [ S !

8

>

<

>

:

0

B

�

a

x

(y) ^ 8x:'

_

:a

x

(y) ^ :8x:'

1

C

A

^ F [a

x

(y)℄

�

9

>

=

>

;

[ S

let-eliminate fF

"

let x = e

1

in e

2

#

g [ S ! ff

x

(y) = e

1

^ F [e

2

[f

x

(y)=x℄℄g [ S

Figure 2.2: Rules for general T -refuting pro
edure

Our pro
edure is an extension of the Davis-Putnam-Loveland-Logemann propositional

satis�ability 
he
ker [DP60, DLL62℄. It operates on formulas in non
lausal form, and is

extended to 
onsider quanti�ers. The pro
edure is intended to preserve the original stru
-

ture of the formula, in
luding stru
ture sharing using let- expressions, as mu
h as possible.

Case splitting, instantiation, skolemization and simpli�
ation 
an all be performed in
re-

mentally, in a uniform setting. We take advantage of instantiations suggested by de
ision

pro
edures whenever available, but 
an also use \bla
k-box" pro
edures that only provide

yes/no answers.

For an arbitrary 
losed formula G, satis�ability-preserving skolemization 
onstru
ts a

quanti�er-free formula Sk(G) su
h that 8�:Sk(G) is satis�able i� G is satis�able. G is valid

i� :G is unsatis�able, whi
h is the 
ase i� 8�:Sk(:G) is unsatis�able. This is the 
ase if (but

not only if) there is a ground-unsatis�able instan
e Sk(:G)�. Thus, the validity of a �rst-

order formula 
an be established by �nding a substitution for whi
h a given quanti�er-free

formula is ground-unsatis�able.

We now present a pro
edure in whi
h skolemization, instantiation, quanti�er dupli
ation

and the refutation sear
h are all 
arried out within a uni�ed framework. The pro
edure

operates on a set S of formulas fF

1

; : : : ;F

n

g, where S is said to be satis�able i� 8�:(F

1

_

: : : _ F

n

) is satis�able. To �nish a proof we need to show that all of the elements of S are,

in fa
t, unsatis�able, under a 
ommon instantiation. The abstra
t pro
edure pro
eeds by

transforming the set S, at ea
h step applying one of the rules in Figure 2.2.

{ su

eed: This rule 
on
ludes the refutation sear
h.
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{ redu
e: false 
an be disregarded in the sear
h for a satis�able disjun
t.

{ simplify: F is simpli�ed using equivalen
e preserving transformations, possibly to false ,

by the available de
ision pro
edures and simpli�
ation me
hanisms (see Se
tion 2.2).

SIMPLIFY (F) simpli�es F with respe
t to its top-level literals, produ
ing a formula

T -equivalent to F . Minimal requirements for SIMPLIFY are:

� If e = d

i

is a top-level literal of the formula, then e o

urs nowhere else in the

simpli�ed formula.

� If the top-level literals of the formula are re
ognized as T -
omplementary, then

the simpli�ed formula is false.

{ split: Subexpressions e taking values from a �nite domain dom(e) 
an be analyzed

a

ording to the domain values. This in
ludes boolean sub-formulas e, whi
h are

split with e = false and e = true. In this 
ase, the 
onjun
ts added are :e and e,

respe
tively. Spe
ial 
ases of this rule are dis
ussed in Se
tion 2.4.

{ instantiate: The substitution � 
an instantiate free skolem variables in S by arbitrary

(quanti�er-free) terms.

{ skolemize

+

: y is a fresh variable.

3

{ skolemize

�

: y is a tuple of all the free variables in 8x:' and f

x

is a fresh fun
tion

symbol.

{ skolemize

�

: a

x

is a fresh predi
ate symbol, and y is a tuple of all the free variables in

8x:'.

{ let-eliminate: y is a tuple of all the free variables in e

1

and f

x

is a fresh fun
tion

symbol.

2.3.1 Main properties

We write S !

�

S

0

if one or more rules transform the set S into the set S

0

. We say that a

rule preserves satis�ability when it transforms S to S

0

, if:

8�:

_

F 2 S

F is T -satis�able i� 8�:

_

F 2 S

0

F is T -satis�able:

Lemma 2.3.1 Ex
ept for instantiate, ea
h rule in Se
tion 2.3 preserves satis�ability

when applied to any set S. If the original set 
ontains only 
losed formulas, and only these

rules are applied, then instantiate preserves satis�ability as well.

Proof:

3

Similar skolemization rules apply to existential quanti�ers, when 9x:' has the opposite polarity.
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We inspe
t ea
h transformation rule. For an interpretation I (a model) a ��variant

I

�

is an interpretation that 
oin
ides with I ex
ept for the variables in �.

{ redu
e:8�:false _

W

S is equivalent to 8�:

W

S

{ split: Every I

�


orresponding to a satisfying model I for 8�: fF [e℄g _

W

S satis�es

fF [e℄g_

W

S. Clearly I

�

q e = d

i

for some i, thus I

�

q

W

(fe = d

i

^ F j d

i

2 dom(e)g[

S), and hen
e also I does.

{ simplify: As the simpli�
ation is required to be equivalen
e preserving it trivially

preserves satis�ability.

{ skolemize

+

: 8x:' ! '[y=x℄ so F [8x:' ^ '[y=x℄℄$ F [8x:'℄.

{ skolemize

�

: Assume I

�

q= 8x:', then there is a d depending only on the free

variables in 8x:', su
h that I

�

y [x 7! d℄ q= '. Augment I

�

by skolem fun
tion f

x

(y)

taking the free variables y in 8x:' as argument su
h that whenever I

�

q F [8x:'℄

�

and I

�

q= 8x:', then [[f

x

(y)℄℄ = d su
h that I

�

y [x 7! d℄ q= '.

On the other hand assume I

�

q F ['[f

x

(y)=x℄℄, then as 8x:' ! '[f

x

(y)=x℄ the

negative o

urren
e gives: I

�

q F [8x : '℄

{ let-eliminate:

F [let x = e

1

in e

2

℄ �

9x

0

: x

0

= e

1

^ F [e

2

[x

0

=x℄℄ �

9x

0

: x

0

= e

1

^ F [e

2

[e

1

=x℄℄ �

(9x

0

: x

0

= e

1

) ^ F [e

2

[e

1

=x℄℄ is satis�able if and only if

f

x

(y) = e

1

^ F [e

2

[e

1

=x℄℄ �

f

x

(y) = e

1

^ F [e

2

[f

x

(y)=x℄℄

{ skolemize

�

:

F [8x : '℄ �

9a : (a$ 8x : ') ^ F [a℄ �

9a : (a$ 8x : ') ^ F [8x : '℄ �

(9a : (a$ 8x : ')) ^ F [8x : '℄ is satis�able if and only if

(a

x

(y)$ 8x : ') ^ F [8x : '℄ �

(a

x

(y)$ 8x : ') ^ F [a

x

(y)℄ �

(a

x

(y) ^ 8x : ' _ :a

x

(y) ^ :8x : ')) ^ F [a

x

(y)℄
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In pra
ti
e, we are only 
on
erned with the \only if" dire
tion of satis�ability preser-

vation. This dire
tion is always maintained by the instantiate rule, as well as the rule

re�nements we 
onsider later on. If the old set is satis�able only if the new one is, then we

have:

Theorem 2.3.2 (Soundness) For any 
losed formula F , if f:Fg !

�

refuted then F is

T -valid.

Rules that preserve satis�ability are invertible: if S ! S

0

using an invertible rule, then

S !

�

refuted i� S

0

!

�

refuted. Lemma 2.3.1 tells us that all the rules in Se
tion 2.3 are

invertible. In parti
ular, rules redu
e, skolemize

�

, and let-eliminate should be applied

whenever possible, sin
e they redu
e the 
omplexity of S and preserve satis�ability. Finally,

we have:

Theorem 2.3.3 (First-order 
ompleteness) Let F be a 
losed �rst-order formula. If

F is (generally, or ;-) valid then f:Fg !

�

refuted.

This follows, for example, from the 
ompleteness of the general matings pro
edure, given

a suitable ampli�
ation of the formula [And81℄. As in the 
ase of resolution [Rob65℄, the


ompleteness of most su
h pro
edures relies on Herbrand's theorem to guarantee that an

appropriate �nite ground instantiation always exists. Herbrand's theorem 
an be extended

to a

ount for 
ertain 
lasses of ba
kground theories [Fri91, BFP92, GNRS92℄. Sin
e pra
-

ti
al implementations will sa
ri�
e 
ompleteness by 
onsidering only instantiations with a

limited amount of quanti�er dupli
ation, (see Se
tion 2.3.2), we will not be 
on
erned with

ensuring that su
h an extended Herbrand theorem holds.

Theorem 2.3.4 (Ground de
idability) Let F be a 
losed formula where all o

urren
es

of 8 are stri
tly positive. If f:Fg !

�

fF

0

g [ S and F

0

is T -
onsistent, then any T -model

for F

0

is also a model for :F .

Thus, if we 
an de
ide the T -
onsisten
y of a formula F

0

obtained from the analysis of

:F , then we 
an 
on
lude that F is not valid; a model for F

0

is a 
ounterexample.

2.3.2 Equations, rewrites and limited quanti�er dupli
ation

To narrow the sear
h, one 
an limit the number of quanti�er dupli
ations in rule skolemize

+

.

For most pra
ti
al appli
ations the quanti�er need not be dupli
ated at all, using the fol-

lowing rule:

{ skolemize

+

0

: fF [8x:'℄

+

g [ S ! fF ['[y=x℄g [ S.

In this 
ase, rules skolemize

+

0

and skolemize

�

should take pre
eden
e over split, and the

entire formula is fully skolemized before the sear
h begins.
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As a spe
ial 
ase of quanti�er dupli
ation, 
onjun
ts 
an be added whenever they are

an immediate 
onsequen
e of a universally quanti�ed top-level literal.

4

A 
ommon 
ase is

that of equalities: if the formula 8 � :(s = t) is known (variables renamed apart), one 
an

add the rules:

{ rewrite: fF [e℄g [ S ! fe = t� ^ F [e℄g [ S where e = s�.

{ narrow: fF [e℄g [ S ! (fe = t ^ F [e℄g [ S) � where e� = s�.

In this way, equations that are not terminating or 
on
uent 
an be applied step by step. A


onditional rewrite rule, whi
h rewrites e to e

0

under 
ondition 
, 
an be applied yielding

f(
� ! e = e

0

) ^ F [e℄g[S or adding the equality e = e

0

after ensuring that 
� holds under

the assumption F [e℄.

2.3.3 Sequent 
al
ulus

The above presentation is analogous to proof in a Gentzen-style [Gen69℄ sequent 
al
ulus,

where ea
h transformation 
orresponds to a rule, and ea
h element of the set S is a bran
h

in the proof. To illustrate this, we show how well-founded (trans�nite) indu
tion and a


ut rule 
an be added in very mu
h the same way they are added to sequent-style 
al
uli.

(These rules are not part of our implementation, des
ribed in Se
tion 2.4.)

indu
tion fF [8x:'℄

�

g [ S !

(

F

"

8x:

 

8y: (y � x! '[y=x℄)

! '

!#)

[ S


ut fFg [ S ! fG ^ F ; :G ^ Fg [ S

for an arbitrary formula G.

In the indu
tion rule, � should be a well-founded order, and y a fresh variable.

A standard proof-theoreti
 analysis 
an demonstrate how to transform an arbitrary

Gentzen-style derivation into a derivation of the 
al
ulus presented here, and vi
e-versa.

Furthermore, a 
ut-elimination theorem holds for the �rst-order 
al
ulus presented here

(without the indu
tion rules [Min92℄): derivations involving splits on non-atomi
 formulas


an be 
onverted into derivations using only splits on atomi
 formulas. Uses of rule 
ut


an also be eliminated from the �rst-order (uninterpreted) 
al
ulus using a standard 
ut-

elimination pro
edure.

2.4 Refutation sear
h: Ba
ktra
king implementation

Following is a des
ription of the nondeterministi
 refutation sear
h pro
edure rewritten to

suggest a pra
ti
al implementation that uses depth-�rst sear
h with ba
ktra
king. It as-

sumes the formula has already been skolemized. When su

essful, REFUTE (F ; [ ℄) returns

4

Quanti�er dupli
ation in the ESC system [Det96℄ is in the form of su
h mat
hing, limited by a heuristi


bound.



CHAPTER 2. COMBINING THEORIES 32

a T -refuting substitution for F . Our inspiration for this approa
h is the Davis-Putnam-

Loveland-Logemann (DPLL) propositional satis�ability pro
edure, whi
h is e�e
tive and

requires little memory.

REFUTE (F ; �

1

) =

F

0

 SIMPLIFY (F�

1

)

if F

0

= false then return �

1

else do one of

instantiate: � a substitution

return REFUTE (F

0

; �

1

� �)

split: e; fd

1

; : : : ; d

n

g  an expression and possible values

�

2

 REFUTE (e = d

1

^ F

0

; �

1

)

�

3

 REFUTE (e = d

2

^ F

0

; �

2

)

.

.

.

return REFUTE (e = d

n

^ F

0

; �

n

)

amplify: G  an ampli�
ation formula

return REFUTE (G ^ F

0

; �

1

)

The DPLL pro
edure is an instan
e of REFUTE when F is in 
lause form, SIMPLIFY

implements unit resolution and subsumption, only the split operation is used, and e is

an atomi
 formula that o

urs in a nonunit 
lause. The added instantiate and amplify

operations extend the substitution and formula respe
tively. The approa
h is reminis
ent

of the sear
h for general matings [And81, Bib82, Iss90℄ ex
ept here paths are refuted by

T -
omplementary sets of literals instead of synta
ti
ally 
omplementary pairs (
f. theory

matings [Sti85℄).

2.4.1 The basi
 operations

The instantiate operation: instantiate extends the 
urrent substitution �

1

by a sub-

stitution � 
hosen \don't know" nondeterministi
ally with ba
ktra
king. Ideally, if F

0

is

unsatis�able, then � should be a T -refuting substitution for F

0

. T -refuters for the top-level

literals of F

0


an sometimes be found and used as �.

5

T -refuters in
lude substitutions that

make literals 
omplementary by ordinary uni�
ation; others may be proposed by the de-


ision pro
edures (see Se
tion 2.2); �nally, others 
an be found using rigid E-uni�
ation

(Se
tion 3.5). In fa
t [DV96℄ have shown how to use a partial rigid E-uni�
ation pro
edure

to provide a 
omplete pro
edure for a tableau based �rst-order 
al
ulus. It 
an immediately

be adapted to also work for our pro
edure. The only di�eren
e being that tableau rules

split on logi
al 
onne
tives, whereas our pro
edure splits on atomi
 sub-formulas.

Saving substitutions �

1

for whi
h REFUTE fails enables elimination of redundant work

due to dupli
ate substitutions.

5

When a substitution known to be a T -refuter of the top-level literals is 
hosen as �, the su

eeding 
all

on REFUTE is guaranteed to su

eed immediately and 
an be optimized away.
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Trying to �nd a refutation using only the T -refuters one knows about may seem overly

optimisti
, but it appears to work often enough to be a reasonable approa
h.

A se
ond, less optimisti
 approa
h entails enumerating in advan
e possible values for

the variables in the formula. The instantiate operation would then be used to generate

the spa
e of alternative substitutions. A good, but still in
omplete way of �nding possible

values is to look at the positions of variables in the formula and then �nd terms that o

ur

in 
omplementary positions. For example, t is a possible value for x if x o

urs as argument

i of P and t as argument i of :P . The notion of 
omplementary position 
an be extended

in theory-spe
i�
 ways, e.g., t and x are in 
omplementary positions in s � t and x � y (see

Se
tion 4.1). Our 
urrent fo
us and examples use the �rst approa
h.

The split operation: split 
an sele
t an atom e to split on with possible values true and

false as in the DPLL pro
edure. When e or :e is a top-level literal the pro
edure always

prefers the implied unit-split. As an extension of the DPLL pro
edure, split 
an also sele
t a

non
onstant term e to split on with the elements of its �nite domain fd

1

; : : : ; d

n

g as values.

Good heuristi
 sele
tion of what expression to split on 
an have a dramati
 e�e
t on the

size of the sear
h spa
e. Unlike the DPLL pro
edure, we are using non
lausal, nonground

formulas, but 
riteria similar to those used in the DPLL pro
edure [HV95℄ are useful, su
h

as number of o

urren
es and the length of the shortest 
lause a literal would o

ur in if the

formula were 
onverted to 
lause form. Constraint satisfa
tion heuristi
s, su
h as preferring

expressions with smaller domains to split on �rst, 
an also be used.

In the DPLL pro
edure, the sele
tion of whi
h atom to split and the order of values to try

are \don't 
are" nondeterministi
 
hoi
es that a�e
t the sear
h spa
e but not 
ompleteness.

However, this sele
tion 
an a�e
t whether REFUTE su

eeds or not. For REFUTE , we

assume that T -
omplementarity 
an be re
ognized, but not that T -refuters 
an always be

found. For example, the T -
omplementarity of P (2)^:P (1+1) may be re
ognized without

assuming that the de
ision pro
edures are also able to propose fx 7! 1g as a T -refuter of

P (2) ^ :P (x + 1). When REFUTE is applied to P (2) ^ Q(1) ^ (:P (x + 1) _ :Q(x)),

some sear
h orders would su

eed, be
ause fx 7! 1g is dis
overed as a uni�er for Q(1) ^

:Q(x) before attempting to refute P (2) ^ :P (x + 1), while others would fail when the

latter subproblem is en
ountered �rst. However, ba
ktra
king through alternative orders of

splitting is 
ombinatorially expensive, so we do not do it and a

ept this additional sour
e

of in
ompleteness.

The amplify operation: Davis [Dav81℄ de�nes obvious inferen
es as those that only

require substitution for single instan
es of the formulas (i.e., no quanti�er dupli
ation is

needed). The 
ombination of split and instantiate is 
omplete for obvious �rst-order in-

feren
es. It will also make some obvious T -inferen
es, though not all. Even if T 
onsists

only of the theory of equality, the unde
idability of simultaneous rigid E-uni�
ation [DV95℄

limits 
ompleteness of obvious T -inferen
e pro
edures.

Using only split and instantiate is our preferred approa
h. They are suÆ
ient for several

examples whi
h we believe are typi
al problems for STeP. The sear
h spa
e is �nite and

often small. If quanti�er dupli
ation is allowed, the sear
h spa
e would be mu
h larger

(with limited dupli
ation) or in�nite (with unlimited dupli
ation). The single-instan
e



CHAPTER 2. COMBINING THEORIES 34

restri
tion is a natural one that is readily understood by the user. The restri
tion is easily


ir
umvented by the user's expli
it in
lusion of additional 
opies of the formulas (e.g, by

manual appli
ation of skolemize

+

).

Nevertheless, the amplify operation is allowed to do limited quanti�er dupli
ation, prin-


ipally for the purpose of applying rewrites. Rather than dupli
ating a quanti�er \in pla
e",

amplify is de�ned to add an ampli�
ation formula as a 
onjun
t to the formula being re-

futed. The ampli�
ation formula may be any formula that 
an be soundly used in the

refutation; it will typi
ally be a fresh instan
e of a rewrite or premise (see Se
tion 2.3.2).

2.4.2 Data stru
tures

A detailed a

ount of the data stru
tures used to repesent terms and formulas is given in the

next Chapter in 
onne
tion with 
ongruen
e 
losure. Similarly to [NO79℄ and [BDL96℄ we

use a digraph representation of both terms and formulas, where the only boolean 
onne
tive

is ite (if-then-else expressions). In fa
t terms and formulas are not distinguished apart as

we allow ite and quanti�
ation nested inside terms. We use the phrase expression to refer

to terms and formulas. Hen
e, basi
 expressions are of the form:

ite(n

1

; n

2

; n

3

) if-then-else with sub-terms indexed by n

1

; n

2

; n

3

bind x : �:n � is a sort and bind 2 f�;

R

;

P

;

Q

;8;9;9!g

f(n

1

; : : : ; n

k

) (un)interpreted fun
tion appli
ation

true

false

x variable

It is easy to translate let-expressions and standard boolean 
onne
tives to 
onditional

normal form without in
reasing the size of the resulting term-graph. For example ' $  

is translated into ite('; ;: ), where : is translated into ite( ; false; true), and the

same node is used to represent both o

urren
es of  . Implementing the translation using

a hash-table makes maximal sharing automati
.

Potentially, the 
onversion into 
onditional normal form 
onverts every atomi
 subfor-

mula into dual polarity position (in the head of an if-then-else test). The standard notions

for unit-literals also break down without a notion of and-or formula representations. It

is however possible to re
over polarities and unit-literals based on the 
onditional normal

form.

The SIMPLIFY operation: To propagate the e�e
t of splitting, the 
ongruen
e 
losure

algorithm presented in the next Chapter propagates redu
tions of ite terms using 
anon-

izations of the form �(ite(true; b; 
)) = b et
..

Polarity: Assume that node n is assigned positive polarity and that n points to ite(n

0

; n

1

; n

2

).

With the usual interpretation of ite both n

1

and n

2

o

ur with positive polarity, but n

0

has dual polarity. We 
an however assign n

0

positive polarity if the boolean expression

asso
iated with n implies a modi�ed version of the boolean expression asso
iated with n,

where n

0

has been repla
ed by true.
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This will be the 
ase if n

2

implies n

1

. A partial 
he
k for this 
an be obtained by


he
king if the set of positive sub-trees of n

2

form a positive frontier of the tree rooted at

n

1

. Hereby we de�ne the relation spe
i�ed via the predi
ate ;:

n

2

; n

1

def

=

n

2

= false

or n

1

= true

or n

2

= ite(a

1

; a

2

; a

3

); a

2

; n

1

^ a

3

; n

1

or n

1

= ite(b

1

; b

2

; b

3

); n

2

; b

2

^ n

2

; b

3

This partial 
hara
terization has the advantage that it 
an be 
he
ked very qui
kly and

preserves the polarities of standard formulas translated into 
onditional normal form. For

example ' ^  is represented as n : ite(n

0

: '; n

1

:  ; n

2

: false). If the polarity of n is +,

then we should naturally assign polarity + to n

1

, and sin
e n

2

= false, we have n

2

; n

1

,

so n

0

should also have positive polarity.

A dual requirement holds for negative polarity.

Literal weight: A 
ru
ial heuristi
 that makes the Davis-Putnam pro
edure work eÆ-


iently is the ability to 
hoose unit literals whenever possible to perform unit propagation.

We 
ompute the weight of literals by assigning the top-most expression degree Æ = 0

and polarity � = +. From the polarity and degree we furthermore 
ompute a 
onne
tive


on via


on = ^ if Æ is even and � = + or Æ is odd and � = �.


on = _ if Æ is odd and � = + or Æ is even and � = �.


on = 
 otherwise, i.e., � = �

Then assume that a sub-expression n : ite(a; b; 
) has asso
iated polarity �, degree Æ

and 
onne
tive 
on. We assign polarities and degrees to subexpressions a, b, and 
 using

the following rules:

�(a) :=

8

>

<

>

:

� if 
; b

�� if b; 


� otherwise

�(b) := �(
) := �

if b = true; 
on = ^ or b = false; 
on = _ : Æ(a) := Æ(
) := Æ + 1

if b = true; 
on 6= ^ or b = false; 
on 6= _ : Æ(a) := Æ(
) := Æ

if 
 = true; 
on = ^ or 
 = false; 
on = _ : Æ(a) := Æ(b) := Æ + 1

if 
 = true; 
on 6= ^ or 
 = false; 
on 6= _ : Æ(a) := Æ(b) := Æ

if b; 
 =2 ftrue; falseg : Æ(a) := Æ + 2; Æ(b) := Æ(
) := Æ + 1

The use of a digraph representation of expressions implies that the same sub-expression 
an

be visited starting from di�erent paths. In this 
ase the degree is updated to the smallest

one and 
on
i
ting polarities give rise to a dual polarity marking. Repeated traversal of the

same subtree is naturally avoided when a previous degree is not larger and the polarities


oin
ide.
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The splitter pro
edure 
omputes polarity and literal weight simultaneously and returns

unit literals whenever possible, otherwise 
hooses literals of smallest possible weights.

Subexpressions of the form 8x : � : n, 9x : � : n are skolemized via unit splits.

Heuristi
s: Well-known heuristi
s from propositional and 
onstraint satisfa
tion solving,

su
h as dynami
 
lause addition and 
on
i
t dire
ted ba
ktra
king [Pro93℄ or dilemma

rules [SS98℄ have presently not been added to the implementation.

2.5 Summary

We examined di�erent ways to integrate de
ision pro
edures and proposed a 
onstraint-

based version of Shostak's approa
h to allow eÆ
ient handling of general 
onstraints. Based

on a simple proof-
al
ulus we presented a depth-�rst refutation sear
h implementation.



Chapter 3

Congruen
e 
losure

Equality over a vo
abulary of uninterpreted fun
tion symbols f , g, : : : is axiomatized via

re
exivity x = x

symmetry x = y ! y = x

transitivity x = y ^ z = x ! z = y


ongruen
e x = y ! f(: : : ; x; : : :) = f(: : : ; y; : : :) for ea
h fun
tion f

Satis�ability of a set of ground equalities and disequalities 
an be de
ided using 
ongruen
e


losure. Given a subterm-
losed set T of terms ft

1

; : : : ; t

n

g and a set E � T �T of equations

over T , 
ongruen
e 
losure is the pro
ess of generating the 
oarsest partition C of T satisfying

1. (s; t) 2 E ! s �

C

t.

2. s �

C

t ! f(s) �

C

f(t).

where

s �

C

t

def

= 9C 2 C : s; t 2 C :

Sin
e C is a partition it automati
ally satis�es the equality axioms for re
exivity, symmetry

and transitivity. The 
ongruen
e axioms are satis�ed by 
ondition 2. Sin
e C is the 
oarsest

su
h partition it is guaranteed to only satisfy the 
onsequen
es of the equality axioms for

the terms in T .

Example: Let T = fa; b; 
; f(a; b); f(b; 
); g(a); f(g(a); b)g and assert E = fa = b; b =


g. Then the 
ongruen
e 
losure C is the partition:

ffa; b; 
g; ff(a; b); f(b; 
)g; fg(a)g; ff(g(a); b)gg

Thus, the ground 
onstraint:

a = b ^ b = 
 ^ f(a; b) 6= g(a) ^ f(b; 
) 6= f(g(a); b)

37
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is satis�able be
ause every pair of terms in disequalities are in di�erent 
lasses, but the


onstraint

a = b ^ b = 
 ^ f(a; b) 6= f(b; 
) ^ f(b; 
) 6= f(g(a); b)

is unsatis�able be
ause the terms in the �rst disequality are equal by 
ongruen
e 
lo-

sure.

In this 
hapter we will not only develop new 
ongruen
e 
losure algorithms (plenty of

eÆ
ient versions of these are already around), but also use the 
ongruen
e 
losure algorithm

to manage the use of other de
ision pro
edures.

Shostak's 
ombination of de
ision pro
edures uses a 
ongruen
e 
losure algorithm to

maintain and manage equalities and propagate these through fun
tion symbols. A main

advantage of this approa
h is that equality information is kept in one pla
e: in the union-

�nd stru
ture used by the 
ongruen
e 
losure algorithm. Everywhere else equalities are

propagated using 
anonization. In analogy with term-rewriting, the 
ongruen
e 
losure

algorithm provides a 
ompletion pro
edure, and equalities are propagated using rewriting

into a normal form. It is also easy to pro
ess 
onstraints in
rementally using the 
ongruen
e


losure based approa
h, su
h that in
onsisten
ies 
an be dete
ted early in a refutation

sear
h.

Other 
ongruen
e 
losure algorithms are dis
ussed in [CS70, Koz77, NO78, Sho78,

M
A91℄. For the 
ombination of theories various 
ongruen
e 
losure algorithms have been

proposed in [Sho84, CLS96, BDL96℄. They share a 
ommon restri
tion of not being able

to handle 
y
li
 terms. This restri
tion does not apply here, and we will make use of this

added feature in Chapter 6. The algorithm does not require a re
ursive path ordering on

solutions in the style of [BDL96℄, and does not need auxiliary signature terms [Sho84℄ and

repeated re
ursive 
anonizations. On the less en
ouraging side, 
ompleteness of the 
on-

gruen
e 
losure approa
h still relies on less than obvious properties of the algorithm, and is

highly sensitive to interfa
e 
ompatibility with external solvers.

Summary of Results: In the empty theory where all fun
tion symbols are uninterpreted

our basi
 
ongruen
e 
losure algorithm 
an be tuned to run in average time O(n log(n))

when pro
essing at most n equalities with a total of n di�erent sub-terms. This is better

than other 
ongruen
e 
losure algorithms aimed at 
ombining theories, but it is 
omparable

with the best known bound for 
ongruen
e 
losure algorithms [DST80℄. Our algorithm

di�ers from this by dispensing with a signature table, and uses instead a dynami
 array to

represent and modify terms. The pri
e 
onsists of using O(n log(n)) spa
e instead of linear

spa
e. The extra spa
e 
onsumption has not been a pra
ti
al 
on
ern for the examples used

so far and it has the added bene�t of 
a
hing intermediary results.

In the term-rewriting 
ommunity some interest has been devoted in the generation

of a ground 
on
uent term-rewriting system from a set of ground equalities. For in-

stan
e [GNP

+

93℄ give an O(n

3

) algorithm for generating su
h a set. This is improved

in [Kap97℄ to O(n

2

). Naturally, in Se
tion 3.3.2 we noti
e that our algorithm 
an be used

to generate a ground 
on
uent rewrite system in average time O(n log(n)).

In Se
tion 3.5 we 
onne
t the 
ongruen
e 
losure algorithm with the rigid E-uni�
ation

problem and obtain the ni
e 
orollary that a rigid E uni�er 
an be expressed as an ordered
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set of pairs in the 
ongruen
e 
losure graph.

In Chapter 4 we show how the data stru
tures that are used 
an also be augmented to

propagate relational symbols other than equality.

3.1 Union-�nd

A partition of equivalen
e 
lasses 
an 
onventiently be maintained and updated using a

union-�nd stru
ture. Di�erent union-�nd algorithms are analyzed in depth in [Tar75℄.

A union-�nd stru
ture maintaining a partition over a set of elements Q uses two fun
-

tions:

�nd : Q ! Q whi
h maps elements from the same 
lass to a unique representative within

that 
lass. When �nd(q) = q, we say that q is a root node.

union : Q�Q ! unit The fun
tion union(q; r) takes two root nodes q and r, and merges

their 
lasses by setting �nd(r) := q and similarly with all other elements in the same


lass as r.

1

We extend the union-�nd stru
ture to also 
ontain a set of edges Edges between union-

�nd nodes fromQ. Edges are labeled by auxiliary binary predi
ates, su
h as 6=. In Chapter 4

we treat the 
ase where edges are labeled by binary predi
ates that represent monotone

relations and partial ordering 
onstraints.

For now we augment the pre
ondition of union to require that the argument nodes

are not 
onne
ted with an edge labeled by 6=. This 
orresponds to dete
ting in
onsistent

disequalities. The e�e
t of union(q; r) now also updates the set of edges Edges by re-

pointing edges to and from r to instead enter and leave the new root q. In this way one

maintains the invariant that edges only 
onne
t root nodes.

To dynami
ally allo
ate and keep tra
k of union-�nd nodes, the union-�nd stru
ture


ontains a set Q of allo
ated nodes, and a fun
tion new allo
ating a new node:

Q: Q�set Set of allo
ated union-�nd nodes. Initially Q = ;.

new : unit! Q Allo
ates a fresh state q. The e�e
t is: Q := Q [ fqg for some q 62 Q.

3.2 Terms

Terms are maintained on top of the union-�nd stru
ture by asso
iating ea
h allo
ated

node in Q with a (unique) pair (f; hq

1

; : : : ; q

n

i) where f is a fun
tion symbol of arity n

(variables and 
onstants are treated as a nullary fun
tion symbols), and q

1

; : : : ; q

n

2 Q.

More suggestively we write f(q

1

; : : : ; q

n

) instead of (f; hq

1

; : : : ; q

n

i) to indi
ate that the

arguments of f are the terms asso
iated with q

1

; : : : ; q

n

.

Thus, the domain T of terms is given by:

1

The type unit is the (trivial) singleton domain.
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T = F �Q

�

F 
onsists of fun
tion symbols, 
onstants and skolem variables.

The labeling of Q is maintained by

L

Q

: Q! T

By keeping L

Q

inje
tive there is a fun
tion a
ting as inverse on the range of L

Q

,

L

T

: T ! Q

It is required to asso
iate ea
h term t in the range of L

Q

with the union-�nd node q su
h

that L

Q

(q) = t. While the range of L

T

is Q (that is, 
oin
ides with the domain of L

Q

), its

domain will in general only be required to in
lude range(L

Q

). In our implementation L

T

is a hash-table mapping terms to array indi
es, and L

Q

is a dynami
 array of terms.

use : Q ! Q�set : We also need to maintain a fun
tion that gives a super-set of the

union-�nd nodes that use a given union-�nd node. That is, we maintain the invariant

fq

0

2 Q j L

Q

(q

0

) = f(q

1

; : : : ; q; : : : ; q

n

)g � use(q)

When a 
ongruen
e 
losure node q is allo
ated with new , the 
orresponding value of use(q)

is initialized as ;.


anoni
al: The 
ongruen
e 
losure algorithm works by rewriting terms into 
anoni
al

form a

ording to the equalities it is supplied with. The boolean tag 
anoni
al (q) is used

to indi
ate whether all subterms of the term L

Q

(q) are roots with respe
t to the union-�nd

stru
ture.


anoni
al : Q! B


hildren: As a shorthand we de�ne


hildren(q) = fq

i

j L

Q

(q) = f(q

1

; : : : ; q

n

) ^ i 2 f1; : : : ; ng g

3.3 Uninterpreted 
ongruen
e 
losure

We will now des
ribe a 
ongruen
e 
losure algorithm for uninterpreted fun
tion symbols.

The 
ore algorithm works by merging union-�nd nodes and propagating the equality infor-

mation up through fun
tion symbols. It 
onsists of the fun
tions merge and insert and is

given in Figure 3.1.

Informally, merge asserts equality of nodes a and b by
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1. merge(a; b) =

2. if a 6= b then

3. let

4. (a; b) = if juse(a)j < juse(b)j then (b; a) else (a; b)

5. in

6. union(a; b);

7. for ea
h u 2 use(b) where 
anoni
al (u) do

8. let

9. f(q

1

; : : : ; q

n

) = L

Q

(u)

10. t = f(�nd(q

1

); : : : ;�nd (q

n

))

11. in

12. if t 6= f(q

1

; : : : ; q

n

) then

13. 
anoni
al (u) := false;

14. merge(�nd(u); insert (t; u))

15. insert(t; q) =

16. if t 2 dom(L

T

) then return �nd (L

T

(t)) else

17. L

T

:= L

T

y [t 7! q℄;

18. L

Q

:= L

Q

y [q 7! t℄;

19. 
anoni
al (q) := true;

20. for ea
h q

0

2 
hildren(t) do use(q

0

) := use(q

0

) [ fqg;

21. return �nd(q)

Figure 3.1: Pro
edures merge and insert

1. In line 4 a and b are swapped if the use-list of a is longer than the use-list of b. This


auses union to make as root the node with the smallest use-list, and gives the average

running time 
laimed in Theorem 3.3.2.

2. To propagate the newly obtained equality information every o

urren
e of pointers to

the non-root b must be repla
ed by pointers to the root a. Hen
e ea
h term potentially

using b must be updated by the new fun
tionality of �nd .

3. In lines 9 and 10 the terms a�e
ted by the new fun
tionality of �nd are generated.

Sin
e we allow implementations of the use-list as a list with repetitions, or in
luding

terms without o

urren
es of b, we 
he
k in line 12 whether the update 
aused any


hanges.

4. insert(t; q) �rst 
he
ks if the updated term is already de
lared and returns the �nd of

the node asso
iated with the term in this 
ase. If the updated term t is not already

present, then insert repla
es the previous version of the term labeling q by the new
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t. The 
anoni
ity of q is re
on�rmed, and the use-list of t's 
hildren is updated to

in
lude q.

5. merge is 
alled re
ursively on the results.

There are two observations worth pointing out 
on
erning insert :

1. No new union-�nd nodes are generated by merge and insert .

2. The update L

Q

:= L

Q

y [q 7! t℄ in line 17 asso
iates an entirely new term with the

node q. The terms however share the same fun
tion symbol and only di�er in their

arguments. By 
onstru
tion, applying �nd to the arguments of the previous term

gives the arguments of the new term.

A set of equality 
onstraints

E : s

1

�

= t

1

; s

2

6= t

2

; s

3

�

= t

3

; : : : ; s

n

�

= t

n

where s

i

, t

i

are expressions over F is pro
essed by �rst 
onverting the expressions into terms

over T using the 
anonize fun
tion, and then invoking merge on the resulting equations

over T �T while 
onne
ting nodes 
orresponding to disequalities by 6=-edges. The fun
tion

addConstraints fails if a node is ever 
onne
ted to itself with a 6=-edge. The utilities for

pro
essing equations are shown in Figure 3.2.


anonize(f(t

1

; : : : ; t

n

)) = insert(f(
anonize(t

1

); : : : ; 
anonize(t

n

));new ())

addConstraints(E) =

for ea
h (t

�

= s) 2 E do merge(
anonize(t),
anonize(s))

for ea
h (t 6= s) 2 E do 
onne
t 
anonize(t) and 
anonize(s) by 6=

Figure 3.2: Canonization and pro
essing of equalities

Example: Given

E : fg(f(a))

�

= w; w 6= g(a); f(a)

�

= ag;

a left-to right pro
essing 
reates the stru
ture (the index on the nodes is not ne
essarily


hronologi
al)

L

T

(a) = q

1

use(q

1

) = fq

2

; q

5

g

L

T

(f(q

1

)) = q

2

use(q

2

) = fq

3

g

L

T

(g(q

2

)) = q

3

use(q

3

) = ;

L

T

(w) = q

4

use(q

4

) = ;

L

T

(g(q

1

)) = q

5

use(q

5

) = ;
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Initially �nd := �x:x, and all nodes are 
anoni
al . The �rst equality g(f(a))

�

= w

requires merging q

3

and q

4

. This 
auses the e�e
t

�nd := [q

4

7! q

3

℄

In other words �nd behaves as the identity on q

1

; q

2

; q

3

, and q

5

, and maps q

4

to q

3

.

Asserting the disequality w 6= g(a) 
auses �nd(q

4

) = q

3

and q

5

to be 
onne
ted by an

edge labeled by 6=. Thus, the e�e
t is

Edges := f(q

3

; 6=; q

5

)g

Finally, in asserting f(a)

�

= a, q

2

and q

1

are merged 
ausing �rst the e�e
t

�nd := [q

4

7! q

3

; q

2

7! q

1

℄

sin
e q

2

has the smallest use-list, and then, sin
e q

3

2 use(q

2

) merge requires to set:

t = g(�nd (q

2

)) = g(q

1

) sin
e g(q

2

) = L

Q

(q

3

)

and invoke insert(t; q

3

), whi
h sin
e t 2 dom(L

T

), evaluates to q

5

. A re
ursive invo-


ation merge(q

3

; q

5

) is now initiated, whi
h requires a 
all to union(q

3

; q

5

). This 
all

fails as (q

3

; 6=; q

5

) 2 Edges , indi
ating that the entire set of 
onstraints is unsatis�able.

3.3.1 Corre
tness

We will here prove that the 
ongruen
e 
losure algorithm is sound and 
omplete. In terms

that we will make pre
ise later, this means that invoking addConstraints on a set of equalities

produ
es a stru
ture re
e
ting only the asserted equalities and the 
onsequen
es of the

equality axioms. Equality in the resulting stru
ture is re
e
ted by the fun
tionality of �nd :

two terms asso
iated with nodes q and q

0

are equal if and only if �nd(q) = �nd(q

0

).

First note that a set of equalities E on terms 
orresponds in a natural way to an initial

partition C

0

of a subset of Q. It is obtained by �rst 
anonizing every term in E to get


anonize(E) � Q�Q, and then making C

0

be the least equivalen
e 
lass where every pair in


anonize(E) is in the same 
lass. We will therefore for 
onvenien
e work with 
anonize(E)

and the partition C

0

when stating and proving 
orre
tness.

In analogy with the de�nition of 
ongruen
e 
losure in the introdu
tion we de�ne

De�nition 3.3.1 (Congruen
e 
losure on Q) The 
ongruen
e 
losure of any partition

C

0

of the set of de
lared nodes Q is the 
oarsest partition C su
h that

1. C

0

is a re�nement of C (i.e., 8C 2 C

0

9C

0

2 C : C � C

0

.)

2. Whenever t; t

0

2 dom(L

T

), t = f(q

1

; : : : ; q

n

), t

0

= f(q

0

1

; : : : ; q

0

n

), and q

1

�

C

q

0

1

,: : : ;

q

n

�

C

q

0

n

, then L

Q

(t) �

C

L

Q

(t

0

).

If we pro
ess 
anonize(E) by 
alling merge(�nd(q);�nd (q

0

)) for every pair (q; q

0

) 2


anonize(E), then
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Theorem 3.3.2 (Termination) The fun
tion merge terminates on all inputs in spa
e and

average time

O(n log(n));

where n is the number of nodes in the input term-graph (di�erent subterms in the input).

After addConstraints has terminated we have:

Theorem 3.3.3 (Soundness)

q �

C

�nd(q); 8q 2 Q :

Soundness states that �nd respe
ts the 
ongruen
e relation �

C

. In parti
ular, if q and r are

nodes su
h that �nd(q) = �nd(r), then q and r are in fa
t 
ongruent: q �

C

r. Soundness

is an obvious property of our algorithm: merge only propagates equalities that are implied

by �

C

.

Theorem 3.3.4 (Completeness)

If q �

C

r then �nd(q) = �nd(r) :

Completeness means that �nd 
ollapses all 
ongruen
e 
lasses in C. To establish 
om-

pleteness requires a more 
areful analysis. For this purpose 
onsider the version of merge in

Figure 3.3 augmented with auxiliary variables U and V , whi
h are initially the empty sets.

Informally, U 
onsists of the set of nodes where �nd does not a
t as identity any longer

as a 
onsequen
e of the 
all to union in line 6. The set V 
onsists of the nodes whose terms


ontain an element from U . To a

ommodate for the delay in updating �nd of the use set

of b we therefore de�ne

�nd

U

(q)

def

= if q 2 U then q else �nd(q) :

Completeness now relies on the following invariants whose 
onjun
tion is indu
tive.

Invariant 3.3.5 If f(q

1

; : : : ; q

n

) 2 dom(L

T

) then

f(�nd

U

(q

1

); : : : ;�nd

U

(q

n

)) 2 dom(L

T

):

Invariant 3.3.6 If L

Q

(q) = f(q

1

; : : : ; q

n

) and q 2 V then


anoni
al (q) if and only if

n

^

i=1

q

i

= �nd

U

(q

i

):

Invariant 3.3.7 If L

Q

(q) = f(q

1

; : : : ; q

n

) and q 62 V then


anoni
al (q) if and only if

n

^

i=1

q

i

= �nd(q

i

):
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1. merge(a,b) =

2. if a 6= b then

3. let

4. (a; b) = if juse(a)j < juse(b)j then (b; a) else (a; b)

5. in

6. union(a; b);

7. U := U [ fbg;V := V [ fu 2 use(b) j 
anoni
al (u)g;

8. for ea
h u 2 use(b) where 
anoni
al (u) do

9. let

10. f(q

1

; : : : ; q

n

) = L

Q

(u)

11. t = f(�nd(q

1

); : : : ;�nd (q

n

))

12. in

13. if t 6= f(q

1

; : : : ; q

n

) then

14. 
anoni
al (u) := false; V := V n fug;

15. merge(�nd (u); insert(t; u))

16. U := U n fbg

Figure 3.3: Augmented version of merge

Invariant 3.3.8 If f(q

1

; : : : ; q

n

) 2 dom(L

T

) then

�nd(L

T

(f(q

1

; : : : ; q

n

))) = �nd(L

T

(f(�nd

U

(q

1

); : : : ;�nd

U

(q

n

)))):

When the 
ongruen
e 
losure algorithm has terminated U = ; and V = ;, thus, �nd

U

=

�nd .

Proof of 3.3.4:

A simple way to 
onstru
t the equivalen
e relation �

C

is by 
omputing the least �x-point

obtained by starting with �

C

0

, whi
h is the equivalen
e 
lass obtained from the input

equations. Indu
tively, the i + 1'st partition �

C

i+1

is obtained from �

C

i

by taking the


oarsest partition satisfying

1. If s �

C

i

t then s �

C

i+1

t.

2. If s �

C

i

t then f(s) �

C

i+1

f(t).

The �nal partition �

C

is then �

C

n

for some (�nite) n be
ause there are only �nitely

many terms.

We shall establish by indu
tion on i � n, that whenever q �

C

i

r then �nd (q) =

�nd(r).
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1. If q �

C

0

r, then q and r are 
onne
ted via equalities in 
anonize(E) that are

merged in some order. The merging 
auses eventually that �nd is updated su
h

that �nd(q) = �nd(r).

2. Deriving q �

C

r using symmetry, re
exivity and transitivity is dire
t sin
e a parti-

tion indu
ed by �nd is automati
ally an equivalen
e 
lass.

3. The only other way we 
an derive q �

C

i+1

r is by the existen
e of t; s 2 dom(L

T

),

t = f(q

1

; : : : ; q

n

), s = f(r

1

; : : : ; r

n

), and q

1

�

C

i

r

1

,: : : ; q

n

�

C

i

r

n

, su
h that q =

L

T

(t), r = L

T

(s). The indu
tion hypothesis asserts that �nd(q

1

) = �nd(r

1

); : : : ;

�nd(q

n

) = �nd(r

n

). From the invariants 3.3.5 and 3.3.8 used for both t and s we

obtain that �nd(L

T

(q)) = �nd(L

T

(r)).

Proof of 3.3.2:

We use same idea that is in [DST80℄ by \pro
essing the smaller half". This requires

union to 
hoose as root the state with the largest use-list, su
h that the for-loop pro
esses

the smaller half only. The analysis follows the proof in [DST80℄ 
losely: (1) every time

merge is 
alled, one equivalen
e 
lass is eliminated, (2) a

essing the union-�nd stru
ture

O(n) times takes time O(n logn) sin
e the 
hoi
e of the union root is di
tated by the

length of the use-list (whi
h is stored as a doubly linked list with possible repetitions

and an integer length), but the �nd-stru
ture 
an be dynami
aly updated during the

�nd operations.

A 
loser 
omparison with the Downey, Sethi, Tarjan algorithm is in order. Under

the assumption that L

T

is implemented using a hash-table, [DST80℄ require on average

O(n log n) time and O(n) spa
e. The present algorithm uses more spa
e. The �rst di�eren
e

is that the other algorithm re
omputes a signature table in ea
h iteration and deletes entries

after use. Here, all terms are kept in the hash-table. The other di�eren
e is that the other

algorithm lists the use list for all nodes in the same equivalen
e 
lass, whereas here only

the use-list asso
iated with the root is listed. Instead, the present algorithm ensures that

new terms are generated for 
hildren of the root and inserted using insert into the use list

of the root.

3.3.2 Ground rewriting

It is now simple to extra
t a 
on
uent rewrite system from the L

T

and L

Q

after a set of

equalities have been pro
essed. The rewrite system has the same e�e
t as 
anonize and

will therefore be able to dete
t in
onsistent disequalities. We extra
t the rewrite system as

follows:

1. For ea
h q 2 dom(L

Q

) introdu
e a fresh 
onstant symbol C

q

.
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2. For ea
h q 2 dom(L

Q

) where 
anoni
al (q) and f(q

1

; : : : ; q

n

) = L

Q

(q), add the rewrite

rule:

f(C

q

1

; : : : ; C

q

n

) �! C

�nd(q)

:

When 
anoni
al (q) holds ea
h immediate sub-term is labeled by roots so the rewrite system

does not have any 
riti
al pairs and is obviously terminating as the rewrite rules only repla
e

old fun
tions with the fresh 
onstants. The fresh 
onstants, on the other hand, are never

at the top-level of the left hand side of the rewrite rules.

3.4 Congruen
e 
losure with theories

For in
orporating theories in the 
ongruen
e 
losure algorithm we shall not diverge mu
h in

spirit from Shostak's approa
h. The resulting algorithm is on the other hand signi�
antly

more 
ompa
t than Shostak's, but perhaps still subtle. Figure 3.4 presents the modi�ed

version of merge (from Figure 3.1). The modi�
ations use new auxiliary fun
tions solve

and � des
ribed below. One important 
hange is that merge is no longer allowed to swap

its arguments be
ause the dire
ted union now has to be 
onsistent with the output of solve.

1. merge(a; b) =

2. if a 6= b then

3. union(a; b);

4. for ea
h u 2 use(b) where 
anoni
al (u) do

5. let

6. f(q

1

; : : : ; q

n

) = L

Q

(u)

7. t = �(f(�nd(q

1

); : : : ;�nd (q

n

)))

8. in

9. if t 6= L

Q

(u) then

10. 
anoni
al (u) := false;

11. if not interpreted (u)

12. then pro
ess(solve(�nd(u); insert (t; u)))

13. else if u = �nd(u)

14. then merge(u; insert(t; u))

15. pro
ess(�) =

16. for ea
h [q

1

7! q

2

℄ 2 � do merge(�nd (q

1

);�nd (q

2

))

Figure 3.4: Merge in the presen
e of theories

The 
anonizer � : T ! T : The modi�ed merge uses a 
anonizer � to normalize

terms with respe
t to the updates of �nd and rewrite the resulting term into normal form.
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High-level requirements for the 
anonizer are des
ribed in Se
tion 2.2.3. For 
onvenien
e

we are deviating from the expli
it signature for � from Se
tion 2.2.4 and leave the 
ontext

argument and update impli
it.

While the 
anonizer may need to a

ess L

Q

to normalize sub-terms of the normalized

f(�nd(q

1

); : : : ;�nd (q

n

)) a full re
ursive 
anonization of this argument is not ne
essary, as

merge provides eventual 
anonization of these sub-terms and upwards propagation via the

use-lists. In our implementation, however, the theory-spe
i�
 solvers do use �nd on sub-

terms of interpreted arguments to minimize repeated work.

A note of subtlety: In line 17 of the insert fun
tion, when t is a term that does not already

exist in L

T

, the operation reuses the node u to represent t. The following 
all to merge

then has no e�e
t. For almost all reasonable theories this property 
auses in
ompleteness,

as terms are 
anonized di�erently a

ording to the form of their sub-terms.

For instan
e, if y is merged with x, and y o

urs in y+z and y+z o

urs in �x+(y+z),

then �rst the term y + z is repla
ed by the fresh term x+ z. Sin
e x+ z is fresh, the same

union-�nd node is used for it and the 
hange is not propagated to the super-term�x+(x+z),

whi
h 
anonizes di�erently.

To avoid this in
ompleteness we require that the solver allo
ates fresh union-�nd nodes

whenever it returns an interpreted term (alternatively we 
an use an alternative insert , at

the expense of adding additional pseudo 
ode).

solve : Q � Q ! (Q � Q)

�

: In invoking solve(q; q

0

) the solver 
alls addConstraints

with the 
urrent 
ontext of 
onstraints and equality 
onstraint q = q

0

. It returns the set

of derived equalities in form of a substitution � and an updated 
ontext of 
onstraints. If

the updated 
ontext of 
onstraints is trivially unsatis�able we interrupt the iterated 
alls

to merge and return false.

We do not require that the substitution be idempotent. This is essential to handle 
y
li


data-stru
tures. The substitutions should rather 
orrespond to a most general uni�er.

interpreted : Q ! B: Ea
h theory determines whi
h terms are interpreted. In the theory

of linear arithmeti
, terms whose main fun
tion symbol is + or � are interpreted. Diverging

from other approa
hes we shall not treat data-type sele
tors (and re
ord proje
tors) as

interpreted fun
tion symbols to obtain heuristi
 speed-up and to be able to handle satis�able


y
li
 
onstraints, su
h as CAR(NIL) = NIL.

Comparisons with [Sho84℄: Shostak's 
ongruen
e 
losure uses an auxiliary fun
tion


anonsig to re
ursively 
anonize sub-terms. This fun
tion is absent from our algorithm

be
ause the use of a shared term stru
ture enables 
anonization to eventually be propagated

up through terms. We note the following di�eren
es:

� Shostak's algorithm diverges when the interpreted theory allows 
y
li
 data-stru
tures

be
ause 
anonsig 
alls itself re
ursively on arguments of interpreted fun
tion symbols.

� 
anonsig is 
alled twi
e, both before invoking solve, and after invoking solve. We have

not found this to be ne
essary.
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� In Shostak's data-type solver, sele
tors are treated as interpreted fun
tion symbols,

and may therefore not be in the domain of the result of solve. This 
auses unsound

and expensive 
reation of new variables in solved forms.

Comparisons with [BDL96℄: The elegant algorithm from [BDL96℄ requires solutions

x 7! t to satisfy that x is not a subterm of t. However, this requirement prevents a partial

elimination of variables in non-linear 
onstraints. For instan
e, given the equality:

y = x � f(y) (3.1)

our approa
h 
an dete
t an in
onsisten
y among

f(y) > 0 ^ y � x < 0 : (3.2)

If we repla
e y by x � f(y) in the 
onstraints we obtain the obviously unsatis�able

f(y) > 0 ^ x

2

� f(y) < 0

without having to maintain the eliminated equality. On the other hand, if we were to

require that all solutions satisfy the subterm relationship, then the equality (3.1) 
annot be

eliminated in establishing in
onsisten
y of (3.2).

Naturally, the same restri
tion to non-
y
li
 data stru
tures also applies to SVC, though

these may not ne
essarily be interesting for the domain of SVC.

3.5 Rigid E-uni�
ation

In this Se
tion, we �rst present a de�nition of rigid E-uni�
ation. By reformulating a de
id-

ability proof for rigid E-uni�
ation using the data-stru
tures from the previous se
tions, we

arrive at Corollary 3.5.4, whi
h states that a rigid E-uni�er 
an be found by guessing a set

of pairs from the union-�nd nodes Q. This gives a neat reformulation of rigid E-uni�
ation

as a simple 
onstraint satisfa
tion problem.

De�nition 3.5.1 (Rigid E-uni�
ation) Let x be a set of Skolem variables, and let ' be

a Horn formula of the form

s

1

= t

1

^ : : : ^ s

n

= t

n

| {z }

E

! s = t (3.3)

whose free variables are in x. The substitution � with domain x is a rigid E-uni�er for ' if

� applied to ', i.e.,

(s

1

= t

1

^ : : : ^ s

n

= t

n

! s = t)�

is ground valid (i.e., the equality s = t follows from 
ongruen
e 
losure with respe
t to the

assumed equalities).
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Example: The substitution [x 7! 
; y 7! a℄ is a rigid E-uni�er for

f(x) = g(a) ^ h(b) = f(
) ! g(y) = h(b) :

The substitution [x 7! b; y 7! g(a)℄ is a rigid E-uni�er for

h(a) = a ^ h(x) = a ^ h(b) = f(y) ! y = g(f(y)) :

The substitutions [x 7! g

n

(a)℄ are all rigid E-uni�ers for

g(a) = a ! x = a :

Theorem 3.5.2 [GNRS92, dK94℄ The rigid E-uni�
ation problem is NP-
omplete.

In fa
t de Kogel [dK94℄ never 
laims that his re
onstru
tion of the de
idability re-

sult for rigid E-uni�
ation also establishes NP -
ompleteness, but it does, even 
ontrary

to the 
laims in [Be
98℄. In his proof a rigid E-uni�er is 
lassi�ed as either 
onne
ting,

non-
onne
ting and redu
ible, or non-
onne
ting and irredu
ible. Uni�ers (substitutions)

are represented in triangular form, su
h that the triangular substitution thx

1

7! t

1

; x

2

7!

t

2

; : : : ; x

n

7! t

n

i is applied in stages: (: : : ((t[x

1

7! t

1

℄)[x

2

7! t

2

℄) : : : [x

n

7! t

n

℄). We shall de-

�ne redu
ible and 
onne
ting relative to the utilities introdu
ed for our 
ongruen
e 
losure

algorithm.

De�nition 3.5.3 Let E be a set of equalities and Q be the union-�nd nodes in the 
ongru-

en
e 
losure after E has been pro
essed.

� The map hx

i

7! v

i

j i = 1; : : : ; n i is 
onne
ting if 
anonize(x

i

), and 
anonize(v

i

) are

already in Q for ea
h i.

� The map h: : : ; x 7! u; y 7! v; : : :i is redu
ible if 
anonize(u) is in the transitive 
losure

of use and �nd from 
anonize(v).

To prove de
idability of rigid E-uni�
ation de Kogel notes that a rigid E-uni�er �

for (3.3) 
an be 
lassi�ed by one of the following 
onditions:

1. � is non-
onne
ting and redu
ible. Then a rigid E-uni�er 
an be found with smaller

terms. By repeatedly eliminating redu
ible pairs, only 
ases 2 and 3 need to be


onsidered.

2. � is non-
onne
ting and irredu
ible. Then by deleting a non-
onne
ting pair x 7! t

(there is at least one), from the substitution we obtain a triangular form of smaller

size.

3. Finally we arrive at a 
onne
ting rigid E-uni�er. In this 
ase � 
an by de�nition 3.5.3

be equivalently expressed as an ordered list of pairs of 
ongruen
e 
losure nodes.
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A detailed proof justifying these observations is given in [dK94℄ and will not be repeated

here. The main observation we make in 
onne
tion with the formulation based on the


ongruen
e 
losure stru
ture is, however:

Corollary 3.5.4 (From 
ongruen
e 
losure to Rigid E-uni�
ation) Let Q be a set

of union-�nd nodes after pro
essing all equalities in E and having 
anonized the terms s

and t to be uni�ed. A rigid E-uni�er is an ordered set of pairs of Q 
orresponding to a

triangular substitution. The set of pairs 
an be guessed and 
he
ked in polynomial time.

Guessing su
h a triangular substitution 
an be done in O(jQj) by listing an ordered

set of pairs. The ordered set of pairs then has to be 
he
ked for 
orresponding to a well-

formed triangular substitution by unfolding nodes to variables in the domain and terms

in the range, pair by pair. Finally, it 
an be 
he
ked for being a rigid E-uni�er using the


ongruen
e 
losure algorithm by simply merging the nodes in the substitution.

3.6 A ben
hmark example

Re�nement proofs for pipelined CPUs [BD94℄ are rather stressful ben
hmarks for reasoning

about uninterpreted fun
tions, M
Carthy's update axiom

read (write(A; i; e); j) = if i = j then e else read (A; j);

and boolean 
ombinations of equalities. To test the 
ongruen
e 
losure without using the

repository of well-established guiding te
hniques (see for instan
e [LO97℄) the formulation

from [HSG98℄ was taken without the auxiliary rewrite rules spe
i�
 for the PVS veri�er.

The validity 
he
ker was then allowed to spend its time on it. For the main 
orre
tness


laim, nearly one million 
ase splits were required, using a parti
ular splitting heuristi


and the entire veri�
ation took 150 minutes. Thus, on average, 100 bran
hes were 
overed

ea
h se
ond. Ea
h 
ase required the pro
essing of a stru
ture with 400 di�erent sub-terms,

though the in
remental a

umulation of 
onstraints means that the entire stru
ture did not

have to be re
reated for ea
h bran
h.

3.7 Summary

We presented a simple and fast 
ongruen
e 
losure algorithm that was extended to integrate

de
ision pro
edures. We also demonstrated how the 
ongruen
e 
losure 
orresponded to

ground 
ompletion. The 
onne
tions with rigid E-uni�
ation were highlighted.



Chapter 4

Spe
ial relations

We use the term spe
ial relation for 
ertain monotoni
ity properties binary relational sym-

bols that enjoy with respe
t to sele
ted fun
tions. In the basi
 form we 
an re
ord a spe
ial

relationship between predi
ates �

1

and �

2

relative to the fun
tion symbol f whenever the

monotoni
ity axiom

x �

1

y ! f(: : : ; x; : : :) �

2

f(: : : ; y; : : :) (4.1)

holds. Anti-monotoni
ity (where x and y are ex
hanged in the 
on
lusion) axioms are

also 
onsidered suÆ
iently spe
ial. Spe
ial relations have been studied within resolution

theorem proving in for instan
e [MW86, MSW91, MW92℄, and [BG95℄.

The notion of spe
ial relations used here is based on theories axiomatizable using Horn


lauses. A Horn 
lause is a disjun
tion of literals, 
ontaining at most one positive literal.

Equality itself 
an be viewed as a spe
ial relation as we saw in Chapter 3. The restri
tion

to Horn 
lauses ensures the existen
e of an initial model satisfying the impli
ations. The

queries that we wish to resolve against a theory axiomatized using Horn 
lauses are in the

simplest 
ase ground formulas. In Chapter 3 we examined a very spe
ial relation, equality,

and gave an optimized de
ision pro
edure for it.

Even simple instan
es of this s
heme 
annot be algorithmi
ally de
ided: Horn 
lauses

with binary relations 
an be used to en
ode rea
hability problems for Turing ma
hines. In

more restri
ted 
ases we 
an not only de
ide ground satis�ability, but also solve the rigid

T -uni�
ation problem, namely whether there is a substitution � from free variables in ',

su
h that T q '�. The existen
e of a rigid T -uni�er for ' implies that T q 9 � ', while the


onverse is not ne
essarily the 
ase. Rigid T -uni�ers 
an be used to 
lose bran
hes in a

tableau sear
h by providing instantiations of existential for
e quanti�ers.

Results: We propose ground de
ision support and rigid T -uni�
ation problems for two

prominent spe
ial relations: Partial orders, and monotone relations given by axioms of the

form (4.1). The ground de
ision support is provided as a tight extension of 
ongruen
e


losure and we reuse the data stru
tures developed in Chapter 3.

The results developed here apply to theories that are empty apart from the spe
ial

relation axioms. In Chapter 6 we take a look at integrating monotone relations in ri
her

52
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theories.

4.1 Partial orders

A stru
ture is partially ordered by the binary predi
ate � if it satis�es the three axioms for

every x, y, and z

x � y ^ y � z ! x � z (PO1)

x � y ^ y � x ! x = y (PO2)

x � x (PO3)

A set L

0

of literals 
an be 
he
ked for satis�ablity with respe
t to the axioms for partial

orders and equality together by extending L

0

to a maximally 
onsistent set L 
losed with

respe
t to the axioms for equalities and partial orders. The set of literals L is maximally


onsistent if for all sub-terms s; t 2 L either s � t or s 6� t, and L is saturated with respe
t to

the equality and partial ordering axioms. Sin
e there are only �nitely many subterms in any

set of literals L

0

it follows easily that the satis�ability problem for the set of ground literals

L

0

is de
idable. Using this approa
h we arrive rather painlessly at a de
ision pro
edure for

ground formulas with equality and partial orderings.

On the other hand, the full �rst-order theory of partial orderings redu
es to the the-

ory of a binary, symmetri
 and irre
exive predi
ate P (x; y) and is therefore unde
id-

able [ELTT65℄

1

. Indeed, to model P (x; y) using a partial ordering � in the 
losed formula

'(P ) repla
e P everywhere by

�(x; y) : 9z; u : bot(z) ^ z � u ^ u � x ^ u � y ^ x 6= y

where bot(z) = (8v : v 6� z), top(z) = (8v : z 6� v), relativize all quanti�ers 9x :  in ' to

9x : top(x) ^  , and �nally produ
e  ! ', where  restri
ts all elements to be either

without su

essors, without prede
essors, or 
onne
ting pre
isely two elements a

ording to

P (the rôle of the auxiliary u in the repla
ement of P above):

 :

8x; y; z; u : x � y ^ x � z ^ x � u ! y = z _ y = u _ u = z

^ 8x : :bot(x) ^ :top(x) ! (9y; z : y 6= z ^ x � y ^ x � z)

^ 8x; y : x � y ! bot(x) _ top(y)

We have now obtained a predi
ate in the theory of partial orderings whi
h is valid if and

only if the 
orresponding predi
ate over a binary, symmetri
, irre
exive relation (aka. the

theory of undire
ted simple graphs) is valid.

On the other hand, the 89-fragment (�

2

-fragment) of the theory of elementary relations

is 
o-NP 
omplete as established in [CC90℄. In more detail, the 89-fragment 
onsists of

1

However, note that the theories of linear and dense linear orderings (with and without end-points) is

de
idable [CK90, Hod93℄.
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losed formulas of the form

8x9y'(x; y)

where ' is a quanti�er-free formula whose atomi
 formulas are of the form

R

(n)

= S

(n)

; x = y; R

(n)

(x

1

; : : : ; x

n

)

where R and S are n-ary relation symbols. Sin
e the axioms PO1-PO3 
an be added as

assumptions to a �

2

-formula without 
hanging the quanti�er pre�x we obtain that the �

2

-

fragment of the theory of partial orders is 
o-NP 
omplete. While this result in prin
iple

gives a singly exponential time algorithm for de
iding �

2

formulas we do not have any

goal-dire
ted pro
edure at hand (whi
h is important in heuristi
ally narrowing the sear
h

spa
e). The restri
tion to pure relational symbols (and not admitting fun
tion symbols)

also limits the dire
t appli
ability of the �

2

-theory of elementary relations.

4.1.1 A ground de
ision pro
edure for partial orders

The saturation based approa
h to 
he
k a set of literals L

0

for ground satis�ability in

the theory of partial orders su�ers from two problems: (1) the saturation in
ludes all


ombinations of partial ordering 
onstraints on the available terms thereby requiring a

quadrati
 number of predi
ates in the number of terms, (2) it only gives a non-determinsti


pro
edure for saturating a satis�able L

0

to a saturated L. If we furthermore extend the

vo
abulary with the derived relation x � y := x � y ^ x 6= y, we no longer have a Horn

axiomatization. Naive tableau rules on the extended language then in
lude splitting (�)

rules of the form

x � y

x = y j x � y

to obtain a 
omplete de
omposition of all atoms.

We address problem (1) by formulating a system where only required 
onstraints are

derived. Furthermore 
onstraints impli
itly present by the transitivity of partial orderings

are not represented expli
itly. This only gives a heuristi
 spa
e saving as for instan
e the

partial order of n elements where element i is 
onne
ted to i + 1; : : : ; n, for i = 1; : : : ; n

requires the worst 
ase

�

n

2

�

expli
tly maintained relations, however, as measured in the size

of the input the approa
h does not require any more spa
e. Problem (2) is addressed by

maintaining the predi
ates =, 6=, � and 6� only. Equality is handled by 
ongruen
e 
losure,

6= labels the undire
ted edges introdu
ed in Se
tion 3.1. This set of edges is updated to


ontain also the possible labelings � and 6�, resulting in a transitivity graph.

New edges are added in
rementally to Edges in the union-�nd stru
ture as follows:

q

1

� q

2

(q

1

6= q

2

, q

1

6� q

2

): Add an edge to Edges between q

1

and q

2

labeled � (resp. 6=,

6�).

q

1

� q

2

: Add edges for both q

1

� q

2

and q

1

6= q

2

.

q

1

6� q

2

: Add edges for both q

1

6� q

2

and q

1

6= q

2

.
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Total orders are a spe
ial 
ase, where 
onstraints of the form (t

1

6� t

2

) are treated as t

2

� t

1

,

so 6� edge labels are not used.

Whenever adding an edge from q to q

0

labeled by 6�, we sear
h for a path of � edges

from q to q

0

labeled by � edges. If su
h a path exists, all verti
es on the path are merged.

On the other hand, when a new q � q

0

edge is added a standard depth-�rst traversal 
an

be used to sear
h for a path from q

0

to q 
onsisting of � edges. In the presen
e of su
h a

path q and q

0

are merged. To keep the graph minimal in adding a q � q

0

edge we also need

to merge q and q

0

if there is a �-path from q

0

to q

1

and from from q

2

to q, where q

2

6� q

1

is

an edge.

A de
ision pro
edure results from the following observation: a 
onjun
tion of inequality


onstraints is unsatis�able in the theory of partial orders i� its asso
iated transitivity graph

is 
ollapsed into a 
ontradi
tory graph, one that 
ontains a (v; 6=; v) edge.

Eager Equational 
ompleteness: On the other hand, one 
an dire
tly extra
t a model

from a non-
ontradi
tory graph where all distin
t verti
es 
orresponds to di�erent elements.

Thus, the de
ision pro
edure given here is eagerly 
omplete (see Se
tion 2.2.4).

4.1.2 The rigid PO-uni�
ation problem

We will here extend the results presented in Se
tion 3.5 on rigid E-uni�
ation to rigid

uni�
ation problems with partial orders.

De�nition 4.1.1 (Rigid PO-uni�
ation) Let x be a set of variables, and let ' be a

horn-formula of the form

^

i2I

t

i

� s

i

^

^

j2J

u

j

6� v

j

! s = t (4.2)

whose free variables are in x. The substitution � with domain x is a rigid PO uni�er for '

if '� is ground valid.

Equivalently we 
an phrase the rigid PO-uni�
ation problem in terms of �nding a sub-

stitution establishing unsatis�ability of a 
onjun
tion

 :

^

i2I

s

i

� t

i

^

^

j2J

u

j

6� v

j

^

^

k2K

w

k

6= z

k

: (4.3)

Equalities, � and 6� relations have been eliminated using rewrites from s = t to s � t^t � s,

together with those from Se
tion 4.1.1. The alternative formulation uses more disequalities,

but only one disequality is required to exhibit unsatis�ability as the theory of partial orders

is stably in�nite (see de�nition 2.2.1). In other words, the 
onjun
tion 4.3 has a rigid PO-

uni�er if and only if there is a k 2 K, su
h that  

0

, where K has been set to fkg, has a

rigid PO-uni�er.

We also obtain the following result as an extension of NP-
ompleteness for rigid E-

uni�
ation:
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Theorem 4.1.2 The rigid PO-uni�
ation problem is NP-
omplete.

Proof outline:

The proof requires essentially no new ideas besides those that 
an be found in [dK94℄.

The only 
ru
ial dependen
y on the properties of 
ongruen
e 
losure is in eliminating

non-
onne
ting irredu
ible uni�ers.

4.1.3 A heuristi
 for obtaining PO-refuting substitutions

The transitivity graph is not only able to dete
t ground unsatis�ability, but 
an also serve as

a guide for �nding PO-refuters. We say there is a �-edge from u to v if (u;�; v) and (u; 6=; v)

are edges in G. To �nd PO-refuting substitutions for a set of equalities and inequalities, one


an �nd pairs of verti
es hv; wi that are 
onne
ted by a �-edge in the transitivity graph. If

E is the set of known equalities at this point, a substitution � su
h that v� = w� under the

equalities E� is a PO-refuter; that is, � should be a rigid E-uni�er [GNRS92℄ of v and w.

This approa
h to �nding PO-refuters is 
learly not 
omplete. A more thorough but

still in
omplete approa
h is to 
onsider a pair hv

1

; w

1

i 
onne
ted by a �-path 
ontaining a

�-edge, and another pair hw

2

; v

2

i 
onne
ted by a �-path. A substitution � that is a rigid

E-uni�er for fv

1

= v

2

; w

1

= w

2

g will also be a PO-refuter.

2

In the general 
ase, the transitivity graph 
an be sear
hed to �nd a sequen
e of paths

and a uni�er � that 
on
atenates the paths into a loop 
ontaining a �-edge. Sin
e � will be

obtained in
rementally in a 
ongruen
e 
losure 
ontext, we de�ne the following:

De�nition 4.1.3 Given a substitution � and a 
ongruen
e 
losure stru
ture CC, a sub-

stitution ' is a �-
ompatible rigid CC-uni�er of 
ongruen
e 
lasses v

1

and v

2

i� ' is less

general than � and ' is a rigid E-uni�er of t

1

and t

2

for some t

1

2 v

1

and t

2

2 v

2

,

where E is the set of equations impli
it in CC. We write E mgus(CC; �; v

1

; v

2

) for a set of

�-
ompatible rigid CC-uni�ers of v

1

and v

2

.

Rigid E-uni�
ation is NP-
omplete [GNRS92℄. In pra
ti
e, we are 
ontent with qui
kly

identifying a subset of the rigid E-uni�ers.We 
olle
t E-uni�ers using a fast, but again

in
omplete, test to eliminate redundant substitutions.

The pro
edure EXPAND de�ned below updates a set S of PO�refuting substitutions for

the theory of partial orders. It sear
hes the set of paths in the transitivity graph examining

one sequen
e of paths at most on
e. TC(v) denotes the �-transitive 
losure from vertex v,

i.e., the set of verti
es rea
hable from v by �-edges. TC

+

(v) is TC(v) n fvg. V(G) is the

set of verti
es of G. CC(G) is the 
ongruen
e 
losure stru
ture asso
iated with G. After the

invo
ation EXPAND (G

0

; v

0

; v

0

; [ ℄), ea
h re
ursive 
all EXPAND (G; v

1

; v

2

; �) maintains the

invariants (a) v

2

2 TC(v

1

) in G, and (b) G is obtained from G

0

by asserting the equalities

given by �. This is ensured by the fun
tion add substitution, whi
h merges nodes and

2

Edges labeled 6� and single 6= edges 
an be similarly used to obtain PO-refuting substitutions. To

simplify the exposition, we omit these 
ases.



CHAPTER 4. SPECIAL RELATIONS 57


ollapses the graph as des
ribed above. The verti
es v

0

1

and v

0

4

are the 
ounterparts of v

1

and v

4

in G

0

. EXPAND must terminate, sin
e the size of V

1

de
reases with ea
h re
ursive


all.

S  ; ; EXPAND (G

0

; v; v; [ ℄) ; return S; where:

EXPAND (G; v

1

; v

2

; �) =

V

1

 V(G) n TC

+

(v

1

)

V

2

 TC

+

(v

2

)

for ea
h (v

3

; v

4

) 2 V

1

� V

2

do

S

0

 E mgus(CC(G); �; v

3

; v

4

)

for ea
h �

0

2 S

0

do

G

0

 add substitution(�

0

;G)

if G

0

is a 
ontradi
tory graph

then S  S [ f�

0

g

else EXPAND (G

0

; v

0

1

; v

0

4

; �

0

)

In the worst 
ase, EXPAND will sear
h exponentially many paths. However, the mod-

erate size of transitivity graphs arising from typi
al veri�
ation 
onditions, and the in
re-

mental uni�
ation restri
tion, make the pro
edure pra
ti
al.

An example: The validity of

(8x:(x � y ! P (x))) ^ (8u:9z:z � u)! 9v:(v � y ^ P (v))

is established in 0.07 se
onds using the rigid PO-uni�er [v 7! f

z

(u); x 7! f

z

(u)℄ whi
h 
an

be found using the sear
h pro
edure.

4.2 Transitive relations

A simpler 
ase than partial orders is that of transitive relations. A relation R is transitive

if it satis�es the transitivity axiom

R(x; y) ^ R(y; z) ! R(x; z) (T)

4.2.1 Rigid T -uni�
ation

When R is a transitive relation, we de�ne the rigid T -uni�
ation problem as follows:

De�nition 4.2.1 (Rigid T -uni�
ation) Let x be a set of variables, and let ' be a horn-

formula of the form

s

1

= t

1

^ : : : ^ s

n

= t

n

^

m

^

i=1

R(u

i

; v

i

) ! R(s; t) (4.4)

whose free variables are in x. The substitution � with domain x is a rigid T -uni�er for ' if

'� is ground valid.
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Proposition 4.2.2 The rigid T -uni�
ation problem is NP-
omplete.

Proof:

NP-hardness: Take an instan
e of rigid E-uni�
ation

m

^

i=1

s

i

= t

i

! s = t (4.5)

and translate it to:

s

1

= t

1

^ : : : ^ s

n

= t

n

^R(s; t) ! R(t; s) (4.6)

Membership in NP: To get R(s; t) in the 
onsequent of formula (4.4) the premises of

the impli
ation must provide an R-path. The substitution must provide the merging

of states along this path, and thus establish a number of equalities s = u

i

1

, v

i

j

= u

i

j+1

,

v

i

k

= t. Thus, it suÆ
es to guess a path of length at most m (there are m 
onjun
ts

of R in the premise) and verify the following rigid E-uni�
ation instan
e, where h is

a fresh fun
tion symbol:

s

1

= t

1

^ : : : ^ s

n

= t

n

! h(s; v

i

1

; : : : ; v

i

k

) = h(u

i

1

; : : : ; u

i

k

; t) : (4.7)

4.3 Monotone relations

We will now investigate support for spe
ial relationships that are axiomatized a

ording

to axiom (4.1). So assume this axiom s
hema for binary relations �

1

and �

2

and an

uninterpreted fun
tion symbol f . Thus, whenever x �

1

y holds, then for every set of

auxiliary parameters z, u, we have f(z; x; u) �

2

f(z; y; u). To simplify notation, but without

losing generality, we will assume that f is binary su
h that z is empty and u 
ontains only

one variable.

4.3.1 A ground de
ision pro
edure for monotone relations

As in the 
ase for partial orders we obtain eÆ
ient support for de
iding ground 
onsequen
es

of monotone relationships via a 
ombination with the union-�nd data-stru
ture used in


ongruen
e 
losure. We also obtain an in
remental algorithm by 
onsidering the following

two 
ases o

urring when new fa
ts are being asserted, and new terms are generated:

q

1

�

1

q

2

: where q

1

and q

2

are root nodes in the union-�nd stru
ture.

1. If q

1

�

1

q

2

2 Edges we 
an assume that the 
ongruen
e 
losure stru
ture already

knows about the fa
t, and we do not perform anything more.
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2. If on the other hand q

1

6�

1

q

2

2 Edges the a

umulated 
onstraints are unsatis-

�able and we notify this.

3. Finally, neither q

1

�

1

q

2

2 Edges, nor q

1

6�

1

q

2

2 Edges, and we add the fresh

edge q

1

�

1

q

2

. For ea
h q 2 use(q

1

), q

0

2 use(q

2

), where 
anoni
al (q), L

Q

(q) =

f(q

1

; q

3

), 
anoni
al (q

0

), L

Q

(q

0

) = f(q

2

; q

4

), add an edge �nd (q) �

2

�nd(q

0

).

We 
he
k that there is not already an edge �nd(q) 6�

2

�nd(q

0

), otherwise the


onstraints are unsatis�able.

q

1

6�

1

q

2

; q

1

�

2

q

2

; q

1

6�

2

q

2

: where q

1

and q

2

are root nodes in the union-�nd stru
ture. We

add the edge q

1

6�

1

q

2

(resp. q

1

�

2

q

2

, q

1

6�

2

q

2

) to Edges 
he
king that there is not

already a 
ontradi
tory edge. Noti
e that we do not have to 
lose the 
ongruen
e


losure stru
ture under the 
ontrapositive of the spe
ial relations rule.

f(q

1

; q

2

) 7! q is inserted into L

T

: First noti
e that the 
ongruen
e 
losure algorithmmain-

tains that whenever f(q

1

; q

2

) is inserted into L

T

both q

1

and q

2

are roots. We then take

Q

0

1

= f�nd(q

0

) j L

Q

(q

0

) = f(q

0

1

; q

0

2

) ^ q

1

�

1

q

0

1

2 Edgesg and add edges q �

2

q

0

for ea
h

q

0

2 Q

0

1

. We also need to take Q

0

2

= f�nd(q

0

) j L

Q

(q

0

) = f(q

0

1

; q

0

2

) ^ q

0

1

�

1

q

1

2 Edgesg

and add edges q

0

�

2

q for ea
h q

0

2 Q

0

2

.

With Q being the number of di�erent union-�nd nodes ea
h operation des
ribed above

has running time bounded by O(jQj

2

). The modular way in whi
h the union-�nd stru
ture

is updated with new 
onstraints enables independent support for several other spe
ial rela-

tionships�

0

1

;�

0

2

; f

0

: : :, and works well with the in
remental way that we will be maintaining


onstraints.

4.3.1.1 Corre
tness

The utilities for maintaining �

1

, �

2

and f are 
learly sound, as an examination of ea
h step

reveals. On the other hand, we establish their 
ompleteness by extra
ting a model from

any non-
ontradi
tory union-�nd stru
ture satisfying all asserted spe
ial relations.

Theorem 4.3.1 (Completeness) Any 
onsistent union-�nd stru
ture saturated with re-

spe
t to the spe
ial relations rules is satis�able.

Proof:

We 
onstru
t a model satisfying the ground set of literals and all spe
ial relation

axioms from the �nal non-
ontradi
tory state of the union-�nd stru
ture. The model

A = hA;�

A

1

;�

A

2

; f

A

; g

A

; h

A

; : : :i 
onsists of

1. The domain A, whi
h we identify with fq

0

g [ f�nd (q) j q 2 Qg, where q

0

is a

union-�nd node not already in Q.

2. The binary relations �

A

1

� A�A and �

A

2

� A� A. We set �

A

1

= f(q; q

0

) j q �

1

q

0

2 Edges _ q = q

0

_ q

0

= q

0

g, and �

A

2

= f(q; q

0

) j q �

2

q

0

2 Edges _ q =

q

0

_ q

0

= q

0

g.
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3. The fun
tions f

A

, g

A

, et.
.. We set h

A

(q

1

; : : : ; q

n

) = �nd(L

T

(h(q

1

; : : : ; q

n

))) if

h(q

1

; : : : ; q

n

) 2 dom(L

T

), otherwise h

A

(q

1

; : : : ; q

n

) = q

0

.

To establish that the spe
ial relations are satis�ed we will show that f

A

is the ap-

propriate interpretation of f su
h that whenever q; r; s 2 A and (q; r) 2�

A

1

, then

(f

A

(q; s); f

A

(r; s)) 2�

A

2

.

For suppose to the 
ontrary,

A q q �

1

r ^ :(f(q; s) �

2

f(r; s)) :

Then it must be the 
ase that f(q; s); f(r; s) 2 dom(L

T

). This implies that none

of q, r or s equals q

0

, as this was a fresh union-�nd node that 
ould not have been

found in the original union-�nd stru
ture. Sin
e A q q �

1

r and q and r are di�erent

from q

0

it must be the 
ase that q �

1

r 2 Edges . The union-�nd stru
ture may have

been updated in two di�erent ways:

1. q

0

�

1

r

0

was inserted when both f(q

0

; s

0

) and f(r

0

; s

0

) were present in L

T

, where

�nd(q

0

) = q, �nd(r

0

) = r and �nd(s

0

) = s after all 
onstraints have been pro-


essed. In this 
ase the utilities for in
rementally maintaining the monotoni
ity


onstraints would have added an �

2

edge between the �nds of L

T

(f(q

0

; s

0

)) and

L

T

(f(r

0

; s

0

)). The 
ongruen
e 
losure algorithm maintains the invariants that

�nd(L

T

(f(q; s))) = �nd(L

T

(f(q

0

; s

0

))) (Invariant 3.3.8) and similarly for f(r; s),

thus ensuring that the �

2

edge 
onne
ts pre
isely the nodes that were assumed

not to be 
onne
ted. A 
ontradi
tion.

2. At least one of f(q

0

; s

0

) or f(r

0

; s

0

) were inserted after the q

0

�

1

r

0

edge was es-

tablished, where �nd(q

0

) = q, �nd(r

0

) = r and �nd (s

0

) = s after all 
onstraints

have been pro
essed. The in
remental way spe
ial relations are maintained en-

sures to add an appropriate �

2

edge from the �nd of L

T

(f(q

0

; s

0

)) to the �nd

of L

T

(f(r

0

; s

0

)). This also 
ontradi
ts the assumption that A q :(f(q; s) �

2

f(r; s)) as the �

2

edges are always propagated to the roots of L

T

(f(q

0

; s

0

)),

L

T

(f(r

0

; s

0

)).

4.3.2 Rigid S-uni�
ation

Suppose that we are given a set S of spe
ial relationships

x �

i

1

y ! f

j

1

(: : : ; x; : : :) �

k

1

f

j

1

(: : : ; y; : : :)

x �

i

2

y ! f

j

2

(: : : ; x; : : :) �

k

2

f

j

2

(: : : ; y; : : :)

.

.

.

x �

i

n

y ! f

j

n

(: : : ; x; : : :) �

k

n

f

j

n

(: : : ; y; : : :)



CHAPTER 4. SPECIAL RELATIONS 61

where i

1

; : : : ; i

n

; k

1

; : : : ; k

n

range over some index set of binary relations and j

1

: : : ; j

n

are

(not ne
essarily distin
t) indi
es of fun
tion symbols. We extend rigid E-uni�
ation to


onstraints over S by de�ning rigid S-uni�
ation.

De�nition 4.3.2 (Rigid S-uni�
ation) A rigid S-uni�er for the Horn-
lause '

^

i

s

i

= t

i

^ u �

1

v ! w �

2

z (4.8)

is a substitution � from the free variables in ' to ground terms su
h that '� is valid in the

theory of equality and S.

We establish that the rigid S-uni�
ation problem is de
idable and in fa
t NP-
omplete.

But, to 
onvey the main ideas in a simpli�ed way we �rst solve the rigid S-uni�
ation

problem when S 
onsists of a single monotoni
ity requirement

x � y ! f(: : : ; x; : : :) � f(: : : ; y; : : :) (4.9)

for a �xed (uninterpreted) fun
tion f of arity m + 1 + n. The general 
ase 
an then be

handled by a slight extension of the arguments we give.

To nest a term t inside a number of appli
ations of f de�ne

De�nition 4.3.3

f

j+1

(t)

def

= f(x

1

; : : : ; x

m

; f

j

(t); y

1

; : : : ; y

n

) where x

i

and y

i

are fresh variables

f

0

(t)

def

= t

For example, for m = 1; n = 2

f

2

(t) = f(x

1

; f(x

2

; t; y

1

; y

2

); y

3

; y

4

) :

Lemma 4.3.4 Let E be a set of equalities, t and u be terms, and n be the number of

sub-terms in E and terms t and u.

Either there is a maximal j � n su
h that

E ! u = f

j

(t) (4.10)

has a rigid E-uni�er, or for all m � 0

E ! u = f

m

(t) (4.11)

has no rigid E-uni�er.

Proof outline:

Suppose that there is a j and a rigid E-uni�er for (4.10). We must establish that a

j � n 
an be 
hosen for this purpose. From Corollary 3.5.4 the rigid E-uni�er 
an
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be represented as an ordered set of pairs in the term-graphs of E; u; f

j

(t) and we 
an

derive

� ^ E ! u = f

j

(t) (4.12)

using 
ongruen
e 
losure. So 
onsider the partition C of the terms and sub-terms in

�, E, t, and u obtained by 
ongruen
e 
losure with respe
t to the equalities E and

�. Divide the partition into two parts C

1

and C

2

, where ea
h 
lass in C

1


ontains a

term already a sub-term of E, t, or u, and the 
lasses in C

2


onsists of terms not

from E, t, or u. Suppose that f

i

(t) is not in C

1

, for some 0 < i � j. Then it is

be
ause � has mapped a variable x in E or u to a term 
ontaining the 
lass f

i

(t). The

substitution � is 
onsequently pumped down to repla
e the term equivalent to f

i

(t)

by a term equivalent to t instead.

Consequently f

i

(t) 2

S

C

1

, for all i � j. As there are at most n 
lasses in C

1

,

an index j > n implies that some 
lass in C

1

is repeated. In this 
ase we use the fa
t

that the fresh auxiliary variables in f

j

(t) are all di�erent to modify � at will to pump

j down below n.

Theorem 4.3.5 For a spe
ial relation given by (4.9) the S-uni�
ation problem for 
lauses

of the form:

^

i

s

i

= t

i

^ u � v ! w � z (4.13)

is NP-
omplete.

Proof:

We �rst noti
e that (4.13) has a rigid S uni�er � if and only if there is a j, fresh binary

fun
tion symbol h, and extension �

0

of �, that agrees with � on the free variables

in (4.13) su
h that

 

^

i

s

i

= t

i

! h(f

j

(u); f

j

(v)) = h(w; z)

!

�

0

(4.14)

Thus, a rigid E-uni�er �

0

for (4.14) provides a rigid S-uni�er for the original 
on-

straint (4.13). Lemma 4.3.4 provides an upper bound on the maximal number it

makes sense to unfold w and z to mat
h u and v, namely up to the number of sub-

terms in the original S-uni�
ation problem. The lemma implies that further unfolding

beyond this to test for solvability does not reveal anything new. Therefore, a suÆ-


iently small j and a 
orresponding rigid E-uni�er 
an be guessed and 
he
ked in

polynomial time. This establishes that the spe
ial 
ase of rigid S-uni�
ation is in NP.

To establish NP -hardness, noti
e that we 
an redu
e the rigid E-uni�
ation
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problem

^

i

s

i

= t

i

! u = v (4.15)

to the rigid S-uni�
ation problem

^

i

s

i

= t

i

^ x � x ! u � v (4.16)

where S is given by equation (4.9), where the monotone fun
tion f is not in (4.15).

To solve the general S-uni�
ation problem for more than a single monotoni
ity require-

ment one 
an perform a similar redu
tion as in Theorem 4.3.5 by non-deterministi
ally

examining one of the possible unfoldings leading from �

1

to �

2

whi
h has length not ex-


eeding the number of sub-terms in the original 
lause.

4.4 Summary

We gave ground de
ision support for sele
ted spe
ial relations with the aim at 
ombining

these into the de
ision pro
edures. We also showed how to extra
t uni�ers to 
lose bran
hes

in a refutation sear
h.



Chapter 5

Arithmeti


Constraints over relations with arithmeti
al operations appear in almost all veri�
ation 
on-

ditions arising from simple sequential programs over rea
tive, real-time and hybrid systems.

Even when hardware is modeled at an 
ertain level of abstra
tion, arithmeti
al 
onstraints

be
ome a natural part of the system model. Most of these arithmeti
al 
onstraints are

linear, in that multipli
ation is only used when at least one of the operands is a numeral.

In the veri�
ation of hybrid systems, however, non-linear 
onstraints appear naturally as a

by-produ
t of solving di�erential equations. We therefore aim here at building into a 
om-

mon framework de
ision pro
edures for arithmeti
 whi
h (1) a

omodates the frequently

o

urring linear arithmeti
al 
onstraints eÆ
iently, while (2) de
ides a reasonable fra
tion

of 
onstraints involving multipli
ation.

Sin
e arithmeti
al 
onstraints are so fundamental in system modeling and veri�
ation

there is a vast literature on this subje
t already. The present exposition does not go into any

impressive depth, but does o�er an all-round treatment of de
ision pro
edures for linear and

non-linear arithmeti
. In parti
ular, the fa
t that the Fourier-Motzkin pro
edure allows to

extra
t equational 
onstraints eagerly is not obvious from any of the referen
es I am aware

of, so we prove this for the purpose of �tting the linear solver into the 
ombination of de
ision

pro
edures. The solver for non-linear arithmeti
al 
onstraints is furthermore guided using

a sign-based abstra
tion domain to simplify polynomials and qui
kly dete
t redundant and

in
onsistent 
onstraints.

5.1 Linear arithmeti


Linear arithmeti
 is the 
al
ulus obtained by in
luding only terms of the form x

i

, a

i

x

i

, t+s,

t� s, and a

0

, where a

0

; : : : are rational 
onstants x

1

; : : : are rational variables, and s and t

are linear arithmeti
al terms. Constraints are formed using the relation symbols 6=, =, �

and <. Linear arithmeti
al terms 
an be 
anonized by 
onverting the terms into summation

normal form:

a

0

+

n

X

i=1

a

i

x

i

64
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This assumes that the set of arithmeti
al variables x

1

; : : : ; x

n

is ordered with respe
t to an

aribitrary total ordering �. Assume for notational simpli
ity that this 
orresponds to the

indexing, su
h that x

1

� x

2

� : : : � x

n

.

5.1.1 Equalities

A pure equality 
onstraint is either va
uously true, unsatis�able, or allows to eliminate one

arithmeti
al variable by expressing it in terms of the others:

s = t $ 0 = t� s $ 0 = a

0

+

n

X

i=1

a

i

x

i

$ x

1

= �

a

0

a

1

+

n

X

i=2

�

a

i

a

1

x

i

By maintaining a �xed order of all terms and variables the resulting expression for x

1

is

given uniquely.

Example: An example from the 
onstraint programming literature is to prove that the

sequen
e

x

i+2

= jx

i+1

j � x

i

starting from arbitrary initial values x

0

and x

1

is periodi
 and has period of length 9.

This amounts to establishing unsatis�ability of

11

^

i=0

x

i+2

= jx

i+1

j � x

i

^ :(x

0

= x

10

^ x

1

= x

11

) :

Expanding out the de�nition of jx

1

j on
e redu
es x

2

= jx

1

j � x

0

to x

1

� 0 ^ x

2

=

x

1

� x

0

_ x

1

< 0 ^ x

2

= �x

1

� x

0

. By isolating x

0

in ea
h disjun
tion redu
es the

original formula to

x

1

� 0 ^

V

11

i=1

x

i+2

= jx

i+1

j � x

i

^ :(x

1

� x

2

= x

10

^ x

1

= x

11

)

_ x

1

< 0 ^

V

11

i=1

x

i+2

= jx

i+1

j � x

i

^ :(�x

1

� x

2

= x

10

^ x

1

= x

11

) :

Nine more iterations of this expansion redu
es the formula to false.

5.1.2 Inequalities

While the handling of linear equalities is 
ompletely standard in the Shostak-style integra-

tion of de
ision pro
edures, the question of how linear inequalities may be supported in an

equational de
ision pro
edure integration has remained more open-ended.

5.1.2.1 Methods for integrating arithmeti


Shostak suggests in [Sho79℄ to use well established satis�ability 
he
king methods, based on

linear programming, su
h as Simplex [Dan62, S
h86, Chv83℄ or the SUP-INF method [Ble75,

Sho77℄ to determine satis�ability of a set of linear arithmeti
 
onstraints, and in the aÆr-

mative 
ase extra
t a model assigning ea
h variable to a rational. Ea
h arithmeti
al term
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appearing in the 
ombined 
onstraints is then evaluated with respe
t to the assignment.

Having asso
iated all arithmeti
al terms with a rational 
onstant we 
an invoke the remain-

ing de
ision pro
edures on this instan
e assuming all they need to know about arithmeti
al

terms are whether two terms are equal or not. The assignment may impose more equali-

ties than implied by the original 
onstraints. So this requires the arithmeti
al solver to be

re-invoked should the satis�ability of the instan
e require two terms equated by the �rst

assignment to be di�erent. The same ideas 
arry over to linear 
onstraints over integers

and have been extended to a ground pro
edure with a permutation predi
ate in [SJ80℄ (see

also [Mat81, Jaf81℄).

Nelson in his Thesis [Nel81℄ presents an in
remental pro
edure, whi
h furthermore ex-

tra
ts implied equalities. It is unfortunate that this approa
h has not been more visible.

Imbert and Hentenry
k [IH93℄ elaborate with a similar perspe
tive. Nelson's approa
h is

formulated for the Nelon-Oppen 
ombination of de
ision pro
edures, whi
h does not target

the extra
tion of equalities as substitutions that we require. We state here without proof

that Nelson's approa
h 
an also be used to extra
t required equalities as substitutions by

extending the proof we give for the Fourier-Motzkin elimination pro
edure to Nelson's Sim-

plex tableau. Empiri
al data 
omparing Nelson's tableau and implementations of Fourier's

algorithm for the integration of de
ision pro
edures would be useful.

There are spe
ialized and eÆ
ient pro
edures for de
iding satis�ability of a set of lin-

ear inequalities [Meg83℄ when all inequalities 
ontain at most two variables. The approa
h

extends [AS80, Nel82℄ as well as [Sho81℄ whi
h a
tually attempts to generalize the method

to handle three and more variables. Unfortunately, serious gaps in [Sho81℄ make an imple-

mentation of the ideas presented there very diÆ
ult if not impossible. The idea of looking

at two variables per 
onstraint 
an be tra
ed ba
k to [Pra77℄, while the 
onne
tions with

�nding all pairs of shortest paths in a graph (via the Floyd-Warshall algorithm) should be

obvious.

5.1.2.2 The Fourier-Motzkin variable elimination method

The approa
h suggested here is based on the 
lassi
al Fourier-Motzkin variable elimination

method, whi
h gives a fully symboli
 approa
h to testing satsi�ability of linear 
onstraints.

This entails that implied equality 
onstraints 
an be extra
ted and 
ommuni
ated with the

other de
ision pro
edures. In Nqthm the Fourier-Motzkin pro
edure is referred to as 
ross-

multipli
ation [BM88℄, but the presentation is to a great deal obs
ured by features spe
i�


to Nqthm. The Fourier-Motzkin pro
edure also forms the basis of theory integration in

PVS and SVC [BC98℄

The Fourier-Motzkin pro
edure eliminates a variable x

1

from a set of linear inequalities

a

j0

+

n

X

i=1

a

ji

x

i

� 0; j = 1; : : : ;m
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by rewriting these �rst to

x

1

� a

j0

+

n

X

i=2

a

ji

x

i

j = 1; : : : ;m

0

x

1

� a

j0

+

n

X

i=2

a

ji

x

i

j = m

0

+ 1; : : : ;m

00

0 � a

j0

+

n

X

i=2

a

ji

x

i

j = m

00

+ 1; : : : ;m

and then repla
e the �rst m

00

inequalities by m

0

� (m

00

�m

0

) new inequalities, one for ea
h

j = 1; : : : ;m

0

and k = m

0

+ 1; : : : ;m

00

:

a

j0

+

n

X

i=2

a

ji

x

i

� a

k0

+

n

X

i=2

a

ki

x

i

:

It is immediate that the new set of inequalities is satis�able if and only if the old set

is satis�able. This approa
h also generalizes to stri
t inequality 
onstraints. In fa
t

the Fourier-Motzkin pro
edure is a quanti�er elimination method for linear arithmeti
.

The elimination of x

1

above was pre
isely 
omputing the quanti�er-free equivalent to

9x

1

:

V

m

j=1

a

j0

+

P

n

i=1

a

ji

x

i

� 0. It has been observed that the pro
edure has exponen-

tial time 
omplexity [S
h86℄ and it is 
ommonly per
ieved as far worse than the Simplex

method. On the other hand, it enjoys some key algebrai
 properties that we will exploit.

Further theoreti
al observations are made in [HLL90℄ and by Imbert in [SvH95℄.

5.1.2.3 An in
remental equality-extra
ting Fourier-Motzkin pro
edure

The Fourier-Motzkin method as it stands does not allow to introdu
e more 
onstraints

involving a variable x

1

on
e it has been eliminated. Furthermore, it does not dire
tly

suggest whi
h equality 
onstraints are implied from a set of inequalities. For example, in

x � y + 2 ^ y � z + 4 ^ z + 6 � x

we would preferably infer x = y + 2 = z + 6. This will allow x and z to be repla
ed

throughout other 
onstraints and, for instan
e, establish veri�ation 
onditions of the form

x � y + 2 ^ y � z + 4 ^ z + 6 � x ! f(x+ y) = f(z + x+ 4)

by dete
ting the in
onsisten
y of

x � y + 2 ^ y � z + 4 ^ z + 6 � x ^ f(x+ y) 6= f(z + x+ 4)
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via the simpli�ed form

x = y + 2 ^ z = y � 4 ^ f(y + 2 + y) 6= f(y � 4 + y + 2 + 4)

l

f(2 + 2y) 6= f(2 + 2y)

To support in
remental addition of 
onstraints we will not be able to eliminate 
on-

straints over variables that have been formally eliminated, but rely on the total ordering

� of variables to ensure termination. Linear inequalities are thus maintained in one of the

forms:

x

j

� a

0

+

X

i>j

a

i

x

i

x

j

> a

0

+

X

i>j

a

i

x

i

x

j

� a

0

+

X

i>j

a

i

x

i

x

j

< a

0

+

X

i>j

a

i

x

i

where j is the smallest index with non-zero 
oeÆ
ient in the relevant inequality. We use C

to refer to the 
olle
tion of inequality 
onstraints. Whenever a new inequality t � s is added

to the set of known inequalities we saturate the resulting set of inequalities with respe
t to

the steps:

1. Isolate the variable with smallest non-zero 
oeÆ
ient in the inequality t � s to obtain

the equivalent inequality x

j

� u and add this to the set of known inequalities.

2. For ea
h mat
hing inequality v � x

j

, resp. w < x

j

form the derived inequalities v � u

(resp. w < u).

3. Repeat step 1 with these newly derived inequalities.

This pro
edure terminates, sin
e ea
h step examines only inequalities whose variables have

stri
tly higher indi
es. On the other hand, it may generate exponentially may inequalities

requiring both exponential time and spa
e.

We 
an use the approa
h to also derive all implied equalities by dete
ting �-loop-residues

in the following way (we 
all this method a loop-residue a

umulation): Whenever we add

a non-stri
t inequality s � t, maintain the list

(x

j1

; t

1

); (x

j2

; t

2

); : : : ; (x

jn

; t

n

)

where

s � t $ x

j1

� t

1

;

s

1

� x

j1

is used to mat
h x

j1

� t

1

s

1

� t

1

$ x

j2

� t

2

.

.

.

Then, if we derive the tight inequality

0 � 0
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we may infer the triangular form

x

j1

= t

1

; x

j2

= t

2

; : : : ; x

jn

= t

n

:

To see this inspe
t the last steps whi
h from s

n

� x

jn

� t

n

forms 0 � t

n

� s

n

= 0. In

parti
ular t

n

= s

n

so x

jn

= t

n

. By repla
ing x

jn

by t

n

we may repeat the same eliminations

of x

j(n�1)

up to x

j1

. The triangular form is 
onverted into a substitution � and C is redu
ed

to C�.

We therefore have

Lemma 5.1.1 (Equational Soundness) Any equality derived by loop-residue a

umula-

tion is an equality.

On the other hand, this approa
h allows to infer all implied equalities:

Lemma 5.1.2 (Eager Equational Completeness) Suppose that the set of inequalities

I entails the equality t = 0, then either I is in
onsistent or the substitution � obtained from

loop-residue a

umulation on I satis�es t� = 0.

Proof:

The proof is by indu
tion on the number of variables in I of index greater or equal to

the variables in t.

Assume therefore that I q t = 0. Thus both I [ ft < 0g and I [ ft > 0g

are in
onsistent. By 
ompleteness of the Fourier-Motzkin pro
edure we have that

both augmentations of I lead to an in
onsisten
y. Let C be the inequality 
onstraints

obtained from I by saturation, and let � be the substitution obtained by a

umulating

loop residues. If I is in
onsistent already we are done, otherwise augment C by t� > 0

arriving at an in
onsistent inequality r > 0, where r 2 (�1::0℄. Separately we add

t� < 0 to C to arrive at an equally in
onsistent inequality.

If t� is a 
onstant it must be the 
ase that t� = 0 for both t� < 0 and t� > 0 to

be unsatis�able. If t� is not a 
onstant we 
an rewrite the inequality t� > 0 as x

1

> t

1

(or x

1

< t

1

), where x

1

is the variable with smallest index having non-zero 
oeÆ
ient.

Symmetri
ally t� < 0 is written as x

1

< t

1

.

We derive a 
ontradi
tion from these inequalities by mat
hing x

1

> t

1

with an

inequality s

1

� x

1

(or s

1

> x

1

) in C, and x

1

< t

1

with an inequality s

0

1

� x

1

(or

s

1

< x

1

). Sin
e C has been saturated with respe
t to its inequalities it furthermore


ontains all 
onsequen
es of the 
ombined 
onstraint s

0

1

� s

1

. On the other hand, both

t

1

< s

1

and s

0

1

< t

1

are in
onsistent. This 
an only be the 
ase if C implies s

0

1

= s

1

and therefore x

1

= s

1

. Now, the equality s

0

1

= s

1

involves only variables with indi
es

higher than x

1

, so the indu
tion hypothesis implies s

0

1

� = s

1

� = x

1

� 
ontradi
ting the

existen
e of the 
onstraints s

1

� x

1

� s

0

1

in C.
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From Lemma 5.1.1 and 5.1.2 we now have all relevant ingredients to obtain the fun
tion

addConstraint that a

umulates arithmeti
al 
onstraints in
rementally while extra
ts all

derived equalities.

The formulation 
hosen here allows us to infer that all intermediate inequalities 
an

be turned into equalities. This generalizes the observation (Theorem 1) in [LHM93℄ that

an inequality �

i

x � �

i

is an impli
it equality in a 
onstraint set C i� Fourier's algorithm

produ
es an inequality 0 � 0 as a linear 
ombination of 
onstaints 
ontaining it.

5.1.3 Disequalities

When variables range over rationals and reals it is not ne
essary to pro
ess disequalities

s 6= t other than 
he
king s� 6= t� for generated substitutions. In the 
ongruen
e 
losure


ombination this redu
es to 
he
king that 0 never gets 
onne
ted with a 6= edge as we form

the disequality 
onstraint 0 6= s�t. This relies on the following property of linear arithmeti


over the rationals:

Lemma 5.1.3 (Convexity) For every t

1

; : : : ; t

n

, if � is the substitution obtained from

saturating a satis�able set of inequalities I, and �(t

i

) 6= �(t

j

), i 6= j, then I is has a model

where t

i

6= t

j

, for i 6= j.

5.1.4 Extra
ting models

Suppose that a set of 
onstraints C 
ontains the variables x

1

� x

2

� : : : � x

n

, and we wish

to �nd an assignment of rationals to x

1

; : : : ; x

n

satisfying C. Su
h an assignment 
an be

found by �rst 
olle
ting the set of inequalities of the form l � x

n

, x

n

� u

1

Sin
e x

n

is the

variable with highest index l and u must ne
essarily be 
onstants satisfying l < u. Any

rational q between l and u 
an be legally assigned to x

n

and we 
an repeat the pro
edure

on C[x

n

7! q℄ to extra
t an assignment for x

n�1

until all variables have been assigned a

rational value.

The approa
h is also used for interfa
ing with other de
ision pro
edures by providing

more general fun
tions SUP and INF. The domain of both fun
tions 
onsists of a 
onstraint

set C and an arithmeti
al expression t, and the range of SUP is Q[f1g, whereas the range

of INF is Q [ f�1g. SUP(C; t) is 
omputed from (C

0

; �

0

) = addConstraint (C; fx

dummy

� tg)

where x

dummy

is a fresh variable whose index is higher than any variables 
ontained in C.

In the result �

0

is an identity substitution. If the updated 
onstraint set C

0


ontains an

inequality x

dummy

� q (or x

dummy

< q)

2

we set SUP(C; t) := q otherwise SUP(C; t) := +1.

INF(C; t) is 
omputed in a dual way via addConstraint (C; fx

dummy

� tg).

Extensions of the Fourier-Motzkin pro
edure to in
lude integer linear arithmeti
 [Pug91℄

provides the 
orresponding fun
tionality for integers.

1

In the absense of an inequality l � x

n

we set l := �1, similarly u := +1.

2

q must ne
essarily be a rational 
onstant, sin
e the new variable has highest index.
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5.1.5 Examples

Hardware modeling: A very good example for ben
hmarking the linear arithmeti
al

de
ision pro
edures is the veri�
ation of the SRT division table presented in [CGZ96℄.

Pro
edures for linear arithmeti
 and re
ords are required to 
lose most bran
hes. The main

theorem, that the 
oeÆ
ient is guessed 
orre
tly at ea
h 
y
le, is veri�ed in less than 60

se
onds

3

.

The speed of veri�
ation does however depend on the order the axioms are listed. Split-

ting axioms in the wrong order 
reates linear 
onstraints that the Fourier eliminationmethod

has obvious problems with. On the other hand, the 60 se
onds here improve on the reported

3.5 hours using Matlab or the Mathemati
a based Analyti
a.

Program analysis: To 
he
k violations of array bounds, integer linear or linear arithmeti


solvers 
an be used to resolve 
onstraints from program analyzers. While the analyzer

from [Diw98℄ has so far used the Omega pa
kage [Pug91℄ as its 
onstraint solver for integer

linear 
onstraints, a 
olle
tion of 100 sample data from di�erent experiments gave pre
isely

the same answers with the rational linear arithmeti
 as with integer linear arithmeti
. This


ould be taken as a heuristi
 argument for using a rational linear arithmeti
 solver even for

integer linear arithmeti
 
onstraints.

For reasons most likely 
onne
ted to implementation and not theoreti
al limitations, our

ML solver 
ould handle at least one larger ben
hmark not handled by the Fortran based

Omega pa
kage.

5.2 Non-linear arithmeti


This se
tion des
ribes an extension of the linear solver to the non-linear 
ase, i.e., the 
ase

where variables 
an be multiplied to form non-linear multivariate polynomials.

Veri�
ation of non-linear, or symboli
 hybrid systems produ
es veri�
ation 
onditions

with non-linear polynomials. Small examples from [MS98℄ are listed in Table 5.1. Exper-

iments with the 
ommer
ial Redlog pa
kage were 
ompetitive for the �rst example, fur-

thermore Redlog provides quanti�er elimination for alternating quanti�ers. Unfortunately,

Redlog is a stand-alone tool and does not integrate smothely with solvers, and does for in-

stan
e not handle division in inequalities, so it was not possible to use Redlog on examples 2

and 3. It should be noted that other highly optimized tools exist for 
he
king satis�ability of

non-linear inequalities, su
h as Numeri
a [HMD97℄. Support for non-linear arithmeti
 from

�rst prin
iples 
an be found in state of the art veri�
ation systems, su
h as PVS, where the

prelude in
ludes well over 250 basi
 lemmas of non-linear arithmeti
 over the reals. These

lemmas are all established automati
ally using the de
ision pro
edure des
ribed here.

It has been known sin
e Tarski [Tar51℄ that the satis�ability problem for 
onstraints

over the real-
losed �eld are de
idable by quanti�er elimination. Although 
ylindri
 alge-

brai
 de
omposition [Col75, Hon92℄ 
an be used to perform quanti�er elimination in doubly

3

Allegedly Intel's SRT implementation for the Pentium pro
essor 
ontained bugs in the lookup table

resulting in a 500 million dollar re
all
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No: Formula se
:

m � l + d � r ^ r < 0 ^ x+ t � d ^ t > 0

1: ! m � l + r � x+ r � t 0:03

 

v

1

> 0 ^ vr > 0 ^ p � a

^ x

2

+ p=v

1

+ i=vr � a=v

1

+ a=vr ^ p � i

!

2: ! a=v

1

+ a=vr + v

1

� t=v

1

� x

2

+ t+ p=v

1

+ i=vr 0:06

 

2 � (a� i)=vr + (a� i)=v

2

< x

1

^ v

2

> 0

^ vr > 0 ^ p � i ^ p � a

!

3: ! (a� i)=vr + (p� i)=vr + (a� i)=v

2

� x

1

0:06

Table 5.1: Sample non-linear 
onstraints

exponential spa
e there are still several 
hallenges in providing \pra
tial" pro
edures for full

elimination of quanti�ers. One systemati
 approa
h is to use a Gr�obner basis solver [Bu
65℄

to simplify polynomials, though even 
omputing a Gr�obner basis 
an be 
ostly. One 
an also

add more ad ho
 approa
hes su
h as simplifying non-linear 
onstraints using a data-base of

rewrite rules [DS97℄ to eliminate trivial redundan
ies.

The path taken here adapts the partial quanti�er elimination pro
edure from [Wei97℄

to eliminate variables that o

ur with degree not greater than two, and 
ouples this tightly

with a sign-based abstra
tion domain and loosely with the linear-arithmeti
 solver. The

equalities inferred by the linear solver are used to eliminate variables in the 
onstraint

solver for non-linear arithmeti
. On the other hand, the non-linear solver infers polarities

of multiplied terms that are propagated as inequality 
onstraints to the linear solver. In

this way we aim to exploit the best of both approa
hes: eÆ
ien
y with expressibility.

5.2.1 A partial method for quanti�er elimation

We are given the problem of de
iding the satis�ability of a 
onjun
tion of inequalities

between polynomials. Sin
e the quanti�er-free 
onjun
tion is satis�able if and only if the

existential 
losure is valid, methods from quanti�er elimination (so-
alled proje
tion) for

polynomials be
ome a natural tool for establishing satis�ability.

We will here review a partial method for eliminating quanti�ers from multivariate poly-

nomials whose variables o

ur with low degree. It eliminates a variable from a polynomial

inequality by solving the variable to be eliminated symboli
ally. For example, in the poly-

nomial a � x+ b, where a and b may 
ontain variables di�erent from x a formal solution for

x in the equality a � x + b = 0 is x = �

b

a

subje
t to a 6= 0. In solving a � x + b > 0 we

introdu
e a symboli
 parameter � and get x = �

b

a

+ � subje
t to a > 0. To model arbitrary

large positive and negative values for the eliminated variable formal symbols �1 are also

added to the language. To allow substitution of expressions involving subterms of the form

b

a

, � and �1 de�ne:
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De�nition 5.2.1 ([LW93℄)

a � (�1) + b = 0

def

= a = 0 ^ b = 0 (5.1)

a � (�1) + b � 0

def

= a = 0 ^ b � 0 _ �a > 0 (5.2)

a � (�1) + b > 0

def

= a = 0 ^ b > 0 _ �a > 0 (5.3)

a � (�1) + b 6= 0

def

= a = 0 ^ b 6= 0 _ a 6= 0 (5.4)

(5.5)

a � (
+ �) + b = 0

def

= a = 0 ^ b = 0 (5.6)

a � (
+ �) + b � 0

def

=

 

a � 0 ^ a � 
+ b � 0

_ a < 0 ^ a � 
+ b > 0

!

(5.7)

a � (
+ �) + b 6= 0

def

= a 6= 0 _ b 6= 0 (5.8)

a � (
+ �) + b > 0

def

=

 

a > 0 ^ a � 
+ b � 0

_ a � 0 ^ a � 
+ b > 0

!

(5.9)

Under the the assumption 
 6= 0, to substitute the formal division of two polynomials

d




for x in a polynomial p(x) one de�nes:

a �

d




+ b � 0

def

= a � d+ b � 
 � 0 � 2 f=; 6=g (5.10)

a �

d




+ b � 0

def

=

 

a � d+ b � 
 � 0 ^ 
 > 0

_ 0 � a � d+ b � 
 ^ 
 < 0

!

� 2 f<;�g (5.11)

(5.12)

a � (

d




+ �) + b � 0

def

= a � (d+ �) + b � 
 � 0 � 2 f=; 6=g (5.13)

a � (

d




+ �) + b � 0

def

=

 

a � (d+ �) + b � 
 � 0 ^ 
 > 0

_ 0 � a � (d+ �) + b � 
 ^ 
 < 0

!

� 2 f<;�g (5.14)

It follows from [LW93℄ that

Theorem 5.2.2 Let x o

ur linearly in the formula '(x) :

^

i2I

a

i

� x+ b

i

= 0 ^

^

j2J

a

j

� x+ b

j

6= 0 ^

^

k2K

a

k

� x+ b

k

� 0 ^

^

l2L

a

l

� x+ b

l

> 0
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Then 9x : '(x) is equivalent to

_

i2I[K

a

i

6= 0 ^ '(�

b

i

a

i

) _

_

i2J[L

a

i

6= 0 ^ '(�

b

i

a

i

+ �) _ '(�1)

Though the bran
hing fa
tor is linear in the number of literals 
ontaining x and the

degree of the generated polynomials may in
rease, the method 
an be adapted to work

for surprisingly many appli
ations and is furthermore extended to se
ond and third degree

variables [Wei97, Wei94℄, and, more elaborately, to the general 
ase.

Example: Elimination of x from the equality

'(x; y) : x � y � 5 = 0

produ
es the 
onstraint

y 6= 0 ^ '(

5

y

; y) whi
h simpli�es to y 6= 0

and the substitution [x 7!

5

y

℄. On the other hand, elimination of x from the equality

'(x; y) : x � y = 0

produ
es the 
onstraint

y 6= 0 ^ '(0; y) _ '(�1; y) whi
h simpli�es using (5.1) to

y 6= 0 _ y = 0

The disjun
tion 
orresponds to a split with two bran
hes. The respe
tive bran
hes

generate the substitutions:

�

1

: [x 7! 0℄; �

2

: [x 7! x

�1

; y 7! 0℄

where x

�1

is a fresh variable. The in
remental solving allows (in prin
iple, as the

present implementation does not return substitutions) to establish goals su
h as:

x � y � 5 = 0 ! f(x+ 2) = f(

5

y

+ 2)

and

x � y = 0 ! f(2 � x

100

) = f(0) _ g(x � y

2

+ y � 5 + 1) = g(1)

for arbitrary fun
tions f and g.

In the next se
tion we des
ribe our approa
h to simplify polynomial inequalities and

eliminate redundant bran
hes generated by the quanti�er elimination pro
edure.
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5.2.2 Simpli�
ation using abstra
t interpretation

We propose the use of a simple sign-based abstra
t interpretation domain to simplify and

maintain polynomials. Polynomial inequalities are partially evaluated and simpli�ed using

only information about the signs of variables. The sign-evaluation allows to often also

redu
e the degree of polynomials in polynomial inequalities appearing in the ben
hmarks

we have en
ountered so far. Also, its e�e
t on limiting bran
hing fa
tors is dramati
. Even

small examples produ
e a large bran
hing fa
tor when the elimination pro
edure is used

without the sign-based evaluation. Together with a tight integration with the solver for

linear inequalities this 
omprises a handy tool for mixed linear and non-linear arithmeti
al


onstraints.

Besides a 
onjun
tion of polynomial inequalities the non-linear solver maintains a partial

map from variables to signs. The sign of a variable x is one of the following 
onstraints

x = 0; x 6= 0; x > 0; x � 0; x < 0; x � 0; ?

Signs are partially ordered with respe
t to impli
ation su
h that sin
e x < 0 ! x � 0 the

sign x < 0 is preferred for x � 0 as the sign for x. The sign \?" is preferrably avoided as it

imposes no 
onstraints. The partial order is illustrated in Figure 5.1.

x < 0 x = 0 x > 0

x � 0 x � 0

?

Figure 5.1: A Hasse diagram for the partial order of sign 
onstraints

Signs for variables are �rst a

umulated by inspe
ting the polynomials presented to the

non-linear solver. For example, a polynomial inequality x

3

> 0 results in the sign 
onstraint

x > 0. Signs are evaluated using the obvious rules, su
h as

(x > 0) � (y < 0) = (x � y < 0)

(x : ?)

2

= (x

2

� 0)

(x > 0) + (y < 0) = (x+ y : ?)
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Sin
e squaring and multipli
ation preserve more sign-information than addition we eval-

uate polynomials after multipli
ation has been distributed outwards as mu
h as possible.

Polynomial inequalities 
an then be simpli�ed further based on the sign evaluation. For

instan
e, if p 6= 0 is required, then ea
h multipli
ant that has a stri
tly non-zero sign (<, 6=,

>) is eliminated. Naturally, sign-evaluation 
an do early dete
tion of in
onsisten
ies and

simplify polynomials.

Example: Assume x > 0 and y > 0. We 
an then simplify

x � y � z + z

2

� x � y > 0

to the equivalent

z + z

2

> 0

be
ause

x � y � z + z

2

� x � y > 0

$ x � y � (z + z

2

) > 0

$ y � (z + z

2

) > 0

$ z + z

2

> 0

We do use methods that would split the last 
onstraint to z > 0 _ z < �1, but instead

establish satis�ability dire
tly by eliminating z.

5.2.3 Integration between linear and non-linear solvers

While asserted inequality 
onstraints are initially passed to both the linear and non-linear

solvers the best features from ea
h are transferred to the other.

If possible, equalities derived in the linear solver are written in solved form x = t where

x is a variable that does not o

ur under multipli
ation in t. Whenever this is possible

the substitution [x 7! t℄ is besides being applied to the 
ontext in the linear solver also

being applied to the non-linear solver. Sin
e the linear solver is equationally 
omplete

(lemma 5.1.2) we obtain a full dete
tion of impli
itly �xed variables. This will therefore

(slightly) generalize the features of the \naive" solver reported in [Col93℄ for Prolog III.

Polarities derived in the non-linear solver are 
onversely made visible to the linear solver

to for instan
e make an early dete
tion of the in
onsisten
y

x > 0 ^ y > 1 ^ x � y � �x� y

be
ause the non-linear solver adds the 
onstraint x � y > 0 based on the polarities x >

0 ^ y > 0. The resulting set of linear 
onstraints are 
ontradi
tory.
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substitutions

constraints

substitutions

constraints

Linear solver

Polarity solver

Non-linear solver

& polarities

Figure 5.2: Integration between the linear and non-linear solvers

5.3 Summary

This 
hapter presented a 
ombination of linear and non-linear solvers for arithmeti
al 
on-

straints. We used Fourier's method for elimination of variables to de
ide satis�ability for

inequality 
onstraints and also extra
t implied equalities as substitutions on the 
y.



Chapter 6

Re
ursive and 
o-re
ursive data

types

In this 
hapter we investigate de
ision pro
edures for re
ursive and 
o-re
ursive data types

and how these 
an be integrated within the 
ongruen
e 
losure-based de
ision pro
edure.

The 
hapter falls into two parts.

In the �rst part, Se
tion 6.1, we dis
uss theoreti
 properties of data types. Re
ursive

data types are generated from a set of 
onstru
tors and supplied with indu
tion s
hemas

ensuring no junk (the data type domain is the least set that 
an be obtained by applying


onstru
tors) and no 
onfusion (elements are given by a unique sequen
e of appli
ations

of 
onstru
tors). Re
ursive data types 
orrespond to initial algebras (free term algebras).

Co-re
ursive data types are 
onversely supplied with a 
o-indu
tion s
hema, whi
h ensures

maximal junk (the elements of the data type domain is the largest set that 
an be obtained

by applying the 
onstru
tors), but still no 
onfusion is required. Co-re
ursive data types


orrespond to �nal algebras. Co-re
ursive data types are essentially the in�nite term trees

in Prolog III [Col84℄. In logi
 programming, so-
alled sorted feature trees [Smo92, NP93,

Tre96℄ 
ontain several similarities with 
o-re
ursive data types.

In the se
ond part, Se
tion 6.2, our goal is to show how 
onstraints involving equations,

disequations, inequations (the subterm relationship), and arithmeti
al 
onstraints 
an all

be integrated within the same 
ombination. In parti
ular, we present optimized algorithms

for handling disequations, inequations, sele
tors, and uni�
ation of non-well-founded terms.

When the domain of a data type is in�nite we demonstrate how disequations 
an be tested

for satis�ability in a pro
essing-by-demand 
ombination. The data-stru
tures we use allow

to handle inequations saving some redundant bran
hing as 
ompared to [Ven87, Tul94℄.

By treating sele
tors as uninterpreted within the data type theory, but interpreting them

externally, we obtain a lazy approa
h to sele
tor evaluation. This allows a solver-based

de
ision pro
edure integration and has also demonstrated signi�
ant speedup on ben
h-

marks using sele
tors. The 
onstru
tor part of the theory of data types 
an then be dealt

with using eÆ
ient Robinson-style uni�
ation algorithms. The subterm relation for well-

founded data types is �nally 
oupled with arithmeti
al 
onstraints on the size of data types

78
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in Se
tion 6.2.6.

6.1 The theory of (
o-)re
ursive data types

The material in this Se
tion summarizes a number of fa
ts about re
ursive and 
o-re
ursive

data types. Several results may be derived as spe
ial 
ases from well-known general results.

Other results are parti
ular to �rst-order theories of data types.

6.1.1 Signatures for sorted data types

By a re
ursive data type � we understand an impli
itly de�ned sort 
hara
terized by a

signature of the form

h�; S

1

; : : : ; S

n

;�i

where S

1

; : : : ; S

n

are di�erent non-empty sorts and � is a �nite set of 
onstru
tors. Ea
h


onstru
tor 
 in � has an asso
iated arity:


 : T

1

� � � � � T

n




! �

where n




� 0, and ea
h of the sorts T

i

is taken from the list �; S

1

; : : : ; S

n

.

1

With ea
h 
onstru
tor 
 2 � we also asso
iate a set of sele
tors s




1

; : : : ; s




n




, and a tester

is
 : � ! B.

Example: A signature for a domain of binary trees over a base sort S 
an be spe
i�ed

using

htree ; S;node : tree � tree ! tree; leaf : S ! treei :

With node we asso
iate the sele
tors left : tree ! tree and right : tree ! tree and

tester isnode : tree ! B. With leaf we asso
iate the sele
tor leaf -
ontents : tree ! S

and the tester isleaf : tree ! B.

Various 
hara
teristi
s of signatures lead to important spe
ial 
ases. We say that a

signature is:

well-founded if there is a 
onstru
tor that does not have � in its domain.

linear if all 
onstru
tors have � o

urring in at most one pla
e.

singular if there is only a single 
onstru
tor 
 of arity � � � : : :� � ! � .


at if � does not appear in the domain of any 
onstru
tor.

enumerative if ea
h 
onstru
tor has arity � (does not take any arguments)

1

Thus we limit ourselves to a very simple theory of data types. In parti
ular, � o

urs only 
o-variantly

in the domain of ea
h 
onstru
tor. data types with 
ontra-variant dependen
ies have a mu
h more involved

model-theory.



CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 80

a re
ord if there is only one 
onstru
tor and � does not appear in the domain of that


onstru
tor.

Lists are a spe
ial 
ase of linear data types. Lists are also a spe
ial 
ase of queues, treated in


hapter 8. The results in this 
hapter are therefore aimed ex
lusively at non-linear and 
at

data types. Singular data types have only trivial models, so these are ignored. By treating

re
ords and enumeration types as data types we 
an reuse the available tools developed

here without having to dupli
ate e�ort on these types.

6.1.2 Canoni
al models

We will dis
uss two natural models for data types: re
ursive and 
o-re
ursive models. Sin
e

these are in a good sense dual to ea
h-other we dis
uss them in the same Se
tion.

6.1.2.1 Initial algebras

Assume we are given an interpretation I

0

for the sorts S

1

; : : : ; S

n

. The 
lass of possible

interpretations for � that we shall 
onsider are all extensions of I

0

. The initial algebra

I

init

is the extension of I

0

su
h that for any other extension I there is a homomorphism

h : I

init

! I. This de�nition (whi
h is a spe
ial 
ase of the more general one from [Bir35℄)

is well founded as we have

Proposition 6.1.1 ([Gr�a79℄Corollary 24.1, Theorem 24.2) If I

init

exists it is unique

up to isomorphism.

We give a proof for our spe
ial 
ase, as the same te
hniques are used for �nal 
o-algebras.

Proof:

Let I and J be initial su
h that IdS

i

= JdS

i

= I

0

, i = 1; : : : ; n. Then by assumption

homomorphisms h : I ! J and g : J ! I exist, and for every term t(x

1

; : : : ; x

m

) with

x

j

2 S

i

,

g Æ h(t(x

1

; : : : ; x

m

))

I

= g Æ h(t

I

(x

I

1

; : : : ; x

I

m

))

= g(t

J

(x

J

1

; : : : ; x

J

m

))

= t

I

(x

I

1

; : : : ; x

I

m

)

= (t(x

1

; : : : ; x

m

))

I

So g Æ h is an isomorphism on the term universe of h�; S;�i.

To 
onstru
t an initial model I

init

, and later 
onstru
t dual �nal models, we de�ne a � -tree:

De�nition 6.1.2 (�-trees) A � -tree 
onsists of a hT; �; sort i, where

1. T is a non-empty pre�x-
losed subset of f1 : : :maxfarity(
) j 
 2 �gg

�

,

2. � : T ! � [ I

0

(S

1

) [ : : : I

0

(S

n

) is a labeling, and
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3. sort : T ! f�; S

1

; : : : ; S

n

g labels the nodes by sorts,

su
h that

1. If sort(t) = � , then �(t) = 
 for some 
 2 �, and if 
 has arity T

1

� : : : � T

n




! � ,

then t1; : : : ; tn




2 T; but ti 62 T for i > n




, and sort(tj) = T

j

for j = 1; : : : ; n




.

2. If sort(t) = S

j

for some auxiliary sort S

j

, then �(t) 2 I

0

(S

j

), and ti 62 T for all i.

Finite � -trees are the trees where T has �nite 
ardinality, and in�nite � -trees are the trees

where T is not restri
ted 
ardinal-wise. The set of rational trees is obtained by taking the

� -trees that have only a �nite number of di�erent sub-trees.

Theorem 6.1.3 I

init

exists.

Proof:

The term-algebra over I

0

(S

1

); : : : ; I

0

(S

n

), where every distin
t term over � 
orre-

sponds to unique elements is isomorphi
 to the set of �nite � -trees. Let I be another

interpretation. We 
onstru
t h : I

init

! I by re
ursion as a union

S

i<!

h

i

. For i = 0

we de�ne h

0

as the identity map on the range of I

0

. Indu
tively assume that h

i

is

given, and let 
(t

1

; : : : ; t

n

) be a term where t

1

; : : : ; t

n

are terms of depth at most i.

Then

I(t

j

) = h

i

(I

init

(t

j

)) = h

i

(t

j

) j = 1; : : : ; n

We now set

h

i+1

I

init

(
(t

1

; : : : ; t

n

)) = h

i+1

(
(t

1

; : : : ; t

n

)) = I(
(t

1

; : : : ; t

n

)) = I(
(h

i

(t

1

); : : : ; h

i

(t

n

)) :

The interpretation of testers is now uniquely given by the axioms

8x 2 � : 8
 2 � : is
(x) $ 9y 2 dom(
) : x = 
(y) : (6.1)

While the interpretation of 
onstru
tors and testers is unique (up to isomorphism) we

admit any extension of I

init

satisfying the sele
tor axioms:

8
 2 � : 8(y

1

; : : : ; y

n

) 2 dom(
) : s




i

(
(y

1

; : : : ; y

n

)) = y

i

: (6.2)

This leaves the interpretation of sele
tors under-spe
i�ed when the sele
tor does not mat
h

the 
onstru
tor asso
iated with the term where the sele
tor is applied. Hodges [Hod93℄,

for instan
e insists that s




i

(


0

(y

1

; : : : ; y

n

)) = 


0

(y

1

; : : : ; y

n

) when 
 6= 


0

to obtain a unique

interpretation of sele
tors. This works only in an unsorted setting, however. Treinen [Tre91℄

maps non-mat
hing sele
tor appli
ations to a �xed element ?

S

for ea
h sort S. If sele
tors

are guaranteed only to be applied to terms, whose top-most 
onstru
tor mat
hes the sele
tor,
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we may get rid of the sele
tors in an initial phase using transformations of the following

form:

C[s




i

(t)℄ 7! C[x

i

℄ ^ t = 
(x

1

; : : : ; x

i

; : : : ; x

n

) : (6.3)

where x

1

; : : : ; x

n

are fresh (existentially quanti�ed) variables. We are then ba
k at the pure


onstru
tor theory. This transformation is only sound if t 
ould only have been generated

as an appli
ation of 
. For instan
e

left(leaf (x )) = y (6.4)

is satis�able if leaf is a total fun
tion. But the transformation from (6.3) produ
es the

unsatis�able

9x

1

; x

2

: x

1

= y ^ node(x

1

; x

2

) = leaf (x) :

This situation a
tually arises in [Sho84℄, where the solver for data types is unsound and

returns false when solving (6.4).

Alternatively, we 
an 
hara
terize the initial algebras with the axiomatization I in

Figure 6.1.

F(�) � � (introdu
tion)

8X � �: F(X) � X ! � � X (indu
tion)

8


i

; 


j

2 �;8y

1

2 dom(


i

); y

2

2 dom(


j

) : (no 
onfusion)




i

(y

1

) = 


j

(y

2

) ! i = j ^ y

1

= y

2

8
 2 � : is
(x) $ 9y 2 dom(
) : x = 
(y) (tester)

8
 2 �;8(y

1

; : : : ; y

n

) 2 dom(
) : s




i

(
(y

1

; : : : ; y

n

)) = y

i

(sele
tor)

Figure 6.1: Initial algebra axiomatization I

To state these axioms we use the predi
ate transformer F , de�ned:

F(S)

def

= f
(y

1

; : : : ; y

n

) j 
 2 �; (y

1

; : : : ; y

n

) 2 dom(
)dSg

where dom(
)dS is the domain of 
 where o

urren
es of � are restri
ted to be in
luded in

the set S. The analogy with taking the post-
ondition from a set of states 
an be helpful

to keep in mind.

Example: For the data type of trees we have:

F(X) = fnode(x; y) j x; y 2 Xg [ fleaf (x) j x 2 Sg
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So for instan
e

F(X) � Y $ 8x; y 2 X; s 2 S : node(x; y) 2 Y ^ leaf (s) 2 Y

and

X � F(Y ) $ 8x 2 X : 9y; z 2 Y; s 2 S : x = node(y; z) _ x = leaf (s)

Returning to the axioms in Figure 6.1,

Proposition 6.1.4 The introdu
tion, indu
tion, and no 
onfusion axioms determine � up

to isomorphism.

Proof:

From the indu
tion axiom we have

� �

\

fX j F(X) � Xg

From the introdu
tion axiom we have the 
onverse

\

fX j F(X) � Xg � �

In summary

� =

\

fX j F(X) � Xg =

[

�<!

F

�

(;) = �X : F(X) :

In words, � is the least set obtained by applying the 
onstru
tors �nitely many times

to elements from the base sorts S

1

; : : : ; S

n

. Together with the (no 
onfusion) axioms

we 
on
lude that � 
oin
ides with the free term-algebra.

6.1.2.2 Final 
o-algebras

We now investigate de
ision pro
edures for the 
ase where data types are interpreted as

�nal 
o-algebras.

An interpretation I

�nal

is a �nal 
o-algebra in a 
lass K of interpretations (whi
h are

as before all extensions of I

0

) if for any I in K there is a homomorphism h : I ! I

�nal

.

The 
lass K of interpretations we here have in mind are the strongly extensional mod-

els [A
z88℄. Strongly extensional models are those where identity 
oin
ides with the largest

bisimulation [Mil89℄.

Two elements a; b 2 range(I) are bisimilar if there is a binary relation R � range(I)�

range(I), su
h that R n (I(�) � I(�)) = diag(I(S

1

)) [ : : : [ diag(I(S

n

)), and (a; b) 2 R

and for every a; a

0

2 I(�), (a; a

0

) 2 R i� there are b; b

0

2 range(I), 
 2 � su
h that

a = I(
(b)); a

0

= I(
(b

0

)); (b

i

; b

0

i

) 2 R; i = 1; : : : ; arity(
). The largest bisimulation is as

usual the union of all bisimulations. Alternatively we 
an appeal to the Anti Foundation

Axioms (AFA) to fa
tor out bisimilar models. The same proof as for Proposition 6.1.1 gives



CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 84

Proposition 6.1.5 If I

�nal

exists it is unique up to isomorphism.

To 
onstru
t I

�nal

we will now use the domain of in�nite � -trees. It is straight forward to

verify that equality on in�nite � -terms is a maximal bisimulation. Intuitively, two di�erent

� -trees di�er on a �nite path, establishing that there 
an be no bisimulation between them.

More formally,

Lemma 6.1.6 Equality on in�nite � -trees is a maximal bisimulation.

Proof:

Take any bisimulation relation R on � -trees and suppose that

(hT

1

; �

1

; sort

1

i; hT

2

; �

2

; sort

2

i) 2 R:

We prove by indu
tion on the length of strings in T

1

and T

2

, that they must 
oin
ide.

The base 
ase requires to establish that � 2 T

1

i� � 2 T

2

, whi
h is the 
ase as both

sets are non-empty and pre�x-
losed, �

1

(�) = �

2

(�), and sort

1

(�) = sort

2

(�), whi
h

follows by unfolding the 
ondition on R on
e. As the indu
tion hypothesis suppose

that T

1

and T

2

have the same strings of length less than i and that sort

1

and sort

2

as

well as �

1

and �

2


oin
ide on all strings of length less than i. Now take any string s

of length i� 1 (pre�x 
losure of T

1

, T

2

makes sure this is not a restri
tion) and de�ne

for k = 1; 2

T

s

k

def

= ft 2 f1 : : :maxfarity(
) j 
 2 �gg

�

j st 2 T

k

g (6.5)

�

s

k

(t)

def

= �

k

(st) (6.6)

sort

s

k

(t)

def

= sort

k

(st) (6.7)

Now either sort

s

1

(�) = S

j

for some sort S

j

or sort

s

1

(�) = � . In the �rst 
ase T

s

1

=

T

s

2

= f�g, and �

s

1

= �

i

2

= [� 7! s℄ for some s 2 I

0

(S

j

). In the se
ond 
ase the


onditions on R require that there is a 
 2 � su
h that �

s

1

(�) = �

s

2

(�) = 
 and for ea
h

i = 1; : : : ; arity(
), (hT

si

1

; �

si

1

; sort

si

1

i; hT

si

2

; �

si

2

; sort

si

2

i) 2 R.

We will now �x the interpretation I

�nal

as the one that maps every data type term t to

the 
orresponding (isomorphi
) � -tree. Despite the naming I

�nal

, we have yet to establish

whether it is indeed a �nal 
o-algebra. This will not be the 
ase when the models may


ontain unne
essary junk. To avoid this, we restri
t K further to those interpretations

where domain 
losure holds.

De�nition 6.1.7 (Domain 
losure) Domain 
losure holds for I in K if for every a 2

I(�) there are 
 2 � and b 2 range(I) su
h that a = I(
(b)). In other words we require the

interpretations in K to satisfy

� � F(�) :

Noti
e that domain 
losure holds for the 
onstru
tion we gave for I

�nal

.
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Theorem 6.1.8 Let the 
lass of K interpretations satisfy domain 
losure and I

�nal

2 K,

then I

�nal

is a �nal 
o-algebra in K.

Proof:

Take an arbitrary interpretation I in K. As I satis�es domain 
losure we 
an for

ea
h element in I(�) �x an arbitrary one-step unfolding (there is a
tually pre
isely

one by the (no-
onfusion) axiom). A one-step unfolding of a 2 I(t) 
hooses a 
 2 �

and b 2 range(I) su
h that a = I(
(b)). We 
an now asso
iate ea
h element in I(�)

with a � -tree by building it in stages based on the transitive unfolding obtained by

applying the �xed one-step unfoldings.

To 
apture �nality axiomati
ally we 
an use the solution lemma, whi
h states that all

(
onsistent) sets of equations have (unique) solutions. The solution lemma and its relations

to non-well-founded set-theory are dis
ussed in [A
z88℄. Stated using in�nitary 
onne
tives

and index sets I and J , it reads

8x : J ! � : 9!y : I ! � :

^

i2I

y(i) = t

i

(x; y)

where ea
h t

i

(x; y) is a term over variables x(j); j 2 J , y(i); i 2 I, and there is no 
hain

i

1

; i

2

; : : : ; i

k

; : : : 2 I, su
h that for ea
h pair (a; b) 2 f(i

1

; i

2

); : : : ; (i

k

; i

k+1

); : : :g, the term t

a

is y(b). This 
ondition ensures that every variable y(i) is (eventually) de�ned in terms of

some term whi
h is either of the form x(j) or uses a 
onstru
tor. Noti
e that this s
hema

in
ludes in K trees that are not rational.

We 
an therefore 
apture the �nal 
o-algebra axiomatization by the axioms in Figure 6.2

among strongly extensional models. Dual to indu
tion, whi
h implies domain 
losure, the

solution lemma implies the prin
iple of introdu
tion F(�) � � .

� � F(�) (domain 
losure)

8x : J ! � : 9!y : I ! � :

V

i2I

y(i) = t

i

(x; y) (solution lemma)

8


i

; 


j

2 �;8y

1

2 dom(


i

); y

2

2 dom(


j

) : (no 
onfusion)




i

(y

1

) = 


j

(y

2

) ! i = j ^ y

1

= y

2

8
 2 � : is
(x) $ 9y 2 dom(
) : x = 
(y) (tester)

8
 2 �;8(y

1

; : : : ; y

n

) 2 dom(
) : s




i

(
(y

1

; : : : ; y

n

)) = y

i

(sele
tor)

Figure 6.2: Final 
o-algebra axiomatization C

As an alternative to �nality among extensional interpretations K, we 
an 
apture I

�nal



CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 86

by asserting the prin
iple of 
o-indu
tion:

8X � K : X � F(X) ! X � � :

The sort � is 
onstrained as the greatest �x-point to F as the 
o-indu
tion prin
iple asserts

[

fX � K j X � F(X)g � �

and the domain 
losure 
ondition ensures the 
onverse

� �

[

fX � K j X � F(X)g;

so in summary

� =

[

fX � K j X � F(X)g = �X � K : F(X) :

We 
an relate this to the 
onstru
ted I

�nal

by showing that it is a maximal �x-point and any

other �x-point 
omes with an inje
tion to I

�nal

. A proof of this observation 
an be modeled

dire
tly after Theorem 14.1 in [BM96℄ page 198 where it is formulated for streams assuming

AFA. The expli
it use of K in the 
o-indu
tion prin
iple is also pervasive in [Pau93, Pau97℄.

Here, 
o-indu
tion is embedded in HOL using en
oding from �rst prin
iples. For instan
e,

for ea
h base type �, K is the type � node set set, and terms are built from primitive

operations 


D

, �

D

, for forming produ
ts and sums over non-well-founded stru
tures.

One 
an naturally bypass the entire dis
ussion of �nality by modeling 
o-re
ursive data

types dire
tly using � -trees as the basi
 notion. This has been done in [Fef96℄ in the 
ase

of streams.

6.1.3 Mixed data types

We have presented the sorted signatures for (
o-)re
ursive data types for simpli
ity with

only one data type atta
hed. Consider now example 6.1.3.

Example: Mutual re
ursive de�nitions of trees and forests:

*

S;

�

tree

; node : S � �

forest

! �

tree

; bran
h : �

tree

! �

tree

�

forest

; nil : �

forest

; 
ons : �

tree

� �

forest

! �

forest

+

In the 
ase where �

tree

and �

forest

are both interpreted a re
ursive data types or both

interpreted as 
o-re
ursive data types it does not take mu
h e�ort to extend all de�nitions

to support su
h mutually re
ursively de�ned types.

The more subtle question is to provide meaningful interpretations and support for a

mixture of re
ursive and 
o-re
ursive data types. For instan
e, if we insist that the domain

of �

tree

may in
lude in�nitely long bran
hes, but that all forests should be �nite one should

be able to 
onstrain �

tree

as a 
o-re
ursive data type and �

forest

as a re
ursive data type. In
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general terms assume we have a stru
ture

h�




; �

r

; S

1

; : : : ; S

n

;�

r

;�




i

where �

r

and �




are sets of disjoint 
onstru
tors. The 
onstru
tors f 2 �

r

have arity T

1

�

: : :�T

n

f

! �

r

, f 2 �




have arity T

1

�: : :�T

n

f

! �




where T

1

; : : : range over �




; �

r

; S

1

; : : : ; S

n

.

We wish to obtain a re
ursive interpretation of �

r

and 
o-re
ursive interpretation of �




assuming well-foundedness (�

r


ontains a 
onstru
tor that does not have �

r

in its domain).

Alternating � -trees provide a way to obtain su
h an interpretation.

De�nition 6.1.9 An alternating � -tree is a possibly in�nite � -tree hT; �; sort i over sorts

�




; �

r

; S

1

; : : : ; S

n

su
h that there is no in�nite subset fw

1

; w

2

; w

3

; : : :g of T where 8i9j : w

i+1

=

w

i

j and 8i : sort(w

i

) = �

r

.

Sin
e in ea
h 
ase T is �nitely bran
hing, K�onig's lemma implies that this requirement is

equivalent to ex
luding in�nite terms over �

r

.

Alternating � -trees are not ne
essarily the only meaningful model. In [BS98℄ general


onditions on stru
tures in
luding re
ursive and 
o-re
ursive data types are studied in order

to a
hieve meaningful 
ombinations and integrated de
ision pro
edures.

6.1.4 Equational theories

A ground equational formula is built ex
lusively from boolean 
ombinations of equalities.

A �rst-order equational formula ' is built from ground equational formulas by adding �rst-

order quanti�
ation.

6.1.4.1 Re
ursive data types

The indu
tion s
hema from Figure 6.1 is the only non-equational axiom for indu
tive data

types. It implies two sets of equational axioms, namely domain 
losure, as well as that

no term is a proper subterm of itself. The latter has to be formulated using an in�nite

supply of equational axioms, one for ea
h term over � together with auxiliary variables. In

summary we obtain the equational axiomatization in Figure 6.3.

6.1.4.2 Co-re
ursive data types

The axiomatization of 
o-re
ursive data types already 
ontain axioms for domain 
losure.

The �nite instan
es of the solution lemma looks remarkably dual to the no-
y
les 
ondition.

Thus, we state the 
orresponding equational axiomatization for 
o-re
ursive data types in

Figure 6.4.

6.1.5 Beyond equational theories

While a se
ond-order system allows to de�ne derived relations, su
h as the subterm relation,

a pure �rst-order system needs to introdu
e these separately. Hen
e, for the subterm relation
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F(�) = � (�x-point)

8x 2 �;8y:x 6= t(x; y) (no-
y
les)

8


i

; 


j

2 �;8y

1

2 dom(


i

); y

2

2 dom(


j

) : (no 
onfusion)




i

(y

1

) = 


j

(y

2

) ! i = j ^ y

1

= y

2

8
 2 � : is
(x) $ 9y 2 dom(
) : x = 
(y) (tester)

8
 2 �;8(y

1

; : : : ; y

n

) 2 dom(
) : s




i

(
(y

1

; : : : ; y

n

)) = y

i

(sele
tor)

Figure 6.3: Equational system I

E

for re
ursive data types

F(�) = � (�x-point)

8x 2 �;9!y:

V

i

y

i

= t

i

(x; y) (unique solutions)

8


i

; 


j

2 �;8y

1

2 dom(


i

); y

2

2 dom(


j

) : (no 
onfusion)




i

(y

1

) = 


j

(y

2

) ! i = j ^ y

1

= y

2

8
 2 � : is
(x) $ 9y 2 dom(
) : x = 
(y) (tester)

8
 2 �;8(y

1

; : : : ; y

n

) 2 dom(
) : s




i

(
(y

1

; : : : ; y

n

)) = y

i

(sele
tor)

Figure 6.4: Equational system C

E

for 
o-re
ursive data types

s � t, whi
h holds i� s is a subterm of t is relevant for standard termination arguments of

re
ursive programs. The single axiom-s
hema subterm en
odes this relation.

A ground de
ision pro
edure integration is presented in Se
tion 6.2.5.

6.1.6 First-order equational de
ision methods

6.1.6.1 En
odings into S2S

Suppose that ea
h sort S

i


an be en
oded in an enumerable domain. We 
an then redu
e

de
ision problems for the �rst-order theory of 
onstru
tors (but without sele
tors) to wS2S

(the weak monadi
 se
ond-order logi
 of two su

essors) for re
ursive data types respe
-

tively full S2S for 
o-re
ursive data types. This 
onne
tion is perhaps not surprising. For

instan
e [KS97℄ presents an en
oding of re
ursive data types via wS2S and guided tree-

automata. It has however not been possible to �nd a de�nite referen
e to this 
onne
tion,

so we dis
uss it in some depth here. The added value of using S2S is that the en
oding also
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8
 2 �;8x;8y 2 dom(
) :

x � 
(y

1

; : : : ; y

n

) $ x = 
(y

1

; : : : ; y

n

) _

W

i

x � y

i

(subterm)

Figure 6.5: subterm relation axiom s
hema

allows quanti�
ation over positions. The lost value in
ludes problems in en
oding under-

spe
i�ed sele
tors, the apparent need for full S2S for 
o-re
ursive data types (it is believed

mu
h more intra
table than wS2S in pra
ti
e [Kla98℄), and impossible to extend the S2S-

based representation to handle subterm relations using the same translation (the �rst-order

theory with subterm relations is unde
idable).

An en
oding of terms using unary predi
ates is sket
hed below. The analogy with I

init

and I

�nal

should be kept in mind as we here essentially use binary tress to en
ode trees of

arbitrary, but bounded bran
hing. The distin
tion between the initial and �nal models is

re
e
ted in the type of quanti�ers admitted.

1. Constru
tors. Assume that predi
ates P

1

; : : : ; P

n

en
ode t

1

; : : : ; t

n

. Then P en
odes




i

(t

1

; : : : ; t

n

i

), where 


i

is the i'th fun
tion symbol in � with arity n, if the following


onditions are satis�ed:

(a) P is downwards 
losed: 8x:P (xL) _ P (xR)! P (x).

(b) P (�).

(
) The left bran
h departing � has length i and does not split: P (L

i

) but :P (L

i+1

)

and :P (L

j

R) for 1 � j � i.

(d) The right bran
h departing � has length n: P (R

n

) but :P (R

n+1

).

(e) The j'th split on the right bran
h 
ontains the j'th subterm: 8x:P (xR

j

L) $

P

j

(x) for 1 � i � n.

2. To 
he
k that a predi
ate en
odes a well-formed term we introdu
e the abbreviation
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en
odes-term(P ), whi
h is de�ned with:

isPath(x; P )

def

= 8y � x : :P (yL) _ :P (yR)

We use isPath to en
ode values from the data type domains S

i

.

sort

�

(x; P )

def

= P (xL) ^ P (xR) ^ :P (xLR) ^ :P (xRL)

This 
onstrains P to bran
h both left and

right, but not followed by a zig-zag. It is il-

lustrated to the right.

sort

S

i

(x; P )

def

= P (xL

i

) ^ :P (xL

i+1

) ^

^

1�j�i

:P (xL

j

R)

^ isPath(P; xRL) ^ P (xRL) ^ :P (xR

2

)

This 
onstrains P to bran
h straight left with

a path of length i, and right in a path follow-

ing a zig-zag movement. It is illustrated to

the right.

isGoodRoot

i

(x; P )

def

= P (xL

i

) ^ :P (xL

i+1

) ^

^

1�j�i

:P (xL

j

R)

^ P (xR

n

i

+1

) ^ :P (xR

n

i

+2

)

^

^

1�j�n

i

sort

T

j

(xR

j+1

L; P )

Here 


i

has arity T

1

� � � � � T

n

i

! � .

en
odes-term(P )

def

= sort

�

(�; P )

^ 8x : sort

�

(x; P ) !

_




i

2�

isGoodRoot

i

(x; P )

^ 8x : P (xL) _ P (xR)! P (x)

3. Testers are expanded a

ording to the tester axioms.

4. Equalities of terms are now en
oded as predi
ate equivalen
e (i.e., set equality).

5. First-order quanti�
ation is en
oded as se
ond-order quanti�
ation over unary pred-

i
ates (sets) relativized to en
odes-term . For re
ursive data types quanti�
ation is

relativized to �nite sets. This for
es all terms to be �nite. This 
an be a

omplished
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dire
tly by using wS2S or by the predi
ate �nite(P ), where

�nite(P )

def

= :(9R : R � P ^ es
ape(R))

es
ape(R)

def

= R 6= ; ^ 8x 2 R9y 2 R : x < y

The 
hara
terization 
orresponds to a a weak form of K�onig's lemma (for trees of

bran
hing degree 2). For 
o-re
ursive data types, quanti�
ation is unrestri
ted. Finite

as well as in�nite terms are admitted. Full S2S is required to represent quanti�
ation

of in�nite sets.

The freedom to relativize variables in S2S produ
es as a side-e�e
t a de
ision pro
edure

for �rst-order equational theory of mixed data types. We here have to relativize variables

to those whi
h do not 
ontain an es
ape sequen
e of re
ursive 
onstru
tors.

6.1.6.2 First-order quanti�er elimination

An early quanti�er elimination pro
edure for free term algebras with 
ommutativity axioms


an be found in [Mal71℄ (the original paper in Russian is from 1961). Maher [Mah88a℄

gives quanti�er elimination pro
edure for re
ursive and 
o-re
ursive data types. Although

presented in an unsorted setting it 
an be extended in a straight-forward way to multi-sorted

data types [Mah88b℄. While only equational axiomatizations are dis
ussed, 
ategori
ity of

the se
ond-order axiomatizations I and C implies:

Corollary 6.1.10 For every �rst-order formula ', where every atomi
 formula is an equal-

ity between � -terms without sele
tors:

I q ' i� I

E

q ' i� I

E

` '

and

C q ' i� C

E

q ' i� C

E

` ' :

Unfortunately Maher's de
idability results do not extend to sele
tors when their in-

terpretation is left under-spe
i�ed. It is for instan
e straight forward to simulate binary

predi
ates with a sele
tor applied to a non-mat
hing binary 
onstru
tor. This allows to re-


onstru
t two-
ounter ma
hines and other Turing-
omplete devi
es. Ra
ko� proves [Ra
75℄

and Vorobyov [Vor96℄ reproves that the �rst-order theories of re
ursive and 
o-re
ursive

data types are non-elementary in the sense of Kalmar, i.e., 
annot be de
ided within time

bounded by a k-story exponential fun
tion for any �xed k. Both the quanti�er elimination

pro
edure and the embedding into S2S provide a 
omparable upper bound.

6.1.7 Related theories of data types

The theories of feature trees [Smo92℄ are related to the 
o-re
ursive data types dis
ussed

here. Sub-feature relationships are for instan
e studied in [MNT98℄. Features do not have
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the same arity restri
tions that the data types have here. This makes sub-feature 
onstraints

harder (
omplete for PSPACE, they 
orrespond to automaton simulations) than the NP-


omplete subterm relations studied here.

6.2 De
ision pro
edure integration for data types

We will here develop pro
edures that 
an be used to verify 
laims like

type sexpr == CONS :: 
ar : sexpr, 
dr : sexpr | NIL

value x,y,z : sexpr

NIL <= CONS(NIL,NIL)

x <= y /\ y <= x --> x = y

x < y /\ y <= x --> false

NIL < CONS(NIL,NIL)

x < CONS(x,y)

x <= y --> x < CONS(y,z)

CONS(x,y) = CONS(y,z) --> x = z


ar(x) = NIL /\ x = NIL --> 
ar(
ar(x)) = NIL

length(CONS(NIL,NIL)) = 3

length(A) > length(B) --> !(A <= B)

all in neglible time with the same integration of de
ision pro
edures.

Without mu
h added e�ort we also obtain pro
edures for automati
ally verifying 
laims

for 
o-re
ursive data types, su
h as


otype sexpr == CONS :: 
ar : sexpr, 
dr : sexpr | NIL

value x,y : sexpr

CONS(x,x) = x /\ CONS(y,y) = y --> x = y

CONS(x,y) = x /\ CONS(y,x) = x --> x = y

Due to STeP's fo
us on rea
tive systems the less trivial examples that these de
ision pro-


edures have been exposed to have involved only re
ords. For instan
e, a possible en
oding

of the version of the SRT lookup table presented in [RSS96℄ requires more attention to

how re
ord proje
tions are handled. A preliminary version of re
ord proje
tion de
ision

pro
edures based on Shostak's suggestions [Sho84℄ required 4 minutes to verify the main


laim. With the lazy evaluation of the proje
tion (sele
tor) operations we present here it is

veri�ed in 10-30 se
onds depending on how the theorem is presented.
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The required ma
hinery is being developed in the rest of this 
hapter.

6.2.1 �-automata

The union-�nd stru
ture used in the 
ongruen
e 
losure indu
es a stru
ture mu
h like

a top-down deterministi
 tree automaton, by taking Q as states and su

essor fun
tion

Æ = 
hildren Æ L

Q

: Q ! Q

�

. In general we 
an not assume that L

Q

is always up to date

with the union-�nd stru
ture. In the revised de�nition of Æ below, we therefore apply �nd

to ea
h 
hild of L

Q

(q) to anti
ipate a later update of L

Q

. By labeling ea
h state q by the

head fun
tion symbol in L

Q

(q) we also obtain a way to a

ess terms asso
iated with the

states.

When interpreting a spe
i�
 data type � with 
onstru
tors � � F we will however use a

modi�ed su

essor fun
tion, whi
h only produ
es su

essors for a state q, when it is labeled

by a fun
tion symbol in �. Thus,

De�nition 6.2.1 (�-automaton) Given the union-�nd stru
ture with terms des
ribed in

Se
tion 3.2 and data type � with 
onstru
tors �, the � -automaton is a tuple

A : hQ; Æ : Q! Q

�

; � : Q! Fi

su
h that

�(q)

def

= let (f; q) = L

Q

(q) in f

Æ(q)

def

= if �(q) 2 � then map �nd (
hildren(L

Q

(q))) else hi

Sin
e we have just de�ned � -automata we will sneak in two auxiliary de�nitions asso
iated

with these automata. These 
on
ern paths in � -automata and rea
hability.

De�nition 6.2.2 (Paths: �) A path � is a sequen
e of positive integers. The evaluation

of state q on path � is written �(q) and de�ned via:

�(q) = q

(i � �)(q) = �(Æ(q)

i

)

where Æ(q)

i

is the i'th proje
tion of Æ(q) de�ned (arbitrarily) as q if jÆ(q)j < i. A path � is

well formed on q if � is � or � = i � �

0

, jÆ(q)j � i and �

0

is well formed on Æ(q)

i

. Paths are

partially ordered by the string pre�x relation.

De�nition 6.2.3 (Rea
hability) Let q

1

; q

2

be states in Q, then

q

1

� q

2

i� there is a path � su
h that q

2

= �(q

1

)

6.2.2 Uni�
ation using �-automata

Sin
e terms are represented by the union-�nd node that 
orresponds to the top most sub

term we 
an unify a pair of terms based on a Robinson-style uni�
ation algorithm [BS93℄ for
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the pair of 
orresponding union-�nd nodes. More generally, given a set of pairs of union-�nd

nodes E de�ne unify in Figure 6.6.

unify(E) = unifyPairs(Id; E) where

unifyPairs(�; ;) = return �

unifyPairs(�; fq

1

?

= q

2

g [ E) =

let

q

0

1

= (q

1

)� and q

0

2

= (q

2

)�

in

if q

0

1

= q

0

2

then unifyPairs(�; E) else

if �(q

0

1

) 62 � then unifyPairs(� � [q

0

1

7! q

0

2

℄; E) else

if �(q

0

2

) 62 � then unifyPairs(� � [q

0

2

7! q

0

1

℄; E) else

if �(q

0

1

) = �(q

0

2

) then unifyPairs(� � [q

0

1

7! q

0

2

℄;

E [ fÆ(q

0

1

)

i

?

= Æ(q

0

2

)

i

j i � arity(L

Q

(q

0

1

))g)

else return FAIL

Figure 6.6: Uni�
ation using � -automata

The result of unify is either FAIL, in whi
h 
ase the input terms do not unify, or a

substitution � mapping union-�nd nodes to union-�nd nodes. The restri
tion of � where

domain nodes are labeled by variables (i.e., whose head fun
tion symbols are not in �)

indu
es a most general uni�er. The easiest way to see this is perhaps by viewing the

present algorithm as a re�nement of Robinson's uni�
ation algorithm.

Operations asso
iated with the substitution � 
an be implemented using a union-

�nd data-stru
ture. We then obtain an almost linear-time uni�
ation algorithm as noted

in [BN98℄. Zhang [Zha92℄ gives a slightly more eÆ
ient \shell-nut" data-stru
ture that

works as a lazy union-�nd stru
ture and solves the union-�nd problem for uni�
ation in


onstant time. Every step eliminates one state or dis
harges an equality. The entire uni�-


ation pro
ess 
an therefore be implemented to run in time linearly in �

q2Q

max(1; jÆ(q)j)

(using the Shell-Nut data-stru
ture). In [JK90℄ it is left open whether rational trees 
ould

be uni�ed in linear time, but the shell-nut pro
edure does pre
isely that.

6.2.3 Integration with 
ongruen
e 
losure

Shostak [Sho84℄ proposes a solver for a spe
ial theory of S-expressions (
onvex S-expressions,

where the axiom x = CONS(CAR(x),CDR(x)) holds). With some goodwill it 
an be extended

to other data types. However fundamental to this approa
h sele
tors like CAR and CDR are

treated as interpreted symbols and may therefore not be
ome part of a solved form.

We will use the uni�
ation algorithm from Figure 6.6 to solve equalities for re
ursive as
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well as 
o-re
ursive data types. By separating out the treatment of sele
tors and testers we

will be able to make some theoreti
al observations on di�eren
es in de
ision 
omplexities,

and also be able to obtain a solver that works for a maximally 
exible interpretation of the

sele
tors.

6.2.3.1 Re
ursive data types

Presented with an equality 
onstraint t = s, where s and t are terms over the re
ursive data

type � , we 
an invoke the uni�
ation algorithm from Figure 6.6 on the pair of union-�nd

nodes fq

s

?

= q

t

g. In 
ase of failure s and t di�er on a 
ommon position with in
ompatible


onstru
tors. The equality t = s is then unsatis�able. In 
ase of su

ess, the uni�
ation

algorithm returns a substitution [q

1

7! q

0

1

; : : : ; q

n

7! q

0

n

℄. We 
an perform the o

urs 
he
k �a

posterior in linear time using a topologi
al sorting algorithm or using Tarjan's algorithm for

�nding strongly 
onne
ted 
omponents in a graph. Tarjan's algorithm produ
es a partition

of the states Q. We then 
he
k that ea
h partition is a singleton set, without a looping

state transition. This 
he
k 
an naturally be interleaved with the generation of strongly


onne
ted 
omponents and uni�
ation. This gives essentially the o

urs 
he
k approa
h

of [RP89℄. Alternatively one 
an use the linear-time algorithm from [DST80℄ to perform

the 
ongruen
e 
losure of A. This algorithm terminates if the graph 
ontains a 
y
le. Note

that the graph indu
ed by A and the uni�er 
ontains a 
y
le if and only if the o

urs 
he
k

is violated.

Provided the o

urs 
he
k is not violated the substitution [q

1

7! q

0

1

; : : : ; q

n

7! q

0

n

℄ from

the uni�
ation algorithm is equivalent to a solved form

m

^

i=1

x

i

= t

i

where m � n and none of the x

i

o

ur free in the t

i

. As uni�
ation does not produ
e new

states, no new terms need to be presented to the 
ongruen
e 
losure before it 
an pro
ess

the set of solved equalities [q

1

7! q

0

1

; : : : ; q

n

7! q

0

n

℄ by merging q

i

and q

0

i

for i = 1; : : : ; n.

Noti
e how the use of dire
ted merge, whi
h sets the �nd of q

i

to that of q

0

i

, is 
onsistent

with the fa
t that if q

i

is labeled by a 
onstru
tor it 
oin
ides with the 
onstru
tor labeling

q

0

i

.

6.2.3.2 Co-re
ursive data types

The o

urs 
he
k is not required for 
o-re
ursive data types. Instead the result of uni�
ation


an produ
e bisimilar nodes that are not merged. For instan
e take the 
onstraint

x = node(x; x) ^ y = node(y; y) :

Before taking the equalities into a

ount the asso
iated union-�nd stru
ture would allo
ate

four nodes, q

1

; q

2

; q

3

; q

4

, where L

Q

(q

1

) = x, L

Q

(q

2

) = node(q

1

; q

1

), L

Q

(q

3

) = y, L

Q

(q

4

) =

node(q

3

; q

3

). Asserting the equality x = node(x; x) requires to unify q

1

and q

2

resulting
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in the substitution [q

1

7! q

2

℄. Separately the equality y = node(y; y) 
auses merging q

3

with q

4

. The resulting union-�nd stru
ture now has �nd(q

1

) = q

2

, �nd (q

3

) = q

4

, L

Q

(q

2

) =

node(q

2

; q

2

), and L

Q

(q

4

) = node(q

4

; q

4

). In the asso
iated � -automaton A, q

2

and q

4

are

di�erent but bisimilar states, so therefore represent the same element in any model. To

merge q

2

and q

4

(in other words ensure that terms are all in 
anoni
al form) we need

to 
lose A a

ording to the maximal bisimulation relation satisfying (the Myhill-Nerode

prin
iple):

q � q

0

i� �(q) = �(q

0

) ^ 8i � jÆ(q)j : Æ(q)

i

� Æ(q

0

)

i

EÆ
ient algorithms for partition re�nement [PT87℄ 
an minimize � -automata in time bounded

by O(nlog(n)), where n is the size of Q. In an early paper Oppen [Opp80b℄ gives an

O(nlog

2

(n)) bound based on other algorithms.

6.2.3.3 Satis�ability of equations and disequalities

The two re�nements of the uni�
ation algorithm above give eÆ
ient pro
edures for de
iding

satis�ability of 
onjun
tions of equalities and disequalities over re
ursive and 
o-re
ursive

data types. Given a 
onjun
tion L of equalities t = s and disequalities u 6= v where all

terms range over a data type � , we 
an perform the steps of the algorithm in Figure 6.7.

1. Produ
e a union-�nd stru
ture by applying 
anonize to ea
h term in L.

2. Extra
t the � -automaton A from the union-�nd stru
ture.

3. Form the set E : fq

s

?

= q

t

j s = t in Lg and apply unify on E .

4. In the 
ase of re
ursive data types a linear-time 
ongruen
e 
losure algorithm is

suÆ
ient to do o

urs 
he
k and 
ollapse nodes that must be equal. In the 
ase of


o-re
ursive data types, automaton minimization in O(nlog(n)) suÆ
es in order to


ollapse states that must be interpreted equally.

5. If the uni�
ation or minimization merges two nodes that are asso
iated with a

disequality or di�erent 
onstru
tors the original set L is unsatis�able.

Figure 6.7: Algorithm for 
he
king 
onsisten
y of equalities and disequalities

When � is non-singular, and not 
at with all parameter sorts S

i

being �nite domain

it is simple to generate in�nitely many di�erent terms of type � . For instan
e, if � is a

well-founded re
ursive data type we 
an 
hoose an assignment of \fresh" terms to root-

nodes that are not labeled by 
onstru
tors (the �rst non-
onstru
tor node is labeled by a

term of size jf�nd (q) j q 2 Qgj + 1, the se
ond by a term twi
e the size, et.
., This entails

that the algorithm in Figure 6.7 is 
omplete for well-founded re
ursive data types. When

the data type is an enumeration type, however, it is easy to redu
e the graph k-
oloring

problem to the satis�ability problem by representing nodes in a given graph by di�erent

variables ranging over a data type of k elements and asserting disequalities 
orresponding to

edges. The graph 3-
oloring problem is NP-
omplete, so this leaves little hope for obtaining
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eÆ
ient algorithms for the enumeration 
ase. The pro
edure in Figure 6.7 therefore only

serves as a partial 
onsisten
y 
he
k when splitting is not employed.

The algorithm 
an also be used dire
tly to solve the de
ision problems studied in [Col84℄.

The theoreti
al running time of our algorithm seems however better (O(nlog(n)) as opposed

to at least O(n

2

), if not O(n

3

)

2

).

6.2.4 Sele
tors and testers

The eÆ
ient algorithmi
 results do not 
arry over to 
onstraints in
luding testers or sele
-

tors. Consider for example the data type

h�; T : �; F : �; 
ons : � � � ! �i (6.8)

with sele
tors 
ar : � ! � , 
dr : � ! � and testers isT , isF and is
ons . Then given

an instan
e ' :

V

i

(l

i

_ k

i

_ m

i

) of 3-SAT where l

i

; k

i

;m

i

are literals over the alphabet

fx

1

; : : : ; x

n

g, we introdu
e fresh variables x̂

i

and

^

x

i

for the positive and negative literals

respe
tively. Now ' is satis�able if and only if

V

i


ons(
ons(F; F ); F ) 6= 
ons(
ons(

^

l

i

;

^

k

i

); m̂

i

)

^

V

x2V

x̂ 6=

^

x

^

V

x2V

:is
ons(x̂) ^ :is
ons(

^

x)

is satis�able, if and only if

V

i


ons(
ons(F; F ); F ) 6= 
ons(
ons(

^

l

i

;

^

k

i

); m̂

i

)

^

V

x2V

x̂ 6=

^

x

^

V

x2V


ons(
ar (x̂); 
dr (x̂)) 6= x̂ ^ 
ons(
ar (

^

x); 
dr (

^

x)) 6=

^

x

is satis�able.

Nelson and Oppen [NO78℄ noti
ed that when S has in�nite 
ardinality, then equalities

and disequalities over

h�; S; atom : S ! �; 
ons : � � � ! �i (6.9)

with sele
tors 
ar : � ! � , 
dr : � ! � and testers isatom , and is
ons , 
an be de
ided in

time O(n

2

). The 
omplexity for these domains is also obtained using the present integration

with 
ongruen
e 
losure. Sele
tors are evaluated using the 
anonizer �, whi
h eliminates

pairs of mat
hing sele
tors and 
onstru
tors.

To handle the general 
ase we propose the approa
h in Figure 6.8. It suggests to delay

interpretation of sele
tors as a last resort. For example, 
onsider Shostak's approa
h when

solving

#1 x

1

= 1 ^ #1 x

2

= 1 ^ : : : ^ #1 x

100

= 1 ^ #1 x

100

6= 1

2

That arti
le does not provide a pre
ise running time analysis
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where x

i

are tuples of length 100. This will �rst solve #1 x

1

= 1, whi
h redu
es to

x

1

= (1; y

2

; : : : ; y

100

), introdu
ing 99 fresh variables. The solution for x

1

may be propagated

to other 
onstraints before the se
ond equality 
an be pro
essed, introdu
ing another 99

fresh variables. In the end, 9900 fresh variables are introdu
ed before the 
ontradi
tion is

dete
ted.

1. Whenever the asso
iation [q 7! s(q

0

)℄ is inserted into L

Q

, where s is a sele
tor, we

re
ord the sele
tor redex s(q

0

) provided �(q

0

) 62 � (that is, if q

0

is not labeled by a


onstru
tor).

To lo
alize data type reasoning in the data type solver, this re
ording is provided

by the 
anonizer �, whi
h takes s(q

0

) and attempts to simplify it if q

0

labels a

mat
hing 
onstru
tor. As a side-e�e
t it noti
es if q

0

was not a 
onstru
tor.

2. The data type reasoner now has the option on splitting for ea
h sele
tor redex s(q)

introdu
ing the splits q = 


1

(x

1

new

); : : : ; q = 


n

(x

n

new

) for ea
h data type 
onstru
tor




1

; : : : ; 


n

provided with fresh variables as arguments.

Figure 6.8: Algorithm for 
he
king 
onsisten
y in the presen
e of sele
tors.

We pro
eed with a somewhat involved argument for the 
ompleteness of this approa
h

and introdu
e the following notation:

De�nition 6.2.4 (Redex 
losure) The automaton A is 
losed under sele
tor/
onstru
tor

redexes i� for every q in A if use(q) 
ontains a node q

0

, where L

Q

(q

0

) = s




i

(q) then �(q) 2 �.

Furthermore if �(q) = 
, then Æ(q)

i

= q

0

, whi
h means that the sele
tor applied a

ording to

its de�nition.

To witness the di�eren
e between states q

1

and q

2

in a � -automaton 
losed under sele
-

tor/
onstru
tor redexes we introdu
e the notion of a state di�erentiator.

De�nition 6.2.5 (State di�erentiator) A state di�erentiator for states q

1

and q

2

in

automaton A is a pair (�; T ), where

� A is 
losed under sele
tor/
onstru
tor redexes.

� � is a set of integer sequen
es f�

0

; �

1

; �

2

; : : :g.

� T � ��Q�Q is a relation satisfying.

1. T (�

0

; q

1

; q

2

)

2. For every path � and states q

1

, q

2

: T (�; q

1

; q

2

) i�

�(�(q

1

)) 6= �(�(q

2

)) and

for every pre�x �

0

of �, and nodes q

1

and q

2

, if L

T

(s(q

1

)) = �

0

(q

1

),

L

T

(s(q

2

)) = �

0

(q

2

), for some sele
tor s, then there is a �

00

2 � su
h that

T (�

00

; q

1

; q

2

).
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We 
an then introdu
e a 
ongruen
e relation ' on states:

De�nition 6.2.6 (Congruen
e with sele
tors: ') States q

1

' q

2

i� they have no dif-

ferentiator (�; T ).

An automaton is redu
ed if ' partitions Q into singletons:

De�nition 6.2.7 (Redu
ed automata) The automaton A is redu
ed if:

for every q

1

; q

2

2 Q, if q

1

6= q

2

then q

1

6' q

2

,

The de�nition of a state di�erentiator implies dire
tly that when an automaton is redu
ed

it is 
losed under 
ongruen
es.

On the other hand an automaton is ground if all states labeled by the data type � are

also labeled by one of � 's 
onstru
tors.

De�nition 6.2.8 (Ground states and ground automata) A state q in the automaton

A is ground if for every state r, where r � q and sort(r) = � then �(r) 2 �.

The automaton A is ground if all its states are ground.

We use minimal ground redu
ed automata that are 
losed under sele
tor/
onstru
tor

redexes to extra
t models where all nodes in Q have di�erent interpretations.

Lemma 6.2.9 Let A be (1) minimal, (2) 
losed under 
onstru
tor/sele
tor redexes, (3)

ground, and (4) redu
ed, and assume that base sorts S

1

; : : : ; S

n

ea
h have in�nitely many

elements, then there is an inje
tive model M : hM;�

M

i of A:

Inje
tivity q

M

1

= q

M

2

! q

1

= q

2

8q

1

; q

2

2 Q

Constru
tors q

M

= �(q)

M

(
hildren(q)

M

) 8q 2 Q;�(q) 2 �

Sele
tors 


M

(a) = q

M

^ s




i

(q) 2 use(q) ! a

i

= q

M

8q 2 Q; a 2M

Proof:

Not very surprising we 
an identifyM with A setting M = Q. First, sin
e ea
h S

i

is in�nite-state, we 
an asso
iate a distin
t element with ea
h state in Q whose sort

belongs to one of the parameters. Sin
e A is

1. minimal, then M is extensional (
losed under 
ongruen
e with respe
t to the


onstru
tors),

2. redex 
losed, then sele
tors are ne
essarily interpreted a

ording to their de�ni-

tion,

3. ground, then every node of sort � 
orresponds unambiguously to a 
onstru
tor

term inM,

4. redu
ed, thenM is 
losed under 
ongruen
es with respe
t to the sele
tors.
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While ground automata 
orrespond naturally to inje
tive models, we do not need a

ground automaton to dete
t the existen
e of an inje
tive model. The premises of the

following lemma suÆ
e:

Lemma 6.2.10 Let A be a � -automaton. If

1. A is 
losed under 
onstru
tor/sele
tor redexes,

2. A is redu
ed,

3. � is non-
at and non-singular,

then there is a ground redu
ed automaton 
losed under 
onstru
tor/sele
tor redexes A

0

and

embedding { : A ,! A

0

. By embedding we understand an A

0

that 
oin
ides with A where

�(q) 2 � in A, but may relabel non-
onstru
tor states by 
onstru
tors and add extra states.

Proof:

We 
onstru
t A

0

as in the pure 
onstru
tor 
ase. Namely for ea
h state q

i

in A of sort

� not labeled by a 
onstru
tor we allo
ate a fresh ground automaton A

i

with state

q

0

i

, su
h that the term asso
iated with q

0

i

is not isomorphi
 with any term in A. We

then merge q

i

and q

0

i

to eliminate the non-
onstru
tor state. Repeated eliminations

of non-
onstru
tor states in A produ
es the ground automaton A

0

and embedding

{ : A ,! A

0

. This gives us the embedding, and that A

0

is ground.

We have to verify

1. A

0

is redu
ed. For this purpose we will extend every state di�erentiator (�; T )

for A to a state di�erentiator (�

0

; T

0

) for A

0

by extending paths in � that may in

A end in a variable to paths in A

0

that witness the di�eren
e between the ends.

In more detail, suppose the triple (�; q

1

; q

2

) 2 T , and �(q

1

) ends in a node labeled

by a non-
onstru
tor. Then �(q

2

) does not end in the same node. In A

0

, �(q

1

)

may again be labeled by a 
onstru
tor, and in the worst 
ase it may 
oin
ide

with the 
onstru
tor labeling �(q

2

). But by the 
onstru
tion of A

0

these nodes


an be di�erentiated by extending �.

2. A

0

is 
losed under 
onstru
tor/sele
tor redexes. This follows as the new states

in A

0

do not introdu
e any new redexes.

Lemma 6.2.10 now implies that if the data type is in�nite domain, the elimination of

sele
tor redexes in algorithm 6.8 produ
es either an automaton A from whi
h a model for


onstraints in
luding disequalities 
an be extra
ted, or establishes the unsatis�ability of the

given 
onstraints.
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6.2.5 Subterm relations

We now move to adding ground support for subterm relationships of the form s � t, meaning

s is a subterm of t. Negated 
onstraints s 6� t are naturally also admitted.

The ground 
ase for re
ursive 
onstru
tor terms is shown NP-
omplete in [Ven87℄. Mem-

bership in NP is established by showing that every satis�able set of 
onstraints has a model

of 
ubi
 size. Compared to sear
h-based de
ision pro
edures, this is highly impra
ti
al. NP-

hardness 
arries dire
tly over to 
o-re
ursive data types. A sear
h-based de
ision method

for 
o-re
ursive terms is presented in [Tul94℄, whi
h shows how this de
ision pro
edure 
an

also be modi�ed to handle the re
ursive 
ase. However, that de
ision pro
edure requires

normalized terms of the following form:

t = v; t 6= v; t � v; t 6� v : (6.10)

A 
onjun
tion L of these terms is satis�able (for the 
lass of non-degenerate 
o-re
ursive

data types) if and only if the following two tests are passed:

T1 It is not the 
ase that v v w and v 6� w 2 L.

T2 It is not the 
ase that t � v 2 L, s 6� w 2 L, v v w, and q

s

� q

t

.

where

De�nition 6.2.11

� vRw i� there is a t � w 2 L and v 2 FV (t).

� ! � R

+

� v � R

�

Using the � -automaton data-stru
ture we will present a realization of the de
ision pro-


edures for re
ursive and 
o-re
ursive data types. Our pro
edure transforms 
onjun
tions

of 
onstraints of the form:

t = s; t 6= s; t � s; t 6� s :

into a disjun
tion of solved form 
onstraints

W

i

L

i

, where ea
h L

i

is a 
onjun
tion of:

t 6= s; t � v; t 6� s : (6.11)

together with a � -automaton A representing all equalities. To represent su
h 
onstraints

we will use the tuple

hA; D; I; Ni (6.12)

where

� A is a minimized automaton representing all terms and equalities in the 
onstraint

set L.
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� D � Q�Q 
orresponds to disequalities.

� I � Q�Q 
orresponds to inequalities t � s.

� N � Q�Q 
orresponds to negated inequalities t 6� s.

Noti
e here, that the only solved form 
onversion required is of t � s into 
ases t � v.

The solved form 
onversion 
onsists of saturating with respe
t to the following steps:

1. Using the pro
edures for handling equalities and disequalities we 
an represent A as

the minimal automaton satisfying all equalities in L, and di�erentiating all asserted

disequalities D. Thus, A is the resulting automaton after an invo
ation of the algo-

rithm in Figure 6.7 applied to equalities and disequalities. If it reports failure, then

the 
onstraints L are trivially unsatis�able.

2. We need to 
onvert I into a subset of Q� fq 2 Q j �(q) 62 �g. This 
an be a
hieved

using a 
onversion into disjun
tions using the 
hara
terization of �:

s � t $

0

B

B

B

B

B

B

�

_

q � q

t

,

�(q) 2 �

q

s

= q _

_

q � q

t

,

�(q) 62 �

q

s

� q

1

C

C

C

C

C

C

A

This step splits the original set of 
onstraints L into

W

i

L

i

, and 
onstitutes the 
om-

putationally expensive step (the de
ision problem is after all NP-
omplete). Noti
e

that some of the bran
hes impose equality 
onstraints, that modify A further.

3. For ea
h L

i

we build an auxiliary graph G, whose verti
es are Q (the same states as

A), and whose edges E are indu
ed by Æ as well as the literals asserting inequalities

(the set I):

(q

1

; q

2

) 2 E $ Æ(q

2

) = h: : : q

1

: : :i or (q

1

; q

2

) 2 I

The tests T1 and T2 are now repla
ed by the test

N: For ea
h pair (q; r) 2 N (
orresponding to q 6� r) if there is a path hq; q

1

; : : : q

n

; ri

in G, then the set of 
onstraints is unsatis�able.

It may not be impossible to establish a 
orresponden
e between Tulipani's tests and

the above saturation rules and then reuse Tulipani's results. The heavy notation in [Tul94℄

resulting in some 
onfusion as to what assumptions are used to establish whi
h properties

makes a dire
t and straight-forward proof of 
ompleteness more desirable.

Soundness is obvious by inspe
ting ea
h step.
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Theorem 6.2.12 (Soundness) L is in
onsistent in the theory of re
ursive and 
o-re
ursive

data types if all bran
hes obtained by applying rules 1-3 are unsatis�able.

For the theory of 
o-re
ursive data types (rational and in�nite trees) we 
an state:

Theorem 6.2.13 (Co-re
ursive Completeness I) Suppose � is non-linear, and 
on-

tains either two non-linear 
onstru
tors or has a 
onstru
tor 
 : � � � � S � � � � ! � , where

jSj is in�nite, then L is satis�able if and only if some bran
h obtained by saturating with

respe
t to rules 1-3 is non-
ontradi
tory.

Proof:

Let X = fx

1

; : : : ; x

m

g be the states in A that are not labeled by 
onstru
tors. We

extend A to a ground automaton A

0

by assigning di�erent ground terms to ea
h

variable inX su
h that every subterm relation in I is satis�ed, and su
h that whenever

for nodes q; r in A, there is a path from q to r in A

0

if and only if there is a path from

q to r in A already. This ensures that all 
onstraints in N are satis�ed by A

0

.

Sin
e � is non-singular there is a binary 
onstru
tor f : � � � � � � � � � � � � � ! � .

For future notational 
onvenien
e we �x a binary version of f , by 
hoosing arbitrary

parameters for the domain values of f that are not of sort � and group the arguments

of sort � in two parts. For example if f

0

has arity f

0

: S

1

� � � � � � ! � , and s

1

2 S

1

,

we set f(x; y) := f

0

(s

1

; x; y; y).

If � 
ontains two non-linear 
onstru
tors f

0

and g

0

, let f and g be their binary

versions and for ea
h natural number n, 
onsider the system:

y

n

0

= g(y

n

1

; y

n

1

)

y

n

1

= f(y

n

2

; y

n

2

)

.

.

.

y

n

n

= f(y

n

0

; y

n

0

)

The 
ase n = 3:

f

 g

f

f

Ea
h system has a unique solution by the solution lemma, and furthermore

y

i

j

= y

k

l

$ i = k ^ j = l (6.13)

y

i

j

� y

k

l

$ i = k (6.14)

We therefore have a suÆ
ient supply of di�erent terms to allo
ate fresh signature

terms sig

1

; : : : sig

m

for ea
h variable in X, none being a subterm of ea
h other or of

any term in A (by 
hoosing instan
es of y

n

0

to represent sig

i

where n � jQj).

If � on the other hand 
ontains a 
onstru
tor 
 whose domain 
ontains an in�nite

S we 
reate signatures by 
hoosing fresh elements from S. For example, if 
 : � �S�
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� ! � , set for ea
h i = 1; : : : ;m, sig

i

the unique term satisfying sig

i

= 
(sig

i

; s

i

; sig

i

)

where the s

i

are di�erent.

We 
an now 
onstru
t ground realizations for the variables X by building terms

su
h that q is a subterm of x 2 X if and only if there is a path from q to x already in

A. Simply, let q

1

; : : : ; q

k

be the states in A where (q

1

; x) 2 I; : : : ; (q

k

; x) 2 I and set

Æ(x) := f(q

1

; f(q

2

; : : : ; f(q

k

; sig

x

))) :

This de�nes A

0

.

By 
onstru
tion all 
onstraints in I are satis�ed. Also the signature terms ensure

that di�erent states in A

0

are not bisimilar, so A

0

is minimal. Finally, we have to

verify that all 
onstraints in N are satis�ed. Let (q; r) 2 N , then by saturation step

3, q 6= r, and there is no path in A from q to r. We must show that there is no path

in A

0

from q to r. But by the 
onstru
tion of A

0

this 
ould only be the 
ase if q is a

subterm of one of the new states. However q is not a subterm of sig

x

for any x, and

sin
e sig

x

is only a subterm of q if there is a path in A from x to q, so q is a subterm

of x in A

0

i� there is a path from x to q in A.

The assumptions of the theorem are ne
essary. For instan
e with the signature

h�; NIL : �; CONS : � � � ! �i (6.15)

the following 
onstraints


 = CONS(
;
) ^ NIL 6� x ^ 
 6� x

are not satis�able, but saturation fails to dete
t this. The remaining 
ases thus 
onsists of

signatures of the form

h�; NIL

1

: �; : : : ; NIL

k

: �; CONS : � � � ! �i (6.16)

The 
onstant atomi
 terms of this signature is the set


onstants : fNIL

1

; : : : ; NIL

k

;
g where 
 = CONS(
;
) :

These are the terms that must be part of any minimal ground automaton.

To 
over the remaining 
ases we maintain a set sigAvoid(x) with ea
h state in A, whi
h

is initially empty, and add an additional saturation rule:

4. When (q; r) 2 N and q is ground, let x

1

; : : : ; x

n

be the variables that 
an rea
h r in

G. Set

sigAvoid(x

i

) := sigAvoid(x

i

) [ fqg for ea
h i

If for any x

i


onstants n sigAvoid(x

i

) = f
g
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assert x

i

= 
.

If for any x

i


onstants n sigAvoid(x

i

) = ;

report unsatis�ability.

The 
ompleteness proof 6.2.13 
an now be extended

Theorem 6.2.14 (Co-re
ursive Completeness II) Suppose � is non-linear and has a

signature isomorphi
 to (6.16), then L is satis�able if and only if some bran
h obtained by

saturating with respe
t to rules 1-4 is non-
ontradi
tory.

The proof is analogous, ex
ept this time we use the supply

y

n

0

= CONS(NIL

i

; y

n

1

)

y

n

1

= CONS(y

n

2

; NIL

i

)

.

.

.

y

n

n

= CONS(y

n

0

; NIL

i

)

The 
ase n = 3:

CONS(  ,  )

CONS(  ,  )

CONS(  ,  )

CONS(  ,  )

NIL

NIL

NIL

NIL

of di�erent in
ompatible terms for sig

x

, when NIL

i

2 
onstants n sigAvoid(x).

In the 
ase of re
ursive data types, the subterm relationship is a partial order, and

may imply additional equality 
onstraints. Thus, strongly 
onne
ted 
omponents of G

are 
ollapsed by asserting equalities between the nodes in ea
h 
omponent. As dis
ussed

in 6.2.3.1 the uni�
ation algorithm for re
ursive data types provides a built-in o

urs 
he
k

whi
h reports unsatis�ability in the presen
e of a 
y
le traversing a 
onstru
tor.

In 
omplete analogy with 
o-re
ursive 
ompleteness we have:

Theorem 6.2.15 (Re
ursive Completeness I) Suppose � is non-linear and 
ontains a

non-re
ursive 
onstru
tor 
 : S

i

1

� � � � � S

i

k

! � where one of the domain sorts is in�nite,

then L is satis�able if and only if some bran
h obtained by saturating with respe
t to rules

1-3 is non-
ontradi
tory.

When it is only possible to supply a �nite set of non-re
ursive 
onstru
tor terms the set


onstants is �nite and we 
an under 
ertain 
ir
umstan
es use step 4 (without the 
ondition

involving 
) and easily state:

Theorem 6.2.16 (Re
ursive Completeness II) Suppose � is non-linear and 
ontains

a 
onstru
tor 
 : � � � �S�� � � � � �� � � ! � , where jSj is in�nite, then L is satis�able if and

only if some bran
h obtained by saturating with respe
t to rules 1-4 is non-
ontradi
tory.

This follows as we 
an here build unique sig

x

using the non-re
ursive 
onstru
tors that are

not in sigAvoid(x) to form the leaves of sig

x

and by using unique versions of 
 to distinguish

the signatures.
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The most 
ompli
ated 
ase is when there is essentially only a �nite number of 
on-

stru
tors (both re
ursive and non-re
ursive). For instan
e, the 
onstraints below of the

signature (6.15) are unsatis�able

CONS(NIL; NIL) 6� x ^ NIL 6= x

be
ause every �nite tree 
ontains a CONS(NIL,NIL) leaf. In general we need an essentially

stronger version of saturation step 4 to handle these 
ases:

4' When (q; r) 2 N and q is ground, let x

1

; : : : ; x

n

be the variables that 
an rea
h r in

G. Set

sigAvoid(x

i

) := sigAvoid(x

i

) [ fqg for ea
h i

Suppose

1. sigAvoid(x

i

) 6= ;,

2. q 2 sigAvoid(x

i

) is a term of maximal size in that set,

3. for all terms of length jqj there is some r 2 sigAvoid(x

i

) su
h that r � q.

split L into bran
hes, one for ea
h term t of length less than jqj that is not a subterm

of any term in sigAvoid(x

i

).

The extra 
ase splitting ensures that every remaining variable x

i

in a non-
ontradi
tory

bran
h admits arbitrary large signatures by 
hoosing a term t

i

not in sigAvoid(x

i

) of max-

imal length and extending it using the non-linear 
onstru
tor 
 as mu
h as desired. For

instan
e, 
(t

i

; 
(t

i

; : : : ; 
(t

i

; t

i

))). To ensure that none of the signatures are subterms of ea
h

other let n be the size of A (jQj) and 
reate the signatures

sig

1

: 
(
(t

1

; t

1

); 
(t

1

; 
(t

1

; : : : ; 
(t

1

; t

1

)))

| {z }

n+1

); (6.17)

sig

2

: 
(
(t

2

; t

2

); 
(t

2

; 
(t

2

; : : : ; 
(t

2

; t

2

)))

| {z }

n+2

);

.

.

.

sig

i

: 
(
(t

i

; t

i

); 
(t

i

; 
(t

i

; : : : ; 
(t

i

; t

i

)))

| {z }

n+i

)

This leads us to the �nal result:

Theorem 6.2.17 (Re
ursive Completeness III) If � is non-linear then L is satis�able

if and only if some bran
h obtained by saturating with respe
t to rules 1,2,3, and 4' is

non-
ontradi
tory.

6.2.5.1 The �rst-order theory of subterms

The �rst-order theory of equality and subterm relations 
annot be easily en
oded into wS2S.

In fa
t it is unde
idable [Ven87, Tre92℄ when there is at least one ternary 
onstru
tor.
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Unde
idability is established by redu
ing arbitrary instan
es of the Post 
orresponden
e

problem to a statement in the �rst-order theory of re
ursive data types with the subterm

relation. See also [Com90℄, whi
h provides ground de
ision pro
edures of lexi
ographi


orderings. The �rst-order extension is later proved unde
idable by the same author. A


onje
ture raised in [Ven87℄ is that the �rst-order theory of �nite binary trees with subterm

relation (hNIL; CONS;=;�i) is de
idable. It is somewhat surprising that neither [Ven87℄

nor [Tre92℄ realize that the Post 
orresponden
e problems 
an also be redu
ed to the �rst-

order theory of �nite binary trees with subterms. The 
onstru
tion given below is di�erent

from the 
ase when the signature 
ontains a ternary 
onstru
tor, so we give it here in all

details to settle the 
onje
ture (in the negative).

Theorem 6.2.18 The �rst-order theory of �nite binary trees with subterm relation is un-

de
idable.

Proof:

Take an instan
e of the Post 
orresponden
e problem (a Post system), whi
h 
onsists

of a �nite set of pairs of strings (v

1

; w

1

); : : : ; (v

n

; w

n

) over the alphabet f0; 1g and

asks if there is a sequen
e i

1

; : : : ; i

k

of indi
es ranging over f1; : : : ; ng, su
h that

v

i

1

v

i

2

� � � v

i

k

= w

i

1

w

i

2

� � �w

i

k

. There is no e�e
tive pro
edure whi
h takes as input an

arbitrary Post system and provides an answer whether there exists su
h a sequen
e or

not. For ea
h Post system we now 
onstru
t a formula over the theory of �nite binary

trees with subterm relations whi
h is valid if and only if there is a solution to the

given system. For this purpose we will give an en
oding pro
edure whi
h 
an re
ord

the set of string pairs (v; w) that are obtained from a �nite set of indi
es i

1

; : : : ; i

k

su
h that v = v

i

1

v

i

2

� � � v

i

k

and w = w

i

1

w

i

2

� � �w

i

k

. The given Post system is then

solvable if there is a tree with a pair (v; w) where v = w 6= �.

De�ne string(u) if u is not NIL and every bran
hing point in u has at least one

bran
h being NIL.

string(u)

def

= u 6= NIL ^ 8x � u : x = NIL _ 9y : x = CONS(y; NIL) _ x = CONS(NIL; y)

The binary trees that are strings will be used to en
ode strings over the alphabet

f0; 1g, and the empty string is en
oded via CONS(NIL; NIL). If u is any term and v is

a sequen
e of 0's and 1's we de�ne the 
on
atenation u � v by:

u � �

def

= u

u � 0v

def

= CONS(u; NIL) � v

u � 1v

def

= CONS(NIL; u) � v

Clearly if u satis�es string(u) then also string(u � v). We 
an �nally 
onvert an entire

string u into a binary tree representing it by de�ning �

def

= CONS(NIL; NIL) and 
ompute

� � u. Sample en
odings of strings 101 and 100 are illustrated below.
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CONS

CONS

CONS

NIL

NIL

NILCONS

CONS

CONS

NIL

NIL

NIL

NIL

CONS

NIL NIL

CONS

NIL

101 100

Trees representing a pair (v; w) and sequen
e i

1

; : : : ; i

k

with v = v

i

1

v

i

2

� � � v

i

k

and

w = w

i

1

w

i

2

� � �w

i

k

are 
aptured by the predi
ate Root . To make the de�nition of Root

less painful to read we will also introdu
e two auxiliary predi
ates LHS, RHS for the

immediate left and right bran
hes of terms satisfying Root. Informally Root (u) holds

if and only if u re
ords a pair (v; w) and 
orresponding history of indi
es used to form

v and w.

Root (u)

def

= 9

x;

v;

w;

v

0

;

w

0

:

u = CONS

 

CONS(x; CONS(v; w));

CONS(x; CONS(v

0

; w

0

))

!

^ LHS (x; v; w)

^ RHS (v; w; v

0

; w

0

)

(6.18)

LHS(x; v; w)

def

=

v = w = � ^ x = NIL

_ 9x

0

; y

0

:

x = CONS

 

CONS(x

0

; y

0

);

CONS(x

0

; CONS(v; w))

!

^ string(v) ^ string(w)

(6.19)

RHS(v; w; v

0

; w

0

)

def

=

n

_

i=1

v � v

i

= v

0

^ w � w

i

= w

0

(6.20)

The bran
hing on a Root is illustrated below
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x x

v w vv wwi i

We 
an require re
ursively that the repeated bran
h x in the de�nition of Root

by requiring that every non-NIL subterm of u satisfying LHS for some v; w, is again a

Root. This form of impli
it re
ursion is mu
h similar to the S2S en
oding of re
ursive

and 
o-re
ursive data types. Hen
e, de�ne

GoodRoot (u)

def

=

Root (u)

^

0

B

�

8x � u :

 

9

v;

w

: LHS (x; v; w) ^ x 6= NIL

!

! Root (x)

1

C

A

(6.21)

Finally, the given Post system is solvable if and only if

9u : GoodRoot (u) ^ 9x; y; v : v 6= � ^ u = CONS(x; CONS(y; CONS(v; v)))

One dire
tion is trivial, given a solution to a Post system we 
onstru
t a GoodRoot

en
oding the sequen
e of produ
tions that led to the solution. In the other di-

re
tion well-founded indu
tion on terms satisfying GoodRoot establishes that they

represent only legal appli
ations of the Post produ
tion rules and whenever u =

CONS(x; CONS(y; CONS(v; w))) for some x; y; v; w, then string(v) and string(w).

6.2.6 Taking lengths of re
ursive data types

While the subterm relation is a natural spe
ial relation to support for (
o-)re
ursive data

types, a length a

essor seems to be a reasonable utility to add to re
ursive data types. It

is espe
ially relevant in termination arguments for re
ursive programs. The length of term

t, written jtj, is interpreted as the number of 
onstru
tors used to form the term t. Thus,

we have the 
orresponding axiomatization in (6.9).

The thrill in adding this seemingly inno
ent utility is that 
onstraints with equality,

disequality, and subterm relationships on data types 
an now depend dire
tly on the theory

of integer (linear) arithmeti
 and re
ursive data types. While ea
h ground theory is de-


idable, 
he
king satis�ability in isolation no longer suÆ
es. For example given the hybrid
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8
 2 �;8(y

1

; : : : ; y

n

) 2 dom(
) : j
(y

1

; : : : ; y

n

)j = 1 +

n

X

i=1; sort(y

i

)=�

jy

i

j (length)

Figure 6.9: Length a

essor axiomatization


onstraint

jaj < jbj ^ b � a; (6.22)

where a and b are variables over a re
ursive data type, the �rst 
onstraint jaj < jbj is most

naturally maintained by an integer linear arithmeti
 solver, whereas b � a is maintained

by the solvers presented in Se
tion 6.2.5. Ea
h 
onstraint in isolation is satis�able, but the


ombined 
onstraint is 
learly not. In an initial attempt we 
an saturate 
onstraints via the

spe
ial relation rule

x � y ! jxj � jyj : (6.23)

Saturating with this spe
ial relationship on (6.22) we obtain a 
ontradi
tion as jbj � jaj is

added. But this does not provide in itself a 
omplete integration.

Example: Consider the data type of trees, from example 6.1.1, where S is a singleton sort

with only element �, and the 
onstraints

jxj = 5

^ x 6= node(node(leaf (�); leaf (�)); leaf (�))

^ x 6= node(leaf (�);node(leaf (�); leaf (�))) :

These are unsatis�able as the only terms of length 5 are the ones x is required to be

di�erent from.

Example: Regardless of the 
hoi
e of re
ursive data type the 
onstraints

t � x ^ s � x ^ jxj < jtj+ jsj ^ t 6� s ^ s 6� t

are unsatis�able.

Example:

h�; NIL : �; f : � � � � � � � ! �i

All terms of � have length 1 + 4x for some x.
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6.2.6.1 De
idability

The �rst question is naturally whether the 
ombined theory is de
idable. We 
laim it is,

though the outline we provide does not en
ourage a sear
h oriented implementation.

Theorem 6.2.19 Validity in the universal theory of integer linear arithmeti
 and re
ursive

data types with lengths is de
idable.

As usual, validity of a formula is established by 
he
king unsatis�ability of a negation of

that formula. To 
he
k satis�ability of a set of data type and arithmeti
al 
onstraints C we

will perform a 
olle
tion of saturation rules, that split C into a �nite number of disjun
tions.

Ea
h disjun
tion is normalized to the form L ^ LA, where L is a set of data type 
onstraints

saturated with respe
t to the pro
edure from 6.2.5, and L is satis�able in some model for

the theory of data types; LA is a set of linear arithmeti
 inequalities, is satis�able in a

model for the theory of integer (linear) arithmeti
. We then establish that if we rea
h a

disjun
t L ^ LA that 
annot be split any further, then the 
ombined set of 
onstraints for

that disjun
t is satis�able.

We shall 
onsider the 
ase where � is non-linear and has a �nite number of 
onstru
tors

(
f. Theorem 6.2.17). To simplify the dis
ussion, but without losing generality, we shall


onsider signatures for � with two non-linear 
onstru
tors and an arbitrary number of

non-re
ursive 
onstru
tors. This summarizes the general 
ase. Suppose therefore that the

signature of � is of the form

h�; NIL

1

: �; : : : ; NIL

k

: �; f : � � � � � � �

| {z }

a

! �; h : � � � � � � �

| {z }

b

! �; i

� Eu
lid's algorithm for 
omputing greatest 
ommon divisors provides m and n su
h

that

g
d(a; b) = ma� nb

Set g = g
d(a; b), then we 
an 
reate terms of length 1+

a

g

nb; 1+

a

g

nb+g; 1+

a

g

nb+2g; : : :

using 
onstru
tors f and h, be
ause we 
an write the numbers

a

g

nb;

a

g

nb + g; : : : as

linear 
ombinations of a and b:

a

g

nb;

a

g

nb+ g = ma+ (

a

g

� 1)nb;

a

g

nb+ 2g = 2ma+ (

a

g

� 2)nb;

: : : ;

a

g

nb+

a

g

g =

a

g

ma =

a

g

nb+ a

and ea
h linear 
ombination of a and b 
orresponds to a term using f and h by

applying f and h as many times as the 
oeÆ
ients of a and b di
tate.

For future referen
e abbreviate

k

def

=

a

g

nb :
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� Let x

1

; : : : ; x

n

be a permutation of the variables in L, and guess an ordering:

0 < jx

1

j = jx

2

j < jx

3

j < : : : = jx

n

j

The amount of guessing is �nite as there are n! permutations of the x

i

and 2

n�1

ways

to 
hoose between equality or stri
t inequality. Add the ordering 
onstraints to LA.

� Saturate L with respe
t to rules 1,2,3,4'.

� For jx

i

j = jx

i+1

j split on the 
onstraints

1. x

i

= x

i+1

. This eliminates one variable.

2. x

i

6� x

i+1

; x

i+1

6� x

i

. This ensures that they 
annot be subterms of ea
h other.

� Saturate with respe
t to the spe
ial relations rule (6.23).

� We will now eliminate the variables in the same order as the size ordering 
onstraints

that were guessed above.

jsig

1

j+

X

(q;x

1

)2I

(jqj+ a� 1) + k = l

1

.

.

.

jsig

i

j+

X

(q;x

i

)2I

(jqj+ a� 1) + k = l

i

+

i�1

X

j=1

a

j

i

jx

j

j

.

.

.

1. The fa
tor jsig

i

j provides the spa
e required to build a unique signature as de�ned

in (6.17).

2. The fa
tor

X

(q;x

i

)2I

(jqj+ a� 1) provides the spa
e required to satisfy the subterm

relations on top of the signature.

3. The fa
tor k provides the spa
e to build on top of 2 to generate terms within

distan
e g.

Now split into the 
ases:


ase 1 : jx

1

j < l

1


ase 2 : jx

1

j � l

1

^ jx

1

j = 1 + y

1

new

g

In the �rst 
ase there are �nitely many ways to 
onstru
t x

1

, so x

1


an be eliminated

from these bran
hes produ
ing 
onstraints with fewer variables.
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In general we split on the 
ases


ase 1 : jx

i

j < l

i

+

i�1

X

j=1

a

j

i

jx

j

j


ase 2 : jx

i

j � l

1

+

i�1

X

j=1

a

j

i

jx

j

j ^ jx

i

j = 1 + y

i

new

g

In every instan
e i the �rst bran
h eliminates a variable by enumerating all possible

ways to form x

i

.

Suppose therefore that all bran
hes 
hoose the se
ond 
ase and that the integer 
on-

straints are satis�able. Then, the 
onstraints are satis�able in a model where all lower

bounds are respe
ted. But, the lower bounds were 
hosen su
h that di�erent x

i


ould

be realized of any size ex
eeding the lower bound and su
h that none of the x

i

's were

subterms of ea
h other unless expli
itly required by the 
onstraints in L.

6.2.6.2 An in
omplete sear
h-oriented pro
edure

Our implementation uses an in
omplete pro
edure based on the saturation rules:

subterm saturation Whenever s � v; t � v are in L, then either t � s or t 6� s are in or

implied by L.

lower bounds Whenever jvj 2 dom(L

T

), then 0 � jvj is implied by LA.

spe
ial relation: forward Whenever t � v is in L and jvj 2 dom(L

T

), then �

�

(jtj) � jvj

is implied by LA.

spe
ial relation: ba
kward Assuming subterm and lower bound saturation, if t

1

� v;

: : : ; t

n

� v are the (di�erent and in
ompatible) lower bounds on v in L, n � 0 (n = 0

is allowed) and

i = INF(LA; jvj �

n

X

i=1

jt

i

j) s = SUP(LA; jvj �

n

X

i=1

jt

i

j) :

If s is �nite, i.e.,

0 � i � s < 1

then for ea
h term skeleton t(x

1

; : : : ; x

n

) with unique o

urren
es of the free variables

x

1

; : : : ; x

n

, su
h that jt(x

1

; : : : ; x

n

)j = k + jx

1

j+ : : :+ jx

n

j for some i � k � s repla
e

v by t(t

1

; : : : ; t

n

) to obtain a set of new 
onstraints without v. Thus, set the updated


onstraints to (L ^ LA)[v 7! t(t

1

; : : : ; t

n

)℄ for ea
h of the possible ts.

If the set of terms satisfying jt(x

1

; : : : ; x

n

)j = k + jx

1

j+ : : : + jx

n

j for some i � k � s

is empty, then the set of 
onstraints is unsatis�able. This 
ould for instan
e be the


ase when s < 0.
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The saturation rules are not 
omplete as the example with the 4-ary 
onstru
tor wit-

nesses. The single 
onstraint jxj = 2y is simply not satis�able.

6.3 Open problems

1. Is the full �rst-order theory of in�nite trees de
idable when all 
onstru
tors have arity

no larger than 1? The problem is posed in [Tul94℄.

6.4 Summary

This 
hapter presented de
ision pro
edures for data-types, in
luding the sub-term relation

and length 
onstraints. Both re
ursive as well as 
o-re
ursive data-types have been examined

and we have shown how these theories 
an be integrated within the solver-based 
ombination

of de
ision pro
edures.



Chapter 7

Bit-ve
tors

Bit-ve
tors are the natural data-type for hardware des
riptions. To handle bit-ve
tors in


omputer-aided veri�
ation, it is 
onvenient to have spe
ialized de
ision pro
edures to solve


onstraints involving bit-ve
tors and their operations.

To verify hardware designs, Mark Pi
hora developed a 
ompiler from the Verilog hard-

ware des
ription language to fair transition systems. Sin
e bit-ve
tors are pervasive in

Verilog we have found it useful to develop the de
ision pro
edures for bit-ve
tors des
ribed

in this 
hapter. The presented pro
edure is easy to integrate tightly within the 
ombination

de
ision pro
edures for other theories, whi
h �ts well into the wide s
ope of STeP.

An algorithm that addresses bit-ve
tors from a perspe
tive similar to ours has been

reported in [CMR97℄. In an e�ort to use that algorithm we were unable to re
onstru
t the

rutines ne
essary to handle bit-wise boolean operations. We devised an algorithm where bit-

wise boolean operations 
ould be easily handled. The key feature of the pro
edure is that it

often only splits 
ontiguous bit-ve
tors on demand. Its performan
e is often independent of

the length of the bit-ve
tors in the input. We also brie
y dis
uss non-equational bit-ve
tor


onstraints, whi
h had not re
eived proper attention elsewhere.

Legal inputs to the STeP-Verilog veri�
ation tool in
lude parameterized hardware de-

signs where the bit-ve
tor size is not �xed at veri�
ation time. The potential need then

arises for a method that 
an handle both �xed and non-�xed size bit-ve
tors. In 
ertain


ases our simple pro
edure for �xed size bit-ve
tors 
an be used dire
tly for non-�xed size

bit-ve
tors. To handle more 
ases, we �rst present an optimized de
ision pro
edure for

equations s = t, where s and t do not 
ontain bit-wise boolean operations, and then extend

it to handle bit-ve
tors whose sizes are parameterized (still without supporting boolean

operations). To our knowledge this was the �rst reported de
ision pro
edure that handles


on
atenation of a non-trivial 
lass of non-�xed size bit-ve
tors. Independent of this e�ort,

however, M�oller and Rue� [MR98℄ developed mu
h similar transformation rules applying to

a larger set of equality 
onstraints, but without being able to give a termination argument

(albeit, it is a non-trival problem). With a di�erent starting point [BDL98℄ give optimized

pro
edures for handling bit-ve
tor arithmeti
.

115
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7.1 Bit-ve
tors

Bit-ve
tor terms are of the form

t ::= x j t[i : j℄ j t

1

Æ t

2

j 


[m℄

j t

1

op t

2

op ::= & (bitwise and) j ^ (bitwise xor) j \j" (bitwise or)


 ::= 1 j 0

t[i : j℄ denotes sub�eld extra
tion, and Æ 
on
atenates two bit-ve
tors. The 
onstant 0 is

synonymous with false and 1 with true. For 
larity, a term may be annotated by a length,

su
h that t

[m℄

indi
ates that t has length m.

Terms are well-formed when for every subterm t

[m℄

[i : j℄, 0 � i � j < m, and for every

s

[m℄

op t

[n℄

, n = m. Terms without o

urren
es of op are 
alled basi
 bit-ve
tor terms.

Bit-ve
tors 
an be interpreted as �nite fun
tions from an initial segment of the natural

numbers to booleans. Hen
e, if � is a mapping from bit-ve
tor variables x

[m℄

to an element

of the fun
tion spa
e f0; : : : ;m� 1g ! B we interpret 
omposite terms as follows:

[[x℄℄

�

= �(x)

[[t[i : j℄℄℄

�

= �k 2 f0; : : : ; j � ig:[[t℄℄

�

(i+ k)

[[s

[m℄

Æ t

[n℄

℄℄

�

= �k 2 f0; : : : ;m+n�1g:if k < m then [[s℄℄

�

(k) else [[t℄℄

�

(k�m)

[[s

[m℄

op t℄℄

�

= �k 2 f0; : : : ;m� 1g:[[s℄℄

�

(k) [[op℄℄ [[t℄℄

�

(k)

[[


[m℄

℄℄

�

= �k 2 f0; : : : ;m� 1g:
 = 1

Bit-ve
tor terms from the above grammar appear, for instan
e, throughout the system

des
ription and veri�
ation 
onditions from a split-transa
tion bus design from SUN Mi
ro-

systems [Kam96℄. A sample proof obligation en
ountered during STeP's veri�
ation of

a safety property of the bus (namely, pro
esses are granted ex
lusive and non-interfering

a

ess to the bus) takes the form

l wires = 4 ^ request 6= 0

[8℄

!

(request h ^ request) 6= 0

[8℄

_ (request 6= 0

[8℄

) ^ request = request h

(7.1)

where request and request h are bit-ve
tor variables of length 8. While this proof obligation

is evidently valid, a simple en
oding of bit-ve
tors as tuples 
auses examination of multiple

bran
hes when establishing the veri�
ation 
ondition. The pro
edure developed here avoids

this en
oding and its potential 
ase splitting. This and similar veri�
ation 
onditions 
an

then be established independently of the bit-ve
tor length (and in a fra
tion of a se
ond).

Thus, our pro
edure is able to establish this veri�
ation 
ondition when the length 8 is

repla
ed by an arbitrary parameter N .

While other logi
al operations like shifting 
an easily be en
oded in the language of bit-

ve
tors we analyze, the arithmeti
al (signed, unsigned and IEEE-
ompliant 
oating point)

operations are not treated at all here.
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7.2 Alternative approa
hes

As usual, a dire
t axiomatization 
an be used to establish all veri�
ation 
onditions we


onsider. Better than a raw axiomatization, proof assistants like ACL2 and PVS provide

sophisti
ated libraries 
ontaining relevant bit-ve
tor lemmas. But, although highly useful,

libraries do not provide a de
ision method.

In the symboli
 model 
he
king 
ommunity, BDDs [Bry86℄ (binary de
ision diagrams)

are used to eÆ
iently represent and reason about bit-ve
tors. Purely BDD based represen-

tation of bit-ve
tors requires allo
ating one variable for every position in a bit-ve
tor. (Just

two bit-ve
tor variables ea
h of length 64 require allo
ation of 128 variables, pushing the

limits of 
urrent BDD te
hnology). A BMD-based (binary moment diagram) representa-

tion [BC95℄ optimizes on this while being able to eÆ
iently perform arithmeti
al operations

on bit-ve
tors. Unfortunately it is nontrivial to 
ombine BMDs eÆ
iently into the Shostak


ombination.

Sin
e the values of bit-ve
tors range over strings of 0's and 1's it is possible to use

regular automata to 
onstrain the possible values of bit-ve
tors. Using this approa
h the

mona tool [BK95℄ 
an e�e
tively represent addition of parameterized bit-ve
tors using M2L

(Monadi
 Se
ond-Order Logi
). The expressive power of M2L also allows a dire
t and pra
-

ti
al de
ision pro
edure of �xed size bit-ve
tors en
oded either as tuples of boolean variables

or as unary predi
ates with a 
onstant domain. Furthermore M2L allows quanti�
ation over

bit-ve
tors (with non-elementary 
omplexity as the pri
e). The approa
h based on regular

automata, however does not admit an en
oding of 
on
atenations of parameterized bit-

ve
tors. For suppose the regular language R

x

(say 10

�

1) en
odes evaluations of bit-ve
tor

x that satisfy 
onstraint '(x). Then the pumping lemma tells us that the evaluations of y


onsistent with '(x) ^ y = x Æ x is not in general (
ertainly fww j w 2 10

�

1g is not) a reg-

ular language. Automata with 
onstraints [CDG

+

98℄ (see 
hapter 4) is a possible remedy,

but this imposes even more 
hallenges in obtaining a dire
t ground integration with other

de
ision pro
edures, whi
h we seek here. Our pro
edure addresses this problem and solves

satis�ability of ground equalities.

7.3 A de
ision pro
edure for �xed size bit-ve
tors

We present a normalization fun
tion T , whi
h takes a bit-ve
tor term t

[m℄

and a subrange

(initially [0 : m� 1℄) and normalizes it to a bit-ve
tor term F

1

Æ F

2

Æ : : : Æ F

n

where ea
h F

i

is of the form

F ::= F op F j x j 


[m℄

:

A normalization routine with a similar s
ope 
an be found in [BEFS89℄. In words, T

produ
es a term without o

urren
es of sub�eld extra
tion where every Æ is above every op.

The translation furthermore maps every original variable x

[m℄

to a 
on
atenation x

1

Æ x

2

Æ

: : : Æx

n

, and maintains a de
oding of the auxiliary variables into subranges de
ode([i

k

: j

k

℄),

su
h that i

1

= 0, j

n

= m� 1, and j

k

+ 1 = i

k+1

for k = 1 : : : n� 1.
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The normalization fun
tion shown in Figure 7.3 is designed to satisfy the basi
 
orre-

sponden
e

[[t

[n℄

℄℄� = [[T (t; [0 : n� 1℄)℄℄�

0

for every �, where �

0


oin
ides with � on the free variables in t and, furthermore, if T rewrites

x to x

1

Æ: : :Æx

k

Æ: : :Æx

n

, with de
ode(x

k

) = [i : j℄, then �

0

(x

k

) = �k 2 f0; : : : ; j�ig:�(x)(k+i).

Normalization works by re
ursive des
ent on the syntax tree of t, pushing a sub�eld

extra
tion [i : j℄ downwards. By maintaining only one 
opy of ea
h variable, the pro
edure

may update a variable o

urren
e x to a 
on
atenation x

1

Æ x

2

Æ x

3

globally in the 
ases

where only the sub�eld [3 : 5℄ needs to be extra
ted from x

[8℄

. The result of normalizing

x[3 : 5℄ then be
omes x

2

, su
h that de
ode(x

2

) = [3 : 5℄. Sin
e the variable x may o

ur in

a di�erent subterm under the s
ope of a boolean operator x & y the 
utting of x rewrites

this to (x

1

Æx

2

Æx

3

) & y. The auxiliary pro
edure 
ut (that takes a term and a 
ut-point as

argument) shown in Figure 7.1 re
ursively 
uts y in the same proportions as x, and forms

the normalized 
on
atenation x

1

& y

1

Æ x

2

& y

2

Æ x

3

& y

3

. It uses a set parents

asso
iated with ea
h variable x to 
olle
t the maximal boolean subterms involving x that

have already been normalized. Initially parents(x) = ; for ea
h variable. Subterms 
an

also be marked. By default (and initially) they are unmarked. To avoid 
luttering the

pseudo
ode we have suppressed variable dereferen
ing. To normalize boolean operators, T

uses the auxiliary pro
edure sli
e shown in Figure 7.2, whi
h aligns the normalized terms s

and t into 
on
atenations of equal length boolean subterms. Operator appli
ation 
an then

be distributed over ea
h of the equally sized portions. The auxiliary symbol � is used for

the empty 
on
atenation.

The proper fun
tioning of T relies on the pre
ondition that every time T (t

[n℄

; [i : j℄)

is invoked, then 0 � i � j < n. This ensures that whenever 
ut(t

[n℄

;m) is invoked then

m < n.

Example: As an example of the translation of an bit-ve
tor expression, 
onsider:

s : w

[7℄

& (y

[7℄

[0 : 3℄ Æ x

[3℄

)

t : y

[7℄

j (x

[3℄

Æ 1

[1℄

Æ w

[7℄

[0 : 2℄)

We �rst apply T (s; [0 : 6℄) whi
h results in 
utting y into y

1

Æ y

2

, where de
ode(y

1

) = [0 :

3℄; de
ode(y

2

) = [4 : 6℄. w is 
ut similarly. The translation of t results in further 
utting

y

1

into y

3

Æ y

4

, where de
ode(y

3

) = [0 : 2℄, in order to align with x

[3℄

Æ 1

[1℄

. The variable

w

[7℄

is also 
ut into w

1

Æ w

2

Æ w

3

overing the same intervals as the parts of y, namely

[0 : 2℄; [3 : 3℄; [4 : 6℄. The result of translation is then:

s : w

1

& y

3

Æ w

2

& y

4

Æ w

3

& x t : y

3

j x Æ y

4

j 1

[1℄

Æ y

2

j w

1

7.3.1 Interfa
ing to the Shostak 
ombination

To 
anonize a term t

[m℄

we �rst obtain F

1

Æ : : : Æ F

n

= T (t; [0 : m � 1℄). We will identify

a free variable x

k

in F

i

with x[i : j℄, where de
ode(x

k

) = [i : j℄. Ea
h F

i

is represented
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1. 
ut(F;m) =

2. mark(F );

3. let

4. (F

1

(x

1

); F

2

(x

2

)) = di
e(F;m)

5. in

6. for ea
h j = 1; 2; x

j

2 x

j

do

7. parents(x

j

) := parents(x

j

) [fF

j

g

8. return (F

1

(x

1

); F

2

(x

2

))

1. di
e(s op t;m) =

2. let

3. (s

1

; s

2

) = di
e(s;m);

4. (t

1

; t

2

) = di
e(t;m);

5. in

6. return (s

1

op t

1

; s

2

op t

2

)

7. di
e(


[l℄

;m) = return (


[m℄

; 


[l�m℄

)

8. di
e(x

1

[m℄

Æ x

2

[n℄

;m) = return (x

1

; x

2

)

9. di
e(x;m) =

10. let

11. [i : j℄ = de
ode(x)

12. x

1

; x

2

be fresh variables with ; parents

13. in

14. de
ode(x

1

) := [i : i+m� 1℄;

15. de
ode(x

2

) := [i+m : j℄;

16. x := x

1

Æ x

2

17. for ea
h unmarked s 2 parents(x) do

18. s := s

1

Æ s

2

where (s

1

; s

2

) = 
ut(s;m)

19. return (x

1

; x

2

)

Figure 7.1: Basi
 
utting and di
ing
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1. apply(op ; F (x); G(y)) =

2. for ea
h x 2 x [ y do

3. parents(x) := parents(x) n fF;Gg [ fF (x) op G(y)g

4. return F (x) op G(y)

1. sli
e(op; �; �) = �

2. sli
e(op; F (x)

[n℄

Æ s;G(y)

[m℄

Æ t) =

3. if m = n then

4. apply(op; F (x); G(y)) Æ sli
e(op; s; t)

5. else if m > n then

6. (G

1

(y

1

); G

2

(y

2

)) := 
ut(G(y); n);

7. apply(op; F (x); G

1

(y

1

)) Æ sli
e(op; s;G

2

(y

2

) Æ t)

8. else

9. (F

1

(x

1

); F

2

(x

2

)) := 
ut(F (y);m);

10. apply(op; F

1

(x); G(y)) Æ sli
e(op; F

2

(x

2

) Æ s; t)

Figure 7.2: Sli
ing and operator appli
ation

T (s op t; [i : j℄) = sli
e(op ;T (s; [i : j℄);T (t; [i : j℄))

T (s[k : l℄; [i : j℄) = T (s; [k + i : k + j℄)

T (s

[n℄

Æ t

[m℄

; [i : j℄)= if n � i then T(t; [i� n : j � n℄) else

if n > j then T(s; [i : j℄) else T (s; [i : n� 1℄) Æ T (t; [0 : j � n℄)

T(x

[m℄

; [i : j℄) = if 0 < i then T (se
ond(di
e(x; i)); [0 : j � i℄) else

if j < m� 1 (i = 0) then �rst(di
e(x; j + 1)) else x

T (


[m℄

; [i : j℄) = 


[j�i+1℄

Figure 7.3: Normalization pro
edure T
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in a 
anoni
al form (for instan
e an ordered BDD) based on a total order of the variables.

A 
onse
utive pair F

i

and F

i+1


an now be 
ombined whenever F

i

is equivalent to the

boolean expression obtained from F

i+1

by repla
ing ea
h variable x[k : l℄ by x[k�n : l�1℄,

where n is the length of F

i

.

To de
ide the satis�ability of an equality s

[n℄

= t

[n℄

and extra
t a 
anonized substitution

� we noti
e that s = t is equivalent to s ^ t = 0

[n℄

. Hen
e the equality is satis�able if and

only if T (s ^ t; [0 : n� 1℄) = F

1

Æ : : : ÆF

m

and

V

m

i=1

:F

i

is satis�able. At this point we 
an

apply the te
hnique used in [CMR97℄, whi
h extra
t equalities from BDDs using equivalen
e

preserving transformations of the form ite(x;H;G) � (H _ G) ^ 9Æ:x = H ^ (:G _ Æ).

This produ
es a substitution �

0

with subranges of the original variables in the domain and

auxiliary Æ's in the range. The resulting substitution 
an then be extra
ted by generating

� as follows:

�

1

: [x 7! �

0

(x

1

) Æ : : : Æ �

0

(x

n

) j x

i

2 dom(�

0

) ^ x = x

1

Æ : : : Æ x

n

℄

�

2

: [x

k

7! x[i : j℄ j x = x

1

Æ : : : Æ x

n

; k � n; [i : j℄ = de
ode(x

k

); 8i : [1::n℄:x

i

62 dom(�

0

)℄

� : [x 7! �(�

2

(�

1

(x))) j x 2 dom(�

1

)℄

Example: Continuing with the translated versions of our example terms s and t we will

extra
t a substitution from the equality 
onstraint s = t. We therefore 
omplete the

translation to get:

s ^ t : (w

1

& y

3

) ^ (y

3

j x) Æ (w

2

& y

4

) ^ (y

4

j 1

[1℄

) Æ (w

3

& x) ^ (y

2

j w

1

)

By negating the 
on
atenations, the 
onstraints needed to extra
t a substitution are

obtained. The se
ond 
onstraint is easiest as it simply imposes w

2

= y

4

= 1

[1℄

. The


onjun
tion of the �rst and third 
onstraint is transformed:

:((w

1

& y

3

) ^ (y

3

j x)) & :((w

3

& x) ^ (y

2

j w

1

)) = 1

[3℄

$ ite(x; w

1

& y

3

& w

3

; :y

2

& :w

1

& :y

3

) = 1

[3℄

$ (x = w

1

& y

3

& w

3

) ^ ((w

1

& y

3

& w

3

) j (:y

2

& :w

1

& :y

3

)) = 1

[3℄

$ (x = w

1

& y

3

& w

3

) ^ (w

1

= y

3

& w

3

) ^ ((y

3

& w

3

) j (:y

2

& :y

3

)) = 1

[3℄

$ (x = w

1

& y

3

& w

3

) ^ (w

1

= y

3

& w

3

) ^ (y

3

= w

3

) ^ (w

3

j :y

2

) = 1

[3℄

$ (x = w

1

& y

3

& w

3

) ^ (w

1

= y

3

& w

3

) ^ (y

3

= w

3

) ^ 9Æ:y

2

= w

3

& Æ

The 
omposition of the extra
ted equalities gives an idempotent substitution:

� : [w

1

7! w

3

& Æ; x 7! w

3

& Æ; y

2

7! w

3

& Æ; y

3

7! w

3

℄

From this we generate a substitution, where V

aux

= fw

3

; Æg.

h

x 7! w

3

& Æ; w 7! (w

3

& Æ) Æ 1

[1℄

Æ w

3

; y 7! w

3

Æ 1

[1℄

Æ (w

3

& Æ)

i

:
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7.3.2 Equational running time

For input s = t

[n℄

not involving op subterms (basi
 bit-ve
tors) the presented algorithm 
an

be tuned to run in time:

O(m+ nlog(n));

where m is the number of Æ and sub�eld extra
tion o

urren
es in s and t. First sub�eld

extra
tion is pushed to the leaves in time O(m), then the Æ subterms are arranged in a

balan
ed tree and T is applied to the balan
ed terms while maintaining balan
e in the tree.

The translated equality s = t is pro
essed in a style similar to sli
e, but the auxiliary fun
tion

apply has been repla
ed by one that builds a graph by 
onne
ting verti
es representing

the equated 
onstants or variables. If some 
onne
ted 
omponent 
ontains two di�erent


onstants there is a 
ontradi
tion and the equality is unsatis�able. Otherwise an equivalen
e


lass representative is appointed for ea
h 
onne
ted 
omponent, 
hoosing a 
onstant if one

is present, or an arbitrary variable vertex otherwise. The extra
ted substitution then maps

every variable to a 
on
atenation of equivalen
e 
lass representatives.

A 
anonized solution for satis�able equalities 
an be extra
ted in time O(n) (whi
h is

dominated by the running time of T ). An algorithm with the same fun
tionality is presented

in [CMR97℄. That algorithm has running time O(mlog(m) + n

2

), but o�ers some essential

short
uts that we don't address. Both pro
edures may still depend heavily on the parameter

n. For instan
e, the equality

0

[1℄

Æ 1

[1℄

Æ x

[m℄

= x

[m℄

Æ 0

[1℄

Æ 1

[1℄

(7.2)

requires (the maximal) m 
uts of x, and is only satis�able if m is even. The same fun
tion-

ality 
an, as [CMR97℄ noti
ed, be a
hieved in O(m+n) time, but at the expense of having

this as the minimal running time as well.

Another advantage of our algorithm is that it 
an be extended (with a few modi�
ations)

to the 
ase where bit-ve
tors of parameterized length are either ex
lusively on the right or

ex
lusively on the left of every 
on
atenation. This ex
ludes 
ases like (7.2), whi
h we will

address in Se
tion 7.4.

7.3.3 Beyond equalities

The satis�ability problem for 
onstraints involving disequalities is NP-
omplete in the 
ase

of basi
 bit-ve
tors. Membership in NP follows from the fa
t that we 
an easily 
he
k

in polynomial time that a given instantiation of bit-ve
tor variables satis�es pres
ribed


onstraints. NP-hardness follows from a redu
tion from 3-SAT to 
onjun
tions of disequality


onstraints: take an instan
e of 3-SAT

V

i

(l

i

_k

i

_m

i

) where l

i

; k

i

andm

i

are literals over the

vo
abulary V of boolean variables. Translate this into

V

i

(l

i

Æ k

i

Æm

i

6= 000)^

V

x2V

(x 6= x),

where for ea
h boolean variable x we asso
iate two bit-ve
tor variables x

[1℄

representing x

and x

[1℄

representing the negation of x.

We therefore settle here by handling t 6= s as j(t ^ s), and 
onverting jt

[n℄

to t[0 :

0℄ j : : : j t[n� 1 : n� 1℄ = 1

[1℄

. The 
onne
tives < and �, as well as operations like + and �
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an be handled similarly, though the advantages of this approa
h are questionable. Natu-

rally these 
onstraints are only analyzed when all equational 
onstraints have been pro
essed

and the resulting substitutions have been applied to the non-equational 
onstraints.

Veri�
ation 
onditions of the form

f(A) 6= f(B) ^ f(A) 6= f(C) ! f(B) = f(C);

where f is an uninterpreted fun
tion symbol, are handled using a 
omplete 
ase analysis

on bit-ve
tors A, B and C (it is valid only when A, B and C are bit-ve
tors of length 1).

Shostak's approa
h to 
ombining equational theories misses 
ases like this as it is originally

designed for theories admitting in�nite models (see for example [NO79℄).

7.4 Uni�
ation of basi
 bit-ve
tors

In this se
tion we fo
us on the problem of �nding uni�ers for basi
 bit-ve
tor terms s and

t. The restri
tion to basi
 bit-ve
tor terms allows us to develop a more eÆ
ient pro
edure

and at the same time widen its s
ope to bit-ve
tors whose lengths are parameterized.

7.4.1 ext-terms

To more 
ompa
tly represent solutions to equations like (7.2) we introdu
e a new bit-

ve
tor term 
onstru
t ext(t

[n℄

;m) (the extension of t up to length m), whi
h is well-formed

whenever m > 0. The meaning of ext is given by the equation

[[ext(t

[n℄

;m)℄℄� = [[t Æ :: Æ t

| {z }

k

Æt[0 : l�1℄℄℄� where (k+1)n � m > kn and l = m�kn

Thus, ext(t

[n℄

;m) repeats t up to the length m. To map ext -terms to terms in the base

language we use the unfolding fun
tion unf

unf (t

[n℄

;m) = t Æ :: Æ t

| {z }

k

ÆT (t; [0 : l�1℄) where (k+1)n � m > kn and l = m�kn

A solution to equation (7.2) 
an now be given 
ompa
tly whenm is even as x = ext(0

[1℄

Æ

1

[1℄

;m).

7.4.2 Uni�
ation with ext-terms

To de
ide the satis�ability of equalities s = t of basi
 bit-ve
tor terms extended with ext -

subterms we will develop a Martelli-Montanari style uni�
ation algorithm [MM82℄ whi
h

takes the singleton set E

0

: fs = tg as input and works by transforming E

0

to intermediary

sets E

1

; E

2

; : : : by equivalen
e preserving transformations whi
h simplify, delete or propagate

equalities. It ultimately produ
es either FAIL, when s = t is unsatis�able, or a substitution

E

�nal

: fx

1

= t

1

; : : : ; x

n

= t

n

g.



CHAPTER 7. BIT-VECTORS 124

Sin
e our pro
edure uses T to de
ompose terms, every auxiliary variable in E

�nal

fur-

thermore 
orresponds to a unique disjoint subrange of one of the original variables. The

obviously satis�able 
onjun
tion of equalities is equivalent to the original equality.

A 
anonizer 
an be obtained by �rst eliminating the ext -terms by using unfold and then

using the 
anonizer of Se
tion 7.3.1.

Example: Anti
ipating the algorithm we will present, 
onsider the following equality as-

sertion:

y

[3℄

Æ x

[16℄

Æ x

[16℄

Æ z

[2℄

= x

[16℄

Æ w

[4℄

Æ 0

[1℄

Æ x

[16℄

:

In pro
essing the implied equality y

[3℄

Æx

[16℄

= x

[16℄

Æ : : : we obtain x

[16℄

= ext(y

[3℄

; 16) as

a solution for x

[16℄

. Continuing with the remaining equalities we get the intermediate

set of equations:

x

[16℄

= ext(y

[3℄

; 16); y

[3℄

[1 : 2℄ Æ y

[3℄

[0 : 0℄ = w

[4℄

[0 : 2℄;

z

[2℄

= w

[4℄

[3 : 3℄ Æ 0

[1℄

; ext(w

[4℄

[3 : 3℄ Æ 0

[1℄

; 16) = x

[16℄

:

The two equations involving x are 
ombined to produ
e the implied 
onstraint

ext(y

[3℄

; 16) = ext(w

[4℄

[3 : 3℄ Æ 0

[1℄

; 16) :

This equality is evidently equivalent to its unf -unfolding, but as we will later formulated

in a general setting, we 
an do better and only need to assert:

y

[3℄

Æ y

[3℄

[0 : 0℄ = w

[4℄

[3 : 3℄ Æ 0

[1℄

Æ w

[4℄

[3 : 3℄ Æ 0

[1℄

:

In fa
t this implies y[0 : 0℄ = y[1 : 1℄ = y[2 : 2℄ = w[3 : 3℄ = 0

[1℄

. After propagating the

resulting 
onstraints we obtain the �nal result:

w

[4℄

= 0

[4℄

; x

[16℄

= 0

[16℄

; y

[3℄

= 0

[3℄

; z

[2℄

= 0

[2℄

:

While the full uni�
ation algorithm is given in Figure 7.4 we highlight and explain the

more deli
ate 
ases below.

x

[n℄

Æ s = t

[m℄

Æ y

[l℄

Æ u whenm+l > n > m, x 6= y. The situation is des
ribed in the pi
ture

below, whi
h suggests that the equality is equivalent to x = t Æ y

1

and s = y

2

Æ u for

suitable splits y

1

and y

2

of y. We use T to 
ut y into the appropriate pie
es. This

repla
es y everywhere in E by y

1

Æ y

2

.

y1 y2

x

t y u

s
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x

[n℄

Æ s = t

[m℄

Æ x

[n℄

Æ u when n > m. For example we are given the 
on�guration:

x

u

s

t x

Thus, the original equality 
onstraint is equivalent to x = t Æ t Æ t Æ t[0 : 0℄ and

t[1 : 2℄ Æ t[0 : 0℄ Æ u = s. To more 
ompa
tly des
ribe the �rst equality we use the

ext -
onstru
t to obtain x = ext(t; 10).

ext(s

[m℄

; l) = ext(t

[n℄

; l) The e�e
t of repla
ing x by s in the variable elimination step may

introdu
e equality 
onstraints between ext -terms. Although the equality 
onstraint is

by de�nition equivalent to unf (s

[m℄

; l) = unf (t

[n℄

; l), we 
an be even more e
onomi
al

in the unfolding as the following lemma suggests.

Lemma 7.4.1 Assume l � n+m� g
d(m;n) and let g = g
d(m;n) then

ext(s

[m℄

; l) = ext(t

[n℄

; l) $ unf (s;m+ n� g) = unf (t;m+ n� g)

Proof:

First divide s and t into sli
es ea
h of size g and let p =

m

g

and q =

n

g

. Assume

without loss of generality that p < q. With s is divided into p pie
es and t into

q pie
es, unf (s;m+ n� g) = unf (t;m+ n� g) now 
reates p+ q � 1 equalities

between sli
es from s and sli
es from t. The assertion is no stronger than the

original equality as the assumptions of the lemma guarantee that m+n� g < l.

The bipartite graph asso
iated with these sli
es and equalities has p+ q verti
es

and p+ q � 1 edges.

If the graph had a 
y
le of length 2k, then k < p as only the p � 1 �rst

t sli
es are repeated. Sin
e the hypotheti
al 
y
le starts and ends at the same

position in s and two 
onse
utive verti
es of the 
y
le are in distan
e q mod p

of ea
hother it would also imply that p divides k � (q mod p). But then sin
e p

and q are relatively prime 1 = g
d(p; q) = g
d(p; q mod p) and so p divides k

whi
h is impossible.

Hen
e, the bipartite graph is a spanning tree and all s sli
es are equated

with all t sli
es. It is therefore suÆ
ient to equate the unfoldings of s and t up

to m+ n� g as the e�e
t of unfolding is un
hanged from this point on.

Thus, we will ensure that our algorithm maintains the invariant 2n � l for every

ext(t

[n℄

; l) term, and the equality 
onstraint ext(s

[m℄

; l) = ext(t

[n℄

; l) is repla
ed by

unf (s;m+ n� g) = unf (t;m+ n� g).

Other simpler 
ases are summarized in Figure 7.4. It omits 
ases that 
an be obtained using

symmetry of equality.
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Constru
tor elimination

R1 fs

[m℄

Æ u = t

[m℄

Æ vg [ E ! fs = t; u = vg [ E

R2 f


[m℄

Æ s = 


0

[n℄

Æ tg [ E ! FAIL where 
 6= 


0

R3 f


[m℄

Æ s = 


[n℄

Æ tg [ E ! fs = 


[n�m℄

Æ tg [ E where n > m

R4 fx

[n℄

Æ s = t

[m℄

Æ y

[l℄

Æ ug [ E ! fx = t Æ y

1

; s = y

2

Æ ug [ E

where m+ l > n > m > 0, x 6= y,

y

1

= T (y; [0 : m� n� 1℄), y

2

= T (y; [m� n : l � 1℄),

R5 fx

[n℄

Æ s = t

[m℄

Æ x

[n℄

Æ ug [ E ! fs = wrap(t; n) Æ u; x = mk-ext(t; n)g [ E

where n > m > 0

R6 fx

[n℄

Æ s = t

[m℄

Æ 


[l℄

Æ ug [ E ! fx = t Æ 


[m�n℄

; s = 


[l+n�m℄

Æ ug [ E

where m+ l > n > m � 0

R7 fs

[m℄

Æ t = ext(u

[l℄

; n) Æ vg [ E !

(

s

[m℄

= mk-ext(u;m);

t = mk-ext(wrap(u;m); n�m) Æ v

)

[ E

where m < n

R8 fext(s

[l

1

℄

;m) = ext(t

[l

2

℄

;m)g [ E ! funf (s; l) = unf (t; l)g [ E

where l = l

1

+ l

2

� g
d(l

1

; l

2

)

Equality and variable elimination

R9 ft = tg [ E ! E

R10 fx = sg [ E ! fx = sg [ E [x 7! s℄

Figure 7.4: Rules for uni�
ation with ext -terms

The auxiliary fun
tion wrap splits the term t at position k and swaps the two pie
es.

The fun
tion mk-ext produ
es either an ext -term when the length of t is suÆ
iently small

or unfolds t. It ensures that every ext(t

[n℄

;m) term generated by the algorithm satis�es

2n � m. These are de�ned more pre
isely below:

wrap(t

[n℄

;m) = let k = m mod n in

if k = 0 then t else T (t; [k : n� 1℄) Æ T (t; [0 : k � 1℄)

mk-ext(t

[n℄

;m) = if 2n � m then ext(t;m) else unf (t;m)

The uni�
ation algorithm terminates sin
e the variable elimination step removes du-

pli
ate 
onstraints involving x and every other step produ
es equalities of smaller size (in

terms of the number of bitwise 
omparisons) than the one eliminated. For instan
e, in the

R8 rule we rely on m � 2 �max(l

1

; l

2

) > l.

7.4.3 Non�xed size bit-ve
tors

The most prominent feature of the uni�
ation algorithm in Figure 7.4 is that it 
an be

used to de
ide bit-ve
tor equality 
onstraints s = t, where lengths and proje
tions are not
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restri
ted to �xed naturals, but are of the form aN + b, where a and b are integers and N

is a parameter (where we assume without loss of generality that N > 0). This allows us

to apply the algorithm in the Shostak 
ombination for de
iding veri�
ation 
onditions with

non-�xed bit-ve
tor equalities. The uni�
ation problem for non-�xed bit-ve
tors is also

reminis
ent of the word uni�
ation problem, see Se
tion 8.2.2. The main di�eren
e with

word uni�
ation is that variables ranging over words in that problem do not have asso
iated

size 
onstraints whi
h bit-ve
tors have. By performing 
omparisons and arithmeti
 on

these lengths symboli
ally and allowing admissible answers to be paired with a

umulated


onstraints (as explained later), we 
an deal with the following example:

Example: By performing the uni�
ation of

fw

[2℄

Æ 0

[1℄

Æ x

[N+6℄

Æ y

[N+7℄

= x

[N+6℄

Æ 1

[1℄

Æ z

[3℄

Æ x

[N+6℄

g (7.3)

we obtain as an intermediate step

8

>

<

>

:

x

[N+6℄

= ext(w

[2℄

Æ 0

[1℄

; N + 6);

y

[N+7℄

= z

[3℄

[2 : 2℄ Æ x

[N+6℄

1

[1℄

Æ z

[3℄

[0 : 1℄ = wrap(w

[2℄

Æ 0

[1℄

; N + 6)

9

>

=

>

;

and �nally two 
ases:

x

[N+6℄

= ext(1

[1℄

Æ �

[1℄

Æ 0

[1℄

; N + 6);

y

[N+7℄

= �

[1℄

Æ ext(1

[1℄

Æ �

[1℄

Æ 0

[1℄

; N + 6);

z

[3℄

= �

[1℄

Æ 0

[1℄

Æ �

[1℄

;

w

[2℄

= 1

[1℄

Æ �

[1℄

if N � 0 (mod 3)

x

[N+6℄

= ext(�

[1℄

Æ 1

[1℄

Æ 0

[1℄

; N + 6);

y

[N+7℄

= �

[1℄

Æ ext(�

[1℄

Æ 1

[1℄

Æ 0

[1℄

; N + 6);

z

[3℄

= 0

[1℄

Æ �

[1℄

Æ �

[1℄

;

w

[2℄

= �

[1℄

Æ 1

[1℄

if N � 1 (mod 3)

WhenN � 0 (mod 3), the evaluation of the wrap fun
tion simpli�es the se
ond equation

of the intermediate result to 1

[1℄

Æ z

[3℄

[0 : 1℄ = w

[2℄

Æ 0

[1℄

. The 
ase that 
orresponds to

N � 2 (mod 3) requires 1

[1℄

Æ z

[3℄

[0 : 1℄ = 0

[1℄

Æ w

[2℄

whi
h results in an in
onsisten
y.

The �

[1℄

,�

[1℄

are auxiliary variables that are introdu
ed to represent unknown segments

of the bit-ve
tor variables.

Thus, the result produ
ed by the uni�
ation algorithm will now be a set of 
onstraints,

ea
h of the form

(ax+ b > 
; [N 7! ax+ b℄ Æ [x

i

7! t

i

j i = 1; : : : ; n℄)
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where x is a fresh variable and the �rst 
onstraint is passed on to de
ision pro
edures for

linear arithmeti
, and the se
ond 
onstraint is a substitution. We are thus fa
ed with a

�nitary as opposed to unitary uni�
ation problem (see [BS93℄ for a survey on uni�
ation

theory).

The 
ru
ial observation that allows lifting the algorithm to parameterized bit-ve
tor

expressions is that all operations and tests on the lengths and proje
tions are of the form

m+ n; m� n; m > n; m � n; m = n; m mod n:

Sin
e terms of the form aN + b are 
losed under addition and subtra
tion, the �rst two

operations 
an be performed dire
tly in a symboli
 way.

The 
omparison m > n is rewritten to m�n > 0, m � n to m�n+1 > 0, and n = m to

n�m+1 > 0 ^ m�n+1 > 0. This redu
es the evaluation of 
omparisons to aN + b > 0.

Sin
e

aN + b > 0 $ (a = 0 ^ b > 0 _ a > 0) i�

(a > 0 > b _ a < 0 < b) ! N � jbj div jaj (7.4)

tests 
an be evaluated using a = 0^b > 0 _ a > 0 and a

umulating auxiliary lower bounds

on N for a separate treatment. Our algorithm then produ
es answers for all N greater than

the largest a

umulated lower bound. For values of N smaller than the a

umulated bounds

we instantiate N and run the �xed size version.

The auxiliary fun
tion wrap requires us to 
ompute m mod n. To simplify this 
ase our

algorithm will maintain the invariant that m mod n is only invoked when n is a 
onstant

b

0

, whereas m may be of the form N + b. The 
ase N � b

0

� b 
auses 
ase-splitting on ea
h

of the possible solutions k = 0; : : : ; b

0

� 1.

We 
ould represent ea
h 
ase in Presburger arithmeti
 as 9x � 0 : xb

0

= N + b� k and

use a Presburger de
ision pro
edure [Coo72℄ to 
he
k satis�ability of 
onjun
tions of su
h


onstraints. However, in order to manage these 
onstraints more eÆ
iently we 
an use the

Chinese Remainder Theorem (see [NZM91℄). If �

i

p

�

i

i

is a prime fa
torization of b

0

(with

p

1

; p

2

; : : : the sequen
e of all primes), then

N + b � k (mod b

0

) i� N + b � k (mod p

�

i

i

) for every i.

Let D(p; �; l) be the predi
ate that N � l (mod p

�

) is true. Let C

mod

=

V

i

D(p

i

; �

i

; b

i

)

be the 
onjun
tion of divisibility 
onstraints imposed on the 
urrent system. Only one

predi
ate is needed for ea
h p

i

, sin
e:

D(p; �; l

0

) ^D(p; �; l) ^ � � � i� D(p; �; l

0

) ^ l

0

� l (mod p

�

) : (7.5)

In order to split on the 
ase N + b � k (mod b

0

) for di�erent values of k = 0; : : : ; (b

0

� 1) we


an form the produ
t of the 
ase splits on N + b � k

i

(mod p

�

i

i

) for k

i

= 0; : : : ; (p

�

i

i

� 1)

(the produ
t is over i = 1; 2; : : :). The situation is not as bad as it seems, sin
e we 
an use
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the existing C

mod

to merge the new 
onstraints in an optimal way:

C

0

mod

=

^

i

P (i) where P (i) =

8

>

>

<

>

>

:

p

�

i

��

i

i

�1

_

j=0

D(p

i

; �

i

; b

i

+ jp

�

i

i

) if �

i

� �

i

D(p

i

; �

i

; b

i

) if �

i

< �

i

The predi
ate P (i) represents the enumeration of valid 
ongruen
es modulo a power of p

i

.

Statement (7.5) suggests the form of the enumeration for ea
h 
ase in the de�nition of P (i).

Expressing C

0

mod

in disjun
tive normal form

W

i

C

i

mod

the 
onstraints for the di�erent 
ases

are obtained. The value of k for a parti
ular 
ase of C

mod


an be re
onstru
ted using the


ongruen
e

k �

 

X

i

n

i

b

i

!

� b (mod b

0

)

where n

i

= z

i

z

i

, z

i

= �

j 6=i

p

�

i

j

, and z

i

satis�es z

i

z

i

� 1 (mod p

�

i

i

) (it exists sin
e g
d(p

�

i

i

; z

i

) =

1).

Given expressions s and t our algorithm now engages in the following steps:

1. Apply T to both s and t, i.e., let (s; t) := (T (s; [0 : m � 1℄);T (t; [0 : m � 1℄)).

This generates bit-ve
tor expressions without sub�eld extra
tion and an assignment

to ea
h original variable x to a 
on
atenation x

1

Æ x

2

Æ : : : Æ x

n

of distin
t variables,

where de
ode(x

i

) 
over disjoint intervals of x. Using equivalen
e (7.4) the tests in T

are evaluated unambiguously, and possibly generating a new lower bound on N . The


ases where N is smaller than this bound are pro
essed later.

2. Every variable x

[aN+b℄

remaining in s or t, where a > 0, is repla
ed by a 
on
atenation

of a fresh variables: x

(1)

[N ℄

Æ x

(2)

[N ℄

Æ : : : Æ x

(a)

[N+b℄

. Constants are 
ut in a similar way

1

. If b

is negative the lower bound 1� b on N is added.

Every variable o

urring in s and t now has length N + k or k, where k is an integer.

3. The algorithm in Figure 7.4 is invoked on the equality fs = tg. Ea
h 
omparison a

u-

mulates a lower bound on N and ea
h invo
ation of mod may 
ause a multi-way 
ase

split while a

umulating modulus 
onstraints on N . The uni�
ation algorithm there-

fore generates 
onstraints of the form (E

1

; C

1

); : : : ; (E

n

; C

n

), where the E

i

are equalities

and C

i

is a 
onjun
tion of N � k and D(p

i

; �

i

; a

i

) 
onstraints.

We need to ensure that every step is well de�ned: in parti
ular that unf (t;m) and, as

we assumed, n mod m are only invoked when m is a 
onstant. This is a 
onsequen
e

of the following invariant:

Invariant 7.4.2 For every o

urren
e of ext(t

[aN+b℄

; n): a = 0 ^ 2b � n.

1

This step is not stri
tly ne
essary, but simpli�es the further presentation of the algorithm.
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This holds as ext terms are only generated when mk-ext(t

[aN+b℄

; a

0

N + b

0

) is invoked

and 2(aN + b) � a

0

N + b

0

. Sin
e both a and a

0

are either 0 or 1, this inequality 
an

only hold if a = 0 or N is bounded above by (b

0

� 2b) div (2a� a

0

). The 
ases where

N is bounded above by a 
onstant are treated separately.

4. The solved form 
an now be extra
ted. For ea
h (E ; C) generated from the previous

step let C be of the form N � k^

V

l

i=1

D(p

i

; �

i

; a

i

). The Chinese Remainder Theorem

tells us how to �nd n

i

su
h that the 
onstraints 
an be rewritten to the equivalent

form

N � k ^ 9x:N = Ax+B where A =

Q

l

i=1

p

�

i

i

B =

�

P

l

i=1

n

i

a

i

�

mod A

Sin
e we extra
t the Shostak substitution � from E as in the �xed-length 
ase the


ombined 
onstraint returned for this 
ase is

(Ax+B � k; [N 7! Ax+B℄ Æ �):

For ea
h k less than the least lower bound a

umulated above we instantiate N by

k and extra
t �

k

by running the �xed-size version of the algorithm (that is, running

fs = tg[N 7! k℄). For these 
ases the returned 
onstraints have the form

(true; [N 7! k℄ Æ �

k

):

The algorithm now 
on
ludes by returning the entire set of the 
onstraints extra
ted

above.

As we have argued above we now have

Theorem 7.4.3 (Corre
tness) When the non-�xed uni�
ation algorithm terminates on the

input 
onstraint s = t with a set of 
onstraints f('

i

(x); �

i

) j i = 0; : : : ng then s = t $

n

_

i=0

9x; V

aux

:'

i

(x) ^ �

i

:

Finally we must ensure that we 
an make the uni�
ation algorithm modi�ed for param-

eterized lengths terminate. To this end we apply the transformation rules from Figure 7.4

by preferring the variable and equality elimination rules to the other rules.

We will pro
eed to prove the termination by indu
tion on the number of distin
t non-

�xed variables k in E that parti
ipate in some equality where rule R1-R8 
an be applied.

The base 
ase (k = 0) operates only on �xed-size variables, and so it terminates.

Whenever a variable x has been isolated using one of the rules R4-R6, it is eliminated

from the rest of E . Indeed it is eliminated as x 
annot be a proper subterm of t in the equality


onstraint x = t, sin
e the length of t is the sum of the lengths of its variable and 
onstant

subterms, whi
h equals the length of x. Sin
e rules R1-R8 produ
e equalities between

smaller bit-ve
tors we 
annot repeatedly apply these rules without eventually eliminating

a non-�xed size variable. Rule R4 may split a non-�xed length variable y into two parts
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1. equation (7.3) from page 127 satis�able 0.06 s

2. 0

[1℄

Æ 1

[1℄

Æ 0

[1℄

Æ x

[N+7℄

Æ 1

[1℄

Æ 0

[1℄

Æ 1

[1℄

Æ y

[N+1℄

unsatis�able 0.06 s

= x

[N+7℄

Æ x

[N+7℄

3. x

[N+4℄

Æ 0

[1℄

Æ 1

[1℄

Æ 0

[1℄

Æ y

[N+9℄

unsatis�able 0.09 s

= y

[N+9℄

Æ 1

[1℄

Æ 0

[1℄

Æ 1

[1℄

Æ x

[N+4℄

4. (7.3) ! z

[3℄

[0 : 0℄ = 0

[1℄

_ z

[3℄

[1 : 1℄ = 0

[1℄

valid 0.07 s

Table 7.1: Non-�xed bit-ve
tors examples

y

1

and y

2

, but only one of these parts will have non-�xed length, so the overall number of

non-�xed length variables is 
onstant.

We therefore have

Theorem 7.4.4 (Termination) The non-�xed uni�
ation algorithm terminates.

A redu
tion from the problem of simultaneous in
ongruen
es [SM73℄ 
an establish that

the uni�
ation problem for non-�xed bit-ve
tors is NP-hard. As it is formulated in Garey

and Johnson [GJ79℄: given a 
olle
tion f(a

1

; b

1

); : : : ; (a

n

; b

n

)g of ordered pairs of positive

integers with a

i

� b

i

for 1 � i � n the question whether there is an integer N su
h that

for q � i � n, N 6� a

i

(mod b

i

) is NP-
omplete. This problem is redu
ed to basi
 bit-

ve
tor uni�
ation using auxiliary bit-ve
tor variables x

i

of length 2b

i

� 1 and y

i

of length

2N � 2a

i

+ 2b

i

� 1 for 1 � i � n. (the fa
tor 2 is used to guarantee that all lengths are

positive). Now N exists if and only if the equations

ext(x

i

Æ 1

[1℄

; 2N � 2a

i

+ 2b

i

) = y

i

Æ 0

[1℄

are satis�able (
an be uni�ed). Naturally the n equalities 
an be 
ombined to form one

equality by 
on
atenating all left-hand sides and all right-hand sides. On the other hand,

a simple analysis of the termination argument 
an establish that a satisfying uni�er 
an be

veri�ed in time polynomial in the 
onstant parameter sizes and number of subterms.

The uni�
ation algorithm �nally needs to be supplied also with a 
anonizer that works

on ext -terms of non-�xed length to enable an integration with other de
ision pro
edures.

While simple unfoldings 
annot be performed this time our implementation normalizes terms

into a 
on
atenation of variables, 
onstants and ext-terms whose arguments are �xed size

terms in 
anoni
al form. The o

urren
es of ext in the resulting expression are then shifted

as mu
h as possible to the left. This step 
annot be performed unambiguously without

asserting 
ongruen
e 
onstraints on the parameter and hen
e also leads to 
ase splits.

Table 7.1 gives a list of examples that were presented to our prototype implementation.

The tests were made on a 200MHz Sun Ultra II.
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7.5 Problems

Problem 7.5.1 Integrate arithmeti
al reasoning \eÆ
iently" with bit-wise boolean opera-

tions.

Problem 7.5.2 Extend non-�xed solving to bit-wise boolean operations.

Problem 7.5.3 Solve arithmeti
al 
onstraints over the p-adi
s instead of over �eld of �xed

size (say 2

32

).

Problem 7.5.4 Find a terminating solver for non-�xed bit-ve
tor 
onstraints for bit-ve
tors

whose lengths are given in quanti�er-free Presburger (integer linear) arithmeti
.

7.6 Summary

This 
hapter presented two algorithms: one algorithm handles boolean operations on �xed-

size bit-ve
tors, the other handles equational 
onstraints in the absen
e of boolean opera-

tions on parameterized bit-ve
tors. A 
ompleted pi
ture would 
ombine the algorithms to

handle boolean operations on parameterized bit-ve
tors.



Chapter 8

Queues

This 
hapter o�ers a solver-oriented de
ision pro
edure for queues. We �rst solve equational


onstraints. In analogy with re
ursive data-types we also develop de
ision methods for queue

pre�x, suÆx, and sub-queue relations. We �rst motivate the de
ision pro
edures for queues

with a small example.

8.1 Veri�
ation with queues

A generi
 situation for network routers and 
ontrollers whose input is a sequen
e of bits,

is to 
ongest the bit sequen
e in some way for a 
onsumer. Take for instan
e the situation

where a random sequen
e of bits has to be ordered in equal valued 
hunks of length N > 0

to the 
onsumer. After the router has emitted N bits of the same value it is required to emit

the other value, but it may only emit bits that have been re
eived. Although seemingly

arti�
ial, this very s
enario has been used to model a traÆ
 
ontroller along the Californian


oast in [Bj�98a℄.

It should be noted that linear time temporal logi
 provides a 
onvenient formalism for


apturing more pre
ise requirements of the router. In this 
hapter we will only 
on
entrate

on how queues are used to model the proto
ol and how de
ision pro
edures are used to au-

tomati
ally establish properties for queues. We will not dis
uss how temporal requirements

may be 
aptured for this example, but pro
eed to present a sample implementation dire
tly.

Figure 8.1 suggests an implementation of su
h a router. It uses a sta
k to keep tra
k of

bits that 
annot be sent immediately, a 
ounter i to maintain how many bits of the same

value have been sent, and a 
ag turn to re
ord whose turn it is. The use of a sta
k allows

to adapt the implementation to the 
ase where the bits are repla
ed by re
ords where only

one of the �elds 
ontains the bits used in this simpli�
ation. The asyn
hronous 
hannels

produ
er and 
onsumer are modeled using queues, su
h that the statement


onsumer (= v

133
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onst N : [1::℄

in produ
er : 
hannel [1::℄ of boolean where produ
er = �

out 
onsumer : 
hannel [1::℄ of boolean where 
onsumer = �

lo
al sta
k : boolean list where sta
k = �

lo
al turn : boolean where :turn

lo
al i : integer where i = 0

pro
edure emit(v) =

2

6

4


onsumer (= v;

i := if i+ 1 � N then 0 else i+ 1;

turn := if i = 0 then :turn else turn

3

7

5

Produ
er ::

"

loop forever do

h

p

1

: produ
er (= false or p

2

: produ
er (= true

i

#

jj

Router ::

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

lo
al x : boolean

loop forever do

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

0

: if head(sta
k) = turn ^ � 6= sta
k

then

"

`

1

: emit(head(sta
k))

`

2

: sta
k := tail(sta
k)

#

else

2

6

6

6

4

`

3

: produ
er =) x;

`

4

: if x = turn

then `

5

: emit(x )

else `

6

: sta
k := 
ons(x ; sta
k)

3

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 8.1: Program Router
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has as e�e
t to put v in the end of 
onsumer. The statement

produ
er =) x


an be exe
uted when produ
er is non-empty, and has the e�e
t of dequeueing the �rst

element from produ
er and updating x to it.

It is a property of the implementation that the sta
k variable 
ontains only bits of the

same value. We 
an 
he
k this by postulating the invariant:

(:head(sta
k)) 62 sta
k (8.1)

The invariant is not indu
tive, but it is possible to use the automati
ally generated lo
al

invariants:

at `

3;4

^ (head(sta
k) $ turn)) sta
k = � (8.2)

at `

5;6

) (x$ turn) ^ ((head(sta
k) $ turn)! sta
k = �) (8.3)

We 
an use rule inv from Figure 1.2 and the de
ision pro
edures presented later in this


hapter to automati
ally prove the property.

Suppose now that we wish to express that the bits in the 
onsumer do not 
hange value

within distan
e N . Pi
torially, if x and y are the same in 
onsumer, and the distan
e

between x and y does not ex
eed N , then any z between x and y must have the same value.

ZX Y

< N

consumer

Using a sub-queue relation symbol �, operations head, and last, whi
h pi
k �rst and last

elements in a queue, and a length measure j j we 
an express this 
onsisely using the

invariant:

(8s)

0

B

�

0

B

�

s � 
onsumer

^ 1 � jsj � N

^ head(s) = last(s)

1

C

A

) (:head(s)) 62 s

1

C

A

(8.4)

The invariant is unfortunately not indu
tive, but 
an be established using the auxiliary

invariants below. The predi
ate suÆx states that s is a suÆx of the queue 
onsumer.

0 (0 � i < N) (8.5)



CHAPTER 8. QUEUES 136

i > 0 ) last(
onsumer) = turn (8.6)

i = 0 ^ 
onsumer 6= � ) last(
onsumer) 6= turn (8.7)

(8s)

 

�

suÆx (s; 
onsumer) ^ 1 � jsj � N

�

) if jsj � i then :turn 62 s else (i = 0 ! turn 62 s)

!

(8.8)

The good news is on the other hand that veri�
ation of both the auxiliary invariants and

the main spe
i�
ation pro
eeds pra
ti
ally automati
ally thanks to the de
ision pro
edures

for queues that we develop in the following. The veri�
ation 
ondition below is one of the

proof-obligations that is established in 22 se
onds using the de
ision pro
edures.

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

(0 � i ^ i < N)

^ (0 < i! last(
onsumer ) = turn)

^

 

i = 0 ^ :(
onsumer = �)!

:(last(
onsumer ) = turn)

!

^

0

B

B

B

B

B

B

B

�

suÆx(first(s); 
onsumer )

^ 1 � jfirst(s)j ^ jfirst(s)j � N

!

if jfirst(s)j � i

then (:turn) 62 first(s)

else (i = 0! turn 62 first(s))

1

C

C

C

C

C

C

C

A

^

 

s � 
onsumer ^ 1 � jsj ^ jsj � N !

head(s) = last(s)! (:head(s)) 62 s

!

^ head(s) = last(s)

^ s � rev
ons(
onsumer ; turn)

^ 1 � jsj ^ jsj � N

^

0

B

B

B

�

first(s) � 
onsumer ^

1 � jfirst(s)j ^ jfirst(s)j � N !

head(first(s)) = last(first(s))!

(:head(first(s))) 62 first(s)

1

C

C

C

A

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

! (:head(s)) 62 s

Finally, we 
an verify that elements in distan
e N +1 in the 
onsumer are always di�erent

using the auxiliary invariant (8.9) in establishing (8.10).

(8s) (suÆx (s; 
onsumer) ^ i < jsj � N ) head(s) 6= last(s)) (8.9)

(8s) (s � 
onsumer ^ jsj = N + 1 ) head(s) 6= last(s)) (8.10)
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8.2 A theory of queues

We use the sort S queue to refer to queues over the base sort S, and admit the following

operations and relations:

� : S queue;

head : S queue! S;

tail : S queue! S queue;

last : S queue! S;

first : S queue! S queue;

rev
ons : S queue� S ! S queue;


ons : S � S queue ! S queue

:

=: S queue� S queue ! B

pre�x : S queue� S queue ! B

suÆx : S queue� S queue ! B

�: S queue� S queue ! B

2: S queue� S queue ! B

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

����������������������
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�����
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head

first last

tail

revcons

cons

Figure 8.2: Queue 
onstru
-

tors and sele
tors

The empty queue is written �, and the usual list oper-

ations, head, tail and 
ons are supplemented with dual

operations last, first, and rev
ons. The e�e
t of the


onstru
tors and sele
tors is summarized in Figure 8.2.

Thus, if x is not �, and a = head(x), y = tail(x),

then x = 
ons(a; y), and symmetri
ally for the operators

rev
ons, first, and last. Figure 8.3 summarizes the �rst-

order theory of the queue sele
tors and 
onstru
tors. The

operations are supplemented by the equality relations, as

well as the binary relations pre�x, suÆx, �, and 2. We

write pre�x(x; y) if x is a pre�x of y, suÆx(x; y) if x is a

suÆx of y, and x � y if x is a subsequen
e of y. Taking Æ

as the 
on
atenation of sequen
es we 
an de�ne these relations using

pre�x(x; y)

def

= 9z : x Æ z = y suÆx(x; y)

def

= 9z : z Æ x = y

x � y

def

= 9z; u : z Æ x Æ u = y a 2 y

def

= [a℄ � y

where [a℄ is shorthand for 
ons(a; �).

The de
ision pro
edures that we develop here will for instan
e be able to establish

validity of formulas su
h as

q 6= � ! q

:

= 
ons(head(q); tail(q)) (8.11)

q 6= � ! head(rev
ons(q; a))

:

= head(q) (8.12)

a 62 q ^ br � q ! b 6= a (8.13)

8.2.1 First-order de
ision pro
edures

In the full �rst-order theory of queues we 
an eliminate sele
tors 
ompletely by introdu
ing

four fresh 
onstants: a

head

, q

tail

, a

last

, q

first

, and repla
ing subformulas with sele
tors
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For all a; b : S; x; y : S queue

sele
tors first(rev
ons(x; a)) = x last(rev
ons(x; a)) = a

head(
ons(a; x)) = a tail(
ons(a; x)) = x


onstru
tors rev
ons(x; a) = rev
ons(y; b) ! x = y ^ a = b


ons(a; x) = 
ons(b; y) ! a = b ^ x = y

ex
hange rev
ons(�; a) = 
ons(a; �)

rev
ons(
ons(a; x); b) = 
ons(a; rev
ons(x; b))

a
y
li
ity rev
ons(x; a) 6= � 
ons(a; x) 6= �

x 6= rev
ons(::rev
ons(
ons(a

1

; ::; 
ons(a

n

; x)::); b

1

); ::; b

m

); n+m > 0

domain 
losure x = � _ 9a : S; y : S queue : x = 
ons(a; y)

Figure 8.3: Equational axioms for queue operations

using transformations of the form:

'[head(t)℄ 7! t = � ^ '[a

head

℄ _ 9a; x : t = 
ons(a; x) ^ '[a℄ (8.14)

When the base sort S is �nite one 
an use wS1S (weak S1S, where set variables range over

�nite sets) to en
ode queue operations rev
ons, 
ons, �, pre�x, and suÆx [KMS98℄. A

dire
t en
oding automati
ally gives the ability to quantify over queues, as well as a

essing

elements from queues by their index. On the other hand, 
on
atenation of queues 
annot

be en
oded when these are non-lossy and of unbounded length as the results reviewed in

the next Se
tion imply. A dire
t en
oding of queue 
onstraints into wS1S also does not

support subsequen
e relations.

8.2.2 Queues as a sub-theory of 
on
atenation

Instead of taking 
ons and rev
ons as primitive queue 
onstru
tors one 
ould alternatively

base a theory of queues on 
on
atenation and formation of singleton queues, and de�ne


ons and rev
ons as derived operations: 
ons(a; q) = [a℄ Æ q, rev
ons(q; a) = q Æ [a℄. Solv-

ing equalities over sequen
es with 
on
atenation is known as the word uni�
ation problem.

Spe
ial 
ases of the word uni�
ation problem were addressed in [Hme76℄. Makanin [Mak77℄

gives an algorithm for word uni�
ation showing that word uni�
ation problem is de
idable.

Ja�ar [Jaf90℄ provides a modi�
ation of Makanin's algorithm for generating all minimial

word uni�ers. He notes that in�nitely many minimal uni�ers may exist. An example is the

word equation ax = xa, whi
h has uni�ers a

�

. This equation is also a legal 
onstraint be-

tween queues, and we show how to represent the in�nitely many uni�ers with one 
onstraint.
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Our solver based approa
h in the integration of de
ision pro
edures is pre
isely limited to

theories where the set of possibly implied equalities 
an be represented by a �nite quotient.

gives a more streamlined and bug-free presentation with generalizations. Although 3-SAT


an be immediately redu
ed to word uni�
ation with a one-
hara
ter alphabet, showing

that word uni�
ation is NP-hard, the general word uni�
ation problem has 
aused more

pains to implement eÆ
iently. Makanin's algorithm requires at most doubly exponential

time [Gut98℄. B�u
hi and Senger [BS86℄ show that the word disuni�
ation problem is re-

du
ible to the word uni�
ation problem. I.e., given a disequation v 6= w we 
an e�e
tively

(and very simply) 
onstru
t words v

0

and w

0

su
h that

(9 � : v 6= w) � (9 � : v

0

= w

0

)

The full �rst-order equational theory of words is unfortunately unde
idable as shown by

Quine [Qui46℄. The paper gives a number of 
onstru
tions in this end. The �rst and simplest

uses 
on
atenation for addition. Multipli
ation is en
oded using a string-based en
oding of

�nite relations. To en
ode that x� y = z he en
odes a �nite relation of pairs 
onsisting of

�nite relations. To en
ode that x� y = z he en
odes a �nite relation of pairs 
onsisting of

( a

|{z}

x

; a

|{z}

y

); ( a

|{z}

x�1

; a

|{z}

2y

); : : : ; ( a

|{z}

1

; a

|{z}

x�y

)

The entire �nite binary relation 
an be en
oded in a single string w by segments of the form

bzbubzbvbzb where (u; v) is a pair in the relation and z is a string of a's longer than any

of the u's and v's. Intuitively, this 
an be a
hieved by requireing the existen
e of substring

bzbubzbvbzb in w, su
h that any substring of pure a's in w is a substring of z. Noti
e that

the en
oding uses 
on
atentation of strings in an essential way.

We do not at present know of a way to redu
e negated subsequen
e relations to the

existential fragment of word equations.

8.3 A de
ision pro
edure for queues

To present the ground de
ision pro
edure for queues we use 
on
atenation as primitive


onstru
tor rather than 
ons and rev
ons. Queues are then simply sequen
es with a at

most one non-atomi
 
omponent. In fa
t all transformations by the solver are sound for

sequen
es that 
ontain more than one non-atomi
 
omponent.

We write queue terms su

in
tly as strings with the following 
onventions: a, b range

over individual atoms; A, B range over possibly empty strings of atoms; x, y range over

queue variables; v, w range over arbitrary queues (i.e., are of the form A or AxB); let

A = a

1

a

2

: : : a

k

then A[i : j℄ denotes the sequen
e a

l

a

l+1

: : : a

u

, when l = max(1; i) �

min(k; j) = u, and when max(1; i) > min(k; j), then A[i : j℄ = �. If v is a queue, then jvj is

the length of v. To reverse a sequen
e of atoms A we write (A)

R

.
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8.3.1 Sele
tors

The 
anonizer � is used to handle sele
tors. Given a 
onstraint over queue expressions

the 
anonizer � tries where possible to evaluate sele
tors when applied to queues. If a

sele
tor is applied to a term where it is not possible to immediately evaluate the sele
tor we

a

umulate in C disjun
tions of new 
onstraints for later splitting. In the end all sele
tors

have been eliminated or are applied only to terms of the form:

head(�); tail(�); first(�); last(�) :

The rest of the solver treats terms whose main 
onne
tive is a sele
tor as uninterpreted.

The e�e
t of 
anonization on sele
tors is summarized in Figure 8.4, where the immediate

arguments of the sele
tors are assumed 
anonized.

�(C; head([a℄ Æ q

2

)) = (C; a)

�(C; head(q

1

Æ [a℄ Æ q

2

)) = (C [ fq

1

:

= � _ q

1

:

= [b℄ Æ yg; head(q

1

Æ [a℄))

�(C; head(q

1

)) = (C [ fq

1

:

= � _ q

1

:

= [b℄ Æ yg; head(q

1

))

�(C; head(�)) = (C; head(�))

�(C; tail([a℄ Æ q

2

)) = (C; q

2

)

�(C; tail(q

1

Æ [a℄ Æ q

2

)) = (C [ fq

1

:

= � _ q

1

:

= [b℄ Æ yg; tail(q

1

Æ [a℄) Æ q

2

)

�(C; tail(x Æ q

1

)) = (C [ fx

:

= � _ x

:

= [b℄ Æ yg; tail(x Æ q

1

))

�(C; tail(�)) = (C; tail(�))

Figure 8.4: Canonization of sele
tors

In the �gure, q and q

1

are of the form x

1

Æ x

2

Æ : : : Æ x

n

i.e., 
on
atenations of queue

variables, and q

2

is an arbitrary 
on
atenation of queue expressions, i.e., of the form x

1

Æ

[a

1

℄ Æ � � � Æx

n

Æ [a

m

℄. The atom b and queue variable y are fresh. Canonization rules for dual

operators first and last are similar to the rules for head and tail and are therefore not

listed.

8.3.2 Equations

Equations are solved in three stages. Assume that the 
onstraint 
ontext C is of the form E^

D , where E is a set (interpreted as a 
onjun
tion) of residue equalities (unsolved equalities),

and D 
onsists of disjun
tions or other non-equational 
onstraints. When adding a new

equality 
onstraint v

:

= w, as well as any other 
onstraint, we set the default e�e
t of

addConstraint (C; 
) to (C [ f
g; [ ℄), and then normalize the residue equalities E relative to

the new 
onstraint to extra
t a substitution and updated residue equalities. Invo
ations of
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split �nally eliminates all equalities in E produ
ing a 
ontext C without residue equalities.

Normalizing residue equalities: In augmenting C : E [ D with an equality 
onstraint

v

:

= w we apply the transformations in Figure 8.5 with the initial 
onstraint

(E [ fv

:

= wg; [ ℄) :

to produ
e either FAIL or the pair (E

0

; �

0

). In the �rst 
ase we set the e�e
t of addConstraint(C; v

:

= w)

to (false; [ ℄). In the other 
ase we set addConstraint (E [ D; v

:

= w) to ((E

0

[D)�

0

; �

0

).

(fail) (E [ fv

:

= wg ; �) 7! FAIL if v is a proper subterm of w

(de
ompose) (E [ fav

:

= bwg ; �) 7! (E [ fv

:

= wg ; �)[a 7! b℄

(de
ompose) (E [ fva

:

= wbg ; �) 7! (E [ fv

:

= wg ; �)[a 7! b℄

(simplify) (E [ fv

:

= vg ; �) 7! (E ; �)

(redu
e) (E [ fx

:

= wg ; �) 7! (E ; �)[x 7! w℄

Figure 8.5: Rules for de
omposing equalities

Rules (fail), (de
ompose), (simplify), and (redu
e) are applied in de
reasing order of

preferen
e. When no rules from Figure 8.5 apply to E , ea
h remaining equality takes the

form

Ax

:

= yB

where A and B are non-empty sequen
es of atoms.

Elimination of 
onne
ting residues: A 
ontext C 
ontaining the 
onstraint Ax

:

= yB,

where jAj � jBj and x and y are di�erent queue variables, 
an be simpli�ed using the

following appli
ation of split:

split(C) = haddConstraint (C; y

:

= A[1 : j℄) j j = 0 : : : jAj � 1i; (8.15)

haddConstraint (C; x

:

= zB)i where z is fresh

By maintaining substitutions in a triangular form ea
h des
endent requires the same or

less spa
e as the parent as lemma 8.3.1 shows:

Lemma 8.3.1 (Complexity) Let

M

E

=

X

x2Vars(E)

max fjAj; jBj j AxB 2 Eg

and let (E

0

; �

0

) be a bran
h obtained by eliminating a variable in E, then

M

E

0

�M

E

:
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Proof:

Given any pair (E ; �), let

M =

X

x2Vars(E )

max fjAj; jBj j AxB 2 Eg

Then

1. Ea
h simpli�
ation step in Figure (8.5) does not in
rease M . Trivially (de
om-

pose) 
an not in
rease M . In the (redu
e) step, assume that we are applying the

substitution x 7! AyB, where

k = max fjAj; jBj j AxB 2 Eg

l = max fjAj; jBj j AyB 2 Eg

then M

0


orresponding to (E ; �)[x 7! AyB℄ satis�es

M

0

= M � k � l+

max(fjA

0

Aj; jBB

0

j j A

0

xB

0

2 Eg [ fjAj; jBj j AyB 2 Eg)

� M � k � l +max(max(jAj; jBj) + k; l)

� M

2. Variable elimination does not in
reaseM . In a variable elimination step we apply

the substitutions x 7! zB; y 7! Az 
orresponding to the 
onstraint Ax

:

= yB.

Then

jAj � k = max fjAj; jBj j AxB 2 Eg

jBj � l = max fjAj; jBj j AyB 2 Eg

and

M

0

= M � k � l +max(fjCAj; jDj j CyD 2 Eg [ fjCj; jBDj j CxD 2 Eg)

� M � k � l +max(l + jAj; k + jBj)

� M

Elimination of looping residues: The �rst two transformations on C leave us with

residues of the form Ax

:

= xB, where A;B 
an be assumed to be non-empty sequen
es of

atoms of the same length. If A and B are not of the same length then C is unsatis�able and

repla
ed by false. We eliminate residues of this form using split with the e�e
t:

split(fAx

:

= xBg [ C) =

haddConstraints (C; fx

:

= A[1 : j℄; B = wrap(A; j)g j j = 0 : : : jAj � 1i; (8.16)

haddConstraints (C; fperiodi
(x; j; A; jAj); B = wrap(A; j)g) j j = 0 : : : jAj � 1i
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where we use a new predi
ate periodi
. It is treated as a primitive relation, but we intend

the interpretation

periodi
(x; j; A; l) : l � jxj ^ jxj � j (mod jAj) ^ x = ext(A; jxj)

where

wrap(A; j)

def

= if j = 0 then A else A[j + 1 : jAj℄A[1 : j℄ (8.17)

ext(A; l)

def

= if jAj � l then A[1 : l℄ else Aext(A; l � jAj) (8.18)

Combinations of periodi
: We 
an maintain at most one o

urren
e of periodi
(x; j; A; l)

for every x by supplying the splitting rule:

split(fperiodi
(x; j; A; l); periodi
(x; k;B;m)g [ C) = (8.19)

*

addConstraints (C;

(

x

:

= ext(A; i);

x

:

= ext(B; i)

)

)

�

�

�

�

�

�

�

i = max(l;m) : : : n� 1;

i � j (mod jAj)

� k (mod jBj)

+

haddConstraints (C;

8

>

<

>

:

periodi
(x; k;A[1 : g℄; n);

A

:

= ext(A[1 : g℄; jAj);

B

:

= ext(B[1 : g℄; jBj)

9

>

=

>

;

) j j � k (mod g)i

where

g

def

= g
d(jAj; jBj) n

def

= jAj+ jBj � g :

We see that the �rst bran
hes 
over the 
ases where jxj ranges from max(l;m) to n � 1.

The 
ases where jxj � n have been 
ollapsed into a single bran
h. To establish that this

preserves soundness we use a lemma whi
h has also been useful in [BP98℄:

Lemma 8.3.2 With A, B, n, and g as above, and m � n, then

ext(A;m) = ext(B;m) $ ext(A;n) = ext(B;n)

Thus, unfolding A and B beyond n does not introdu
e any new 
onstraints. The extended

Chinese Remainder Theorem is used to 
ombine the length 
onstraints on x.

Fa
torization of periodi
: When a substitution repla
es a variable x by a 
ompound term

we normalize periodi
 using transformations

periodi
(�; i; A; n) 7! i = 0 ^ n < 0

periodi
(wa; i; A; n) 7! a

:

= A[i : i℄ ^ periodi
(w; i�1 mod jAj; A; n�1)

periodi
(aw; i; A; n) 7! a

:

= A[1 : 1℄ ^ periodi
(w; i�1 mod jAj;wrap(A; 1); n�1)

Context dependent 
anonization: Sin
e the predi
ate periodi
 has been introdu
ed to

summarize 
onstraints of the form Ax

:

= xB we need to instrument the 
anonizer � with
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this information in order to 
anonize Ax and xB to the same term. This 
an be a
hieved

by shifting queue variables to the left as mu
h as possible:

�(C; Bx) = (C; xext(wrap(A; j); jBj)) (8.20)

if (B)

R

= ext((A)

R

; jBj) and periodi
(x; i; A; l) 2 C :

Theorem 8.3.8 implies that the resulting e�e
t of � derives all implied equalities. In

parti
ular a disequality q 6

:

= r is in
onsistent if and only if q and r 
anonize to the same

terms on
e all 
onstraints in C have been pro
essed.

8.3.3 Subsequen
es

Having solved equational 
onstraints we are ready to solve disequational 
onstraints. These


onstraints are solved using appli
ations of split, whi
h transforms disequational 
onstraints

into normal form, from whi
h an inje
tive model 
an be extra
ted.

Un
ontextual simpli�
ations: The most basi
 su
h transformations are given in Fig-

ure 8.6 and for negated 
onstraints in Figure 8.7. We have used the shorthand


 7! 


1

_ 


2

^ 


3

to en
ode that

split(f
g [ C) = haddConstraint (C; 


1

); addConstraints (C; f


2

; 


3

g)i :

The rules for suÆx follow a similar pattern as for pre�x.

These transformations turn an o

urren
e of v � w into a disjun
tion of 
onjun
tions,

where ea
h 
onjun
t is either an equality 
onstraint or of the form

AxB � y; pre�x(xA; y); suÆx(Ax; y);

AxB 6� y; :pre�x(xA; y); :suÆx(Ax; y)

The 
ombined e�e
t so far 
an be summarized as

Lemma 8.3.3 Let C be a 
onjun
tion of literals su
h that none of the rules in Figures 8.6,

8.7, 8.5, apply, then the literals in C are of the form:

AxB � y; pre�x(xA; y); suÆx(Ax; y); v 6

:

= w;

AxB 6� y; :pre�x(xA; y); :suÆx(Ax; y); periodi
(x; i; C; l) :

Contextual simpli�
ations: A 
ontextual transformation rule depends on at least two


onstraints in C and simplify the set of 
onstraints. For instan
e, if C 
ontains pre�x(u;w)

and pre�x(v; w) for two di�erent u and v, then as pre�x is a linear order, we 
an simplify C

by repla
ing these 
onstraints with either

pre�x(u; v) ^ pre�x(v; w) or pre�x(v; u) ^ pre�x(u;w) :
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v � aw 7! pre�x(v; aw) _ v � w w � w 7! true

v � wa 7! suÆx(v; wa) _ v � w � � w 7! true

w � � 7! w

:

= � pre�x(v; v) 7! true

pre�x(v; wb) 7! v

:

= wb _ pre�x(v; w) pre�x(v; �) 7! �

:

= v

pre�x(av; bw) 7! a

:

= b ^ pre�x(v; w) pre�x(�; v) 7! true

pre�x(xA; bw) 7!

 

x

:

= � ^ pre�x(A; bw)

_ x

:

= by ^ pre�x(yA;w)

!

x 62 w; y is fresh

pre�x(av; x) 7! x

:

= ay ^ pre�x(v; y) x 62 v; y is fresh

pre�x(Ax; x) 7! jAj = 0

pre�x(xA;Bx) 7! jAj � jBj ^

jBj�1

_

j=0

Bx

:

= xAext(wrap(B; j); jBj � jAj)

Figure 8.6: Un
ontextual positive simpli�
ations

We refer to Figure 8.8 for the 
omplete set of 
ontextual transformation rules.

Rules for periodi
 suÆx and suÆx

2

are similar to periodi
 pre�x respe
tively pre�x

2

and have not been in
luded in Figure 8.8.

An e�e
t of the 
ontextual transformation rules is that they ensure that pre�x and suÆx

are linear orders and � is a partial order, whi
h we des
ribe below.

De�nition 8.3.4 (Partial variable ordering <) Let C be a 
onjun
tion of 
onstraints,

then < is the transitive 
losure of the binary relation de�ned by

x < y

def

= pre�x(xA; y) 2 C; suÆx(Ax; y) 2 C; or AxB � y 2 C

We now have:

Lemma 8.3.5 Let C be a 
onjun
tion of 
onstraints 
losed under equality, disequality, un-


ontextual simpli�
ations and the 
ontextual simpli�
ations from Figure 8.8, then

� The relation < is a partial ordering of the queue variables.

� For every queue variable y there is at most one 
onstraint pre�x(w; y) and at most

one 
onstraint suÆx(w; y) in C.

� If C 
ontains a 
onstraint periodi
(x; j; A; l), then there are no 
onstraints of the form

:pre�x(w; x);:suÆx(w; x), or w 6� x in C.
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v 6� aw 7! :pre�x(v; aw) ^ v 6� w

v 6� wa 7! :suÆx(v; wa) ^ v 6� w

� 6� w 7! false

w 6� � 7! w 6

:

= �

w 6� w 7! false

:pre�x(av; bw) 7! a 6

:

= b _ :pre�x(v; w)

:pre�x(v; wb) 7! v 6

:

= wb ^ :pre�x(v; w)

:pre�x(xA; bw) 7!

 

x

:

= � ^ :pre�x(A; bw)

_ 9y; 
 : x

:

= 
y ^ :pre�x(
yA; bw)

!

x 62 w

:pre�x(av; x) 7!

 

x

:

= �

_ 9y; b : x

:

= by ^ :pre�x(av; by)

!

x 62 v

:pre�x(v; �) 7! � 6

:

= v

:pre�x(�; v) 7! false

:pre�x(Ax; x) 7! jAj > 0

:pre�x(xA;Bx) 7! jAj > jBj _

jBj�1

^

j=0

xAext(wrap(B; j); jBj � jAj) 6

:

= Bx

Figure 8.7: Un
ontextual negative simpli�
ations

Saturation rules: Using 


1

^ 


2

,!


3

as shorthand for 


1

^ 


2

7! 


1

^ 


2

^ 


3

we �nally

saturate C with rules su
h as

periodi
(y; i; C; l) ^ pre�x(xA; y) ,!

jCj�1

_

j=0

xAwrap(C; j)

:

= CxA

to guarantee that the following lemma holds

Lemma 8.3.6

� If periodi
(y; i; C) 2 C and w � y 2 C, then w is 
onstrained by periodi
(w; j;wrap(C; k))

in C for some j and k. Similar statements hold for pre�x(w; y) and suÆx(w; y).

� If w 6� y, then for every subsequen
e v of y C implies that w is not a subsequen
e of

v.

The full set of saturation rules required for Lemma 8.3.6 is given in Figure 8.9.
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pre�x

2

pre�x(u;w) ^ pre�x(v; w) 7!

 

pre�x(u; v) ^ pre�x(v; w)

_ pre�x(v; u) ^ pre�x(u;w)

!

Cy
le

pre�x(u

0

; u

1

) ^ : : : ^ suÆx(u

i

; u

i+1

) ^ : : : ^ u

n

� u

0

7!

u

0

:

= u

1

^ : : : ^ u

n

:

= u

0

periodi
-:pre�x

periodi
(y; i; C) ^ :pre�x(xA; y) 7!

periodi
(y; i; C) ^

0

�

jCj�1

^

j=0

CxA 6

:

= xAwrap(C; j) _ pre�x(y; xA) ^ y 6

:

= Ax

1

A

periodi
-6�

periodi
(y; i; C) ^ AxB 6� y 7!

periodi
(y; i; C) ^

0

�

jCj�1

^

j;k=0

wrap(C; j)AxB 6

:

= AxBwrap(C; k) _ y � AxB ^ y 6

:

= AxB

1

A

Figure 8.8: Contextual simpli�
ations

8.3.4 Corre
tness, Complexity and Completeness

A simple inspe
tion reveals:

Theorem 8.3.7 (Soundness) All rules preserve satis�ability.

The a

umulated e�e
t of the splits works both as a satis�ability 
he
ker and generator

of an inje
tive model, whi
h is important for obtaining a 
omplete integration.

Theorem 8.3.8 (Completeness) If a 
ontext C is 
losed under all splitting rules, then

1. C is satis�able.

2. For any terms q

i

and r

i

, C q

_

i

q

i

= r

i

i� �

C

(q

i

) = �

C

(r

i

) for some i.

Proof:

Outline From a 
ontext C 
losed under all splitting rules we 
onstru
t an inje
tive

model by di�erentiating all atoms that have not been eliminated, and starting with

the smallest elements in the partial order < we build di�erent realizations for the

queue variables.
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periodi
 pre�x

periodi
(y; i; C; l) ^ pre�x(xA; y) ,!

jCj�1

_

j=0

xAwrap(C; j)

:

= CxA

periodi
-�

periodi
(y; i; C; l) ^ AxB � y ,!

jCj�1

_

j;k=0

AxBwrap(C; j)

:

= wrap(C; k)AxB

:pre�x-pre�x :pre�x(v; y) ^ pre�x(w; y) ,! :pre�x(v; w)

:suÆx-suÆx :suÆx(v; y) ^ suÆx(w; y) ,! :suÆx(v; w)

6�-� v 6� y ^ w � y ,! v 6� w

6�-pre�x v 6� y ^ pre�x(w; y) ,! v 6� w

6�-suÆx v 6� y ^ suÆx(w; y) ,! v 6� w

Figure 8.9: Saturation rules

Initially let �

0

: V 7! �

�

be a map with empty domain. A full evaluation of

all queue variables is extra
ted in stages starting from a queue variable that has no

sub-queues. Let �

n

be the partial evaluation of queue variables extra
ted at stage n,

and y be the n'th queue variable to be pro
essed. We distinguish two 
ases:

Periodi
 periodi
(y; i; C) 2 C for some i and C. Then whenever w � y 2 C, then by

Lemma 8.3.6 C implies periodi
(w; j;wrap(C; k)) for some j and k.

Also by Lemma 8.3.5 there are no 
onstraints AxB 6� y, :pre�x(xA; y) or

:suÆx(Ax; y).

Let

m = max

 

fj�

n

(CzD)j j CzD 6

:

= AyB 2 C; z � yg

[ fj�

n

(w)j j w � y; pre�x(w; y); or suÆx(w; y) 2 Cg

!

and set

�

n+1

:= �

n

[ [y 7! ext(C;mjCj+ i)℄

It is then straight-forward to verify that �

n+1

satis�es all disequalities and sub-

queue relations between queue expressions whose variables are in the domain of

�

n+1

.

Aperiodi
 If it is not the 
ase that y is 
onstrained by periodi
(y; i; C), then assume
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we have the following 
onstraints on y:

pre�x(x

0

A

0

; y); A

i

x

i

B

i

� y; for i = 1; : : : ; k; suÆx(A

k+1

x

k+1

; y)

Set

�

n+1

:= �

n

[ [y 7! x

0

A

0

z

1

A

1

x

1

B

1

: : : z

k

A

k

x

k

B

k

z

k+1

A

k+1

x

k+1

℄;

where z

i

are queues of length at least one 
ontaining fresh atoms su
h that jyj is

longer than max fjCzDj j CzD 6

:

= AyB 2 C; z � yg.

The saturation rules ensure that wheneverAxB 6� y, :pre�x(xA; y) or :suÆx(Ax; y)

is asserted, then we may assume by indu
tion on n that that these are not sub-

queues of the sub-queues of y. The use of fresh atoms in the z

i

prevents any of

these queues to be sub-queues of any other part of y.

Theorem 8.3.9 (Complexity) The satis�ability problem for 
onstraints over queues is

NP-
omplete, and our pro
edure is in NP.

Proof outline:

By inspe
ting the 
onstraint solving steps we see that ea
h bran
h 
an be represented

in spa
e bounded by the size of the input. The disjun
tive splitting 
auses bran
hes of

at most polynomial depth. The theory is on the other hand NP-hard. We 
an redu
e

an arbitrary instan
e (V; E) of the graph 3 
oloring problem to the 
onstraints:

r 6= g ^ g 6= b ^ b 6= r ^

^

v2V

vv

0

v

00

x

v

= x

v

rgb ^

^

(v;w)2E

v 6= w

8.4 Implementation

The present prototype implementation of the de
ision pro
edures for queues uses 
on
ate-

nation as the basi
 
onstru
tor. Consequently 
onstraints of the form

x Æ [a℄ Æ y

:

= [b℄ Æ x Æ z

are legal inputs and are de
omposed to

fx Æ [a℄

:

= [b℄ Æ x; y

:

= zg :

Presently the 
onstraints involving the predi
ate periodi
 are not generated.
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8.4.1 Arithmeti
al integration

Similarly to re
ursive data-types one 
an add a length fun
tion on queues. The empty queue

is given length zero, and every appli
ation of rev
ons and 
ons 
ontributes by in
rementing

the length by one. This is summarized by the e�e
t of 
anonization in Figure 8.4.

Unfortunately we do not have a 
omplete integration of arithmeti
 and sub-queue rela-

tions. Instead we use an in
omplete 
ombination with the arithmeti
 solver via SUP and INF

to a

ess lower and upper bounds on variables. If a variable has a positive lower bound it

is repla
ed by a fresh instan
e of the length of the bound. If the length of a queue variable

has a �nite upper bound we enumerate the possible instan
es.

Besides being essential in establishing the example from Se
tion 8.1, support for the

length fun
tion was noted essential in small lemmas from [NG98℄. They are established

automati
ally here using the de
ision pro
edures. In general one should note that the

automati
 support allows to avoid having to state and prove su
h lemmas separately.

ma
ro 
adr(l) = head(tail(l))

ma
ro 
addr(l) = head(tail(tail(l)))

jlj � 1 ! l = 
ons(head(l); tail(l)) 0:01


ons(m

1

; l

1

) = 
ons(m

2

; l

2

) ! m

1

= m

2

^ l

1

= l

2

0:00

jlj = 1 ! l = [head(l)℄ 0:01

jlj = 2 ! l = [head(l); 
adr(l)℄ 0:02

jlj = 3 ! l = [head(l); 
adr(l); 
addr(l)℄ 0:03

jl

1

Æ l

2

j = jl

1

j+ jl

2

j 0:00

jl

1

j = 2 ^ jl

2

j � 1 ! 
addr(l

1

Æ l

2

) = head(l

2

) 0:05

jl

1

j � 2 ! 
adr(l

1

Æ l

2

) = 
adr(l

1

) 0:03

l

2

= 
ons(m; l

1

) ! jl

2

j = jl

1

j+ 1 0:00


ons(m; l

1

) = l

2

! jl

2

j � 2 !


adr(l

2

) = head(l

1

) ^ tail(l

2

) = l

1

0:01

jl

2

j � 1 _ jl

1

j � 1 ! head(l

1

Æ l

2

) =

if l

1

= empty then head(l

2

) else head(l

1

) 0:06

Figure 8.10: Lemmas from [NG98℄

8.4.2 Other examples

The bu�er system dis
ussed in [Sha93℄ provided some of the early motivation for developing

de
ision support for queues. The de
ision pro
edures developed in this 
hapter trivially
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establishes all veri�
ation 
onditions asso
iated with this example, in
luding:

Initially � = � Æ � Æ ?

read input h = output h Æ b Æ input ^ input 6= ? !

input h = output h Æ rev
ons(b; input) Æ ?

write input h = output h Æ b Æ input ^ b 6= � !

input h = rev
ons(output h; head(b)) Æ tail(b) Æ input

where

x

def

= if x = ? then � else [x℄

whi
h need not be established using indu
tion, but dire
tly using the de
ision pro
edures.

In [Fis98℄ a software retrieval system for fun
tions manipulating lists is dis
ussed. Bernd

Fis
her kindly provided around 15,000 formulas in
luding the relations �, pre�x(; ), and

suÆx(; ); and fun
tions head, tail, 
ons, and Æ. A large fragment of the formulas in
luded

also predi
ates for ordered lists. These predi
ates were left uninterpreted in our tests. Our

implementation of the de
ision pro
edures given in this Chapter together with the quan-

ti�er instantiation heuristi
s was able to automati
ally establish 1,266 of the 1,800 valid

formulas, while spending in average 0.20 se
onds on ea
h formula, valid or not. Of the

remaining veri�
ation 
onditions it was possible to identify only four valid formulas that

were in the s
ope of the de
ision pro
edures, but where quanti�er instantation had failed to

properly �nd the right instantiations. In 
ontast a good resolution theorem prover (SPASS,

Gandalf, or SETHEO) requires about ten se
onds to prove as many veri�
ation 
onditions

given appropriate sets of axioms to work with. With a time limit of 90 se
onds, however,

SPASS and Gandalf outperform our implementation proving up to 1,500 of the 1,800 
on-

ditions. One 
an therefore be tempted to 
on
lude that even simple de
ision pro
edures

o�er 
ompetitive performan
e for the 
ommon 
ase to well-tuned general theorem provers

as they tend to provide well-dire
ted pruning of the sear
h-spa
e.

8.5 Open problems

Problem 8.5.1 How expressive is the �rst-order theory of queues with the sub-queue rela-

tion? In parti
ular, how does this 
ompare with the theory of 
on
atenation?

Problem 8.5.2 Give a 
omplete de
ision pro
edure for a 
ombination of integer linear

programming and sub-queue relations.

Problem 8.5.3 Extend queue de
ision pro
edures with 
onstraints for lists over an ordered

domain.

Problem 8.5.4 Represent uni�ers for the word uni�
ation problem using �nitely many

uni�ers as done with bit-ve
tors.
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8.6 Summary

We gave de
ision pro
edures for the universal theory of queues in
luding the sub-queue

relationship. Along the way we established that the satis�ability problem for quanti�er free

formulas with queue 
onstraints is NP-
omplete.
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