INTEGRATING DECISION PROCEDURES FOR
TEMPORAL VERIFICATION

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Nikolaj S. Bjgrner
November, 1998

© Copyright 1999 by Nikolaj S. Bjgrner
All Rights Reserved

ii

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and quality, as a disser-

tation for the degree of Doctor of Philosophy.

Zohar Manna
(Principal Adviser)

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and quality, as a disser-

tation for the degree of Doctor of Philosophy.

David L. Dill

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and quality, as a disser-

tation for the degree of Doctor of Philosophy.

Domenico Cantone

Approved for the University Committee on Graduate Studies:

iii

v

To Bodil and Marianne

Acknowledgements

Zohar Manna, my advisor, has not only provided financial support during my time as
a Ph.D. student, but also been both a wise and joyful advisor. Should I knock on his
door during some odd hour there is always a loud, clear, and encouraging “come in”. He
permanently shows himself in a good mood and tolerates my sharp tongue with the greatest
ease. When I felt progress was less evident he was always ready to encourage me.

Members of the STeP group have over time been the richest source of lively discussions,
including Tom4&s E. Uribe, Henny Sipma, Michael Colén, Bernd Finkbeiner, Mark Pichora,
Uri Lerner, Anca Browne, Luca de Alfaro, Jeff Kamerer, Arjun Kapur, Anuchit Anuchi-
tanukul, and Eddie Chang. Tomds has always been in an arms-reach away for the last
four years and been able to tolerate my questionable jokes while participating on several
experimental jurneys, one of these an Intel-sponsored trip to Israel for a month in 1995
conveniently scheduled during all the Jewish holidays so that we could take excursions to
Golan and Cairo. A later more comprehensive STeP excursion to Israel in the spring of
1998 offered even more adventure including a historic bath in the Dead Sea.

While I have always regarded Grigory Mints as a real Mensch, his patience in introducing
me to the wonders of logic and proof theory has been impressive. I also feel lucky to have
passed the paths of Sol Feferman and Carsten Thomassen. As real mathematicians they are
perhaps the best role models a student can hope for in showing good taste and high quality
in science. It was a pleasure to collaborate closely with Mark Stickel, and have insightsful
discussions with David Cyrluk, Amir Pnueli, Calogero Zarba, Natarajan Shankar, Saddek
Bensalem, Vaughan Pratt, Amer Diwan, Orna Grimberg, Harish Devarajan, and Shankar
Govindaraju. Support from John Reppy, Dave McQueen, and Lal George on SML/NJ has
been invaluable in implementing STeP. I also thank my reading commitee David Dill and
Domenico Cantone for agreeing to read this thesis, as well as Toméas E. Uribe, Shmuel Katz,

Clark Barrett, Mark Stickel, and Richard Waldinger for their comments on earlier drafts.

vi

Thanks to my parents Kari and Dines for bringing me to the world a stone’s throw from
where these lines are written, and my darling sister Charlotte. Most importantly I thank
my wife Bodil for her patience and understanding when I promised or did not promise that
I would graduate next year, and my daughter Marianne for being such a cutie pie and

gjensten.

vil

Financial acknowledgements

The thesis was supported in part by the National Science Foundation under grants CCR-95-
27927 and CCR-98-04100, the Defense Advanced Research Projects Agency under NASA
grant NAG2-892, a gift from Intel, ARO under grants DAAH04-95-1-0317, DAAH04-96-1-
0122 and DAAG55-98-1-0471, ARO under MURI grant DAAH04-96-1-0341, and by Army
contract DABT63-96-C-0096 (DARPA).

viii

Contents

iv

v

Acknowledgements vi
Financial acknowledgements viii
1 STeP and decision procedures 1
1.1 STeP . . . o 1
1.1.1 Transition systems L o 1

1.1.2 Linear-time temporal logic., 3

1.2 Temporal verification 4
1.2.1 Deductive verification oo 0oL 4

1.2.2 Algorithmic verification 5

1.2.3 Deductive-algorithmic verification)

1.3 Generating and strengthening invariants)
1.3.1 Methods for invariant generation 10

1.4 Decision procedures o . it e e 11
1.5 Therest of thethesis 11

2 Combining theories 14
2.1 Preliminarieso 15
2.2 Integration of decision procedures 17
2.2.1 Modular combination of theories and decision procedures 18

2.2.2 The Nelson-Oppen combination 18

2.2.3 Shostak’s combinationo 0oL 20

2.2.4 Constraint-based combination of solvers 22

X

2.3 First-order refutation search: A calculus

2.3.1 Main properties.o
2.3.2 Equations, rewrites and limited quantifier duplication
2.3.3 Sequent calculuso oo
2.4 Refutation search: Backtracking implementation
2.4.1 The basic operations
2.4.2 Datastructures Lo L
2.5 SUMMATY .+ .« v v e e e e e e e e e e e e e e e e

Congruence closure

3.1 Union-find
3.2 Terms e e
3.3 Uninterpreted congruence closure

3.3.1 Correctness e

3.3.2 Ground rewriting L
3.4 Congruence closure with theories
3.5 Rigid E-unification L L
3.6 A benchmark example o
3.7 Summary ... e e

Special relations

4.1 Partialorders L
4.1.1 A ground decision procedure for partial orders
4.1.2 The rigid PO-unification problem
4.1.3 A heuristic for obtaining PO-refuting substitutions

4.2 Transitive relations Lo L
4.2.1 Rigid T-unification L L

4.3 Monotone relations
4.3.1 A ground decision procedure for monotone relations
4.3.2 Rigid S-unification oL oL L

4.4 SUmMmaryo e e e e e e e e e e e

Arithmetic

5.1 Linear arithmetic o
5.1.1 Equalities

37
39
39
40
43
46
47
49
ol
ol

52
53
o4
95
56
o7
o7
o8
o8
60
63

5.1.2 Imequalities 65

5.1.3 Disequalities 70
5.1.4 Extractingmodels o oL 70
5.1.5 Examples 71

5.2 Non-linear arithmetic 71
5.2.1 A partial method for quantifier elimation 72
5.2.2 Simplification using abstract interpretation 75

5.2.3 Integration between linear and non-linear solvers 76

5.3 Summary e e e e 7
6 Recursive and co-recursive data types 78
6.1 The theory of (co-)recursive data types. 79
6.1.1 Signatures for sorted data types 79
6.1.2 Canonical models Lo o o 80

6.1.3 Mixed data types 86
6.1.4 Equational theorieso oo o 87

6.1.5 Beyond equational theories 87

6.1.6 First-order equational decision methods 88
6.1.7 Related theories of data types 91

6.2 Decision procedure integration for data types 92
6.2.1 T-automata 93
6.2.2 Unification using 7-automata 93
6.2.3 Integration with congruence closure 94
6.2.4 Selectors and testers Lo oo 97
6.2.5 Subterm relations oo oo o 101
6.2.6 Taking lengths of recursive data types 109

6.3 Openproblems e 114
6.4 Summary e e e e e e 114
7 Bit-vectors 115
7.1 Bit-vectors 116
7.2 Alternative approaches Lo o 117
7.3 A decision procedure for fixed size bit-vectors 117
7.3.1 Interfacing to the Shostak combination. 118

xi

7.3.2 Equational running timeo oL 122

7.3.3 Beyond equalitieso 122

7.4 Unification of basic bit-vectors oo oL 123
7.4.1 ext-terms 123
7.4.2 Unification with ext-terms 123
7.4.3 Nonfixed size bit-vectors o000 126

7.5 Problems 132
7.6 Summary e e e e e e 132
8 Queues 133
8.1 Verification with queues Lo o oo 133
8.2 Atheoryofqueues 137
8.2.1 First-order decision procedures 137
8.2.2 Queues as a sub-theory of concatenation 138

8.3 A decision procedure for queues Lo 139
8.3.1 Selectors. 140
8.3.2 Equations 140
8.3.3 Subsequenceso 144
8.3.4 Correctness, Complexity and Completeness 147

8.4 TImplementation 149
8.4.1 Arithmetical integration L. 150
8.4.2 Otherexamples L e 150

8.5 Openproblems e 151
8.6 Summary e e 152
Bibliography 153

xii

List of Tables

5.1 Sample non-linear constraints

7.1 Non-fixed bit-vectors examples

xiii

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2

3.1
3.2
3.3
3.4

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

An outline of the STeP system 2
Basic invariance rule INV.o L Lo 4
Program BAKERY (Program BAKERY for mutual exclusion) 6
Backward propagation from —=(¢3 A m3) L 7
Program Szy-A (Szymanski’s algorithm: atomic version). 8
An overview of the integration of decision procedures 13
An overview of the refutation search 14
Rules for general T-refuting procedure 27
Procedures merge and tnsert o 41
Canonization and processing of equalities 42
Augmented version of merge 45
Merge in the presence of theories 47
A Hasse diagram for the partial order of sign constraints 75
Integration between the linear and non-linear solvers 77
Initial algebra axiomatization Z 82
Final co-algebra axiomatization C 85
Equational system Zg for recursive data types 88
Equational system Cg for co-recursive data types 88
subterm relation axiom schema 0L 0L 89
Unification using 7-automata oL 94
Algorithm for checking consistency of equalities and disequalities 96
Algorithm for checking consistency in the presence of selectors. 98
Length accessor axiomatization, 110

Xiv

7.1 Basic cutting and dicing oL oL 119
7.2 Slicing and operator applicationo oL 120
7.3 Normalization procedure 7 120
7.4 Rules for unification with ext-terms. oL 126
8.1 Program ROUTER 134
8.2 Queue constructors and selectors oL L. 137
8.3 Equational axioms for queue operations 138
8.4 Canonization of selectors oo oL 140
8.5 Rules for decomposing equalities Lo 141
8.6 Uncontextual positive simplifications 145
8.7 Uncontextual negative simplifications 146
8.8 Contextual simplifications oo oo oL 147
8.9 Saturationrules. L 148
8.10 Lemmas from [NG98]. L. 150

XV

Chapter 1

STeP and decision procedures

This introductory chapter gives some background on STeP and temporal verification. While
the thesis is about developing and integrating decision procedures we will here briefly give

the background for their applications in temporal verification.

1.1 STeP

The Stanford Temporal Prover (STeP) is a system for computer-aided formal verification of
reactive, real-time and hybrid systems based on their temporal specifications, expressed in
linear-time temporal logic (LTL). STeP integrates model checking and deductive methods to
allow the verification of a broad class of systems, including parameterized (NN-component)
circuit designs, parameterized (N-process) programs, and programs with infinite data do-
mains.

Figure 1.1 presents an outline of the STeP system. The main inputs are a reactive system
and a property to be proven for it, expressed as a temporal logic formula. The system can
be a hardware or software description and may include real-time and hybrid components.
Verification is performed by model checking or deductive means, or a combination of the

two.

1.1.1 Transition systems

Our computational model for reactive systems is that of a transition system,

S = <V7 97 T7 ‘-77 C>7

CHAPTER 1. STEP AND DECISION PROCEDURES 2

Hardware Discrete Real-Time Hybrid
Description System System System
Transition System Temporal specification]
Modularity
[Abstraction } [Refinement }

Deductive-

Algorithmic Algorithmic Deductive
model checking deductive Verification rules

- explicit-state model checking Verification diagrams example
- symbolic

Automatic prover:
- simplifier
- decision procedures
- first-order reasoning

Automatic generation of:
- invariants
- intermediate assertions

Interactive Prover STe P

Figure 1.1: An outline of the STeP system

where V is a finite set of system variables, © is a formula characterizing the set of initial
states, T is a finite set of transitions, J C 7T is a set of just transitions, and C C T is a set
of compassionate transitions. The vocabulary V contains data variables, control variables
and auxiliary variables. The set of states over V is denoted by 3, where each state is
an assignment of values to the variables in V. The initial condition © is expressed as a
first-order assertion. A transition 7 maps each state s € ¥ into a (possibly empty) set of
T-successors, 7(s) C X. It is defined by an assertion p,(Z,T’'), called the transition relation,
which relates the values Z of the variables in state s and the values Z' in a successor state
s’ € 7(s). We require that 7 contain a transition 77, called the idling transition, such that
7(s) = {s} for every state s. A transition 7 is enabled on state s if 7(s) # 0.

A computation of a system S is an infinite sequence of states sg, s1, S2, . . ., such that (1)
S0 is an initial state satisfying ©, (2) for every ¢ > 0 there is a transition 7 € T satisfying
siv1 € T(si), (3) for each 7 € J, if T is enabled on states s;, s;jt1, Sit+2,..., then at some

j > 14, pr(Sj,8j4+1) holds (in automata theory this is known as Biichi acceptance), (4) for

CHAPTER 1. STEP AND DECISION PROCEDURES 3

each 7 € C, if 7 is enabled on infinitely many states, then 7 is taken also on infinitely many
states (in automata theory this is known as Streett acceptance).

Besides supporting input in the format of raw transition systems (actually elaborated
with modularity [FMS98]), STeP also facilitates the representation of systems using a sim-
ple programming language (SPL [MP95, MAB"94]) with concurrency primitives. SPL
statements are translated into transitions in a straightforward manner. For example, the
assignment statement

byrx:=y+1; 4y:

assigns y + 1 to z when control resides at location ¢y, and subsequently moves control to
¢1. Control labels are encoded using control counters such that the property being at ¢y is
translated to m = 0 and being at #; is translated to m = 1. One of the advantages of using
counters is that they offer built-in detection of conflicting locations. In summary, the SPL

compiler generates the transition 7 with transition relation
pr(mz,y, 7,2’ y): n=0A2 =y+1 Ay =yna=1.

1.1.2 Linear-time temporal logic

The primary specification language used by STeP is first-order logic enhanced by temporal
connectives [Pnu77].

A temporal formula is constructed from state formulas (called assertions), which are
formulas from the first-order assertion language. To state formulas we apply boolean con-
nectives (such as V, =), quantifiers (V, 3) and temporal operators. The temporal operators
used in this paper are future operators [J (always in the future), W (waiting-for, unless), O

(next) and their past counterparts = (always in the past), B (back-to) and O (previously).

A model for a temporal formula ¢ is an infinite sequence of states o : sp,s1,59,.-.,
where each state s; provides an interpretation for the variables occurring in . A temporal
formula ¢ is S-valid, written S E ¢, if ¢ is satisfied on each computation o of §. This is

written (o, 0) E . We define this relation below for the limited vocabulary used in this

CHAPTER 1. STEP AND DECISION PROCEDURES 4

thesis.

(o,7) By — SjFyp if o is first-order

That is, ¢ is evaluated locally, using the interpretation in s;
(0.0 Qe = Vj':j'>2j-(0j)Ep
() ECy = F':j=j-(0j) ke

Furthermore we write p = ¢ as a shorthand for ((p — ¢).

1.2 Temporal verification

As Figure 1.1 indicates, STeP aims to support three verification paradigms: deductive,

algorithmic, and a hybrid approach: deductive-algorithmic.

1.2.1 Deductive verification

The deductive methods of STeP verify temporal properties of systems by means of ver-
ification rules and verification diagrams. Verification rules reduce temporal properties of
systems to first-order verification conditions [MP95]. The most widely used verification rule

is INV given in Figure 1.2. It reduces the verification of the invariant []p to the first-order

For assertion p,
Bl. ©—p
B2. {p} T {p}
SEOp

Figure 1.2: Basic invariance rule INV.

verification conditions in premises B1 and B2. The condition B2 is shorthand for

N\ @) A pr(ET) = p(E))
TET

Verification diagrams [MP94, BMS95, Sip98] provide a visual language for guiding,
organizing, and displaying proofs. STeP features a diagram editor that takes a system, a
specification, and a diagram and generates the appropriate verification conditions.

Case studies of mainly deductive verification of infinite state parameterized systems are
reported in [MAB*94, BLM97, BMSU97, BMSU98] and on the web at

CHAPTER 1. STEP AND DECISION PROCEDURES)

http://www-step.stanford.edu/case-studies .

1.2.2 Algorithmic verification

Model checking [CE81] using either state space enumeration or symbolic methods [McM93]
(using BDDs) can be used to prove temporal properties of systems with finite state spaces.
An enumerative model checking algorithm for finite state systems and LTL is described
in [MP95]. Tts implementation in STeP applies to some infinite state systems as well. Sym-
bolic model checking algorithms for deciding the general validity of linear time propositional

temporal formulas as well as properties over a reactive system are described in [Bjg98b].

1.2.3 Deductive-algorithmic verification

A much discussed topic these days is combining model checking with deduction. The golden
promise of this integration research is in adding the expressiveness of deductive techniques
to the efficiency of model checking.

One approach taken within STeP has been Deductive Model Checking [SUM96]. Here,
the state space exploration is performed symbolically using formulas to represent states and
using decision procedures to incrementally guide the state space exploration.

A more separated approach is to generate abstractions of systems first and then model
check the abstraction. Decision procedures are used to generate abstractions that preserve
as much information as possible from the infinite state system. First results on this can be
found in [CU98], and independent work within PVS and SMV is found in [BLO98]. Alter-
natively, one can use a theorem prover to in fact perform the state space exploration [GS97].

In all cases the general approach is only as good as the efficiency and expressiveness of
the decision procedures. On the other hand, present experience has been that the abstracted
systems are very small and can be handled within a second by good model checkers.

Abstraction is treated in depth in [Uri98].

1.3 Generating and strengthening invariants
An important component in bootstrapping deductive, algorithmic, and deductive-algorithmic
verification are utilities for generating auxiliary invariants.

Deductive verification: Invariants that have either been generated automatically, or

established using the INV rule can be used as assumptions when proving other invariants

CHAPTER 1. STEP AND DECISION PROCEDURES 6

using INV. However, the rule INV may fail, even in the presence of auxiliary invariants, that
is
B2: Iuue — {p} T {p}

is not valid for some transition 7, where p is the invariant to be established, and I,,; is the

set of auxiliary invariants. In this case one can strengthen the invariant candidate p to

p = p A WP(T,p)

and try again. The operator WP(,p) is shorthand for VZ' . p,(Z,Z') — p(Z'). In general,

we seek the greatest fix-point of the operator:

def
B(X) = Iz Ap A WP(T,X) .
The greatest fix-point of B(X) is written as v X . B(X).
To illustrate how auxiliary invariants can be used in conjunction with invariant strength-
ening consider a simplified version of Lamport’s solution to the mutual exclusion problem

for two processes, formulated in SPL in Figure 1.3.

local y;,y2 :integer where y; =y =0

[loop forever do [loop forever do

{p: moncritical mg : noncritical
P, - li: Yy i=yo2+1 | Py my iy =y +1
L ly: await (yo =0 V y1 < yo) 2= moy :await (y1 =0 V ys < yq)
/3. critical mg : critical

by y1:=0 my :y2 =0

Figure 1.3: Program BAKERY (Program BAKERY for mutual exclusion)

STeP generates the auxiliary invariants [J(y; > 0) and [J(y2 > 0) by propagating convex
polyhedra. !

'In reality STeP generates several other invariants, so the strengthening done here becomes redundant,
but let us pretend that STeP could only generate these weak assertions (which can also be inferred and
checked by declaring y; and y» as natural numbers).

CHAPTER 1. STEP AND DECISION PROCEDURES 7

Backward propagation starts from an invariant candidate, in this case
O-(at Lty A at_mg),

which expresses mutual exclusion in the critical sections.

(—(€3 A m3))

(fz/\m3—>y27'50/\y1>y2> <€3/\m2—>y17é0/\3/1§y2>

T / me / Tl \ Tm,

<€1Am3—>y27é0> <f2/\m2—>?/27é0/\?/17é0> <€3Am1—>y17é0>

Tty 0, Ty Tmeo
(fo/\ﬂ’bg—):gg#() ><€1Am2—>y2750 ><€2Am1—>y17é0 ><£3Amg—>y17€0)
T, | Tty Tmeo Tma
<€4/\m3—>yg7é0 ><€0Am2—>y2750 ><€2Am0—>y17é0 ><€3Am4—>y17€0)
Tmzk Ty
<€4/\m2—>y27£0) <€2Am4—>y17£0)

Figure 1.4: Backward propagation from —(¢3 A mg3)

We compute the terms of the sequence

T «+ B +~ B — -
I (400) (¢p1)
¥o e1 ©2
until a limit is found. Applying B once generates ¢1 : =(¢3 A mg3). In the second iteration
of B we calculate:
WP(Ta (pl) = /\TETWP(Ta 901)
= WP(leatpl) A WP(Tmzatpl)

= (b2 Az = y2 0 Ay > y2)
A (63/\m2—>y17é0/\y1§y2)-

Continuing mechanically in this fashion we obtain the formulas shown in Figure 1.4. By
calculating Wp(7, @), where 7 labels an edge pointing to a p-node, one obtains the assertion

CHAPTER 1. STEP AND DECISION PROCEDURES

labeling the source of the edge. The conjunction of the formulas is the greatest fix-point
pp of B. Finally, since © : £g A mg Ay1 = yo = 0 implies ¢, we have indeed established
mutual exclusion of the critical sections.

Algorithmic verification: Model checkers that use explicit state space exploration build
the set of reachable states on the fly, and the use of auxiliary invariants has questionable
advantages in this context. Symbolic model checking on the other hand, can be treated as
a finite state instance of general assertional verification.

We will here abuse an older case study, a parameterized algorithm for mutual exclusion
by Szymanski [SV94], in highlighting advantages of using auxiliary invariants in pruning
symbolic model checking. The version of Szymanski’s algorithm we examine is given in

Figure 1.5.

in N

local a
S
w

N .

1l Pli]

=1

: integer where N > 1
: array [1..N] of boolean where Vi : |
: array [1..N] of boolean where Vi :
:array [1..N] of boolean where Vi :

: loop forever do

[¢1: noncritical

EQ: a[z] =T

l3: await Vj : [1..N]. =s[j]
——— doorway ———

ly: (wli], s[i]) := (T, T)

waiting room ———

lg: s[i] :=F

fg: S[Z] =T
mner sanctum ————

ly: wli] :=F

6102 await Vj : [IN] —wu[j]
011 await V5 : [1..(1 — 1)]. —s[j]
{19: critical

4130 (s]i], ali]) := (7, F)

[a——y

ls5: if 35 : [1..N]. (a[j] A ~w[j]) then

¢7: await 35 : [1..N]. (s[5] A ~w[j])

Figure 1.5: Program Szy-A (Szymanski’s algorithm: atomic version).

CHAPTER 1. STEP AND DECISION PROCEDURES 9

Some of the bottom-up invariants generated by STeP are:
Usg9.13] < s[i]
l3.13[i] < ali]
ls.9li] < wli]

These are generated using assertion propagation noting that the variables s[i], a[i], and w][i]
are concurrently read, but exclusively written by process P[i].
The main specifications of the algorithm include

muz: lio[i) Niolj] = i=3

acc: 62 [Z] = <> 612 [’L]

Finite instances of N can be checked directly using symbolic model checking because the
system then becomes finite state. To check the invariant muz STeP computes v X . B(X)
using OBDDs to maintain the intermediary assertions. It takes STeP a few seconds (3 on a
SUN Ultra Sparc IT) to check muz in the case with 3 processors. With 4 processors, checking
takes about a minute and generates in excess of 1 million BDD nodes, with 5 processors, the
checking takes about 30 minutes. The case with 6 processors takes about 2 hours to check.
The situation is, on the other hand, much worse when applying the model-checking without
the bottom-up invariants. With 3 processors the model checker now takes 3 minutes instead
of 3 seconds. However, a direct computation of the reachable states takes 1 second with 3
processors thanks to the limited size of the example.

The acc property can also be established for the case of 3 processors. It takes the
symbolic model checker 25 minutes to check this claim. Most of the time is spent on
checking the fairness constraints imposed by the transition system.

Consider a version of Szymanski’s algorithm without the conjunct —w[j] in #5 and with-
out statements /g and £g. We can check that this program still satisfies mutual exclusion for
3 processors, but acc is violated because the program can deadlock, and the model checker
reports a counter-example:

CHAPTER 1.

The property is not valid:

STEP AND DECISION PROCEDURES

10

Prefix
#i [a pid 5 w [Transitions
2 (false,.false,false) (0,0,0) (false false false) (false,false,false) 10021
2 (false,.false,false) (0,0,13 (false false false) (false,false,false) 11021
2 (false,false.falsed (0,0,2) (false,false,false) (false,false,false) 10[1]
2 (false,false,false) (0,1,2) (false,false,false) (false,false,false) 10[0]
2 (false,false.falsed (1,1,2) (false,false,false) (false,false,false) 11[0]
2 (false,false,false) (2,1,2) (false,false,false) (false,false,false) 12[2]
2 (false,false,true) (2,1,3) (false,false,false) (false,false,false) 12[0]
2 (true,.falsetrue) (3,1,3) (false,false,false) (false,false,false) 13[2]
2 (true,.falsetrue) (3,14 (false,false,false) (false,false,false) 13[0]
2 (true,falsetrue) 41,4 (false,false,false) (false,false,false) 14[2]
2 (true,falsetrue) (4,1,5) (false,false,true) (false,false,true) 14[0]
2 (true,false true) (5,1,5) (true,falsetrue) (true,false true) 15[2]
2 (true,false true) (5,1,6) (true,falsetrue) (true,false true) 1S[0]
2 (true,falsetrue) (5,16} (true,false,true) (true,false,trug) 11011
2 (true,falsetrue) (6,2,6) (true,false,true) (true,false,true) 12011
Looping Suffix
#i [a [pio [s [w [Transitions
2 (true, true,true) (6,3.6) (true false trug) (true.false,true) idle

e

It should be noted that in deductive verification of the algorithm, all verification conditions
fall in the decidable class wS1S or M2L(str), and the Mona [BK95] tool can, in fact, be
invoked from STeP to establish all verification conditions automatically (and in seconds)
given the necessary strengthened invariants. Mutual exclusion for this algorithm can also
be established algorithmically using symmetry reduction [SV94]. Finally, it is possible
to compute the entire set of reachable states using regular automata used in Mona by
propagating the transitions from the initial state (parameterized transition relations are
modified such that independent actions can be taken simultaneously).

Deductive-Algorithmic verification: Auxiliary invariants can also be used to generate
more precise abstractions as done in [CU98|.

1.3.1 Methods for invariant generation

STeP contains utilities for propagating assertions based on the abstract syntax tree of
SPL. These are called local invariants. Independent of SPL, STeP also contains utilities
for generating invariants using techniques from linear algebra and linear programming.
Theoretical extensions of these ideas can be found in [BBM95, BBM97], where abstraction
domains and fix-point computations for general safety formulas are investigated. Several
other recent developments for reactive systems are [BLS96, SDB96]; the notion of reaffirmed
invariants can be found here. Approximation techniques with applications for real-time
systems was developed in [WD95]. Reaffirmed invariants can also be used for the modular
verification of real-time systems, as exploited in [BMSU97], and specializations to hybrid
systems are studied in [MS98]. Recent use of partitioned BDDs for hardware invariants are
described in [GDHH98, GD98]. Theoretical foundations for abstraction are well presented
in [CC77, LGS195, DGGY4, Dam96]. Invariant generation has naturally had a long story in

CHAPTER 1. STEP AND DECISION PROCEDURES 11

the analysis of sequential and functional programs [GWT75, KM76] with roots in the analysis
of Algol68.

1.4 Decision procedures

The integration of decision procedures has a long history dating back to [NOT78, Sho79,
BMT79], but has enjoyed an exciting time recently [CLS96, BS96, BDL96, Det96, TR98] in
both theoretical work and as used in verification systems. This, because decision procedures
make common tasks easy, and (selected) hard tasks possible’?. The concurrent research
around Palo Alto has stimulated the development and identification of faster and more
expressive decision procedures. High quality work around the ultimate verification system
PVS has been an initial source of inspiration. The highly optimized SVC checker on the
other hand has led the way in impressive benchmarks and set high standards in which large
examples can be done within reasonable time using decision procedures. The driving force
behind my involvement in the integration of decision procedures has been a desire to find
well-tuned integrations of decision procedures for expressive theories, and widen the scope
of decidable classes.

From a pragmatic point of view, decision procedures should ideally terminate quickly
when the formula is not valid (or not in the scope of the supported theories), and not
monopolize computing resources in proving valid formulas. As timing becomes critical,
when thousands of calls are made to the decision procedures, low overhead is important
for smaller examples; on the other hand, larger examples that are developed by careful
manual modeling should also be handled whenever the used theories are in the scope of the
decision procedures. For non-valid goals, feedback can be given in a variety of ways: as
an assignment of rationals to the parameters of linear programming problems, for example.
More often, however, a truth assignment to the atomic predicates in the goal may better
communicate the source of the invalidity.

1.5 The rest of the thesis

A high-level framework for the integration of decision procedures is presented in Chapter 2.
It surveys known approaches [Opp80a, Sho84] and ends up proposing a constraint-based
version of Shostak’s integration. On the other hand, we augment the Davis-Putnam proce-
dure with rules for reasoning about first-order quantification. The ambition here is to blend
first-order reasoning with the decision procedures that mainly work for quantifier-free for-
mulas. The framework is intended to approach concrete problems in verification and the
chapter does not provide deep new theoretical results. Although it extends Shostak’s alge-
braically solvable theories, it relies on each decision procedure to provide what corresponds
to a finite set of unifiers and therefore does not enjoy the full generality of the Nelson-Oppen
framework. The rest of the thesis therefore examines theories that are central to temporal

2This is an adaption of a quote used to promote Perl.

CHAPTER 1. STEP AND DECISION PROCEDURES 12

verification to demonstrate how decision procedures for these theories fit into the proposed
framework. An attempt is made to demonstrate that the framework does indeed allow the
combination of an extensive set of theories. The approach, however, requires some insight
to the workings of the individual decision procedures. Thus, the thesis presents:

Chapter 3: a new efficient combination of decision procedures based on congruence clo-
sure. A special feature is that it supports theories with self-referential (cyclic) data

types,
Chapter 4: algorithms for integration of general special relations which go beyond the
limitations of equality-based theory interfaces,
Chapter 5: cooperating decision procedures for linear and non-linear programming,
Chapter 6: algorithms for cyclic and acyclic recursive data types,

Chapter 7: bit-vector decision procedures, including non-fixed length bit-vectors,

Chapter 8: decision procedures for lists and queues.

A high-level overview of the proposed framework can be found in Figure 1.6.
Sections 2.3 and 2.4 are extracted from joint work with Mark Stickel and Tomé&s Uribe [BSU97],
and Chapter 7 resulted from joint work with Mark Pichora [BP98]. In particular, Section 2.4
is due to Mark Stickel, and only close collaboration with Mark Pichora made Chapter 7 pos-
sible. For instance, Mark Pichora provided the necessary number theory to solve non-fixed
size bit-vectors.

CHAPTER 1. STEP AND DECISION PROCEDURES

Simplifier First-order validity checker

\ /Chapter 2

Congruence Closure Special Relations

Chapter 3 Chapter 4
Arithmetic Chapter 5
Data types Chapter 6
Bit-vectors Chapter 7
Queues Chapter 8

Figure 1.6: An overview of the integration of decision procedures

Chapter 2

Combining theories

In this chapter we will first review selected approaches in combining decision procedures,
arriving at a constraint-based integration of solvers. Section 2.3 describes in a deductive
style the proof-search procedure mixing first-order reasoning and decision procedures. We
finish by describing the highlights of an implementation of the deductive component and
explain where the decision procedures are coupled.

Figure 2.1 gives a rough overview of the proposed search paradigm.

pls =]
/Split \
s=t N ¢[T] s#t N @[F]
0 = solve(s = t) 9 = unify(s,t)
p[T10 (s #t A Q[F])d

closed

Figure 2.1: An overview of the refutation search

Suppose ¢ is the negated, skolemized version of some formula we wish to prove valid. The
refutation search proceeds with a Davis-Putnam style case splitting. In the left branch

14

CHAPTER 2. COMBINING THEORIES 15

where an equality is asserted a congruence closure based integration of decision procedures
is used to solve the asserted equality and reduce (rewrite) the resulting branch under that
assumption. The right branch can be closed by possibly finding suitable instantiations of
the skolem variables that unify terms s and ¢. As usual in tableau search the unifier ¢ must
be applied to all branches in the search.

The rest of this chapter examines the appropriate tools and rules for realizing this
verification approach.

2.1 Preliminaries

Formulas and expressions: STeP uses a first-order language with a rich and flexible syn-
tax. Formulas are in nonclausal form, and boolean formulas can be nested inside arbitrary
function symbols (for instance, p is under the function symbol f in f(if p then t1 else t2)).
An essential construct is let-binding, which explicitly represents structure sharing within an
expression.

Therefore, our expressions will include first-order quantification, the usual set of boolean
connectives and relations (V,A,—,—, <>, if-then-else, =), and the construct let z =
e1 in ey for a variable x and arbitrary expressions e; and es. The scope of is eo; occurrences
of z in ey are free.

For a given formula F, the universal closure of F, written Vx.F, is the formula Vz,..Vz,.F
where {z1,...,2,} are the free variables of F. The ezistential closure of F, written I*.F,
is defined similarly.

A substitution 6 is a mapping 0 : [z1 > t1,...,2, — t,], where x1,...,x, are distinct
variables and t1,...,t, are terms. For an expression e, efl is the result of simultaneously
replacing all free occurrences of z; by ¢;. Replacement is always safe, in that quantified vari-
ables are renamed to prevent capture, and bound variables are not replaced (see [MW93]).
For substitutions 6 and p, - p is the substitution such that z(6-p) = (z6)p. The substitution
6 is more general than p if 6 - v = p for some . The empty substitution is written as [].

An atom is a formula with no boolean connectives; a literal is an atom or its negation.
A top-level conjunct of a formula F is one of F; if F is of the form 7y A--- A F,,, and F
otherwise. A top-level literal is a top-level conjunct that is a literal. We write Fle] for a
formula with one or more occurrences of subexpression e, where e does not occur within
the scope of a quantifier.

Sorts: STeP’s object langauge uses sorts such as booleans, integers, rationals, reals, recur-
sive data-types, records, function space, and queues. The symbols 7,57, ..., S, range over
sorts. We use B for booleans, N for naturals, Z for integers, and R for reals, in both the
object and meta-language.

Polarity: We define the polarity of a subexpression in F in the usual way [MW93]: an
occurrence of a subexpression e is positive (resp. negative) in F if it occurs within an
even (resp. odd) number of negations, written as Fle]™ (resp. Fle]). An occurrence has
both polarities, written as F[e]*, if it appears under the < boolean connective or in the

CHAPTER 2. COMBINING THEORIES 16

if-clause of an if-then-else expression. If e has two occurrences in F, one positive, and
one negative, we can refer to both occurrences by Fle]*.

Fle]T, Fle]~ and Fle]* respectively denote strictly positive, strictly negative and bipolar
occurrences of e in F.

Theories and decision procedures: Our goal is to decide general validity with respect
to a background theory or combination of theories 7~ (not necessarily complete or first-order
axiomatizable). Following [BFP92], we define the following semantic properties of formulas:

Definition 2.1.1 A closed sentence F is T-valid if every model of T satisfies F, and T-
unsatisfiable if no model of T satisfies F.

Definition 2.1.2 (7-complementary) A sentence F is T-complementary if 3 * .F is
T -unsatisfiable.

Definition 2.1.3 (7-refuter) € is a T-refuter, or T-refuting substitution, for a sentence
F if FO is T -complementary.

The last two notions are extended to sets of formulas by identifying a set with the
conjunction of its elements. 7 -complementary sets of literals in theory reasoning correspond
to syntactically complementary pairs of literals in resolution—mno instance is satisfiable in
the theory.

A decision procedure for a theory T should always be able to identify the 7-complemen-
tarity of a set of quantifier-free literals.! However, if 7 is a combination of theories, each
with its own decision procedure, we do not expect to obtain a combined decision procedure
that is complete for the combined theory (i.e., not all 7T-unsatisfiable sets will be identified).
On some occasions, decision procedures will also be able to provide 7 -refuting substitutions
for a given set of literals.

In the rest of this paper, validity and satisfiability will always be understood relative to
a theory T, unless it is explicitly stated otherwise.

Function updates: If f : A — B is a function from domain A to range B, a € A and
b € B, then we write

f1la— 0]

instead of
Az . if x =a then belse f(z)

Operations on sets: We use diag(S) as shorthand for {(z,z) | z € S}. To restrict a
function f to domain S we use f[S.

'"Note that decision procedures are not expected to reason about boolean formulas.

CHAPTER 2. COMBINING THEORIES 17

2.2 Integration of decision procedures

In the verification of reactive, real-time, hybrid systems, verification conditions generated
from verification rules, abstraction, verification diagrams and dynamic flow analysis typi-
cally contain data-types that are used in the supplied systems. These data-types typically
include integers, reals (for hybrid systems), arrays, recursive and co-recursive data-types,
lists, queues, bit-vectors, etc.. It therefore becomes natural to provide customized support
for the theories of each of the data-types. The most general and flexible approach is to
support axiomatic presentation of theories in so-called theory libraries. As often axioms
can be represented equivalently as rewrite rules (or be completed into a set of confluent
rewrite rules) general support for rewriting is a way of giving efficient generic theory sup-
port. However, the general axiomatic approach, even with support from rewriting, cannot be
expected to address decidability questions nor utilize specialized (efficient) data-structures
when presented with an arbitrary theory. Even more optimized support can be provided
for selected theories by providing decision procedures for these individually. While modular
support for each data-type is desirable for a plug-and-prove combined decision procedure,
some glue mechanism is required to achieve a complete integration of the provided decision
procedures.

The issues involved in combining decision procedures have been studied decades ago
starting with Nelson and Oppen as well as Shostak [NO79, Sho79, Opp80a, Sho84]. The
approach taken in this thesis builds on and extends [Sho84].

The Nelson-Oppen approach forms today the basis for verification systems like ESC [Det96],
and EVES [CKM™91], and SDVS [LFMM92]. In theoretical work on the word problem the
Nelson-Oppen approach has received attention in [TH96, BT97].

Shostak’s approach in combining algebraically solvable theories on the other hand forms
the basis for integration of decision procedures in systems like PVS [ORR196], SVC [BDL96],
and STeP. Thanks to the analysis in [CLS96] it has received renewed attention, including
noteworthy applications in deciding bit-vector constraints [CMR97, BP98, BDL98]. The
requirement of algebraic solvability can give the impression that the approach is severely
limited in comparison with the Nelson-Oppen method. It is, for instance, not always clear
how non-equational constraints should be supported in conjunction with algebraic solvabil-
ity. Support for cyclic data-types is also impossible if the congruence closure algorithm at
the center of the theory integration requires well-founded substitutions.

Our ambition has thus been to demonstrate how the “blindingly fast” congruence closure
based approach suggested by Shostak does in fact admit rather expressive generalizations.
In providing a compositional solution we obtain increased expressiveness without losing
basic efficiency for the simpler cases, such as reasoning about pure uninterpreted function
symbols. We can also reason about linear arithmetic constraints while being able to also
handle non-linear constraints.

CHAPTER 2. COMBINING THEORIES 18

2.2.1 Modular combination of theories and decision procedures

A modular approach for handling constraints over different sorts such as integers, bit-
vectors, and recursive data-types, is to provide a separate constraint solver for each sort
and then glue these together by propagating derived equalities. This approach suffices when
equality is the only shared relation symbol of the theories. The dispatching of which decision
procedure should be used is based on the principal sort of a constraint. For example the
principal sort of an equality s = ¢ is the sort of s (which is the sort of). If this happens to
be a rational, then the appropriate decision procedure is one for rational arithmetic. While
the sort-based assumption can be considered a real restriction as we cannot deal with
theories sharing function symbols, it has not yet surfaced in our experience with program
verification. However, it has been the subject of interesting theoretical work in [TR98].
Very general approaches in combining positive existential theories are discussed in [BS98].
In Section 2.2.2 and 2.2.3 we will review two ways of propagating equalities.

2.2.2 The Nelson-Oppen combination

Nelson and Oppen proposed a fairly general framework for combining procedures deciding
satisfiability of quantifier-free sentences. An early presentation is given in [Opp80a], and a
rigorous analysis is performed in [TH96]. We will borrow notation from the latter source
whenever possible. Given theories 77 and T3 over disjoint signatures 31 and Yo and decision
procedures Sat; ¢ = 1,2 that establish satisfiability of quantifier free formulas using only
function symbols from ¥; the Nelson-Oppen combination provides a way to combine Satq
and Saty to a procedure Satigs that can establish satisfiability in 7 = 77 U T3. While
we obviously assume that 7 is consistent (otherwise the decision problem is trivial), a
stronger condition, stable-infiniteness, is required for the combination 7 to have a simple
presentation which is also complete.

Definition 2.2.1 (Stable-infiniteness [Opp80a]) A consistent, quantifier free theory T
with signature 3 is called stably-infinite whenever, for every quantifier-free X-formula ¢, if
{¢} UT is consistent, then there is an infinite model satisfying {©} UT.

The combination procedure establishes satisfiability of ¢ by first introducing an ade-
quate supply of variables such that there are no terms in ¢ with functions nested from
31 and ¥s. To separate boolean reasoning from the satisfiability procedures we then split
@ to disjunctive normal form and from this point work with conjunctions of literals. A
Decomposition Phase then separates a conjunction into two parts. One part contains terms
involving function symbols from 3;, the other functions from 5. They both contain all
equalities and disequalities of the form u # v, u = v, where both v and v are variables.
We allow a non-deterministic step to guess for each pair of variables (u,v) whether to add
U= oru#uv.

A final Check Phase invokes the procedures Sat; and Sats independently on each sepa-
rated conjunction.

CHAPTER 2. COMBINING THEORIES 19

1. Variable Abstraction
For each sub-term f(t1,...,9(3),...,t,) in ¢ where f € X1 and g € 3, or vice versa,
replace g(3) by a fresh variable z and add the equality z = ¢(3) to .

If s = t is a sub-formula of ¢, and neither s nor ¢ are variables we introduce a variable
u and replace s =t by s =u At =u.

This process eliminates nested functions from different signatures at the expense of
adding new equalities.

2. Normal form conversion
¢ is then converted into disjunctive normal form, and we guess a disjunct ¢ (which
is a conjunction of literals).

3. Decomposition Phase

(a) From 1) form two conjunctions, 11 and 19, where 1; contains all conjuncts of 1)
which are either equalities between variables, or contain function symbols from
iyt =1,2.

(b) Choose a partition P (i.e., P = {{z1,22},{z3},{z4,...,z10},...}) of the vari-
ables T shared between v and 1. Each equivalence class should naturally only
contain variables of the same type.

(c) Simplify 1 and 15 by replacing each variable in P by an equivalence class
representative [z]p.

(d) Use A to assert the disequalities

{[z]p # [y]p | whenever [z]p and [y]p are different equivalence classes} .

4. Check Phase

e Check satisfiability of 11 A A using Sat;.
e Check satisfiability of 12 A A using Sats.

The procedure returns satisfiable if there is a disjunct in the CNF of ¢ and a partition P
of shared variables such that both ¥; A A and 1, A A pass the check phase. A proof of
soundness and completeness for this procedure is given in [TH96] when 7 is stably-infinite.

A few observations are worth pointing out in connection with this approach: (1) Craig’s
interpolation theorem tells us that we indeed only need to share equality constraints on
shared variables, assuming equality is the only shared relation or function symbol, (2)
stable infiniteness is essential for restricting the partition P to only shared variables; if
stable infiniteness cannot be assumed, a partition of all terms and variables suffices to obtain
completeness [Opp80a] (as we will establish in a sorted setting later), (3) the decomposition
phase is required in case of non-convez theories.

CHAPTER 2. COMBINING THEORIES 20

Definition 2.2.2 (Convexity) A set of constraints C is convex relative to disequalities
ti #s; i =1,...,n if whenever each disequality t; # s; is consistent with C, then C U {s1 #
tiy...,8n # tn} is consistent.

Similarly, a theory is convez if any conjunction of literals expressed over its language is
convex relative to any set of disequalities.

Examples of convex theories include rationals under addition, equality with uninter-
preted function symbols, and certain theories of S-expressions.

For convex theories we do not need to guess a partition P. Instead, the Nelson-Oppen
combination suggests using each decision procedure Sat; to incrementally check whether
; Az # y is satisfiable for shared variables z, y. Consequently, if the decision procedures
Sat; for convex theories run in polynomial time on a conjunction of literals, the resulting
combination will also run in polynomial time on inputs expressed as conjunctions of literals.

Shostak’s solver-based combination optimizes the integration of decision procedures for
convex theories that admit canonizers and solvers. We describe this next.

2.2.3 Shostak’s combination

Shostak’s method of combining decision procedures allows integrating decision procedures
for theories, such as arrays, linear arithmetic over rationals, records, suitable data-types,
simple set-theory and graphs inside Shostak’s congruence closure algorithm [Sho84, CLS96,
Mos88]. The method requires each theory 7 to provide (1) a canonizer (o), which satisfies

1. o(s) = o(t) whenever T ks = ¢. It follows that o is idempotent.
2. fo(t) = f(ty,...,t,) then o(t;) = ;.

and (2) a solver, which rewrites an equation s = ¢ to either false (if it is unsatisfiable) or
into an equivalent form 3Vy,,. AL z; = t;, where

1. each z; is an uninterpreted sub-term from s or t.
2. each t; is canonized, i.e., o(t;) = t;,

3. no z; occurs in t;,

4. no z; is equal to an z;, when j # 1.

5. Vaug is the collection of auxiliary variables that occur in the ¢;’s but not in the original
equation s = 1.

In the case that a theory provides a canonizer and a computable solver it is said to be
algebraically solvable.

A note on “variables”: We shall use the term skolem variable to refer to variables that
are obtained from skolemization of universal force quantifiers. Skolem variables can be
instantiated by arbitrary terms to close the refutation search. Relative to a fixed theory

CHAPTER 2. COMBINING THEORIES 21

T we also use the term variable (without the qualification “skolem”) to refer to sub-terms
that are not interpreted in 7.

Using the solved form: The advantage of algebraically solvable theories is that we can
write the solution as an idempotent substitution

9:[xil—>ti|i:1,...,n] .

Explained in a simplified way the substitution can be used to decide verification conditions
of the form sy = ¢} A sy = to — s3 = t3 by extracting 61 from s; = t;, extracting 02 from
(so = t2)0; and check if o(s360165) is identical to o(t36162).

An implementation within Shostak’s congruence closure algorithm allows to process
equalities and disequalities in any order. The substitutions 6 are applied immediately and
stored in a union-find structure. The effect of applying € is propagated via congruence
closure on super-terms of the terms appearing in the domain of . With the terminology of
rewriting theory the substitutions correspond to normalization with respect to ground com-
pletions [GNPT93]. In reasonable implementations the checks for unsatisfiability (violation
of disequalities) happen on a call-by-need basis, that is, only when the terms involved in a
disequality are made equal.

Shostak’s congruence closure algorithm achieving this task was first published with
subtle mistakes and without a rigorous correctness argument. It is probably no exaggeration
that it remains mysterious even for experts in automated deduction, if not for Shostak
himself today. What makes it attractive is that congruence closure here serves in dispatching
decision procedures and combining them tightly.

2.2.3.1 Combining solvers

To combine theories over disjoint signatures (every function symbol is only interpreted in
at most one theory) the solvers for each theory treat sub-terms headed by function symbols
that are not interpreted in that theory as variables. Solvers for disjoint theories are then
combined by applying them to a set of equations rather than a single equation until a fix-
point is reached. Requirement 1 is then no longer sufficient to guarantee termination. For
instance, in the constraint

CAR(z) = CAR(z)+ CDR(y) (2.1)

a solver for S-expressions treats the right-hand side as a variable because + is not interpreted
in the theory of S-expressions. It could then produce the solution CAR(z)+CDR(y) = CAR(z);
then a solver for linear arithmetic interprets +, but not CAR, so it chooses to return the
original equation. In this setting a solution could be to change requirement 1 to

1. z; is a variable from s whenever possible.

CHAPTER 2. COMBINING THEORIES 22

We cannot always require z; to be a variable from the left-hand side as the following example
suggests:
CONS(NIL,z) = CONS(y, z)

~" ~"

] t

A solved form is
y=NIL, z==2

but requires y¥ which only occurs in ¢ on the right-hand side. A clear disadvantage of this
restriction is that by forcing the solved form to use primarily the left side of an equation,
unnecessarily large expressions may be generated. For example, in solving

CAAAR(z) = vy (2.2)
we are required to return
x = CONS(CONS(CONS(y, 21), 22), #3)

instead of just swapping the equality.

Fortunately, our combination here avoids the problems from (2.1) and (2.2) by allowing
a partial interpretation of the selectors CAR and CDR when they are applied to variables.
Then the constraint (2.1) can only be solved by the arithmetical constraint solver, because
the principal sort of that equation is one of N, @, R, C. The constraint (2.2) is simplify
solved as [CAAAR(z) — y].

2.2.3.2 Comparisons

In a very good sense one can regard solvers as unification algorithms and the solver/canonizer
constraints as requirements on the solver to return most general unifiers. Shostak’s integra-
tion of solvable theories is then in principle a heuristic optimization of (prominent) special
cases where the Nelson-Oppen applies: to convex theories admitting solvers and canonizers.
Shostak’s integration is then (obviously sound and) complete in the same cases and for the
same reasons as Nelson and Oppen’s approach. Non-convex theories can in some cases still
be supported by having the canonizers return compound expressions containing condition-
als, but this may not always be the best heuristic approach. Furthermore, when constraints
other than pure equalities are involved the naive use of Shostak’s method lacks even more
flexibility. This has led us to a constraint-based extension of the method to benefit from its
advantages while enabling extended expressibility.

2.2.4 Constraint-based combination of solvers

To provide a more flexible framework, still benefiting from Shostak’s combination of solvers,
we use a notion of constraint contexts. Fach context stores constraints that cannot be
reduced to equalities over a particular sort. Hence, one context is allocated for the domain
of integers, rationals and reals, another for recursive and co-recursive data-types, another

CHAPTER 2. COMBINING THEORIES 23

for bit-vectors etc.. The constraint contexts are then used to maintain constraints over the
particular sorts. A context C over sort S can be updated by adding a constraint ¢ whose
principal sort belongs to the sort S. On the other hand, we require that in adding new
constraints to contexts we will be able to extract all newly implied equalities in the form
of a substitution in the same way as Shostak’s solve routine. For example, if C contains
the inequalities z < y,y < z — 1, then adding the constraint ¢ : z < x + 1 results in the
substitution 6 : [z — y, z — y + 1] and the reduced constraint context C. Non-convex
theories are supported via a split operation which takes a context C and splits it into a list of
contexts and substitutions (Cy,6,), ..., (Cy,0,). Informally, we read the list as a disjunction
of possible simplification of C.

In describing the requirements on the extended utilities we borrow notation and termi-
nology from the constraint logic programming literature [JM94], as we also here deal with
maintaining constraints. For the theories we will be studying assume that

e Equality is part of every theory. Hence, for every term s and ¢ whose principal sort
belongs to a given theory, s =t is a legal constraint.

e Constraints are closed under negation: If ¢ is a constraint, then —c is a constraint too.

Although a set of constraints C is in practice maintained by specialized data-structures, we
interpret them as suitable first-order formulas. In particular, true stands for the empty
constraint context, and false for the unsatisfiable constraint context.

The theories and associated decision procedures described in more detail in chapters 5,
6, 7, and 8 are required to provide the operations addConstraint, split, and a canonizer o.
Recall that for each theory T is associated a language L (disjoint from languages over other
theories, except for equality) and principal sort S (such as real, bit-vector, or queue). For
the operations we require:

addConstraint: context X constraint — context X substitution As a generalization of the solve
routine we use addConstraint to update a constraint context. In the case where C is
the empty context, addConstraint and solve should coincide when presented with an
equality. In this case addConstraint returns the empty context and a substitution.

For soundness we require that addConstraint is equivalence-preserving, i.e.,
Let (C',0") = addConstraint(C,c). Then CAc <+ TV .C ANO .
We add multiple constraints ¢y, ..., ¢, using the notation

addConstraints(C,{c1,...,cn}) .

For flexibility we also admit substitutions that are not idempotent as long as they
represent most general unifiers. For instance, a most general unifier for potentially
cyclic terms can be expressed as a mapping on the term-graphs of terms s and ¢ that
are unified. While previous implementations of Shostak’s congruence closure based

CHAPTER 2. COMBINING THEORIES 24

integration have been unable to handle such cyclic terms we will present an integration
in Section 3 that does handle cyclic terms, and terminates on such unifiers as long as
the non-well-founded solver does not need to introduce new terms.

o : context X term — context X term The canonizer can also be made context-dependent
which allows it to cause side-effects in contexts, such as accumulating splitter candi-
dates. We write o¢(t) as a shorthand for ¢/, where (C',t') = o(C,t).

For instance, we will make the interpretation of data-type selectors such as CAR and
CDR dependent on whether they take an argument labeled by a constructor (in this
example CONS, ATOM, or NIL). When the canonizer processes a term of the form CAR(z),
where z is not a CONS, it returns CAR(x), but stores z as a future splitter with the
cases NIL, CONS(y, z), or ATOM(u).

split: context — (context X substitution)* U {true} Primarily split allows to represent con-

straints over non-convex theories. Suppose that xi,...,z, are the variables (terms
whose main function symbol is not in L) of sort S in C, and let s,¢,81,t1,...,8n,tn
below be terms whose variables of sort S are among x1,. .., Ty.

From the arity of split it follows that either
split(C) = true

or

split(C) = ((C1,61),...,(Cn,0p))

The first case represents the instance where no implicit equalities can be derived from
C. We require that:

n
if CUTE \/ s;=1t; then o¢(s;) = oc(t;) for some 7 .
i=1

In other words, there is a model of T together with constraints C differentiating all
terms over i, ..., z, unless the canonizer o entails equality?.

In the second case:

e For soundness we require that C imply the disjunction of the terms in split, i.e.,

n
if C then \/3Vuu.Ci A6 .
i=1

e For completeness we require lazy equational completeness. Let s and ¢ be terms

2We need this implicit declaration of variables in C for the case of theories over finite domains.

CHAPTER 2. COMBINING THEORIES 25

built from declared variables,

oc(s;) = oc(t;) for some i

) m or C = false
if TUCF\/si:ti then m
i=1 or T UC; I=(\/ s; =1t;)0; foreach j=1,...,n
i=1

e For termination we require there be a well-founded ordering <, such that C; < C.

From soundness, completeness and termination it follows that split must provide a

decision procedure for determining whether a conjunction of constraints cy, ..., ¢, is
satisfiable or not. This follows, as assume cy,...,c, is unsatisfiable, then for fresh
variables Ty ey, Ynew that do not appear in ¢y, ..., c, we have

cAN...Ncy EZpew = Ynew -

trivially as the assumptions are false. The three requirements imply that if we form

Co = true,andfori =1,...,n and generate (C;,0;) = addConstraint (C;—1, (¢;)01 - - 0;_1),
then, either C,, = false or the result of applying split exhaustively to C, results in
the empty list (when interpreted as the empty disjunction this is false).

The availability of split gives us the freedom to require that if C implies some equality it
is presented in a substitution @ after some sequence of splits. Implied equality constraints
may thus be delayed at the discretion of the decision procedure. In place of lazy equa-
tional completeness one can desire eager equational completeness, which requires addCon-
straint to return in € all equalities that are implied in conjunction with the new constraint.
Thus, eager equational completeness states: If ¢y A ... Acy, Es = t and Cy = true,
(Ci,0;) = addConstraint (C;, (¢;)01 ---0;—1) for i = 1,...,n, then either C, is unsatisfiable or
o(sb1---6,) = o(tby---0,). For the theory of linear arithmetic over the rationals we have
an eager equational complete algorithm for maintaining arithmetical constraints.

2.2.4.1 Special relations

One of our interests will be to integrate decision procedures for theories that are essentially
disjoint except for some sharing via special relations axioms of the form

z=<1y = f(z) <2 f(y) (2.3)

That is, assume we are given theories 71 and 73, over languages L1, Lo respectively, where
<1 € Ly and f,<2 € L9 and L1 N Ly = {=} (the languages are disjoint, except for
sharing equality). We now form the theory

TiUTU{z=<1y = flz)<2f(y)} .

In this case, Craig’s interpolation theorem no longer suffices for combining disjoint

CHAPTER 2. COMBINING THEORIES 26

satisfiability procedures as the extra axiom combines the languages via more than equality
reasoning.

We will treat special relations and mixed constraints in two methods (1) uninterpreted
cases of special relations are handled as an extension of the congruence-closure algorithm
(Chapter 4), (2) special relations involving arithmetical constraints are integrated with a
linear arithmetic solver by adding extra interface utilities to the solver which allows other
constraint solvers to access selected content (Chapters 5.1.4 and 6.2.6).

2.2.4.2 T-refuting substitutions

To tackle instantiation of quantifiers our procedure will draw on utilities for finding 7 -
refuting substitutions. Only skolem variables are used in the domain of the instantiations.

instantiate : context — substitution—set In finding instantiations of quantified variables the-
ories may provide an instantiate utility which given a context C returns a set of 7 -
refuting substitutions ©, such that for 6§ € ©, Cf is inconsistent.

In the case where C is a conjunction of pure uninterpreted equalities finding a T -refuting
substitution to s # t is an NP-complete problem, known as the rigid E-unification problem
(see 3.5). For extensions of equational theories with some special relation theories we show
in Chapter 4 how to reduce the problem of finding 7 -refuting substitutions to the rigid
E-unification problem.

2.3 First-order refutation search: A calculus

Having presented generic requirements for integrating a class of decision procedures we
will here continue with presenting the main framework in which boolean connectives and
quantifiers are handled.

Integrating specialized decision procedures into general first-order theorem proving sys-
tems is a much-discussed problem with a long line of research [Plo72]. Much of this work
has been carried out in the context of resolution, including theory resolution [Sti85], con-
strained resolution [Biir91], and the use of specialized unification [Fri91, BS93]. However,
these methods usually make special demands on the decision procedures (computation of
residues or complete sets of most general unifiers, identifying 7 -unsatisfiable subsets, etc.).
These requirements are not always satisfied by otherwise fast and efficient decision proce-
dures. Furthermore, in a resolution setting they perform poorly on large formulas with a
complex boolean structure.

Note that for some of the theories we consider, such as first-order logic with arith-
metic, complete proof systems are impossible to obtain. However, our abstract procedure
is complete for pure first-order logic (that is, the empty theory) and theories for which an
appropriate version of Herbrand’s theorem holds. This theoretical completeness claim holds
for implementations that enumerate all possible substitutions. However, it does not hold for
the much more effective selective generation of substitutions by unification and incomplete
theory reasoning that we use in practice.

CHAPTER 2. COMBINING THEORIES 27

succeed 0 — refuted

reduce {false} U S - S

simplify {F}US ~ {SIMPLIFY(F)}US

split {Fle]}uS — {e=d; N F|d;€edom(e)}US
instantiate S — SO:{F0|FeS}

for some substitution 0

skolemize™ {F[Vz.o]t}US — {Flely/z] A Vz.o]T}US
skolemize™ {F[Vz.p]"}US — AFlplf=@)/z]]"}US
az(g) ANVz.p
skolemize™ {F[Vz.p]*}US — \ A Flaz(@)]F US

—a,(g) A ~Vz.p

let z=¢

let-eliminate {}'l .
in e

]}US = {fe@) =e1 A Flea[fa(@)/z]]} US

Figure 2.2: Rules for general T -refuting procedure

Our procedure is an extension of the Davis-Putnam-Loveland-Logemann propositional
satisfiability checker [DP60, DLL62]. It operates on formulas in nonclausal form, and is
extended to consider quantifiers. The procedure is intended to preserve the original struc-
ture of the formula, including structure sharing using let- expressions, as much as possible.
Case splitting, instantiation, skolemization and simplification can all be performed incre-
mentally, in a uniform setting. We take advantage of instantiations suggested by decision
procedures whenever available, but can also use “black-box” procedures that only provide
yes/no answers.

For an arbitrary closed formula G, satisfiability-preserving skolemization constructs a
quantifier-free formula Sk(G) such that Vx.Sk(G) is satisfiable iff G is satisfiable. G is valid
iff =G is unsatisfiable, which is the case iff Vx.Sk(—G) is unsatisfiable. This is the case if (but
not only if) there is a ground-unsatisfiable instance Sk(—G)#. Thus, the validity of a first-
order formula can be established by finding a substitution for which a given quantifier-free
formula is ground-unsatisfiable.

We now present a procedure in which skolemization, instantiation, quantifier duplication
and the refutation search are all carried out within a unified framework. The procedure
operates on a set S of formulas {F7,...,F,}, where S is said to be satisfiable iff Vx.(F; V
...V F,) is satisfiable. To finish a proof we need to show that all of the elements of S are,
in fact, unsatisfiable, under a common instantiation. The abstract procedure proceeds by
transforming the set S, at each step applying one of the rules in Figure 2.2.

— succeed: This rule concludes the refutation search.

CHAPTER 2. COMBINING THEORIES 28

—reduce: false can be disregarded in the search for a satisfiable disjunct.

— simplify: F is simplified using equivalence preserving transformations, possibly to false,
by the available decision procedures and simplification mechanisms (see Section 2.2).
SIMPLIFY (F) simplifies F with respect to its top-level literals, producing a formula
T-equivalent to F. Minimal requirements for SIMPLIFY are:

e If ¢ = d; is a top-level literal of the formula, then e occurs nowhere else in the
simplified formula.

e If the top-level literals of the formula are recognized as T-complementary, then
the simplified formula is false.

— split: Subexpressions e taking values from a finite domain dom(e) can be analyzed
according to the domain values. This includes boolean sub-formulas e, which are
split with e = false and e = true. In this case, the conjuncts added are —e and e,
respectively. Special cases of this rule are discussed in Section 2.4.

— instantiate: The substitution # can instantiate free skolem variables in S by arbitrary
(quantifier-free) terms.

— skolemize™: y is a fresh variable.3

— skolemize™: % is a tuple of all the free variables in Vz.p and f; is a fresh function
symbol.

+

— skolemize
Vz.p.

: ay is a fresh predicate symbol, and ¥ is a tuple of all the free variables in

— let-eliminate: 7 is a tuple of all the free variables in e; and f, is a fresh function
symbol.
2.3.1 Main properties

We write S —* S’ if one or more rules transform the set S into the set S’. We say that a
rule preserves satisfiability when it transforms S to S’ if:

V. \/ F is T-satisfiable iff V. \/ F is T-satisfiable.
Fes Fes

Lemma 2.3.1 FEzcept for instantiate, each rule in Section 2.3 preserves satisfiability
when applied to any set S. If the original set contains only closed formulas, and only these
rules are applied, then instantiate preserves satisfiability as well.

Proof:

3Similar skolemization rules apply to existential quantifiers, when 3z.¢ has the opposite polarity.

CHAPTER 2. COMBINING THEORIES 29

We inspect each transformation rule. For an interpretation Z (a model) a *—variant
T* is an interpretation that coincides with Z except for the variables in *.

— reduce:Vx.false V'\/ S is equivalent to Vx.\/ §

— split: Every Z* corresponding to a satisfying model Z for Vx. {F|e]} V V S satisfies
{Fle]}vV S. Clearly T* E e = d; for some i, thusZ* E\/({e=d; N F | d; € dom(e)}U
S), and hence also Z does.

— simplify: As the simplification is required to be equivalence preserving it trivially
preserves satisfiability.

— skolemize™: Vz.p — ¢ly/z] so F[Vz.p A ply/z]] < FVz.¢@].

— skolemize™: Assume Z* ¥ Vz.p, then there is a d depending only on the free
variables in Vz.p, such that Z* { [z — d] ¥ ¢. Augment Z* by skolem function f;(7)
taking the free variables 7 in Vz.p as argument such that whenever Z* E F[Vz.¢|~
and Z* ¥ Vz.p, then [fz(7)] = d such that Z* { [z — d] ¥ ¢.

On the other hand assume Z* E F[p[f;(7)/z]], then as Vz.o — ¢[f.(7)/x] the
negative occurrence gives: Z* k F[Vz . ¢]

— let-eliminate:

Fllet £ =e; in eg] =
Az’ .2’ =ey ANFleols!/2]] =
Az’ . 2’ = ey A Flealer/x]]
(32" . 2" = e1) A Flez[er/xz]] is satisfiable if and only if
f2(7) = e1 A Fleg[er/z]] =

f2(§) = e1 A Flea| fo(y) /]

— skolemize™:

FNVz . o] =
Jda . (a <> Vz .) A Fla] =
Jda . (a <> Vz .) ANF[Vz . @] =

(Fa . (a < Vz . @) NFVz . ¢] is satisfiable if and only if
(az(7) <> Yz .) ANF[Vz . @] =

(az(y) < Vo .) A Flaa(y)] =

(@z(Y) AVT . @ V —az(Y) A=V . ¢)) A Flaa ()]

CHAPTER 2. COMBINING THEORIES 30

In practice, we are only concerned with the “only if” direction of satisfiability preser-
vation. This direction is always maintained by the instantiate rule, as well as the rule
refinements we consider later on. If the old set is satisfiable only if the new one is, then we
have:

Theorem 2.3.2 (Soundness) For any closed formula F, if {=F} —* refuted then F is
T -valid.

Rules that preserve satisfiability are invertible: if S — S’ using an invertible rule, then
S —* refuted iff &’ —* refuted. Lemma 2.3.1 tells us that all the rules in Section 2.3 are
invertible. In particular, rules reduce, skolemize™, and let-eliminate should be applied
whenever possible, since they reduce the complexity of S and preserve satisfiability. Finally,
we have:

Theorem 2.3.3 (First-order completeness) Let F be a closed first-order formula. If
F is (generally, or 0-) valid then {—F} —* refuted.

This follows, for example, from the completeness of the general matings procedure, given
a suitable amplification of the formula [And81]. As in the case of resolution [Rob65], the
completeness of most such procedures relies on Herbrand’s theorem to guarantee that an
appropriate finite ground instantiation always exists. Herbrand’s theorem can be extended
to account for certain classes of background theories [Fri91, BFP92, GNRS92]. Since prac-
tical implementations will sacrifice completeness by considering only instantiations with a
limited amount of quantifier duplication, (see Section 2.3.2), we will not be concerned with
ensuring that such an extended Herbrand theorem holds.

Theorem 2.3.4 (Ground decidability) Let F be a closed formula where all occurrences
of ¥ are strictly positive. If {=F} =* {F'}US and F' is T-consistent, then any T -model
for F' is also a model for —F.

Thus, if we can decide the T-consistency of a formula F' obtained from the analysis of
—-F, then we can conclude that F is not valid; a model for ' is a counterexample.

2.3.2 Equations, rewrites and limited quantifier duplication

To narrow the search, one can limit the number of quantifier duplications in rule skolemize™.
For most practical applications the quantifier need not be duplicated at all, using the fol-
lowing rule:

~ skolemize]: {F[Vz.p]" }US — {Flply/z]} US.

In this case, rules skolemizear and skolemize™ should take precedence over split, and the
entire formula is fully skolemized before the search begins.

CHAPTER 2. COMBINING THEORIES 31

As a special case of quantifier duplication, conjuncts can be added whenever they are
an immediate consequence of a universally quantified top-level literal.* A common case is
that of equalities: if the formula V * .(s = ¢) is known (variables renamed apart), one can
add the rules:

—rewrite: {Fle]}US — {e=1t0 N Fle]fUS where e = sf.
—narrow: {Fle]}US — ({e=1t A Fle]} US)E where ef = s6.

In this way, equations that are not terminating or confluent can be applied step by step. A
conditional rewrite rule, which rewrites e to €’ under condition ¢, can be applied yielding
{(cd = e=¢) N Fle]}US or adding the equality e = ¢’ after ensuring that ¢ holds under
the assumption Fe].

2.3.3 Sequent calculus

The above presentation is analogous to proof in a Gentzen-style [Gen69] sequent calculus,
where each transformation corresponds to a rule, and each element of the set S is a branch
in the proof. To illustrate this, we show how well-founded (transfinite) induction and a
cut rule can be added in very much the same way they are added to sequent-style calculi.
(These rules are not part of our implementation, described in Section 2.4.)

. (Vy. (y < = — ¢ly/z]))] } Us

- P

cut {Fyus - {GAF,-GANF}US
for an arbitrary formula G.

induction {F[Vz.p] }US — {.7-"

In the induction rule, < should be a well-founded order, and y a fresh variable.

A standard proof-theoretic analysis can demonstrate how to transform an arbitrary
Gentzen-style derivation into a derivation of the calculus presented here, and vice-versa.
Furthermore, a cut-elimination theorem holds for the first-order calculus presented here
(without the induction rules [Min92]): derivations involving splits on non-atomic formulas
can be converted into derivations using only splits on atomic formulas. Uses of rule cut
can also be eliminated from the first-order (uninterpreted) calculus using a standard cut-
elimination procedure.

2.4 Refutation search: Backtracking implementation

Following is a description of the nondeterministic refutation search procedure rewritten to
suggest a practical implementation that uses depth-first search with backtracking. It as-
sumes the formula has already been skolemized. When successful, REFUTE (F,[]) returns

“Quantifier duplication in the ESC system [Det96] is in the form of such matching, limited by a heuristic
bound.

CHAPTER 2. COMBINING THEORIES 32

a T-refuting substitution for F. Our inspiration for this approach is the Davis-Putnam-
Loveland-Logemann (DPLL) propositional satisfiability procedure, which is effective and
requires little memory.

REFUTE (F,01) =
F' « SIMPLIFY (Fo)
if F' = false then return o
else do one of
instantiate: 6 < a substitution
return REFUTE (F',o1-0)
split: e,{di,...,d,} < an expression and possible values
09 < REFUTE (6 = d1 A .7:1,0'1)
o3 < REFUTE (6 =do A .7:1,0'2)

return REFUTE (e =d, AN F', 0y,)
amplify: G < an amplification formula
return REFUTE (G A F' o)

The DPLL procedure is an instance of REFUTFE when F is in clause form, SIMPLIFY
implements unit resolution and subsumption, only the split operation is used, and e is
an atomic formula that occurs in a nonunit clause. The added instantiate and amplify
operations extend the substitution and formula respectively. The approach is reminiscent
of the search for general matings [And81, Bib82, Iss90] except here paths are refuted by
T-complementary sets of literals instead of syntactically complementary pairs (cf. theory
matings [Sti85]).

2.4.1 The basic operations

The instantiate operation: instantiate extends the current substitution oy by a sub-
stitution € chosen “don’t know” nondeterministically with backtracking. Ideally, if F’ is
unsatisfiable, then 6 should be a T-refuting substitution for F’. T-refuters for the top-level
literals of F' can sometimes be found and used as 6.> T-refuters include substitutions that
make literals complementary by ordinary unification; others may be proposed by the de-
cision procedures (see Section 2.2); finally, others can be found using rigid E-unification
(Section 3.5). In fact [DV96] have shown how to use a partial rigid E-unification procedure
to provide a complete procedure for a tableau based first-order calculus. It can immediately
be adapted to also work for our procedure. The only difference being that tableau rules
split on logical connectives, whereas our procedure splits on atomic sub-formulas.

Saving substitutions oy for which REFUTE fails enables elimination of redundant work
due to duplicate substitutions.

"When a substitution known to be a T-refuter of the top-level literals is chosen as 6, the succeeding call
on REFUTE is guaranteed to succeed immediately and can be optimized away.

CHAPTER 2. COMBINING THEORIES 33

Trying to find a refutation using only the 7-refuters one knows about may seem overly
optimistic, but it appears to work often enough to be a reasonable approach.

A second, less optimistic approach entails enumerating in advance possible values for
the variables in the formula. The instantiate operation would then be used to generate
the space of alternative substitutions. A good, but still incomplete way of finding possible
values is to look at the positions of variables in the formula and then find terms that occur
in complementary positions. For example, t is a possible value for z if occurs as argument
1 of P and ¢ as argument ¢ of —=P. The notion of complementary position can be extended
in theory-specific ways, e.g., t and x are in complementary positions in s < ¢t and x < y (see
Section 4.1). Our current focus and examples use the first approach.

The split operation: split can select an atom e to split on with possible values true and
false as in the DPLL procedure. When e or —e is a top-level literal the procedure always
prefers the implied unit-split. As an extension of the DPLL procedure, split can also select a
nonconstant term e to split on with the elements of its finite domain {d,...,d,} as values.

Good heuristic selection of what expression to split on can have a dramatic effect on the
size of the search space. Unlike the DPLL procedure, we are using nonclausal, nonground
formulas, but criteria similar to those used in the DPLL procedure [HV95] are useful, such
as number of occurrences and the length of the shortest clause a literal would occur in if the
formula were converted to clause form. Constraint satisfaction heuristics, such as preferring
expressions with smaller domains to split on first, can also be used.

In the DPLL procedure, the selection of which atom to split and the order of values to try
are “don’t care” nondeterministic choices that affect the search space but not completeness.
However, this selection can affect whether REFUTE succeeds or not. For REFUTE, we
assume that 7-complementarity can be recognized, but not that T-refuters can always be
found. For example, the T-complementarity of P(2) A—P(1+1) may be recognized without
assuming that the decision procedures are also able to propose {z +— 1} as a T-refuter of
P(2) A ~P(x +1). When REFUTE is applied to P(2) A Q(1) A (=P(z + 1) V =Q(x)),
some search orders would succeed, because {z — 1} is discovered as a unifier for Q(1) A
—Q(z) before attempting to refute P(2) A =P(z + 1), while others would fail when the
latter subproblem is encountered first. However, backtracking through alternative orders of
splitting is combinatorially expensive, so we do not do it and accept this additional source
of incompleteness.

The amplify operation: Davis [Dav81] defines obvious inferences as those that only
require substitution for single instances of the formulas (i.e., no quantifier duplication is
needed). The combination of split and instantiate is complete for obvious first-order in-
ferences. It will also make some obvious 7 -inferences, though not all. Even if 7 consists
only of the theory of equality, the undecidability of simultaneous rigid E-unification [DV95]
limits completeness of obvious 7 -inference procedures.

Using only split and instantiate is our preferred approach. They are sufficient for several
examples which we believe are typical problems for STeP. The search space is finite and
often small. If quantifier duplication is allowed, the search space would be much larger
(with limited duplication) or infinite (with unlimited duplication). The single-instance

CHAPTER 2. COMBINING THEORIES 34

restriction is a natural one that is readily understood by the user. The restriction is easily
circumvented by the user’s explicit inclusion of additional copies of the formulas (e.g, by
manual application of skolemize™).

Nevertheless, the amplify operation is allowed to do limited quantifier duplication, prin-
cipally for the purpose of applying rewrites. Rather than duplicating a quantifier “in place”,
amplify is defined to add an amplification formula as a conjunct to the formula being re-
futed. The amplification formula may be any formula that can be soundly used in the
refutation; it will typically be a fresh instance of a rewrite or premise (see Section 2.3.2).

2.4.2 Data structures

A detailed account of the data structures used to repesent terms and formulas is given in the
next Chapter in connection with congruence closure. Similarly to [NO79] and [BDL96] we
use a digraph representation of both terms and formulas, where the only boolean connective
is ite (if-then-else expressions). In fact terms and formulas are not distinguished apart as
we allow ite and quantification nested inside terms. We use the phrase ezpression to refer
to terms and formulas. Hence, basic expressions are of the form:

ite(ny,n9,n3) if-then-else with sub-terms indexed by ni, ng,ns
bind x : T.n 7 is a sort and bind € {A, [,>°,1,V,3,3!}

f(n1,...,nE) (un)interpreted function application
true

false

T variable

It is easy to translate let-expressions and standard boolean connectives to conditional
normal form without increasing the size of the resulting term-graph. For example ¢ < 9
is translated into ite(y, v, 1)), where —) is translated into ite(t), false, true), and the
same node is used to represent both occurrences of ¢. Implementing the translation using
a hash-table makes maximal sharing automatic.

Potentially, the conversion into conditional normal form converts every atomic subfor-
mula into dual polarity position (in the head of an if-then-else test). The standard notions
for wunit-literals also break down without a notion of and-or formula representations. It
is however possible to recover polarities and unit-literals based on the conditional normal
form.

The SIMPLIFY operation: To propagate the effect of splitting, the congruence closure
algorithm presented in the next Chapter propagates reductions of ite terms using canon-
izations of the form o(ite(true,b,c)) = b etc..

Polarity: Assume that node n is assigned positive polarity and that n points to ite(ng, ni, ns).
With the usual interpretation of ite both n; and ns occur with positive polarity, but ng
has dual polarity. We can however assign ng positive polarity if the boolean expression
associated with n implies a modified version of the boolean expression associated with n,
where ng has been replaced by true.

CHAPTER 2. COMBINING THEORIES 35

This will be the case if no implies n;. A partial check for this can be obtained by
checking if the set of positive sub-trees of no form a positive frontier of the tree rooted at
n1. Hereby we define the relation specified via the predicate ~»:

no = false
def or mn; = true
or ng=ite(ay,az,a3), az~ny A az~>ny
or ni= ite(bl, ba, b3), ng ~» by A ng ~» by

This partial characterization has the advantage that it can be checked very quickly and
preserves the polarities of standard formulas translated into conditional normal form. For
example ¢ A 1) is represented as n : ite(ng : p,nq : 1, ny : false). If the polarity of n is +,
then we should naturally assign polarity + to ni, and since no = false, we have ng ~ nq,
so ng should also have positive polarity.

A dual requirement holds for negative polarity.

Literal weight: A crucial heuristic that makes the Davis-Putnam procedure work effi-
ciently is the ability to choose unit literals whenever possible to perform unit propagation.

We compute the weight of literals by assigning the top-most expression degree § = 0
and polarity 7 = +. From the polarity and degree we furthermore compute a connective
con via

con = A ifdiseven and m =+ or § is odd and ™ = —.
con =V if § isodd and m =+ or § is even and w = —.
con=Q otherwise, i.e., m = £

Then assume that a sub-expression n : ite(a,b,c) has associated polarity m, degree §
and connective con. We assign polarities and degrees to subexpressions a, b, and ¢ using
the following rules:

m if c~b
m(a) :=¢ —m if b~ c

£+ otherwise
w(b):=m(c) =7

if b = true,con = A or b = false,con =V : d(a) :==6d(c):=d+1

if b = true,con # A or b = false,con #V : §(a) :==6d(c) :=9¢

if ¢ = true,con = A or ¢ = false,con =V : d(a) :==6(b):=d+1

if ¢ = true,con # A or ¢ = false,con # V: §(a) :==4§(b) :=9¢

if b,c ¢ {true, false} : da):=04+2, §(b):=0d(c):=0d+1

The use of a digraph representation of expressions implies that the same sub-expression can
be visited starting from different paths. In this case the degree is updated to the smallest
one and conflicting polarities give rise to a dual polarity marking. Repeated traversal of the
same subtree is naturally avoided when a previous degree is not larger and the polarities
coincide.

CHAPTER 2. COMBINING THEORIES 36

The splitter procedure computes polarity and literal weight simultaneously and returns
unit literals whenever possible, otherwise chooses literals of smallest possible weights.
Subexpressions of the form Vz : 7 . n, 3z : 7 . n are skolemized via unit splits.

Heuristics: Well-known heuristics from propositional and constraint satisfaction solving,
such as dynamic clause addition and conflict directed backtracking [Pro93] or dilemma
rules [SS98] have presently not been added to the implementation.

2.5 Summary

We examined different ways to integrate decision procedures and proposed a constraint-
based version of Shostak’s approach to allow efficient handling of general constraints. Based
on a simple proof-calculus we presented a depth-first refutation search implementation.

Chapter 3

Congruence closure

Equality over a vocabulary of uninterpreted function symbols f, g, ... is axiomatized via
reflexivity T=x
symmetry =1y — Y=z
transitivity z=yAz== — z=y
congruence T =1y — fG..,z,...)=f(...,y,...) for each function f

Satisfiability of a set of ground equalities and disequalities can be decided using congruence
closure. Given a subterm-closed set T' of terms {¢1,...,t,} and aset £ C T x T of equations
over T', congruence closure is the process of generating the coarsest partition C of T satisfying

1. (S,t)EE — s=c¢t.
2.35=ct — f(3)=c f(1).

where
s=ct ¥ 3cec.steC.

Since C is a partition it automatically satisfies the equality axioms for reflexivity, symmetry
and transitivity. The congruence axioms are satisfied by condition 2. Since C is the coarsest
such partition it is guaranteed to only satisfy the consequences of the equality axioms for
the terms in 7.

Example: Let T'={a, b, ¢, f(a,b), f(bc), gla), f(g9(a),b)} and assert &€ ={a =0, b=
c}. Then the congruence closure C is the partition:

{{a, b, ¢}, {f(a,0), f(b,0)}, {g(a)}, {f(g(a) b)}}

Thus, the ground constraint:

a=bANb=cA f(a,b);ég(a) A f(b,c);éf(g(a),b)

37

CHAPTER 3. CONGRUENCE CLOSURE 38

is satisfiable because every pair of terms in disequalities are in different classes, but the
constraint

a=bANb=cA f(avb)#f(bvc) A f(b,c);«éf(g(a),b)

is unsatisfiable because the terms in the first disequality are equal by congruence clo-
sure.

In this chapter we will not only develop new congruence closure algorithms (plenty of
efficient versions of these are already around), but also use the congruence closure algorithm
to manage the use of other decision procedures.

Shostak’s combination of decision procedures uses a congruence closure algorithm to
maintain and manage equalities and propagate these through function symbols. A main
advantage of this approach is that equality information is kept in one place: in the union-
find structure used by the congruence closure algorithm. Everywhere else equalities are
propagated using canonization. In analogy with term-rewriting, the congruence closure
algorithm provides a completion procedure, and equalities are propagated using rewriting
into a normal form. It is also easy to process constraints incrementally using the congruence
closure based approach, such that inconsistencies can be detected early in a refutation
search.

Other congruence closure algorithms are discussed in [CS70, Koz77, NO78, Sho78,
McA91]. For the combination of theories various congruence closure algorithms have been
proposed in [Sho84, CLS96, BDL96]. They share a common restriction of not being able
to handle cyclic terms. This restriction does not apply here, and we will make use of this
added feature in Chapter 6. The algorithm does not require a recursive path ordering on
solutions in the style of [BDL96], and does not need auxiliary signature terms [Sho84] and
repeated recursive canonizations. On the less encouraging side, completeness of the con-
gruence closure approach still relies on less than obvious properties of the algorithm, and is
highly sensitive to interface compatibility with external solvers.

Summary of Results: In the empty theory where all function symbols are uninterpreted
our basic congruence closure algorithm can be tuned to run in average time O(nlog(n))
when processing at most n equalities with a total of n different sub-terms. This is better
than other congruence closure algorithms aimed at combining theories, but it is comparable
with the best known bound for congruence closure algorithms [DST80]. Our algorithm
differs from this by dispensing with a signature table, and uses instead a dynamic array to
represent and modify terms. The price consists of using O(nlog(n)) space instead of linear
space. The extra space consumption has not been a practical concern for the examples used
so far and it has the added benefit of caching intermediary results.

In the term-rewriting community some interest has been devoted in the generation
of a ground confluent term-rewriting system from a set of ground equalities. For in-
stance [GNP193] give an O(n?®) algorithm for generating such a set. This is improved
in [Kap97] to O(n?). Naturally, in Section 3.3.2 we notice that our algorithm can be used
to generate a ground confluent rewrite system in average time O(nlog(n)).

In Section 3.5 we connect the congruence closure algorithm with the rigid E-unification
problem and obtain the nice corollary that a rigid E unifier can be expressed as an ordered

CHAPTER 3. CONGRUENCE CLOSURE 39

set of pairs in the congruence closure graph.
In Chapter 4 we show how the data structures that are used can also be augmented to
propagate relational symbols other than equality.

3.1 Union-find

A partition of equivalence classes can conventiently be maintained and updated using a
union-find structure. Different union-find algorithms are analyzed in depth in [Tar75].

A union-find structure maintaining a partition over a set of elements Q uses two func-
tions:

find : @ — Q which maps elements from the same class to a unique representative within
that class. When find(q) = q, we say that ¢ is a root node.

union : Q@ x Q@ — unit The function union(q,r) takes two root nodes ¢ and r, and merges
their classes by setting find(r) := ¢ and similarly with all other elements in the same
class as r.!

We extend the union-find structure to also contain a set of edges Edges between union-
find nodes from). Edges are labeled by auxiliary binary predicates, such as . In Chapter 4
we treat the case where edges are labeled by binary predicates that represent monotone
relations and partial ordering constraints.

For now we augment the precondition of union to require that the argument nodes
are not connected with an edge labeled by #. This corresponds to detecting inconsistent
disequalities. The effect of union(q,r) now also updates the set of edges Edges by re-
pointing edges to and from r to instead enter and leave the new root ¢. In this way one
maintains the invariant that edges only connect root nodes.

To dynamically allocate and keep track of union-find nodes, the union-find structure
contains a set @) of allocated nodes, and a function new allocating a new node:

Q: Q—set Set of allocated union-find nodes. Initially @ = 0.
new : unit — Q Allocates a fresh state q. The effect is: @ := Q U {q} for some ¢ € Q.

3.2 Terms

Terms are maintained on top of the union-find structure by associating each allocated
node in @ with a (unique) pair (f,(q1,...,qn)) where f is a function symbol of arity n
(variables and constants are treated as a nullary function symbols), and ¢1,...,q, € Q.
More suggestively we write f(q1,...,q,) instead of (f,{qi,...,qn)) to indicate that the
arguments of f are the terms associated with q1,...,gy,.

Thus, the domain 7 of terms is given by:

'The type unit is the (trivial) singleton domain.

CHAPTER 3. CONGRUENCE CLOSURE 40

T=FxQ*

F consists of function symbols, constants and skolem variables.

The labeling of Q is maintained by
LQ Q=T

By keeping L¢ injective there is a function acting as inverse on the range of Lo,

Ly:T—Q

It is required to associate each term ¢ in the range of Lo with the union-find node ¢ such
that Lo(q) = t. While the range of Ly is @ (that is, coincides with the domain of Lg), its
domain will in general only be required to include range(Lg). In our implementation Ly
is a hash-table mapping terms to array indices, and Lg is a dynamic array of terms.

use : Q — @Q—set : We also need to maintain a function that gives a super-set of the
union-find nodes that use a given union-find node. That is, we maintain the invariant

{d €eQ|Lold)=Fflq1, -1 q -, qn)} C use(q)

When a congruence closure node ¢ is allocated with new, the corresponding value of use(q)
is initialized as (.

canonical: The congruence closure algorithm works by rewriting terms into canonical
form according to the equalities it is supplied with. The boolean tag canonical(q) is used
to indicate whether all subterms of the term Lg(gq) are roots with respect to the union-find
structure.

canonical : Q — B

children: As a shorthand we define

children(q) = {qi | Lo(q) = f(aq1,--.,qn) N i€ {l,...,n} }

3.3 Uninterpreted congruence closure

We will now describe a congruence closure algorithm for uninterpreted function symbols.
The core algorithm works by merging union-find nodes and propagating the equality infor-
mation up through function symbols. It consists of the functions merge and insert and is
given in Figure 3.1.

Informally, merge asserts equality of nodes a and b by

CHAPTER 3. CONGRUENCE CLOSURE 41

1. merge(a,b) =

2 if a # b then

3 let

4. (a,b) = if |use(a)| < |use(b)| then (b,a) else (a,b)
9. in

6 union(a,b);

7 for each u € use(b) where canonical (u) do
8 let

9. flats--. . qn) = Lo(u)

10. t= f(ﬁnd(QI)aaﬁnd(qn))

11. in

12. ift # f(q1,-..,qn) then

13. canonical (u) := false;

14. merge(find(u), insert (t,u))

15. insert(t,q) =
16. if t € dom(L7) then return find(Ly(t)) else

17. Ly:=Lrt[t— q];

18. Lo:=Logtlg—1;

19. canonical(q) := true;

20. for each ¢ € children(t) do use(q') := use(q') U {q};
21. return find(q)

Figure 3.1: Procedures merge and insert

. In line 4 a and b are swapped if the use-list of a is longer than the use-list of b. This
causes union to make as root the node with the smallest use-list, and gives the average
running time claimed in Theorem 3.3.2.

. To propagate the newly obtained equality information every occurrence of pointers to
the non-root b must be replaced by pointers to the root a. Hence each term potentially
using b must be updated by the new functionality of find.

. In lines 9 and 10 the terms affected by the new functionality of find are generated.
Since we allow implementations of the use-list as a list with repetitions, or including
terms without occurrences of b, we check in line 12 whether the update caused any
changes.

. insert(t, q) first checks if the updated term is already declared and returns the find of
the node associated with the term in this case. If the updated term ¢ is not already
present, then insert replaces the previous version of the term labeling ¢ by the new

CHAPTER 3. CONGRUENCE CLOSURE 42

t. The canonicity of ¢ is reconfirmed, and the use-list of #’s children is updated to
include q.

5. merge is called recursively on the results.
There are two observations worth pointing out concerning insert:
1. No new union-find nodes are generated by merge and insert.

2. The update Lo := Lg T [¢ — t] in line 17 associates an entirely new term with the
node gq. The terms however share the same function symbol and only differ in their
arguments. By construction, applying find to the arguments of the previous term
gives the arguments of the new term.

A set of equality constraints
Ersy=t1, spFly, s3=t3, ..., s,=1p

where s;, t; are expressions over F is processed by first converting the expressions into terms
over T using the canonize function, and then invoking merge on the resulting equations
over 7 x T while connecting nodes corresponding to disequalities by #-edges. The function
addConstraints fails if a node is ever connected to itself with a #-edge. The utilities for
processing equations are shown in Figure 3.2.

canonize(f(t1,...,tn)) = insert(f(canonize(ty), ..., canonize(ty,)), new())

addConstraints(E) =
for each (t = s) € £ do merge(canonize(t),canonize(s))
for each (¢ # s) € £ do connect canonize(t) and canonize(s) by #

Figure 3.2: Canonization and processing of equalities

Example: Given
€:{g(f(@) =w, w#gla), fla)=a},

a left-to right processing creates the structure (the index on the nodes is not necessarily

chronological)
Lt(a) = q use(q1) = {q2,q5}
Lr(f(¢1)) = ¢ use(q) = {g3}
L7(g9(g2)) = g3 wuse(gs) =10
Ly (w) = q4 use(qs) =10
L7(9(q1)) = g5 use(gs) =10

CHAPTER 3. CONGRUENCE CLOSURE 43

Initially find := Az.z, and all nodes are canonical. The first equality g(f(a)) = w
requires merging ¢q3 and q4. This causes the effect

find := [qu — g3]

In other words find behaves as the identity on ¢, ¢2,q3, and g5, and maps ¢4 to gs.
Asserting the disequality w # g(a) causes find(qs) = g3 and g5 to be connected by an
edge labeled by #. Thus, the effect is

Edges := {(q3,#,a5)}

Finally, in asserting f(a) = a, g2 and q; are merged causing first the effect

find :=[q4 = q3, g2 — qi]

since g2 has the smallest use-list, and then, since g3 € use(qy) merge requires to set:

t=g(find(q2)) = g(q1) since g(q2) = Lo(qs)

and invoke insert(t,qs), which since t € dom(L7), evaluates to ¢5. A recursive invo-
cation merge(qs,qs) is now initiated, which requires a call to union(qs,qs). This call
fails as (g3, #, q5) € Fdges, indicating that the entire set of constraints is unsatisfiable.

3.3.1 Correctness

We will here prove that the congruence closure algorithm is sound and complete. In terms
that we will make precise later, this means that invoking addConstraints on a set of equalities
produces a structure reflecting only the asserted equalities and the consequences of the
equality axioms. Equality in the resulting structure is reflected by the functionality of find:
two terms associated with nodes ¢ and ¢’ are equal if and only if find(q) = find(¢).

First note that a set of equalities £ on terms corresponds in a natural way to an initial
partition Cy of a subset of Q. It is obtained by first canonizing every term in £ to get
canonize(E) C Q x Q, and then making Cy be the least equivalence class where every pair in
canonize(E) is in the same class. We will therefore for convenience work with canonize(E)
and the partition Cyp when stating and proving correctness.

In analogy with the definition of congruence closure in the introduction we define

Definition 3.3.1 (Congruence closure on Q) The congruence closure of any partition
Co of the set of declared nodes @ is the coarsest partition C such that

1. Cy is a refinement of C (i.e., VC € Cy3C" €C . C C (")

2. Whenever t,t' € dom(Ly), t = f(q1,...,qn), t' = f(&},-..,4}), and ¢1 =¢ 4}, -,
In =c qp, then Lo(t) =c¢ Lo(t').

If we process canonize(E) by calling merge(find(q), find(q')) for every pair (q,q¢') €
canonize(E), then

CHAPTER 3. CONGRUENCE CLOSURE 44

Theorem 3.3.2 (Termination) The function merge terminates on all inputs in space and
average time
O(nlog(n)),

where n is the number of nodes in the input term-graph (different subterms in the input).

After addConstraints has terminated we have:

Theorem 3.3.3 (Soundness)
q =c find(q), VgeQ .

Soundness states that find respects the congruence relation =¢. In particular, if ¢ and r are
nodes such that find(q) = find(r), then ¢ and r are in fact congruent: ¢ =¢ r. Soundness
is an obvious property of our algorithm: merge only propagates equalities that are implied

by =C.

Theorem 3.3.4 (Completeness)
If gq=cr then find(q) = find(r) .

Completeness means that find collapses all congruence classes in C. To establish com-
pleteness requires a more careful analysis. For this purpose consider the version of merge in
Figure 3.3 augmented with auxiliary variables U and V', which are initially the empty sets.

Informally, U consists of the set of nodes where find does not act as identity any longer
as a consequence of the call to union in line 6. The set V consists of the nodes whose terms
contain an element from U. To accommodate for the delay in updating find of the use set
of b we therefore define

findy(q) e if q € U then q else find(q) .
Completeness now relies on the following invariants whose conjunction is inductive.

Invariant 3.3.5 If f(q1,...,q,) € dom(Ly) then

f(findy(qr), ..., findy(gn)) € dom(Ly).

Invariant 3.3.6 If Lo(q) = f(q1,-..,qn) and q € V then

n
canonical(q) if and only if /\ qi = findy(qi).
i=1
Invariant 3.3.7 If Lo(q) = f(q1,-.-,qn) and ¢ € V then

n
canonical(q) if and only if /\ q; = find(q;).
i=1

CHAPTER 3. CONGRUENCE CLOSURE

1. merge(a,b) =

2. if a # b then

3. let

4. (a,b) = if |use(a)| < |use(b)| then (b,a) else (a,b)
5. in

6. union(a,b);

7. ‘U =UU{b};V :=V U{u € use(b) | canonical(u)};
8. for each u € use(b) where canonical (u) do

9. let

10. flqi, ... qn) = Lo(u)

11. t = f(find(q1), ..., find(qn))

12. in

13. ift # f(q1,-..,qn) then

14. canonical(u) := false; |V := V' \ {u};

15. merge(find (u), insert(t,u))

Figure 3.3: Augmented version of merge

Invariant 3.3.8 If f(q1,...,qn) € dom(Ly) then

find(L7(f(qu,- - -, qn))) = find(L7(f (findy(q1), - -

, findyr(gn))))-

45

When the congruence closure algorithm has terminated U = () and V' = 0, thus, findy =

find.
Proof of 3.3.4:

A simple way to construct the equivalence relation =¢ is by computing the least fix-point
obtained by starting with =¢,, which is the equivalence class obtained from the input
equations. Inductively, the ¢ + 1’st partition =c,,, is obtained from =¢; by taking the

coarsest partition satisfying

1. If s =¢, t then s =¢, , t.
2. If 5 =¢; t then f(35) =¢,., f(#).

The final partition =¢ is then =¢, for some (finite) n because there are only finitely

many terms.

We shall establish by induction on i < n, that whenever ¢ =¢, r then find(q) =

find(r).

CHAPTER 3. CONGRUENCE CLOSURE 46

1. If ¢ =¢, r, then ¢ and r are connected via equalities in canonize(£) that are
merged in some order. The merging causes eventually that find is updated such

that find(q) = find(r).
2. Deriving q =¢ r using symmetry, reflexivity and transitivity is direct since a parti-
tion induced by find is automatically an equivalence class.

3. The only other way we can derive ¢ =¢,_, r is by the existence of ¢, s € dom(Ly),
t = flq,---1qn), s = f(r1,...,m), and q1 =¢, T1,..., qn =c, Tn, such that ¢ =
Ly (t), r = Ly(s). The induction hypothesis asserts that find(q1) = find(r1), ...,
find(gn) = find(ry). From the invariants 3.3.5 and 3.3.8 used for both ¢ and s we
obtain that find(Ly(q)) = find(Ly(r)).

™ |
Proof of 3.3.2:

We use same idea that is in [DST80] by “processing the smaller half”. This requires
union to choose as root the state with the largest use-list, such that the for-loop processes
the smaller half only. The analysis follows the proof in [DST80] closely: (1) every time
merge is called, one equivalence class is eliminated, (2) accessing the union-find structure
O(n) times takes time O(nlogn) since the choice of the union root is dictated by the
length of the use-list (which is stored as a doubly linked list with possible repetitions
and an integer length), but the find-structure can be dynamicaly updated during the
find operations.

A closer comparison with the Downey, Sethi, Tarjan algorithm is in order. Under
the assumption that Ly is implemented using a hash-table, [DST80] require on average
O(nlogn) time and O(n) space. The present algorithm uses more space. The first difference
is that the other algorithm recomputes a signature table in each iteration and deletes entries
after use. Here, all terms are kept in the hash-table. The other difference is that the other
algorithm lists the use list for all nodes in the same equivalence class, whereas here only
the use-list associated with the root is listed. Instead, the present algorithm ensures that
new terms are generated for children of the root and inserted using insert into the use list
of the root.

3.3.2 Ground rewriting

It is now simple to extract a confluent rewrite system from the L; and Lo after a set of
equalities have been processed. The rewrite system has the same effect as canonize and
will therefore be able to detect inconsistent disequalities. We extract the rewrite system as
follows:

1. For each ¢ € dom(Lg) introduce a fresh constant symbol C,.

CHAPTER 3. CONGRUENCE CLOSURE 47

2. For each ¢ € dom(Lg) where canonical(q) and f(qi,...,q.) = Lo(q), add the rewrite
rule:

f(Cq17“‘7CQn) — Cﬁ”d(Q) :

When canonical(q) holds each immediate sub-term is labeled by roots so the rewrite system
does not have any critical pairs and is obviously terminating as the rewrite rules only replace
old functions with the fresh constants. The fresh constants, on the other hand, are never
at the top-level of the left hand side of the rewrite rules.

3.4 Congruence closure with theories

For incorporating theories in the congruence closure algorithm we shall not diverge much in
spirit from Shostak’s approach. The resulting algorithm is on the other hand significantly
more compact than Shostak’s, but perhaps still subtle. Figure 3.4 presents the modified
version of merge (from Figure 3.1). The modifications use new auxiliary functions solve
and o described below. One important change is that merge is no longer allowed to swap
its arguments because the directed union now has to be consistent with the output of solve.

1. merge(a,b) =

2. if a # b then

3. union(a,b);

4. for each u € use(b) where canonical(u) do
O. let

6. flais-- . qn) = Lo(u)

7 t=o(f(find(q), .., find(g0)))

8. in

9. if t # Lo(u) then

10. canonical (u) := false;

11. if not interpreted(u)

12. then process(solve(find(u), insert(t,u)))
13. else if u = find(u)

14. then merge(u, insert(t,u))

15. process(6) =

16. for each [q1 — q2] € 0 do merge(find(q1), find(q2))

Figure 3.4: Merge in the presence of theories

The canonizer o : T — T: The modified merge uses a canonizer o to normalize
terms with respect to the updates of find and rewrite the resulting term into normal form.

CHAPTER 3. CONGRUENCE CLOSURE 48

High-level requirements for the canonizer are described in Section 2.2.3. For convenience
we are deviating from the explicit signature for o from Section 2.2.4 and leave the context
argument and update implicit.

While the canonizer may need to access Lg to normalize sub-terms of the normalized
f(find(q1),...,find(gqn)) a full recursive canonization of this argument is not necessary, as
merge provides eventual canonization of these sub-terms and upwards propagation via the
use-lists. In our implementation, however, the theory-specific solvers do use find on sub-
terms of interpreted arguments to minimize repeated work.

A note of subtlety: Inline 17 of the insert function, when ¢ is a term that does not already
exist in L7, the operation reuses the node u to represent ¢t. The following call to merge
then has no effect. For almost all reasonable theories this property causes incompleteness,
as terms are canonized differently according to the form of their sub-terms.

For instance, if y is merged with z, and y occurs in y+ 2 and y+ 2 occurs in —x + (y+ 2),
then first the term y + z is replaced by the fresh term = + z. Since x + z is fresh, the same
union-find node is used for it and the change is not propagated to the super-term —z+(z+2),
which canonizes differently.

To avoid this incompleteness we require that the solver allocates fresh union-find nodes
whenever it returns an interpreted term (alternatively we can use an alternative insert, at
the expense of adding additional pseudo code).

solve : @ x @ — (Q x Q)*: In invoking solve(q,q') the solver calls addConstraints
with the current context of constraints and equality constraint ¢ = ¢'. It returns the set
of derived equalities in form of a substitution # and an updated context of constraints. If
the updated context of constraints is trivially unsatisfiable we interrupt the iterated calls
to merge and return false.

We do not require that the substitution be idempotent. This is essential to handle cyclic
data-structures. The substitutions should rather correspond to a most general unifier.

interpreted : @ — B: Each theory determines which terms are interpreted. In the theory
of linear arithmetic, terms whose main function symbol is + or — are interpreted. Diverging
from other approaches we shall not treat data-type selectors (and record projectors) as
interpreted function symbols to obtain heuristic speed-up and to be able to handle satisfiable
cyclic constraints, such as CAR(NIL) = NIL.

Comparisons with [Sho84]: Shostak’s congruence closure uses an auxiliary function
canonsig to recursively canonize sub-terms. This function is absent from our algorithm
because the use of a shared term structure enables canonization to eventually be propagated
up through terms. We note the following differences:

e Shostak’s algorithm diverges when the interpreted theory allows cyclic data-structures
because canonsig calls itself recursively on arguments of interpreted function symbols.

e canonsig is called twice, both before invoking solve, and after invoking solve. We have
not found this to be necessary.

CHAPTER 3. CONGRUENCE CLOSURE 49

e In Shostak’s data-type solver, selectors are treated as interpreted function symbols,
and may therefore not be in the domain of the result of solve. This causes unsound
and expensive creation of new variables in solved forms.

Comparisons with [BDL96]|: The elegant algorithm from [BDL96] requires solutions
x — t to satisfy that = is not a subterm of ¢. However, this requirement prevents a partial
elimination of variables in non-linear constraints. For instance, given the equality:

y = = f(y) (3.1)
our approach can detect an inconsistency among
fly) >0 A y-2<0 . (3.2)

If we replace y by z - f(y) in the constraints we obtain the obviously unsatisfiable

fly)>0 Az fly) <0

without having to maintain the eliminated equality. On the other hand, if we were to
require that all solutions satisfy the subterm relationship, then the equality (3.1) cannot be
eliminated in establishing inconsistency of (3.2).

Naturally, the same restriction to non-cyclic data structures also applies to SVC, though
these may not necessarily be interesting for the domain of SVC.

3.5 Rigid E-unification

In this Section, we first present a definition of rigid E-unification. By reformulating a decid-
ability proof for rigid F-unification using the data-structures from the previous sections, we
arrive at Corollary 3.5.4, which states that a rigid E-unifier can be found by guessing a set
of pairs from the union-find nodes). This gives a neat reformulation of rigid E-unification
as a simple constraint satisfaction problem.

Definition 3.5.1 (Rigid E-unification) Let T be a set of Skolem variables, and let ¢ be
a Horn formula of the form

SI=U A Asp=t, = s=t (3.3)

E

whose free variables are in T. The substitution @ with domain T is a rigid E-unifier for ¢ if
0 applied to @, i.e.,
(s1=t1AN...ANsp=1t, — s=1t)0

is ground valid (i.e., the equality s =t follows from congruence closure with respect to the
assumed equalities).

CHAPTER 3. CONGRUENCE CLOSURE 50

Example: The substitution [z — ¢,y — a] is a rigid E-unifier for

f(z) =g(a) A h(b) = f(c) — g(y) =h(d) .

The substitution [z — b,y + g(a)] is a rigid E-unifier for

ha) =a N h(z)=a A hb) =fly) = y=9(f(y) -
The substitutions [z — ¢"(a)] are all rigid E-unifiers for

gla)=a = z=a .
Theorem 3.5.2 [GNRS92, dK9}] The rigid E-unification problem is NP-complete.

In fact de Kogel [dK94] never claims that his reconstruction of the decidability re-
sult for rigid F-unification also establishes N P-completeness, but it does, even contrary
to the claims in [Bec98]. In his proof a rigid E-unifier is classified as either connecting,
non-connecting and reducible, or non-connecting and irreducible. Unifiers (substitutions)
are represented in triangular form, such that the triangular substitution t(zy — t1,29 —
to, ..., Tp —> t,) is applied in stages: (... ((¢[z1 — t1])[z2 — t2]) ... [zn — t,]). We shall de-
fine reducible and connecting relative to the utilities introduced for our congruence closure
algorithm.

Definition 3.5.3 Let E be a set of equalities and) be the union-find nodes in the congru-
ence closure after E has been processed.

o The map (z; — v; | i=1,...,n) is connecting if canonize(z;), and canonize(v;) are
already in Q) for each i.

e The map (...,z > u,y — v,...) is reducible if canonize(u) is in the transitive closure
of use and find from canonize(v).

To prove decidability of rigid E-unification de Kogel notes that a rigid E-unifier 0
for (3.3) can be classified by one of the following conditions:

1. @ is non-connecting and reducible. Then a rigid F-unifier can be found with smaller
terms. By repeatedly eliminating reducible pairs, only cases 2 and 3 need to be
considered.

2. 0 is non-connecting and irreducible. Then by deleting a non-connecting pair = +— ¢
(there is at least one), from the substitution we obtain a triangular form of smaller
size.

3. Finally we arrive at a connecting rigid E-unifier. In this case 0 can by definition 3.5.3
be equivalently expressed as an ordered list of pairs of congruence closure nodes.

CHAPTER 3. CONGRUENCE CLOSURE 51

A detailed proof justifying these observations is given in [dK94] and will not be repeated
here. The main observation we make in connection with the formulation based on the
congruence closure structure is, however:

Corollary 3.5.4 (From congruence closure to Rigid E-unification) Let Q) be a set
of union-find nodes after processing all equalities in E and having canonized the terms s
and t to be unified. A rigid E-unifier is an ordered set of pairs of QQ corresponding to a
triangular substitution. The set of pairs can be guessed and checked in polynomial time.

Guessing such a triangular substitution can be done in O(|Q|) by listing an ordered
set of pairs. The ordered set of pairs then has to be checked for corresponding to a well-
formed triangular substitution by unfolding nodes to variables in the domain and terms
in the range, pair by pair. Finally, it can be checked for being a rigid E-unifier using the
congruence closure algorithm by simply merging the nodes in the substitution.

3.6 A benchmark example

Refinement proofs for pipelined CPUs [BD94] are rather stressful benchmarks for reasoning
about uninterpreted functions, McCarthy’s update axiom

read (write(A,i,e),j) = 1if i = j then e else read(A4,j),

and boolean combinations of equalities. To test the congruence closure without using the
repository of well-established guiding techniques (see for instance [LLO97]) the formulation
from [HSGY8] was taken without the auxiliary rewrite rules specific for the PVS verifier.
The validity checker was then allowed to spend its time on it. For the main correctness
claim, nearly one million case splits were required, using a particular splitting heuristic
and the entire verification took 150 minutes. Thus, on average, 100 branches were covered
each second. Each case required the processing of a structure with 400 different sub-terms,
though the incremental accumulation of constraints means that the entire structure did not
have to be recreated for each branch.

3.7 Summary

We presented a simple and fast congruence closure algorithm that was extended to integrate
decision procedures. We also demonstrated how the congruence closure corresponded to
ground completion. The connections with rigid E-unification were highlighted.

Chapter 4

Special relations

We use the term special relation for certain monotonicity properties binary relational sym-
bols that enjoy with respect to selected functions. In the basic form we can record a special
relationship between predicates <; and <3 relative to the function symbol f whenever the
monotonicity axiom

z=<1y = f(..,z..) <0 f(..,y,...) (4.1)

holds. Anti-monotonicity (where z and y are exchanged in the conclusion) axioms are
also considered sufficiently special. Special relations have been studied within resolution
theorem proving in for instance [MW86, MSW91, MW92], and [BG95].

The notion of special relations used here is based on theories axiomatizable using Horn
clauses. A Horn clause is a disjunction of literals, containing at most one positive literal.
Equality itself can be viewed as a special relation as we saw in Chapter 3. The restriction
to Horn clauses ensures the existence of an initial model satisfying the implications. The
queries that we wish to resolve against a theory axiomatized using Horn clauses are in the
simplest case ground formulas. In Chapter 3 we examined a very special relation, equality,
and gave an optimized decision procedure for it.

Even simple instances of this scheme cannot be algorithmically decided: Horn clauses
with binary relations can be used to encode reachability problems for Turing machines. In
more restricted cases we can not only decide ground satisfiability, but also solve the rigid
T -unification problem, namely whether there is a substitution 6 from free variables in ¢,
such that 7 E @f. The existence of a rigid T -unifier for ¢ implies that 7 E dx* ¢, while the
converse is not necessarily the case. Rigid T-unifiers can be used to close branches in a
tableau search by providing instantiations of existential force quantifiers.

Results: We propose ground decision support and rigid 7 -unification problems for two
prominent special relations: Partial orders, and monotone relations given by axioms of the
form (4.1). The ground decision support is provided as a tight extension of congruence
closure and we reuse the data structures developed in Chapter 3.

The results developed here apply to theories that are empty apart from the special
relation axioms. In Chapter 6 we take a look at integrating monotone relations in richer

92

CHAPTER 4. SPECIAL RELATIONS 93

theories.

4.1 Partial orders

A structure is partially ordered by the binary predicate < if it satisfies the three axioms for
every x, y, and z

ry ANyz — =32 (PO1)
ry ANyz — =y (PO2)
x =z (PO3)

A set Ly of literals can be checked for satisfiablity with respect to the axioms for partial
orders and equality together by extending Ly to a maximally consistent set L closed with
respect to the axioms for equalities and partial orders. The set of literals L is mazimally
consistent if for all sub-terms s,¢ € L either s < tor s A t, and L is saturated with respect to
the equality and partial ordering axioms. Since there are only finitely many subterms in any
set of literals Ly it follows easily that the satisfiability problem for the set of ground literals
Ly is decidable. Using this approach we arrive rather painlessly at a decision procedure for
ground formulas with equality and partial orderings.

On the other hand, the full first-order theory of partial orderings reduces to the the-
ory of a binary, symmetric and irreflexive predicate P(z,y) and is therefore undecid-
able [ELTT65]'. Indeed, to model P(z,y) using a partial ordering < in the closed formula
¢(P) replace P everywhere by

AMz,y) . Fz,u . bot(z) N z<u AN u<z ANu<y ANz#y

where bot(z) = (Vv . v £ 2), top(z) = (Vv . z £ v), relativize all quantifiers 3z . 1) in ¢ to
Jz . top(x) A, and finally produce v — ¢, where 1) restricts all elements to be either
without successors, without predecessors, or connecting precisely two elements according to
P (the role of the auxiliary u in the replacement of P above):

Ve,y,z,u . c <y N x <z ANzx<u - y=2zVy=uV u=z
(B A Yz .-=bot(x) A —top(z) — (Fy,z.y#2z ANz <y ANz < 2)
AN Vz,y.xz <y — bot(x) V top(y)

We have now obtained a predicate in the theory of partial orderings which is valid if and
only if the corresponding predicate over a binary, symmetric, irreflexive relation (aka. the
theory of undirected simple graphs) is valid.

On the other hand, the V3-fragment (IIs-fragment) of the theory of elementary relations
is co-NP complete as established in [CC90]. In more detail, the V3-fragment consists of

'"However, note that the theories of linear and dense linear orderings (with and without end-points) is
decidable [CK90, Hod93].

CHAPTER 4. SPECIAL RELATIONS 54

closed formulas of the form
VZIYp(Z,7Y)
where ¢ is a quantifier-free formula whose atomic formulas are of the form

R™ =8M g=y R™(z,. .. z,)

where R and S are m-ary relation symbols. Since the axioms PO1-PO3 can be added as
assumptions to a Ils-formula without changing the quantifier prefix we obtain that the IIo-
fragment of the theory of partial orders is co-NP complete. While this result in principle
gives a singly exponential time algorithm for deciding Il formulas we do not have any
goal-directed procedure at hand (which is important in heuristically narrowing the search
space). The restriction to pure relational symbols (and not admitting function symbols)
also limits the direct applicability of the IIs-theory of elementary relations.

4.1.1 A ground decision procedure for partial orders

The saturation based approach to check a set of literals Ly for ground satisfiability in
the theory of partial orders suffers from two problems: (1) the saturation includes all
combinations of partial ordering constraints on the available terms thereby requiring a
quadratic number of predicates in the number of terms, (2) it only gives a non-determinstic
procedure for saturating a satisfiable Ly to a saturated L. If we furthermore extend the
vocabulary with the derived relation x < y : = <y A z # y, we no longer have a Horn
axiomatization. Naive tableau rules on the extended language then include splitting ()
rules of the form
Ty
T=ylz<y

to obtain a complete decomposition of all atoms.

We address problem (1) by formulating a system where only required constraints are
derived. Furthermore constraints implicitly present by the transitivity of partial orderings
are not represented explicitly. This only gives a heuristic space saving as for instance the
partial order of n elements where element 7 is connected to ¢ + 1,...,n, for 2 = 1,...,n
requires the worst case (g) explictly maintained relations, however, as measured in the size
of the input the approach does not require any more space. Problem (2) is addressed by
maintaining the predicates =, #, < and £ only. Equality is handled by congruence closure,
labels the undirected edges introduced in Section 3.1. This set of edges is updated to
contain also the possible labelings < and A4, resulting in a transitivity graph.

New edges are added incrementally to Fdges in the union-find structure as follows:

71 2 q (@1 # @25 @1 £ g2): Add an edge to Edges between ¢; and ¢o labeled < (resp. #,
A)-

q1 < q2: Add edges for both ¢; < ¢o and g1 # ¢».

q1 2 q2: Add edges for both ¢ £ ¢o and g1 # ¢q».

CHAPTER 4. SPECIAL RELATIONS 95

Total orders are a special case, where constraints of the form (¢; 4 t3) are treated as to < t1,
so 4 edge labels are not used.

Whenever adding an edge from ¢ to ¢’ labeled by 4, we search for a path of < edges
from ¢ to ¢’ labeled by < edges. If such a path exists, all vertices on the path are merged.
On the other hand, when a new ¢ < ¢’ edge is added a standard depth-first traversal can
be used to search for a path from ¢’ to g consisting of < edges. In the presence of such a
path g and ¢’ are merged. To keep the graph minimal in adding a ¢ < ¢’ edge we also need
to merge q and ¢’ if there is a <-path from ¢’ to ¢; and from from g2 to g, where g2 £ ¢ is
an edge.

A decision procedure results from the following observation: a conjunction of inequality
constraints is unsatisfiable in the theory of partial orders iff its associated transitivity graph
is collapsed into a contradictory graph, one that contains a (v,#,v) edge.

Eager Equational completeness: On the other hand, one can directly extract a model
from a non-contradictory graph where all distinct vertices corresponds to different elements.
Thus, the decision procedure given here is eagerly complete (see Section 2.2.4).

4.1.2 The rigid PO-unification problem

We will here extend the results presented in Section 3.5 on rigid E-unification to rigid
unification problems with partial orders.

Definition 4.1.1 (Rigid PO-unification) Let T be a set of variables, and let ¢ be a
horn-formula of the form

/\tijsi/\ /\u]-%vj - s=1 (4.2)
icl jeJ

whose free variables are in T. The substitution 0 with domain T s a rigid PO unifier for ¢
if B is ground valid.

Equivalently we can phrase the rigid PO-unification problem in terms of finding a sub-
stitution establishing unsatisfiability of a conjunction

P /\sijti/\/\uj%vj/\ /\wk;ézk (43)

el JjedJ keK

Equalities, < and A& relations have been eliminated using rewrites from s =t to s < tAt < s,
together with those from Section 4.1.1. The alternative formulation uses more disequalities,
but only one disequality is required to exhibit unsatisfiability as the theory of partial orders
is stably infinite (see definition 2.2.1). In other words, the conjunction 4.3 has a rigid PO-
unifier if and only if there is a k& € K, such that ', where K has been set to {k}, has a
rigid PO-unifier.

We also obtain the following result as an extension of NP-completeness for rigid E-
unification:

CHAPTER 4. SPECIAL RELATIONS o6

Theorem 4.1.2 The rigid PO-unification problem is NP-complete.

Proof outline:

The proof requires essentially no new ideas besides those that can be found in [dK94].
The only crucial dependency on the properties of congruence closure is in eliminating
non-connecting irreducible unifiers. a4

4.1.3 A heuristic for obtaining PO-refuting substitutions

The transitivity graph is not only able to detect ground unsatisfiability, but can also serve as
a guide for finding PO-refuters. We say there is a <-edge from u to v if (u, <, v) and (u, #, v)
are edges in G. To find PO-refuting substitutions for a set of equalities and inequalities, one
can find pairs of vertices (v, w) that are connected by a <-edge in the transitivity graph. If
FE is the set of known equalities at this point, a substitution # such that v6 = wf under the
equalities Ef is a PO-refuter; that is, 6 should be a rigid E-unifier [GNRS92] of v and w.

This approach to finding PO-refuters is clearly not complete. A more thorough but
still incomplete approach is to consider a pair (vi,w;) connected by a <-path containing a
<-edge, and another pair (w9, v2) connected by a <-path. A substitution @ that is a rigid
E-unifier for {v1 = vy, w1 = wo} will also be a PO-refuter.?

In the general case, the transitivity graph can be searched to find a sequence of paths
and a unifier # that concatenates the paths into a loop containing a <-edge. Since 8 will be
obtained incrementally in a congruence closure context, we define the following:

Definition 4.1.3 Given a substitution 0 and a congruence closure structure CC, a sub-
stitution ¢ is a 6-compatible rigid C'C-unifier of congruence classes vi and vy iff © is less
general than 0 and ¢ is a rigid E-unifier of t| and ty for some t; € vy and ty € v,
where E is the set of equations implicit in CC. We write E_mgus(CC,0,v1,v2) for a set of
0-compatible rigid C'C-unifiers of v1 and vs.

Rigid E-unification is NP-complete [GNRS92]. In practice, we are content with quickly
identifying a subset of the rigid E-unifiers.We collect E-unifiers using a fast, but again
incomplete, test to eliminate redundant substitutions.

The procedure EXPAND defined below updates a set S of PO—refuting substitutions for
the theory of partial orders. It searches the set of paths in the transitivity graph examining
one sequence of paths at most once. T'C(v) denotes the <-transitive closure from vertex v,
i.e., the set of vertices reachable from v by =<-edges. TC™(v) is TC(v) \ {v}. V(G) is the
set of vertices of G. CC(G) is the congruence closure structure associated with G. After the
invocation EXPAND (G, v, vo,[]), each recursive call EXPAND (G, v, v2,0) maintains the
invariants (a) ve € TC(v1) in G, and (b) G is obtained from Gy by asserting the equalities
given by 0. This is ensured by the function add_substitution, which merges nodes and

?Edges labeled £ and single # edges can be similarly used to obtain PO-refuting substitutions. To
simplify the exposition, we omit these cases.

CHAPTER 4. SPECIAL RELATIONS o7

collapses the graph as described above. The vertices v] and v} are the counterparts of vy
and v4 in G'. EXPAND must terminate, since the size of V7 decreases with each recursive
call.

S+ 0 ; EXPAND (Go,v,v,[]) ; return S; where:
EXPAND (g, V1,V2, 9) =
Vi e V(0)\ TCHw)
Vo TC+(’U2)
for each (v3,v4) € V4 x V5 do
S" < E_mgus(CC(G),0,vs,v4)
for each ¢’ € S’ do
G' + add_substitution (0, G)
if G’ is a contradictory graph
then S+ SU{#'}
else EXPAND (G',v},v},0")

In the worst case, EXPAND will search exponentially many paths. However, the mod-
erate size of transitivity graphs arising from typical verification conditions, and the incre-
mental unification restriction, make the procedure practical.

An example: The validity of
(Vz.(x <y — P(x))) A (Vu.3z.z2 < u) = Jv.(v < y A P(v))

is established in 0.07 seconds using the rigid PO-unifier [v — f,(u), =+ f,(u)] which can
be found using the search procedure.

4.2 Transitive relations

A simpler case than partial orders is that of transitive relations. A relation R is transitive
if it satisfies the transitivity axiom

R(z,y) A R(y,z) — R(z,2) (T)

4.2.1 Rigid T-unification
When R is a transitive relation, we define the rigid T -unification problem as follows:

Definition 4.2.1 (Rigid T-unification) Let T be a set of variables, and let ¢ be a horn-
formula of the form

m
S1=Ht1A... NSy =1 A /\R(ui,vi) — R(s,t) (4.4)
i=1

whose free variables are in T. The substitution 0 with domain T is a rigid T-unifier for ¢ if
00 is ground valid.

CHAPTER 4. SPECIAL RELATIONS o8

Proposition 4.2.2 The rigid T-unification problem is NP-complete.

Proof:

NP-hardness: Take an instance of rigid E-unification

m
/\Si:ti—>8:t (45)
i=1
and translate it to:
S1=Ht1A... NSy =1ty AR(s,t) — R(t,s) (4.6)

Membership in NP: To get R(s,t) in the consequent of formula (4.4) the premises of
the implication must provide an R-path. The substitution must provide the merging
of states along this path, and thus establish a number of equalities s = w;,, v;; = u;; .,
v;, = t. Thus, it suffices to guess a path of length at most m (there are m conjuncts
of R in the premise) and verify the following rigid FE-unification instance, where h is
a fresh function symbol:

s1=tiA... NSy =ty = h(s,viy,...,0i,) = h(ui,...,u,t) . (4.7

ol

4.3 Monotone relations

We will now investigate support for special relationships that are axiomatized according
to axiom (4.1). So assume this axiom schema for binary relations <; and <2 and an
uninterpreted function symbol f. Thus, whenever £ <; y holds, then for every set of
auxiliary parameters Z, @, we have f(Z,z,%) <2 f(Z,y,%). To simplify notation, but without
losing generality, we will assume that f is binary such that Z is empty and @ contains only
one variable.

4.3.1 A ground decision procedure for monotone relations

As in the case for partial orders we obtain efficient support for deciding ground consequences
of monotone relationships via a combination with the union-find data-structure used in
congruence closure. We also obtain an incremental algorithm by considering the following
two cases occurring when new facts are being asserted, and new terms are generated:

q1 <1 g2: where g; and g9 are root nodes in the union-find structure.

1. If g1 <1 g2 € Edges we can assume that the congruence closure structure already
knows about the fact, and we do not perform anything more.

CHAPTER 4. SPECIAL RELATIONS 99

2. If on the other hand ¢; A1 q2 € Edges the accumulated constraints are unsatis-
fiable and we notify this.

3. Finally, neither ¢; <1 g2 € Fdges, nor g1 A1 qo € Edges, and we add the fresh
edge q1 <1 qo. For each q € use(q1), ¢' € use(q2), where canonical(q), Lo(q) =
f(q1,q3), canonical(q'), Lo(q") = f(g2,q4), add an edge find(q) <2 find(q).
We check that there is not already an edge find(q) A2 find(q'), otherwise the
constraints are unsatisfiable.

q1 A1 G2, q1 <2 q2,q1 A2 g2t where ¢ and gy are root nodes in the union-find structure. We
add the edge q1 41 g2 (resp. q1 <2 g2, ¢1 A2 q2) to Edges checking that there is not
already a contradictory edge. Notice that we do not have to close the congruence
closure structure under the contrapositive of the special relations rule.

f(q1,q2) — q is inserted into L: First notice that the congruence closure algorithm main-
tains that whenever f(q1, ¢2) is inserted into Ly both ¢; and ¢y are roots. We then take
Q= {find(¢') | Lo(¢') = f(d1,45) N q1 <1 ¢i € Edges} and add edges q <3 ¢ for each
q¢' € Q. We also need to take Q3 = {find(q') | Lo(¢') = f(d1,) A q1 <1 q1 € Edges}
and add edges ¢’ <2 ¢ for each ¢' € Q5.

With @ being the number of different union-find nodes each operation described above
has running time bounded by O(|Q|?). The modular way in which the union-find structure
is updated with new constraints enables independent support for several other special rela-
tionships </, <5, f’ ..., and works well with the incremental way that we will be maintaining
constraints.

4.3.1.1 Correctness

The utilities for maintaining <1, <2 and f are clearly sound, as an examination of each step
reveals. On the other hand, we establish their completeness by extracting a model from
any non-contradictory union-find structure satisfying all asserted special relations.

Theorem 4.3.1 (Completeness) Any consistent union-find structure saturated with re-
spect to the special relations rules is satisfiable.

Proof:

We construct a model satisfying the ground set of literals and all special relation
axioms from the final non-contradictory state of the union-find structure. The model
A= (A, <'1A, <§4,f"4,g"4,h"4, ...) consists of

1. The domain A, which we identify with {go} U {find(q) | ¢ € Q}, where ¢ is a
union-find node not already in Q.

2. The binary relations -<{4§ A x A and -<§4§ A x A. We set -<{4: {(¢.¢") | ¢ =<1
¢ € Bdges V q=q V ¢ = qo}, and <= {(¢,¢) | ¢ <2 ¢’ € Edges V q =
a0 V ¢ =q}

CHAPTER 4. SPECIAL RELATIONS 60

3. The functions f4, g4, et.c.. We set i (g1, ..., qn) = find(L7(h(qy,. .., q0))) if
h(qi,...,qn) € dom(Ly), otherwise h'A(ql, ey Qn) = qo-

To establish that the special relations are satisfied we will show that f"4 is the ap-
propriate interpretation of f such that whenever ¢,7,s € A and (q,r) E<'1’4, then

(FA (g, 9), FA(r,5)) €=

For suppose to the contrary,
A Eg=<ir A =(flg,s) <2 f(r,s)) .

Then it must be the case that f(q, s), f(r,s) € dom(Ly). This implies that none
of g, r or s equals qg, as this was a fresh union-find node that could not have been
found in the original union-find structure. Since A E ¢ <1 r and ¢ and r are different
from gy it must be the case that ¢ <; r € Edges. The union-find structure may have
been updated in two different ways:

1. ¢' <y r' was inserted when both f(¢',s') and f(r', s") were present in Ly, where
find(q") = q, find(r') = r and find(s") = s after all constraints have been pro-
cessed. In this case the utilities for incrementally maintaining the monotonicity
constraints would have added an <9 edge between the finds of L7 (f(q¢',s")) and
Ly(f(r',s")). The congruence closure algorithm maintains the invariants that
find(L7(f(g,5))) = find(L7(f(¢',s"))) (Invariant 3.3.8) and similarly for f(r,s),
thus ensuring that the <5 edge connects precisely the nodes that were assumed
not to be connected. A contradiction.

2. At least one of f(q',s") or f(r',s") were inserted after the ¢’ <; r’ edge was es-
tablished, where find(q') = q, find(r') = r and find(s') = s after all constraints
have been processed. The incremental way special relations are maintained en-
sures to add an appropriate <o edge from the find of Ly (f(q',s")) to the find
of Ly(f(r',s")). This also contradicts the assumption that A E —(f(q,s) <2
f(r,s)) as the <o edges are always propagated to the roots of Ly (f(¢,s')),

Ly (f(r',).

4.3.2 Rigid S-unification

Suppose that we are given a set S of special relationships
=<y y — fil.o,z) <k fioy,.0)

T <Yy — f]‘2(...,{L',...) <ky fj2(...,y,...)

z =i,y — fi.Goom) <k, fin (o y,..)

CHAPTER 4. SPECIAL RELATIONS 61

where i1,...,%y,,k1,...,k, range over some index set of binary relations and 7y ..., 7, are
(not necessarily distinct) indices of function symbols. We extend rigid E-unification to
constraints over S by defining rigid S-unification.

Definition 4.3.2 (Rigid S-unification) A rigid S-unifier for the Horn-clause

/\si:ti/\u-<1v - w2z (4.8)

2

s a substitution 6 from the free variables in ¢ to ground terms such that ©0 is valid in the
theory of equality and S.

We establish that the rigid S-unification problem is decidable and in fact NP-complete.
But, to convey the main ideas in a simplified way we first solve the rigid S-unification
problem when S consists of a single monotonicity requirement

2=y = flomy) < flsy..) (4.9)

for a fixed (uninterpreted) function f of arity m + 1 + n. The general case can then be
handled by a slight extension of the arguments we give.
To nest a term ¢ inside a number of applications of f define

Definition 4.3.3

fIN(t) def flz1, ... 2, (), y1,...,yn) where z; and y; are fresh variables

def

) =t
For example, for m = 1,n =2

fQ(t) = f(xlaf(antaylayQ)ay&yﬁl) .

Lemma 4.3.4 Let E be a set of equalities, t and u be terms, and n be the number of
sub-terms in E and terms t and u.
Either there is a mazimal j < n such that

E — u=fi(t) (4.10)
has a rigid E-unifier, or for all m >0

E — u=f"(t) (4.11)
has no rigid E-unifier.

Proof outline:

Suppose that there is a j and a rigid E-unifier for (4.10). We must establish that a
j < n can be chosen for this purpose. From Corollary 3.5.4 the rigid F-unifier can

CHAPTER 4. SPECIAL RELATIONS 62

be represented as an ordered set of pairs in the term-graphs of E,u, f7(t) and we can
derive

O NE — u=fi(t) (4.12)

using congruence closure. So consider the partition C of the terms and sub-terms in
0, E, t, and u obtained by congruence closure with respect to the equalities £ and
0. Divide the partition into two parts C; and Co, where each class in C; contains a,
term already a sub-term of E, ¢, or u, and the classes in Cy consists of terms not
from E, t, or u. Suppose that fi() is not in C;, for some 0 < 7 < j. Then it is
because # has mapped a variable z in E or u to a term containing the class f?(¢). The
substitution @ is consequently pumped down to replace the term equivalent to f(t)
by a term equivalent to ¢ instead.

Consequently fi(t) € UCy, for all i < j. As there are at most n classes in Cy,
an index j > n implies that some class in C; is repeated. In this case we use the fact
that the fresh auxiliary variables in f7(t) are all different to modify € at will to pump
j down below n.

ol

Theorem 4.3.5 For a special relation given by (4.9) the S-unification problem for clauses
of the form:
/\si:ti/\u-<v—>w<z (4.13)
7

is NP-complete.

Proof:

We first notice that (4.13) has a rigid S unifier 0 if and only if there is a j, fresh binary
function symbol h, and extension 6’ of 6, that agrees with 6 on the free variables
in (4.13) such that

(/\ si=t; — h(fi(u), ' (v) = h(w,z)) 0 (4.14)

Thus, a rigid E-unifier §' for (4.14) provides a rigid S-unifier for the original con-
straint (4.13). Lemma 4.3.4 provides an upper bound on the maximal number it
makes sense to unfold w and z to match v and v, namely up to the number of sub-
terms in the original S-unification problem. The lemma implies that further unfolding
beyond this to test for solvability does not reveal anything new. Therefore, a suffi-
ciently small j and a corresponding rigid E-unifier can be guessed and checked in
polynomial time. This establishes that the special case of rigid S-unification is in NP.

To establish N P-hardness, notice that we can reduce the rigid E-unification

CHAPTER 4. SPECIAL RELATIONS 63

problem

/\si:ti — u=v (4.15)

to the rigid S-unification problem

/\si:ti/\x<x—> u=<v (4.16)

2

where S is given by equation (4.9), where the monotone function f is not in (4.15).

ol

To solve the general S-unification problem for more than a single monotonicity require-
ment one can perform a similar reduction as in Theorem 4.3.5 by non-deterministically
examining one of the possible unfoldings leading from <; to <5 which has length not ex-
ceeding the number of sub-terms in the original clause.

4.4 Summary

We gave ground decision support for selected special relations with the aim at combining
these into the decision procedures. We also showed how to extract unifiers to close branches
in a refutation search.

Chapter 5

Arithmetic

Constraints over relations with arithmetical operations appear in almost all verification con-
ditions arising from simple sequential programs over reactive, real-time and hybrid systems.
Even when hardware is modeled at an certain level of abstraction, arithmetical constraints
become a natural part of the system model. Most of these arithmetical constraints are
linear, in that multiplication is only used when at least one of the operands is a numeral.
In the verification of hybrid systems, however, non-linear constraints appear naturally as a
by-product of solving differential equations. We therefore aim here at building into a com-
mon framework decision procedures for arithmetic which (1) accomodates the frequently
occurring linear arithmetical constraints efficiently, while (2) decides a reasonable fraction
of constraints involving multiplication.

Since arithmetical constraints are so fundamental in system modeling and verification
there is a vast literature on this subject already. The present exposition does not go into any
impressive depth, but does offer an all-round treatment of decision procedures for linear and
non-linear arithmetic. In particular, the fact that the Fourier-Motzkin procedure allows to
extract equational constraints eagerly is not obvious from any of the references I am aware
of, so we prove this for the purpose of fitting the linear solver into the combination of decision
procedures. The solver for non-linear arithmetical constraints is furthermore guided using
a sign-based abstraction domain to simplify polynomials and quickly detect redundant and
inconsistent constraints.

5.1 Linear arithmetic

Linear arithmetic is the calculus obtained by including only terms of the form z;, a;z;, t+ s,
t — s, and agp, where ag, ... are rational constants xq,... are rational variables, and s and ¢
are linear arithmetical terms. Constraints are formed using the relation symbols #, =, <
and <. Linear arithmetical terms can be canonized by converting the terms into summation

n
ag + Z aix;
i=1

normal form:

64

CHAPTER 5. ARITHMETIC 65

This assumes that the set of arithmetical variables z1,...,z, is ordered with respect to an
aribitrary total ordering <. Assume for notational simplicity that this corresponds to the
indexing, such that z; < z9 < ... < zy.

5.1.1 Equalities

A pure equality constraint is either vacuously true, unsatisfiable, or allows to eliminate one
arithmetical variable by expressing it in terms of the others:

n n
a a;
s=t < 0=t—-5 & 0:a0+2aixi ! :——O+Z——Za¢i
i=1 L= @
By maintaining a fixed order of all terms and variables the resulting expression for z; is
given uniquely.

Example: An example from the constraint programming literature is to prove that the
sequence

Tivz = |Tiv1| — @
starting from arbitrary initial values zy and z; is periodic and has period of length 9.
This amounts to establishing unsatisfiability of

11
/\ Tigo = |Tip1| =z A (o =z10AT1 =211) .
i=0
Expanding out the definition of |z1| once reduces zo = |z1| — 29 to 21 > 0 A 29 =
r1—x9 V 21 <0 A x93 =-—x1 — 9. By isolating x¢ in each disjunction reduces the
original formula to

1 >0 A AL T = |Tig1| — 2 A (T — T2 = 210 ATy = T11)
V 21 <0 A /\zlil Tijyo = |$i+1| —x; A —|(—$1 —T9=Tig \NxT1 = IH) .

Nine more iterations of this expansion reduces the formula to false.

5.1.2 Inequalities

While the handling of linear equalities is completely standard in the Shostak-style integra-
tion of decision procedures, the question of how linear inequalities may be supported in an
equational decision procedure integration has remained more open-ended.

5.1.2.1 Methods for integrating arithmetic

Shostak suggests in [Sho79] to use well established satisfiability checking methods, based on
linear programming, such as Simplex [Dan62, Sch86, Chv83] or the SUP-INF method [Ble75,
Sho77] to determine satisfiability of a set of linear arithmetic constraints, and in the affir-
mative case extract a model assigning each variable to a rational. Each arithmetical term

CHAPTER 5. ARITHMETIC 66

appearing in the combined constraints is then evaluated with respect to the assignment.
Having associated all arithmetical terms with a rational constant we can invoke the remain-
ing decision procedures on this instance assuming all they need to know about arithmetical
terms are whether two terms are equal or not. The assignment may impose more equali-
ties than implied by the original constraints. So this requires the arithmetical solver to be
re-invoked should the satisfiability of the instance require two terms equated by the first
assignment to be different. The same ideas carry over to linear constraints over integers
and have been extended to a ground procedure with a permutation predicate in [SJ80] (see
also [Mat81, Jaf81]).

Nelson in his Thesis [Nel81] presents an incremental procedure, which furthermore ex-
tracts implied equalities. It is unfortunate that this approach has not been more visible.
Imbert and Hentenryck [IH93] elaborate with a similar perspective. Nelson’s approach is
formulated for the Nelon-Oppen combination of decision procedures, which does not target
the extraction of equalities as substitutions that we require. We state here without proof
that Nelson’s approach can also be used to extract required equalities as substitutions by
extending the proof we give for the Fourier-Motzkin elimination procedure to Nelson’s Sim-
plex tableau. Empirical data comparing Nelson’s tableau and implementations of Fourier’s
algorithm for the integration of decision procedures would be useful.

There are specialized and efficient procedures for deciding satisfiability of a set of lin-
ear inequalities [Meg83] when all inequalities contain at most two variables. The approach
extends [AS80, Nel82] as well as [Sho81] which actually attempts to generalize the method
to handle three and more variables. Unfortunately, serious gaps in [Sho81] make an imple-
mentation of the ideas presented there very difficult if not impossible. The idea of looking
at two variables per constraint can be traced back to [Pra77], while the connections with
finding all pairs of shortest paths in a graph (via the Floyd-Warshall algorithm) should be
obvious.

5.1.2.2 The Fourier-Motzkin variable elimination method

The approach suggested here is based on the classical Fourier-Motzkin variable elimination
method, which gives a fully symbolic approach to testing satsifiability of linear constraints.
This entails that implied equality constraints can be extracted and communicated with the
other decision procedures. In NQTHM the Fourier-Motzkin procedure is referred to as cross-
multiplication [BM88], but the presentation is to a great deal obscured by features specific
to NQTHM. The Fourier-Motzkin procedure also forms the basis of theory integration in
PVS and SVC [BC98]

The Fourier-Motzkin procedure eliminates a variable 1 from a set of linear inequalities

n
ajg+2ajixi >0, j=1....m
=1

CHAPTER 5. ARITHMETIC 67

by rewriting these first to

n

o !

ajO"‘Zajixi j=1....m
=2

Y

T

n
Y "
ajO"‘Zajixi j=m+1,...,m
=2

IA

T

n
0 < ajo—i-Zajixi jg=m"+1,....m
=2

and then replace the first m” inequalities by m' - (m” — m') new inequalities, one for each
j=1,....mand k=m'+1,...,m":

n n
ajo + Z ajiT; 2> ago + Z Qi T; -

i=2 i=2
It is immediate that the new set of inequalities is satisfiable if and only if the old set
is satisfiable. This approach also generalizes to strict inequality constraints. In fact
the Fourier-Motzkin procedure is a quantifier elimination method for linear arithmetic.
The elimination of z; above was precisely computing the quantifier-free equivalent to
dxq ./\9":1 ajo + iy ajiz; > 0. It has been observed that the procedure has exponen-
tial time complexity [Sch86] and it is commonly percieved as far worse than the Simplex
method. On the other hand, it enjoys some key algebraic properties that we will exploit.
Further theoretical observations are made in [HLL90] and by Imbert in [SvH95].

5.1.2.3 An incremental equality-extracting Fourier-Motzkin procedure

The Fourier-Motzkin method as it stands does not allow to introduce more constraints
involving a variable z; once it has been eliminated. Furthermore, it does not directly
suggest which equality constraints are implied from a set of inequalities. For example, in

z<y+2 ANy<z+4 AN z+6<z

we would preferably infer ¢ = y + 2 = 2z + 6. This will allow z and z to be replaced
throughout other constraints and, for instance, establish verifiation conditions of the form

r<y+2 ANy<z4+4 AN z46<z — flz+y =flz+z+4)
by detecting the inconsistency of

r<y+2 ANy<z+4 A z4+6<z A fz+y) #flz+z+4)

CHAPTER 5. ARITHMETIC 68

via the simplified form

r=y+2 AN z=y—4 AN fly+24+y)#fly—4+y+2+4)

0

f(2+2y) # f(2+2y)

To support incremental addition of constraints we will not be able to eliminate con-
straints over variables that have been formally eliminated, but rely on the total ordering
< of variables to ensure termination. Linear inequalities are thus maintained in one of the

forms:
rj > ao—l—Zaixi r; > a0+2aixi

1>] 1>7
zj < ag+ Z a;T; r; < ap+ Z a;T;
1>] 1>7

where j is the smallest index with non-zero coefficient in the relevant inequality. We use C
to refer to the collection of inequality constraints. Whenever a new inequality ¢ < s is added
to the set of known inequalities we saturate the resulting set of inequalities with respect to
the steps:

1. Isolate the variable with smallest non-zero coefficient in the inequality ¢ < s to obtain
the equivalent inequality z; < u and add this to the set of known inequalities.

2. For each matching inequality v < xj, resp. w < z; form the derived inequalities v < u
(resp. w < u).

3. Repeat step 1 with these newly derived inequalities.

This procedure terminates, since each step examines only inequalities whose variables have
strictly higher indices. On the other hand, it may generate exponentially may inequalities
requiring both exponential time and space.

We can use the approach to also derive all implied equalities by detecting <-loop-residues
in the following way (we call this method a loop-residue accumulation): Whenever we add
a non-strict inequality s < ¢, maintain the list

(zj1,t1), (wj2,t2), -\ (Tjn, tn)
where
s<t <y < ty,
s1 < xj1 is used to match zj; <y

51 <t1 & w2 <ty

Then, if we derive the tight inequality

CHAPTER 5. ARITHMETIC 69

we may infer the triangular form
Ijl = tl, 517]'2 = t2, ey Ijn = tn .

To see this inspect the last steps which from s, < z;, <, forms 0 < ¢, —s, = 0. In
particular ¢, = s, so z;, = t,. By replacing z;, by t, we may repeat the same eliminations
of Tj(,—1) up to ;1. The triangular form is converted into a substitution 6 and C is reduced
to C6.

We therefore have

Lemma 5.1.1 (Equational Soundness) Any equality derived by loop-residue accumula-
tion is an equality.

On the other hand, this approach allows to infer all implied equalities:

Lemma 5.1.2 (Eager Equational Completeness) Suppose that the set of inequalities
T entails the equality t = 0, then either T is inconsistent or the substitution 0 obtained from
loop-residue accumulation on T satisfies t6 = 0.

Proof:

The proof is by induction on the number of variables in Z of index greater or equal to
the variables in .

Assume therefore that Z ¢ = 0. Thus both ZU {t < 0} and Z U {¢t > 0}
are inconsistent. By completeness of the Fourier-Motzkin procedure we have that
both augmentations of Z lead to an inconsistency. Let C be the inequality constraints
obtained from Z by saturation, and let # be the substitution obtained by accumulating
loop residues. If 7 is inconsistent already we are done, otherwise augment C by t6 > 0
arriving at an inconsistent inequality r > 0, where r € (—00..0]. Separately we add
t8 < 0 to C to arrive at an equally inconsistent inequality.

If t0 is a constant it must be the case that 60 = 0 for both 60 < 0 and 0 > 0 to
be unsatisfiable. If £6 is not a constant we can rewrite the inequality t0 > 0 as z1 > t1
(or zy < t1), where x; is the variable with smallest index having non-zero coefficient.
Symmetrically 6 < 0 is written as z1 < t;.

We derive a contradiction from these inequalities by matching z; > #; with an
inequality s; > 27 (or s; > z1) in C, and z; < #; with an inequality s§ < z; (or
s1 < x1). Since C has been saturated with respect to its inequalities it furthermore
contains all consequences of the combined constraint s} < s;. On the other hand, both
t1 < s and s} < t; are inconsistent. This can only be the case if C implies s} = s;
and therefore z1 = s1. Now, the equality s} = s; involves only variables with indices
higher than z1, so the induction hypothesis implies s}6 = s10 = 216 contradicting the
existence of the constraints s; < z; < s} in C.

CHAPTER 5. ARITHMETIC 70

From Lemma 5.1.1 and 5.1.2 we now have all relevant ingredients to obtain the function
addConstraint that accumulates arithmetical constraints incrementally while extracts all
derived equalities.

The formulation chosen here allows us to infer that all intermediate inequalities can
be turned into equalities. This generalizes the observation (Theorem 1) in [LHM93] that
an inequality a;x < B; is an implicit equality in a constraint set C iff Fourier’s algorithm
produces an inequality 0 < 0 as a linear combination of constaints containing it.

5.1.3 Disequalities

When variables range over rationals and reals it is not necessary to process disequalities
s # t other than checking s # t6 for generated substitutions. In the congruence closure
combination this reduces to checking that 0 never gets connected with a # edge as we form
the disequality constraint 0 # s—t¢. This relies on the following property of linear arithmetic
over the rationals:

Lemma 5.1.3 (Convexity) For every ti,...,t,, if 0 is the substitution obtained from
saturating a satisfiable set of inequalities I, and 0(t;) # 0(t;), i # j, then I is has a model

where t; # tj, for i #j.

5.1.4 Extracting models

Suppose that a set of constraints C contains the variables 1 < 9 < ... < z,,, and we wish
to find an assignment of rationals to x1,...,z, satisfying C. Such an assignment can be
found by first collecting the set of inequalities of the form I < z,,, z, < u' Since z,, is the
variable with highest index [and u must necessarily be constants satisfying [< uw. Any
rational ¢ between [and u can be legally assigned to z,, and we can repeat the procedure
on Clz, — ¢| to extract an assignment for x,_; until all variables have been assigned a
rational value.

The approach is also used for interfacing with other decision procedures by providing
more general functions SUP and INF. The domain of both functions consists of a constraint
set C and an arithmetical expression ¢, and the range of SUP is QU {00}, whereas the range
of INF is QU {—oo}. SUP(C,t) is computed from (C',8") = addConstraint (C, {z jymmy < t})
where Z gymmy is a fresh variable whose index is higher than any variables contained in C.
In the result #" is an identity substitution. If the updated constraint set C’ contains an
inequality Zgymmy < ¢ (0T Zgyummy < q) 2 we set SUP(C,t) := q otherwise SUP(C,t) := +oo0.
INF(C,t) is computed in a dual way via addConstraint (C,{Zqummy > t})-

Extensions of the Fourier-Motzkin procedure to include integer linear arithmetic [Pug91]
provides the corresponding functionality for integers.

'In the absense of an inequality [< &, we set [:= —oo, similarly 4 := +oco.
¢ must necessarily be a rational constant, since the new variable has highest index.

CHAPTER 5. ARITHMETIC 71

5.1.5 Examples

Hardware modeling: A very good example for benchmarking the linear arithmetical
decision procedures is the verification of the SRT division table presented in [CGZ96].
Procedures for linear arithmetic and records are required to close most branches. The main
theorem, that the coefficient is guessed correctly at each cycle, is verified in less than 60
seconds?.

The speed of verification does however depend on the order the axioms are listed. Split-
ting axioms in the wrong order creates linear constraints that the Fourier elimination method
has obvious problems with. On the other hand, the 60 seconds here improve on the reported
3.5 hours using Matlab or the Mathematica based Analytica.

Program analysis: To check violations of array bounds, integer linear or linear arithmetic
solvers can be used to resolve constraints from program analyzers. While the analyzer
from [Diw98] has so far used the Omega package [Pug91] as its constraint solver for integer
linear constraints, a collection of 100 sample data from different experiments gave precisely
the same answers with the rational linear arithmetic as with integer linear arithmetic. This
could be taken as a heuristic argument for using a rational linear arithmetic solver even for
integer linear arithmetic constraints.

For reasons most likely connected to implementation and not theoretical limitations, our
ML solver could handle at least one larger benchmark not handled by the Fortran based
Omega package.

5.2 Non-linear arithmetic

This section describes an extension of the linear solver to the non-linear case, i.e., the case
where variables can be multiplied to form non-linear multivariate polynomials.

Verification of non-linear, or symbolic hybrid systems produces verification conditions
with non-linear polynomials. Small examples from [MS98] are listed in Table 5.1. Exper-
iments with the commercial Redlog package were competitive for the first example, fur-
thermore Redlog provides quantifier elimination for alternating quantifiers. Unfortunately,
Redlog is a stand-alone tool and does not integrate smothely with solvers, and does for in-
stance not handle division in inequalities, so it was not possible to use Redlog on examples 2
and 3. It should be noted that other highly optimized tools exist for checking satisfiability of
non-linear inequalities, such as Numerica [HMD97]. Support for non-linear arithmetic from
first principles can be found in state of the art verification systems, such as PVS, where the
prelude includes well over 250 basic lemmas of non-linear arithmetic over the reals. These
lemmas are all established automatically using the decision procedure described here.

It has been known since Tarski [Tar51] that the satisfiability problem for constraints
over the real-closed field are decidable by quantifier elimination. Although cylindric alge-
braic decomposition [Col75, Hon92] can be used to perform quantifier elimination in doubly

3 Allegedly Intel’s SRT implementation for the Pentium processor contained bugs in the lookup table
resulting in a 500 million dollar recall

CHAPTER 5. ARITHMETIC 72

No. | Formula sec.
m<l+d-r Nr<0ANzxz+t<dANt>0
1. > m<Il+r-z+r-t 0.03
v>0 Avr>0 A p<a
A xo+p/vr+ifor >afvi+afor N p>i
2. — afvy +afvr+vy-t/vy < xzo+t+p/uvg +ifvr | 0.06
2-(a—id)jor+(a—1i)/va<zi A v2>0
A vor>0Ap>i Ap<a
3. = (a—1)/or+(p—i)/or+ (a—1)/vy < x1 0.06

Table 5.1: Sample non-linear constraints

exponential space there are still several challenges in providing “practial” procedures for full
elimination of quantifiers. One systematic approach is to use a Grébner basis solver [Buc65]
to simplify polynomials, though even computing a Grobner basis can be costly. One can also
add more ad hoc approaches such as simplifying non-linear constraints using a data-base of
rewrite rules [DS97] to eliminate trivial redundancies.

The path taken here adapts the partial quantifier elimination procedure from [Wei97]
to eliminate variables that occur with degree not greater than two, and couples this tightly
with a sign-based abstraction domain and loosely with the linear-arithmetic solver. The
equalities inferred by the linear solver are used to eliminate variables in the constraint
solver for non-linear arithmetic. On the other hand, the non-linear solver infers polarities
of multiplied terms that are propagated as inequality constraints to the linear solver. In
this way we aim to exploit the best of both approaches: efficiency with expressibility.

5.2.1 A partial method for quantifier elimation

We are given the problem of deciding the satisfiability of a conjunction of inequalities
between polynomials. Since the quantifier-free conjunction is satisfiable if and only if the
existential closure is valid, methods from quantifier elimination (so-called projection) for
polynomials become a natural tool for establishing satisfiability.

We will here review a partial method for eliminating quantifiers from multivariate poly-
nomials whose variables occur with low degree. It eliminates a variable from a polynomial
inequality by solving the variable to be eliminated symbolically. For example, in the poly-
nomial a - x + b, where a and b may contain variables different from x a formal solution for
z in the equality a -z +b =01is z = —g subject to a # 0. In solving a -z + b > 0 we
introduce a symbolic parameter € and get z = —g + € subject to a > 0. To model arbitrary
large positive and negative values for the eliminated variable formal symbols +oo are also
added to the language. To allow substitution of expressions involving subterms of the form
b

2, € and Foo define:

CHAPTER 5. ARITHMETIC 73

Definition 5.2.1 ([LW93])

a-(+oo)+b=0 def a=0Ab=0 (5.1)
def
a-(£oo)+b>0 = a=0Ab>0V +a>0 (5.2)
def
a-(foo)+b>0 = a=0Ab>0V +a>0 (5.3)
def
a-(£o0)+b#0 = a=0Ab#£0 V a#0 (5.4)
(5.5)
a-(c+e€)+b=0 def a=0Ab=0 (5.6)
def a>0 ANa-c+b>0
. > = = = .
a-ctea+b=20 (\/ a<0/\a-c+b>0> (5.7)
def
a-(c+e)+b#0 = a#0V b#0 (5.8)
def a>0 Aa-c+b>0
a-(c+e)+b>0 = (v a§0/\a-c+b>0> (5.9)

Under the the assumption ¢ # 0, to substitute the formal division of two polynomials %
for x in a polynomial p(x) one defines:

d

a-;+b,00 def a-d+b-cp0 pe{=#} (5.10)

d def a-d+b-cp0 A c>0

. — = < .
“ c+b’00 <V Opa-d+b-c A c<0> pel< <} (5.11)
(5.12)
d d

a (G0 +bp0 o @t tbocp0 pe{= £} (5.13)

d def a-(d+€)+b-cp0 A c>0
. —_— = <
¢ (c+6)+b’00 <\/ Opa-(d+e)+b-c N c<0 pei<stB14)

It follows from [LW93] that

Theorem 5.2.2 Let z occur linearly in the formula o(z) :

Nai-z+b=0A Naj-z+bj#0 A N\ ap-2+b, >0 A Nag-z+b>0
el jeJ keK ler

CHAPTER 5. ARITHMETIC 74

Then 3x . p(x) is equivalent to

b; b;
V ai#0Ao(—==)v \/ ai #0Ap(—=+€) Vp(—o0)
ieTUK i eJuL @i

Though the branching factor is linear in the number of literals containing x and the
degree of the generated polynomials may increase, the method can be adapted to work
for surprisingly many applications and is furthermore extended to second and third degree
variables [Wei97, Wei94], and, more elaborately, to the general case.

Example: Elimination of z from the equality
olr,y): z-y—5=0
produces the constraint
y#0 A w(%, y) which simplifies to y # 0
and the substitution [z — g] On the other hand, elimination of z from the equality
o(r,y): z-y=0

produces the constraint
©(0,y) V p(—00,y) which simplifies using (5.1) to
y=20
The disjunction corresponds to a split with two branches. The respective branches
generate the substitutions:

01 : [z — 0], Oy : [2— 2 o0,y — 0]

where z_., is a fresh variable. The incremental solving allows (in principle, as the
present implementation does not return substitutions) to establish goals such as:

z-y—5=0 — f(x+2):f(§+2)

and
z-y=0 — f(2-2'%) =f(0) V g(z-y*+y-5+1) =g(1)

for arbitrary functions f and g.

In the next section we describe our approach to simplify polynomial inequalities and
eliminate redundant branches generated by the quantifier elimination procedure.

CHAPTER 5. ARITHMETIC 75

5.2.2 Simplification using abstract interpretation

We propose the use of a simple sign-based abstract interpretation domain to simplify and
maintain polynomials. Polynomial inequalities are partially evaluated and simplified using
only information about the signs of variables. The sign-evaluation allows to often also
reduce the degree of polynomials in polynomial inequalities appearing in the benchmarks
we have encountered so far. Also, its effect on limiting branching factors is dramatic. Even
small examples produce a large branching factor when the elimination procedure is used
without the sign-based evaluation. Together with a tight integration with the solver for
linear inequalities this comprises a handy tool for mixed linear and non-linear arithmetical
constraints.

Besides a conjunction of polynomial inequalities the non-linear solver maintains a partial
map from variables to signs. The sign of a variable x is one of the following constraints

r=0, z#0, >0, >0, z<0, <0, ?

Signs are partially ordered with respect to implication such that since z <0 — 2 <0 the
sign x < 0 is preferred for z < 0 as the sign for . The sign “?” is preferrably avoided as it
imposes no constraints. The partial order is illustrated in Figure 5.1.

z <0 z=0 x>0

Figure 5.1: A Hasse diagram for the partial order of sign constraints

Signs for variables are first accumulated by inspecting the polynomials presented to the
non-linear solver. For example, a polynomial inequality 23 > 0 results in the sign constraint
x > 0. Signs are evaluated using the obvious rules, such as

(z>0)-(y<0) = (z:y<0)
(z:7)? = (#2>0)
(z>0)4+(y<0) = (z+y:7?)

CHAPTER 5. ARITHMETIC 76

Since squaring and multiplication preserve more sign-information than addition we eval-
uate polynomials after multiplication has been distributed outwards as much as possible.
Polynomial inequalities can then be simplified further based on the sign evaluation. For
instance, if p # 0 is required, then each multiplicant that has a strictly non-zero sign (<, #,
>) is eliminated. Naturally, sign-evaluation can do early detection of inconsistencies and
simplify polynomials.

Example: Assume z > 0 and y > 0. We can then simplify
t-y-z2+22-2-y>0

to the equivalent
z24+22>0

because
roy-z+22-2-y>0

& ozey-(2+2%)>0
o y-(z+23)>0
“ z4+22>0

We do use methods that would split the last constraint to z > 0 V z < —1, but instead
establish satisfiability directly by eliminating z.

5.2.3 Integration between linear and non-linear solvers

While asserted inequality constraints are initially passed to both the linear and non-linear
solvers the best features from each are transferred to the other.

If possible, equalities derived in the linear solver are written in solved form z = ¢ where
x is a variable that does not occur under multiplication in t. Whenever this is possible
the substitution [z +—] is besides being applied to the context in the linear solver also
being applied to the non-linear solver. Since the linear solver is equationally complete
(lemma 5.1.2) we obtain a full detection of implicitly fixed variables. This will therefore
(slightly) generalize the features of the “naive” solver reported in [Col93] for Prolog III.

Polarities derived in the non-linear solver are conversely made visible to the linear solver
to for instance make an early detection of the inconsistency

>0 Ay>1 ANx-y<—-z—y

because the non-linear solver adds the constraint x - y > 0 based on the polarities x >
0 A y > 0. The resulting set of linear constraints are contradictory.

CHAPTER 5. ARITHMETIC 7

constraints _
constraints

. substitutions
& polarities

Linear solver —————

substitutions

Figure 5.2: Integration between the linear and non-linear solvers

5.3 Summary

This chapter presented a combination of linear and non-linear solvers for arithmetical con-
straints. We used Fourier’s method for elimination of variables to decide satisfiability for
inequality constraints and also extract implied equalities as substitutions on the fly.

Chapter 6

Recursive and co-recursive data
types

In this chapter we investigate decision procedures for recursive and co-recursive data types
and how these can be integrated within the congruence closure-based decision procedure.
The chapter falls into two parts.

In the first part, Section 6.1, we discuss theoretic properties of data types. Recursive
data types are generated from a set of constructors and supplied with induction schemas
ensuring no junk (the data type domain is the least set that can be obtained by applying
constructors) and no confusion (elements are given by a unique sequence of applications
of constructors). Recursive data types correspond to initial algebras (free term algebras).
Co-recursive data types are conversely supplied with a co-induction schema, which ensures
mazimal junk (the elements of the data type domain is the largest set that can be obtained
by applying the constructors), but still no confusion is required. Co-recursive data types
correspond to final algebras. Co-recursive data types are essentially the infinite term trees
in Prolog IIT [Col84]. In logic programming, so-called sorted feature trees [Smo92, NP93,
Tre96] contain several similarities with co-recursive data types.

In the second part, Section 6.2, our goal is to show how constraints involving equations,
disequations, inequations (the subterm relationship), and arithmetical constraints can all
be integrated within the same combination. In particular, we present optimized algorithms
for handling disequations, inequations, selectors, and unification of non-well-founded terms.
When the domain of a data type is infinite we demonstrate how disequations can be tested
for satisfiability in a processing-by-demand combination. The data-structures we use allow
to handle inequations saving some redundant branching as compared to [Ven87, Tul94].
By treating selectors as uninterpreted within the data type theory, but interpreting them
externally, we obtain a lazy approach to selector evaluation. This allows a solver-based
decision procedure integration and has also demonstrated significant speedup on bench-
marks using selectors. The constructor part of the theory of data types can then be dealt
with using efficient Robinson-style unification algorithms. The subterm relation for well-
founded data types is finally coupled with arithmetical constraints on the size of data types

78

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 79

in Section 6.2.6.

6.1 The theory of (co-)recursive data types

The material in this Section summarizes a number of facts about recursive and co-recursive
data types. Several results may be derived as special cases from well-known general results.
Other results are particular to first-order theories of data types.

6.1.1 Signatures for sorted data types

By a recursive data type T we understand an implicitly defined sort characterized by a
signature of the form
(T,Sl,...,Sn,2>

where S1,...,5, are different non-empty sorts and 3 is a finite set of constructors. Each
constructor ¢ in X has an associated arity:

c:Ty x--xT,, =T

where n, > 0, and each of the sorts 7T} is taken from the list 7, S1,...,S,."
With each constructor ¢ € ¥ we also associate a set of selectors s{,...,s;, , and a tester
isc: 17— B.

Example: A signature for a domain of binary trees over a base sort S can be specified
using
(tree, S, node : tree x tree — tree, leaf : S — tree) .

With node we associate the selectors left : tree — tree and right : tree — tree and
tester isnode : tree — B. With leaf we associate the selector leaf-contents : tree — S
and the tester isleaf : tree — B.

Various characteristics of signatures lead to important special cases. We say that a
signature is:

well-founded if there is a constructor that does not have 7 in its domain.
linear if all constructors have 7 occurring in at most one place.

singular if there is only a single constructor c of arity 7 X 7... X 7 — 7.
flat if 7 does not appear in the domain of any constructor.

enumerative if each constructor has arity 7 (does not take any arguments)

!Thus we limit ourselves to a very simple theory of data types. In particular, 7 occurs only co-variantly
in the domain of each constructor. data types with contra-variant dependencies have a much more involved
model-theory.

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 80

a record if there is only one constructor and 7 does not appear in the domain of that
constructor.

Lists are a special case of linear data types. Lists are also a special case of queues, treated in
chapter 8. The results in this chapter are therefore aimed exclusively at non-linear and flat
data types. Singular data types have only trivial models, so these are ignored. By treating
records and enumeration types as data types we can reuse the available tools developed
here without having to duplicate effort on these types.

6.1.2 Canonical models

We will discuss two natural models for data types: recursive and co-recursive models. Since
these are in a good sense dual to each-other we discuss them in the same Section.

6.1.2.1 Initial algebras

Assume we are given an interpretation Iy for the sorts Sy,...,5,. The class of possible
interpretations for 7 that we shall consider are all extensions of Iy. The initial algebra
I;yi is the extension of Iy such that for any other extension I there is a homomorphism
h : Ijny — I. This definition (which is a special case of the more general one from [Bir35])
is well founded as we have

Proposition 6.1.1 ([Gra79]Corollary 24.1, Theorem 24.2) If I;,;; exists it is unique
up to isomorphism.

We give a proof for our special case, as the same techniques are used for final co-algebras.
Proof:

Let I and J be initial such that I[S; = J[S; = Iy, i = 1,...,n. Then by assumption

homomorphisms A : I — J and g : J — I exist, and for every term t(x1,...,Z,,) with
Tj S Si,
goh(t(zy,...,zm)) = goh((zl,... z]))
= ()
= tl! . . 2]

)
)

So g o h is an isomorphism on the term universe of (1, S, %). a

= (t(xla"'axm

To construct an initial model I;,;;, and later construct dual final models, we define a 7-tree:

Definition 6.1.2 (7-trees) A 7-tree consists of a (T, \, sort), where
1. T is a non-empty prefiz-closed subset of {1...max{arity(c) | c € }}*,
2. X:T =X UIy(S1)U...Iy(Sy) is a labeling, and

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 81

3. sort : T — {1,51,...,S,} labels the nodes by sorts,
such that

1. If sort(t) = 7, then A(t) = ¢ for some ¢ € ¥, and if ¢ has arity Ty X ... x Ty, = T,
then tl,...,tn. € T, but ti € T for i > n., and sort(tj) =Tj for j =1,...,nc.

2. If sort(t) = S; for some auziliary sort S;, then X(t) € Io(S;), and ti € T for all .

Finite 7-trees are the trees where T has finite cardinality, and infinite 7-trees are the trees
where T is not restricted cardinal-wise. The set of rational trees is obtained by taking the
T-trees that have only a finite number of different sub-trees.

Theorem 6.1.3 I;,;; exists.

Proof:

The term-algebra over Iy(S1),...,Io(Sn), where every distinct term over ¥ corre-
sponds to unique elements is isomorphic to the set of finite 7-trees. Let I be another
interpretation. We construct h : I;n; — I by recursion as a union (J;,, hi. For i =0
we define hy as the identity map on the range of Iy. Inductively assume that h; is
given, and let ¢(¢y,...,t,) be a term where t1,...,t, are terms of depth at most i.
Then

I(tj) = hi(Linit(t5)) = hi(t;) j=1,...,n

We now set

hist Tt (c(t1, o £0)) = hisr (c(try . 1)) = I(c(tr, .. tn)) = I(c(hi(tr), ... hi(tn)) .

The interpretation of testers is now uniquely given by the axioms
Ve eT.VeeX.isc(z) « Jy €dom(e) . z=c(y) . (6.1)

While the interpretation of constructors and testers is unique (up to isomorphism) we
admit any extension of I;,;; satisfying the selector axioms:

Vee X . VY(y1,...,yn) € dom(c) . si(c(yrs-- - yn)) =i - (6.2)

This leaves the interpretation of selectors under-specified when the selector does not match
the constructor associated with the term where the selector is applied. Hodges [Hod93],
for instance insists that s¢(¢'(y1,...,yn)) = ¢(y1,-..,yn) when ¢ # ¢ to obtain a unique
interpretation of selectors. This works only in an unsorted setting, however. Treinen [Tre91]
maps non-matching selector applications to a fixed element | g for each sort S. If selectors
are guaranteed only to be applied to terms, whose top-most constructor matches the selector,

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 82

we may get rid of the selectors in an initial phase using transformations of the following
form:

C[s§(t)] — Clzi] N t=clz1,...,Tiy...,zp) . (6.3)

where z1, ..., z, are fresh (existentially quantified) variables. We are then back at the pure
constructor theory. This transformation is only sound if ¢ could only have been generated
as an application of c¢. For instance

left(leaf (z)) = y (6.4)

is satisfiable if leaf is a total function. But the transformation from (6.3) produces the
unsatisfiable
Az1,22 . 1 =y A node(zy,x2) = leaf (z) .

This situation actually arises in [Sho84], where the solver for data types is unsound and
returns false when solving (6.4).

Alternatively, we can characterize the initial algebras with the axiomatization Z in
Figure 6.1.

F(r)Cr (introduction)
VXCr FX)CX - 71CX (induction)
Vei,cj € 8,Vy1 € dom(c;),y2 € dom(c;) . (no confusion)

ci(yr) =cj(y2) — i=jAy1 =1y
Vee X . isc(z) < Jy € dom(c) . z = c(y) (tester)

Ve € £,Y(yi1,...,yn) € dom(c) . s§(c(y1,---,Yn)) =Yi (selector)

Figure 6.1: Initial algebra axiomatization Z

To state these axioms we use the predicate transformer F, defined:

def

‘7:(‘9) {C(yl,-.-,yn) | ce, (yla---ayn) € dom(c)[S}

where dom(c)[S is the domain of ¢ where occurrences of 7 are restricted to be included in
the set S. The analogy with taking the post-condition from a set of states can be helpful
to keep in mind.

Example: For the data type of trees we have:

F(X) = {node(z,y) | z,y € X} U{leaf(z) | z € S}

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 83

So for instance
FX)CY & Vrz,ye X,se€ S .node(z,y) €Y A leaf(s) €Y
and

XCFY) & VeeX .y, z€Y,s€S.z=node(y,z) V x=Ileaf(s)

Returning to the axioms in Figure 6.1,

Proposition 6.1.4 The introduction, induction, and no confusion azxioms determine T up
to isomorphism.

Proof:

From the induction axiom we have
TC X | F(X) € X}
From the introduction axiom we have the converse
WX FX)cX}cr
In summary

T = ({X|FX)CX} = [F0) = uX . F(X) .

a<w

In words, 7 is the least set obtained by applying the constructors finitely many times
to elements from the base sorts S1,...,S,. Together with the (no confusion) axioms
we conclude that 7 coincides with the free term-algebra. a4

6.1.2.2 Final co-algebras

We now investigate decision procedures for the case where data types are interpreted as
final co-algebras.

An interpretation Ig,,; is a final co-algebra in a class K of interpretations (which are
as before all extensions of Iy) if for any I in K there is a homomorphism A : I — Ifpe.
The class K of interpretations we here have in mind are the strongly extensional mod-
els [Acz88]. Strongly extensional models are those where identity coincides with the largest
bisimulation [Mil89].

Two elements a, b € range(I) are bisimilar if there is a binary relation R C range([) X
range(]), such that R\ (I(7) x I(7)) = diag(I(S1)) U ... U diag(I(Sy)), and (a,b) € R
and for every a,a’ € I(7), (a,a’) € R iff there are b,b € range(I), ¢ € ¥ such that
a=I(c(b)), d =1I(cb)), (b, b)) € R, i=1,...,arity(c). The largest bisimulation is as
usual the union of all bisimulations. Alternatively we can appeal to the Anti Foundation
Axioms (AFA) to factor out bisimilar models. The same proof as for Proposition 6.1.1 gives

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 84

Proposition 6.1.5 If 15,y exists it is unique up to isomorphism.

To construct g, we will now use the domain of infinite 7-trees. It is straight forward to
verify that equality on infinite 7-terms is a maximal bisimulation. Intuitively, two different
T-trees differ on a finite path, establishing that there can be no bisimulation between them.
More formally,

Lemma 6.1.6 Equality on infinite 7-trees is a mazximal bisimulation.

Proof:

Take any bisimulation relation R on 7-trees and suppose that
((Tl, Al, SO’r't1>, (TQ, Aa, sort2>) € R.

We prove by induction on the length of strings in T} and T5, that they must coincide.
The base case requires to establish that € € T iff ¢ € T, which is the case as both
sets are non-empty and prefix-closed, Ai(e) = Az2(e€), and sort;(e) = sorta(e), which
follows by unfolding the condition on R once. As the induction hypothesis suppose
that 77 and T, have the same strings of length less than ¢ and that sort; and sorts as
well as A\; and As coincide on all strings of length less than i. Now take any string s
of length 7 — 1 (prefix closure of T}, T» makes sure this is not a restriction) and define

for k=1,2
T ¥ fte{1.. max{arity(c) | c € S}}* | st € Tj;} (6.5)
M) € A(st) (6.6)
sorty(t) o sorty(st) (6.7)
Now either sorti(e) = S; for some sort S; or sort{(e) = 7. In the first case 77 =
Ts = {e}, and X\] = Xy = [e — s] for some s € Ij(S;). In the second case the
conditions on R require that there is a ¢ € ¥ such that Aj(e) = Aj(e) = ¢ and for each
i=1,...,arity(c), ((TF', A", sort5"), (T5", A5", sorts')) € R. 4

We will now fix the interpretation If,,; as the one that maps every data type term ¢ to
the corresponding (isomorphic) 7-tree. Despite the naming Ifp,, we have yet to establish
whether it is indeed a final co-algebra. This will not be the case when the models may
contain unnecessary junk. To avoid this, we restrict K further to those interpretations
where domain closure holds.

Definition 6.1.7 (Domain closure) Domain closure holds for I in K if for every a €
I(7) there are ¢ € X and b € range(I) such that a = I(c(b)). In other words we require the
interpretations in K to satisfy

T CF(r) .

Notice that domain closure holds for the construction we gave for If;,.

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 85

Theorem 6.1.8 Let the class of K interpretations satisfy domain closure and Ign, € K,
then Igna is a final co-algebra in K.

Proof:

Take an arbitrary interpretation I in K. As I satisfies domain closure we can for
each element in I(7) fix an arbitrary one-step unfolding (there is actually precisely
one by the (no-confusion) axiom). A one-step unfolding of a € I(¢) chooses a ¢ € &
and b € range(I) such that a = I(c(b)). We can now associate each element in I(7)
with a 7-tree by building it in stages based on the transitive unfolding obtained by
applying the fixed one-step unfoldings. a4

To capture finality axiomatically we can use the solution lemma, which states that all
(consistent) sets of equations have (unique) solutions. The solution lemma and its relations
to non-well-founded set-theory are discussed in [Acz88]. Stated using infinitary connectives
and index sets I and J, it reads

Ve:J—=7.3y:IT—=71. /\y(i):ti(x,y)
el

where each t;(z,y) is a term over variables x(j),7 € J, y(i),7 € I, and there is no chain
01,92, ,0k,... € I, such that for each pair (a,b) € {(i1,%2),..., (i, ik+1),.- .}, the term ¢,
is y(b). This condition ensures that every variable y(i) is (eventually) defined in terms of
some term which is either of the form z(j) or uses a constructor. Notice that this schema
includes in K trees that are not rational.

We can therefore capture the final co-algebra axiomatization by the axioms in Figure 6.2
among strongly extensional models. Dual to induction, which implies domain closure, the
solution lemma implies the principle of introduction F(7) C 7.

T C F(r) (domain closure)
Vo :J =71 .3y I —=1. Nery(i) =ti(z,y) (solution lemma)
Ve, ¢j € 3,y € dom(c;),y2 € dom(c;) . (no confusion)

ci(y) =cjly2) = 1=jAy1=y2
Ve e X . isc(z) + Jy € dom(c) . z = c(y) (tester)

Ve € 8,Y(y1,...,yn) € dom(c) . s§(c(y1,---,Yn)) = ¥i (selector)

Figure 6.2: Final co-algebra axiomatization C

As an alternative to finality among extensional interpretations K, we can capture Ig,,

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 86

by asserting the principle of co-induction:
VXCK . XCFX) - XCr7.
The sort 7 is constrained as the greatest fix-point to F as the co-induction principle asserts
X CK|XCFX)}Cr
and the domain closure condition ensures the converse
TrC (X CK|X CF(X)},

SO in summary

T={XCK|XCFX)}=vXCK.FX).

We can relate this to the constructed If,, by showing that it is a maximal fix-point and any
other fix-point comes with an injection to Ifye. A proof of this observation can be modeled
directly after Theorem 14.1 in [BM96] page 198 where it is formulated for streams assuming
AFA. The explicit use of K in the co-induction principle is also pervasive in [Pau93, Pau97].
Here, co-induction is embedded in HOL using encoding from first principles. For instance,
for each base type a, K is the type a node set set, and terms are built from primitive
operations ® p, ®p, for forming products and sums over non-well-founded structures.

One can naturally bypass the entire discussion of finality by modeling co-recursive data
types directly using 7-trees as the basic notion. This has been done in [Fef96] in the case
of streams.

6.1.3 Mixed data types

We have presented the sorted signatures for (co-)recursive data types for simplicity with
only one data type attached. Consider now example 6.1.3.

Example: Mutual recursive definitions of trees and forests:

S,
< Ttree node : S X Tforest — Tiree, branch : Tyee — Tiree >
Tforest s nil : Tforests CONS © Tiree X Tforest —7 Tforest

In the case where Ty and Tfones are both interpreted a recursive data types or both
interpreted as co-recursive data types it does not take much effort to extend all definitions
to support such mutually recursively defined types.

The more subtle question is to provide meaningful interpretations and support for a
mixture of recursive and co-recursive data types. For instance, if we insist that the domain
of Tyree may include infinitely long branches, but that all forests should be finite one should
be able to constrain 7. as a co-recursive data type and Tfones as a recursive data type. In

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 87

general terms assume we have a structure
(Tca Try Sty e ey Sy Ly 20)

where ¥, and Y. are sets of disjoint constructors. The constructors f € 3, have arity T} x

. XDy, = 7, f € B¢ have arity Tt x. .. xXT,,, — 7, where Tt, ... range over 7¢, 7, S1, - - ., Sp.

We wish to obtain a recursive interpretation of 7, and co-recursive interpretation of 7.

assuming well-foundedness (X, contains a constructor that does not have 7, in its domain).
Alternating T-trees provide a way to obtain such an interpretation.

Definition 6.1.9 An alternating 7-tree is a possibly infinite T-tree (T, X, sort) over sorts
Tey Try Sty -+, Sy such that there is no infinite subset {w1,we, ws, ...} of T where Vi3] . wiy1 =
wij and Vi . sort(w;) = ..

Since in each case T is finitely branching, Konig’s lemma implies that this requirement is
equivalent to excluding infinite terms over 7,.

Alternating 7-trees are not necessarily the only meaningful model. In [BS98] general
conditions on structures including recursive and co-recursive data types are studied in order
to achieve meaningful combinations and integrated decision procedures.

6.1.4 Equational theories

A ground equational formula is built exclusively from boolean combinations of equalities.
A first-order equational formula ¢ is built from ground equational formulas by adding first-
order quantification.

6.1.4.1 Recursive data types

The induction schema from Figure 6.1 is the only non-equational axiom for inductive data
types. It implies two sets of equational axioms, namely domain closure, as well as that
no term is a proper subterm of itself. The latter has to be formulated using an infinite
supply of equational axioms, one for each term over ¥ together with auxiliary variables. In
summary we obtain the equational axiomatization in Figure 6.3.

6.1.4.2 Co-recursive data types

The axiomatization of co-recursive data types already contain axioms for domain closure.
The finite instances of the solution lemma looks remarkably dual to the no-cycles condition.
Thus, we state the corresponding equational axiomatization for co-recursive data types in
Figure 6.4.

6.1.5 Beyond equational theories

While a second-order system allows to define derived relations, such as the subterm relation,
a pure first-order system needs to introduce these separately. Hence, for the subterm relation

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 88

F(r)=r (fix-point)
Vo € 1,Vy.x # t(z,7) (no-cycles)
Vei,cj € X,Vy1 € dom(c;),y2 € dom(c;) . (no confusion)

ci(yr) =cj(y2) — i=jAy1 =1y
Vee X . isc(z) < Jy € dom(c) . z = c(y) (tester)

Ve € £,Y(y1,...,yn) € dom(c) . s§(c(y1,---,Yn)) =Yi (selector)

Figure 6.3: Equational system Zg for recursive data types

F(ry=r1 (fix-point)
vz € 7,39. \; vi = ti(T,7) (unique solutions)
Vei,cj € 3,y € dom(c;),y2 € dom(c;) . (no confusion)

ci(yr) = cj(y2) = i=jAy1 =1y
Vee X . isc(z) ¢ Jy € dom(c) . =z = c(y) (tester)

Ve e £,Y(y1,...,yn) € dom(c) . s{(c(y1,--.,yn)) =yi (selector)

Figure 6.4: Equational system Cg for co-recursive data types

s = t, which holds iff s is a subterm of ¢ is relevant for standard termination arguments of
recursive programs. The single axiom-schema subterm encodes this relation.
A ground decision procedure integration is presented in Section 6.2.5.

6.1.6 First-order equational decision methods
6.1.6.1 Encodings into S2S

Suppose that each sort S; can be encoded in an enumerable domain. We can then reduce
decision problems for the first-order theory of constructors (but without selectors) to wS2S
(the weak monadic second-order logic of two successors) for recursive data types respec-
tively full S2S for co-recursive data types. This connection is perhaps not surprising. For
instance [KS97] presents an encoding of recursive data types via wS2S and guided tree-
automata. It has however not been possible to find a definite reference to this connection,
so we discuss it in some depth here. The added value of using S2S is that the encoding also

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 89

Ve € ¥,Vz,Vy € dom(c) .
= c(yla"'ayn) < T= C(yla"' 7yn) \ sz = Yi (SUbterm)

Figure 6.5: subterm relation axiom schema

allows quantification over positions. The lost value includes problems in encoding under-
specified selectors, the apparent need for full S2S for co-recursive data types (it is believed
much more intractable than wS2S in practice [Kla98]), and impossible to extend the S2S-
based representation to handle subterm relations using the same translation (the first-order
theory with subterm relations is undecidable).

An encoding of terms using unary predicates is sketched below. The analogy with I;,;
and Ig,e should be kept in mind as we here essentially use binary tress to encode trees of
arbitrary, but bounded branching. The distinction between the initial and final models is
reflected in the type of quantifiers admitted.

1. Constructors. Assume that predicates Py, ..., P, encode t1,...,t,. Then P encodes
¢i(ti,...,tn;), where ¢; is the 7’th function symbol in ¥ with arity n, if the following
conditions are satisfied:

(a) P is downwards closed: Vz.P(zL) V P(zR) — P(z).

(b) P(e).

(c) The left branch departing e has length i and does not split: P(L?) but =P(L**1)
and —P(L'R) for 1 < j <.

(d) The right branch departing € has length n: P(R™) but =P(R"1).

(e) The j’th split on the right branch contains the j’th subterm: Vz.P(zR/L)
Pj(z) for 1 <i <n.

2. To check that a predicate encodes a well-formed term we introduce the abbreviation

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 90

encodes-term(P), which is defined with:

isPath(z, P) def Yy > x . =P(yL) V =P (yR)
We use isPath to encode values from the data type domains S;.
sort.(z, P) © P(sL) A P(zR) A ~P(zLR) A ~P(zRL)

This constrains P to branch both left and
right, but not followed by a zig-zag. It is il- | -
lustrated to the right. Tox X

sortg; (z, P) def P(zLY) A ~P(zL) A /\ —~P(zL/R)
1<j<i
A isPath(P,zRL) A P(zRL) A —P(zR?)
This constrains P to branch straight left with Q
a path of length 4, and right in a path follow- | ox X
ing a zig-zag movement. It is illustrated to x 7
the right. X X
isGoodRoot ;(z, P) def P(zLY) A ~P(zL1) A /\ —~P(zL/R)
1<j<i

A P(zRYTH) A = P(zR™12)
A /\ sortr; (zR/ 1L, P)
1<j<n;
Here ¢; has arity Ty x --- x T),, — 7.

def

encodes-term(P) sort (e, P)

A Yz . sort.(z,P) — \/ isGoodRoot ;(z, P)
CiEX
A Yz . P(zL)V P(zR) = P(z)

3. Testers are expanded according to the tester axioms.
4. Equalities of terms are now encoded as predicate equivalence (i.e., set equality).

5. First-order quantification is encoded as second-order quantification over unary pred-
icates (sets) relativized to encodes-term. For recursive data types quantification is
relativized to finite sets. This forces all terms to be finite. This can be accomplished

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 91

directly by using wS2S or by the predicate finite(P), where
finite(P) = =(3R.RC P A escape(R))
escape(R) = R#0D ANVreRIyeER.z<y

The characterization corresponds to a a weak form of Ko6nig’s lemma (for trees of
branching degree 2). For co-recursive data types, quantification is unrestricted. Finite
as well as infinite terms are admitted. Full S2S is required to represent quantification
of infinite sets.

The freedom to relativize variables in S2S produces as a side-effect a decision procedure
for first-order equational theory of mixed data types. We here have to relativize variables
to those which do not contain an escape sequence of recursive constructors.

6.1.6.2 First-order quantifier elimination

An early quantifier elimination procedure for free term algebras with commutativity axioms
can be found in [Mal71] (the original paper in Russian is from 1961). Maher [Mah88a]
gives quantifier elimination procedure for recursive and co-recursive data types. Although
presented in an unsorted setting it can be extended in a straight-forward way to multi-sorted
data types [Mah88b]. While only equational axiomatizations are discussed, categoricity of
the second-order axiomatizations Z and C implies:

Corollary 6.1.10 For every first-order formula @, where every atomic formula is an equal-
ity between T-terms without selectors:

and
Cryo iff Cpkye iff Cple.

Unfortunately Maher’s decidability results do not extend to selectors when their in-
terpretation is left under-specified. It is for instance straight forward to simulate binary
predicates with a selector applied to a non-matching binary constructor. This allows to re-
construct two-counter machines and other Turing-complete devices. Rackoff proves [Rac75]
and Vorobyov [Vor96] reproves that the first-order theories of recursive and co-recursive
data types are non-elementary in the sense of Kalmar, i.e., cannot be decided within time
bounded by a k-story exponential function for any fixed k. Both the quantifier elimination
procedure and the embedding into S2S provide a comparable upper bound.

6.1.7 Related theories of data types

The theories of feature trees [Smo92] are related to the co-recursive data types discussed
here. Sub-feature relationships are for instance studied in [MNT98]. Features do not have

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 92

the same arity restrictions that the data types have here. This makes sub-feature constraints
harder (complete for PSPACE, they correspond to automaton simulations) than the NP-
complete subterm relations studied here.

6.2 Decision procedure integration for data types

We will here develop procedures that can be used to verify claims like

type sexpr == CONS :: car : sexpr, cdr : sexpr | NIL

value x,y,z : sexpr

NIL <= CONS(NIL,NIL)
x<=y/\Ny<=x-->x=y

x <y /\y<=x -—> false

NIL < CONS(NIL,NIL)

x < CONS(x,y)

x <=y --> x < CONS(y,z)

CONS(x,y) = CONS(y,z) --> x = z

car(x) = NIL /\ x = NIL --> car(car(x)) = NIL
length(CONS(NIL,NIL)) = 3

length(A) > length(B) --> ! (A <= B)

all in neglible time with the same integration of decision procedures.
Without much added effort we also obtain procedures for automatically verifying claims
for co-recursive data types, such as

cotype sexpr == CONS :: car : sexpr, cdr : sexpr | NIL

value x,y : sexpr

CONS(x,x) = x /\ CONS(y,y)
CONS(x,y) = x /\ CONS(y,x)

y-—>x=y

y

X —-> X

Due to STeP’s focus on reactive systems the less trivial examples that these decision pro-
cedures have been exposed to have involved only records. For instance, a possible encoding
of the version of the SRT lookup table presented in [RSS96] requires more attention to
how record projections are handled. A preliminary version of record projection decision
procedures based on Shostak’s suggestions [Sho84] required 4 minutes to verify the main
claim. With the lazy evaluation of the projection (selector) operations we present here it is
verified in 10-30 seconds depending on how the theorem is presented.

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 93

The required machinery is being developed in the rest of this chapter.

6.2.1 r7-automata

The union-find structure used in the congruence closure induces a structure much like
a top-down deterministic tree automaton, by taking () as states and successor function
0 = children o Lg : Q — Q*. In general we can not assume that Lg is always up to date
with the union-find structure. In the revised definition of & below, we therefore apply find
to each child of Lg(q) to anticipate a later update of Lg. By labeling each state ¢ by the
head function symbol in Lg(q) we also obtain a way to access terms associated with the
states.

When interpreting a specific data type 7 with constructors 3 C F we will however use a
modified successor function, which only produces successors for a state ¢, when it is labeled
by a function symbol in 3. Thus,

Definition 6.2.1 (7-automaton) Given the union-find structure with terms described in
Section 3.2 and data type T with constructors %, the T-automaton is a tuple

A:(Q, §:Q—Q, A\:Q— F)

such that

Mg) € let (f,9) = Lolg)in f

d(q) LT, Aq) € X then map find (children(Lo(q))) else ()

Since we have just defined 7-automata we will sneak in two auxiliary definitions associated
with these automata. These concern paths in 7-automata and reachability.

Definition 6.2.2 (Paths: 7) A path 7 is a sequence of positive integers. The evaluation

of state q on path w is written w(q) and defined via:

€(q) = q
(i-m)(q) = m(d(q):)

where 0(q); is the i’th projection of d(q) defined (arbitrarily) as q if |6(q)| <i. A path 7 is
well formed on q if T ise or m =4-7', |06(q)| > i and 7' is well formed on §(q);. Paths are
partially ordered by the string prefix relation.

Definition 6.2.3 (Reachability) Let qq,qs be states in Q, then

g1 <qo iff there is a path 7 such that qo = 7(q1)

6.2.2 Unification using 7-automata

Since terms are represented by the union-find node that corresponds to the top most sub
term we can unify a pair of terms based on a Robinson-style unification algorithm [BS93] for

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 94

the pair of corresponding union-find nodes. More generally, given a set of pairs of union-find
nodes £ define unify in Figure 6.6.

unify(E) = unifyPairs(Id,E) where

unifyPairs(o,()) = return o
unifyPairs (o, {q1 z @tUE) =
let
¢, = (¢1)o and ¢} = (q2)0
in
if ¢§ = ¢, then unifyPairs(o,&) else
if AM(¢}) & X then unifyPairs(o - [¢} — ¢5],&) else
if AM(¢y) € X then unifyPairs(o - [¢) — q}],&) else
if A(¢1) = A(¢5) then unifyPairs(o - [q] — ¢4],
EU{3(d))i = d(aa)i | i < arity(Lo(d))})
else return FAIL

Figure 6.6: Unification using 7-automata

The result of unify is either FAIL, in which case the input terms do not unify, or a
substitution ¢ mapping union-find nodes to union-find nodes. The restriction of ¢ where
domain nodes are labeled by variables (i.e., whose head function symbols are not in X)
induces a most general unifier. The easiest way to see this is perhaps by viewing the
present algorithm as a refinement of Robinson’s unification algorithm.

Operations associated with the substitution o can be implemented using a union-
find data-structure. We then obtain an almost linear-time unification algorithm as noted
in [BN98]. Zhang [Zha92] gives a slightly more efficient “shell-nut” data-structure that
works as a lazy union-find structure and solves the union-find problem for unification in
constant time. Every step eliminates one state or discharges an equality. The entire unifi-
cation process can therefore be implemented to run in time linearly in ¥,cqmax(1,|d(q)|)
(using the Shell-Nut data-structure). In [JK90] it is left open whether rational trees could
be unified in linear time, but the shell-nut procedure does precisely that.

6.2.3 Integration with congruence closure

Shostak [Sho84] proposes a solver for a special theory of S-expressions (convex S-expressions,
where the axiom x = CONS(CAR(x) ,CDR(x)) holds). With some goodwill it can be extended
to other data types. However fundamental to this approach selectors like CAR and CDR are
treated as interpreted symbols and may therefore not become part of a solved form.

We will use the unification algorithm from Figure 6.6 to solve equalities for recursive as

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 95

well as co-recursive data types. By separating out the treatment of selectors and testers we
will be able to make some theoretical observations on differences in decision complexities,
and also be able to obtain a solver that works for a maximally flexible interpretation of the
selectors.

6.2.3.1 Recursive data types

Presented with an equality constraint ¢ = s, where s and ¢ are terms over the recursive data
type 7, we can invoke the unification algorithm from Figure 6.6 on the pair of union-find

nodes {qg; L q:}. In case of failure s and ¢ differ on a common position with incompatible
constructors. The equality ¢ = s is then unsatisfiable. In case of success, the unification
algorithm returns a substitution [¢g1 — ¢},...,¢, — ¢,,]. We can perform the occurs check &
posterior in linear time using a topological sorting algorithm or using Tarjan’s algorithm for
finding strongly connected components in a graph. Tarjan’s algorithm produces a partition
of the states (). We then check that each partition is a singleton set, without a looping
state transition. This check can naturally be interleaved with the generation of strongly
connected components and unification. This gives essentially the occurs check approach
of [RP89]. Alternatively one can use the linear-time algorithm from [DST80] to perform
the congruence closure of A. This algorithm terminates if the graph contains a cycle. Note
that the graph induced by A and the unifier contains a cycle if and only if the occurs check
is violated.

Provided the occurs check is not violated the substitution [¢1 — ¢},..., ¢, — ¢,] from
the unification algorithm is equivalent to a solved form

where m < n and none of the z; occur free in the ;. As unification does not produce new
states, no new terms need to be presented to the congruence closure before it can process
the set of solved equalities [¢1 — ¢,...,¢n — ¢},] by merging ¢; and ¢} for i = 1,...,n.
Notice how the use of directed merge, which sets the find of ¢; to that of ¢}, is consistent
with the fact that if ¢g; is labeled by a constructor it coincides with the constructor labeling

G-

6.2.3.2 Co-recursive data types

The occurs check is not required for co-recursive data types. Instead the result of unification
can produce bisimilar nodes that are not merged. For instance take the constraint

x = node(xz,z) N y=node(y,y) .

Before taking the equalities into account the associated union-find structure would allocate

four nOdeSa q1,92,43, 44, where LQ(ql) = Z, LQ(QQ) = n0de(QI7QI)a LQ(Q?)) =Y, LQ(q4) =
node(qs,qs). Asserting the equality x = node(z,z) requires to unify ¢; and ¢y resulting

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 96

in the substitution [¢; — ¢o]. Separately the equality y = node(y,y) causes merging g3
with g4. The resulting union-find structure now has find(q1) = qo, find(q3) = qa, Lo(q2) =
node(q2,q2), and Lgo(qs) = node(qq,q4). In the associated T-automaton A, g9 and ¢4 are
different but bisimilar states, so therefore represent the same element in any model. To
merge ¢o and ¢4 (in other words ensure that terms are all in canonical form) we need
to close A according to the maximal bisimulation relation satisfying (the Myhill-Nerode
principle):
g=q i M) =Ad) A Vi<I[i(g)] - d(q)i =(d)i

Efficient algorithms for partition refinement [PT87] can minimize 7-automata in time bounded
by O(nlog(n)), where n is the size of (). In an early paper Oppen [Opp80b] gives an
O(nlog?(n)) bound based on other algorithms.

6.2.3.3 Satisfiability of equations and disequalities

The two refinements of the unification algorithm above give efficient procedures for deciding
satisfiability of conjunctions of equalities and disequalities over recursive and co-recursive
data types. Given a conjunction L of equalities ¢ = s and disequalities u # v where all
terms range over a data type 7, we can perform the steps of the algorithm in Figure 6.7.

1. Produce a union-find structure by applying canonize to each term in L.
2. Extract the T-automaton A from the union-find structure.
3. Form the set & : {gs z q: | s =t in L} and apply unify on .

4. In the case of recursive data types a linear-time congruence closure algorithm is
sufficient to do occurs check and collapse nodes that must be equal. In the case of
co-recursive data types, automaton minimization in O(nlog(n)) suffices in order to
collapse states that must be interpreted equally.

5. If the unification or minimization merges two nodes that are associated with a
disequality or different constructors the original set L is unsatisfiable.

Figure 6.7: Algorithm for checking consistency of equalities and disequalities

When 7 is non-singular, and not flat with all parameter sorts S; being finite domain
it is simple to generate infinitely many different terms of type 7. For instance, if 7 is a
well-founded recursive data type we can choose an assignment of “fresh” terms to root-
nodes that are not labeled by constructors (the first non-constructor node is labeled by a
term of size |{find(q) | ¢ € Q}| + 1, the second by a term twice the size, et.c., This entails
that the algorithm in Figure 6.7 is complete for well-founded recursive data types. When
the data type is an enumeration type, however, it is easy to reduce the graph k-coloring
problem to the satisfiability problem by representing nodes in a given graph by different
variables ranging over a data type of k elements and asserting disequalities corresponding to
edges. The graph 3-coloring problem is NP-complete, so this leaves little hope for obtaining

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 97

efficient algorithms for the enumeration case. The procedure in Figure 6.7 therefore only
serves as a partial consistency check when splitting is not employed.
The algorithm can also be used directly to solve the decision problems studied in [Col84].

The theoretical running time of our algorithm seems however better (O(nlog(n)) as opposed
to at least O(n?), if not O(n?)?).

6.2.4 Selectors and testers

The efficient algorithmic results do not carry over to constraints including testers or selec-
tors. Consider for example the data type

(r, T:71, F:7T, cons:TXT—T) (6.8)

with selectors car : 7 — 7, cdr : 7 — 7 and testers isT, isF' and iscons. Then given
an instance ¢ : A;(l; V k; V. m;) of 3-SAT where [;, k;, m; are literals over the alphabet
{z1,...,7,}, we introduce fresh variables ; and Z; for the positive and negative literals
respectively. Now ¢ is satisfiable if and only if

A; cons(cons(F, F), F) # cons(cons (I, k;), ;)
N /\:I:GV T 7& T .
A Ngey iscons() A miscons ()

is satisfiable, if and only if

A, cons(cons(F, F),F) # cons(cons (I, k;), ;)
N /\:I:GV T 7é %
A Ngey cons(car (), cdr(2)) # & A cons(car(T), cdr (T)) # T

is satisfiable.
Nelson and Oppen [NO78| noticed that when S has infinite cardinality, then equalities
and disequalities over

(r, S, atom : S = 7, cons : T X T = T) (6.9)

with selectors car : 7 — 7, cdr : T — 7 and testers isatom, and iscons, can be decided in
time O(n?). The complexity for these domains is also obtained using the present integration
with congruence closure. Selectors are evaluated using the canonizer o, which eliminates
pairs of matching selectors and constructors.

To handle the general case we propose the approach in Figure 6.8. It suggests to delay
interpretation of selectors as a last resort. For example, consider Shostak’s approach when
solving

#15171:]_ /\#1I2:1 VAN AN #1517100:1 A #]_Ilg()?él

2That article does not provide a precise running time analysis

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 98

where z; are tuples of length 100. This will first solve #1 z; = 1, which reduces to
x1 = (1,y2,...,Y100), introducing 99 fresh variables. The solution for z; may be propagated
to other constraints before the second equality can be processed, introducing another 99
fresh variables. In the end, 9900 fresh variables are introduced before the contradiction is
detected.

1. Whenever the association [q — s(¢')] is inserted into Lo, where s is a selector, we
record the selector redex s(q’) provided A(¢') € ¥ (that is, if ¢’ is not labeled by a
constructor).

To localize data type reasoning in the data type solver, this recording is provided
by the canonizer o, which takes s(¢’) and attempts to simplify it if ¢’ labels a
matching constructor. As a side-effect it notices if ¢’ was not a constructor.

2. The data type reasoner now has the option on splitting for each selector redex s(q)

introducing the splits ¢ = ¢1(z},,), ..., q = cn(37,,,) for each data type constructor

Cl,--.,Cy provided with fresh variables as arguments.

Figure 6.8: Algorithm for checking consistency in the presence of selectors.

We proceed with a somewhat involved argument for the completeness of this approach
and introduce the following notation:

Definition 6.2.4 (Redex closure) The automaton A is closed under selector /constructor
redexes iff for every q in A if use(q) contains a node ¢', where Lo(q') = s5(q) then A(q) € .
Furthermore if X(q) = ¢, then §(q); = ¢', which means that the selector applied according to
its definition.

To witness the difference between states ¢; and ¢ in a 7-automaton closed under selec-
tor/constructor redexes we introduce the notion of a state differentiator.

Definition 6.2.5 (State differentiator) A state differentiator for states q1 and qo in
automaton A is a pair (II,T), where

o A is closed under selector/constructor redexes.
e I is a set of integer sequences {my, 1, ma,...}.
e T CII xQ x Q is a relation satisfying.

1. T(mo,q1,2)

2. For every path m and states q1, q2: T(m,q1,q2) iff
A(m(q1)) # Am(q2)) and
for every prefiv ©' of m, and nodes ¢* and ¢*, if L1(s(¢")) = 7'(q1),
L1 (s(¢%) = 7'(q2), for some selector s, then there is a 7" € TI such that
T(7r", ql’ q2)_

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 99

We can then introduce a congruence relation ~ on states:

Definition 6.2.6 (Congruence with selectors: ~) States q1 ~ qo iff they have no dif-
ferentiator (I1,T).

An automaton is reduced if ~ partitions) into singletons:

Definition 6.2.7 (Reduced automata) The automaton A is reduced if:

for every q1,q2 € Q, if q1 # q2 then q1 % g9,

The definition of a state differentiator implies directly that when an automaton is reduced
it is closed under congruences.

On the other hand an automaton is ground if all states labeled by the data type 7 are
also labeled by one of 7’s constructors.

Definition 6.2.8 (Ground states and ground automata) A state q in the automaton
A is ground if for every state r, where r < q and sort(r) = T then A(r) € X.
The automaton A is ground if all its states are ground.

We use minimal ground reduced automata that are closed under selector/constructor
redexes to extract models where all nodes in) have different interpretations.

Lemma 6.2.9 Let A be (1) minimal, (2) closed under constructor/selector redezxes, (3)
ground, and (4) reduced, and assume that base sorts Si,...,Sy, each have infinitely many
elements, then there is an injective model M : (M, M) of A:

Injectivity ¢! = @' = @ =g V1,92 € Q

Constructors g™ = X(q)™ (children(q)™) Vge Q,\(q) € X

Selectors M@) =q™ A s¢(q) €use(q) — a;=q¢" VYgeQ,aeM
Proof:

Not very surprising we can identify M with A setting M = Q. First, since each S;
is infinite-state, we can associate a distinct element with each state in whose sort
belongs to one of the parameters. Since A is

1. minimal, then M is eztensional (closed under congruence with respect to the
constructors),

2. redex closed, then selectors are necessarily interpreted according to their defini-
tion,

3. ground, then every node of sort 7 corresponds unambiguously to a constructor
term in M,

4. reduced, then M is closed under congruences with respect to the selectors.

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 100

ol

While ground automata correspond naturally to injective models, we do not need a
ground automaton to detect the existence of an injective model. The premises of the
following lemma suffice:

Lemma 6.2.10 Let A be a T-automaton. If
1. Ais closed under constructor/selector redexes,
2. A is reduced,
3. 7 is non-flat and non-singular,

then there is a ground reduced automaton closed under constructor/selector redexes A' and
embedding 1 : A — A'. By embedding we understand an A’ that coincides with A where
A(q) € X in A, but may relabel non-constructor states by constructors and add extra states.

Proof:

We construct A’ as in the pure constructor case. Namely for each state g; in A of sort
7 not labeled by a constructor we allocate a fresh ground automaton A; with state
¢;, such that the term associated with ¢} is not isomorphic with any term in A. We
then merge ¢; and ¢/ to eliminate the non-constructor state. Repeated eliminations
of non-constructor states in A produces the ground automaton A" and embedding
1: A— A'. This gives us the embedding, and that A’ is ground.

We have to verify

1. A" is reduced. For this purpose we will extend every state differentiator (I1,7")
for A to a state differentiator (II', 7") for A’ by extending paths in IT that may in
A end in a variable to paths in A’ that witness the difference between the ends.

In more detail, suppose the triple (7, g1, ¢2) € T, and 7(g1) ends in a node labeled
by a non-constructor. Then 7(gy) does not end in the same node. In A’, 7(q;)
may again be labeled by a constructor, and in the worst case it may coincide
with the constructor labeling 7(g2). But by the construction of A’ these nodes
can be differentiated by extending =.

2. A’ is closed under constructor/selector redexes. This follows as the new states
in A" do not introduce any new redexes.

ol

Lemma 6.2.10 now implies that if the data type is infinite domain, the elimination of
selector redexes in algorithm 6.8 produces either an automaton A from which a model for
constraints including disequalities can be extracted, or establishes the unsatisfiability of the
given constraints.

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 101

6.2.5 Subterm relations

We now move to adding ground support for subterm relationships of the form s < ¢, meaning
s is a subterm of ¢. Negated constraints s A t are naturally also admitted.

The ground case for recursive constructor terms is shown NP-complete in [Ven87]. Mem-
bership in NP is established by showing that every satisfiable set of constraints has a model
of cubic size. Compared to search-based decision procedures, this is highly impractical. NP-
hardness carries directly over to co-recursive data types. A search-based decision method
for co-recursive terms is presented in [Tul94], which shows how this decision procedure can
also be modified to handle the recursive case. However, that decision procedure requires
normalized terms of the following form:

t=wv, t#v, t=3v, tAAv . (6.10)

A conjunction L of these terms is satisfiable (for the class of non-degenerate co-recursive
data types) if and only if the following two tests are passed:

T1 It is not the case that v Cw and v A w € L.
T2 It is not the case that t <v € L, sAw € L, v C w, and ¢g; < ¢;.
where
Definition 6.2.11
e vRw iff there is at <w € L andv € FV(t).
e = RT
e L= R*

Using the 7-automaton data-structure we will present a realization of the decision pro-
cedures for recursive and co-recursive data types. Our procedure transforms conjunctions
of constraints of the form:

t=s, t#£s, t=<s tAs.

into a disjunction of solved form constraints \/; L;, where each L; is a conjunction of:
t#£s, t=v, tALs. (6.11)

together with a 7-automaton A representing all equalities. To represent such constraints
we will use the tuple

(A, D, I, N) (6.12)

where

e A is a minimized automaton representing all terms and equalities in the constraint
set L.

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 102

e D C Q x (@ corresponds to disequalities.
e 7T C (@ x @ corresponds to inequalities ¢ < s.
e N C Q@ x @ corresponds to negated inequalities ¢ £ s.

Notice here, that the only solved form conversion required is of ¢ < s into cases ¢ < v.
The solved form conversion consists of saturating with respect to the following steps:

1. Using the procedures for handling equalities and disequalities we can represent A as
the minimal automaton satisfying all equalities in L, and differentiating all asserted
disequalities D. Thus, A is the resulting automaton after an invocation of the algo-
rithm in Figure 6.7 applied to equalities and disequalities. If it reports failure, then
the constraints L are trivially unsatisfiable.

2. We need to convert Z into a subset of @ x {g € Q | A(q) € £}. This can be achieved
using a conversion into disjunctions using the characterization of <:

st & \/ gs=q V \/ gs = q
QSIQta QS'(Ita
Ag) € X ANg) ¢ Z

This step splits the original set of constraints L into \/; L;, and constitutes the com-
putationally expensive step (the decision problem is after all NP-complete). Notice
that some of the branches impose equality constraints, that modify A further.

3. For each L; we build an auxiliary graph G, whose vertices are @) (the same states as
A), and whose edges £ are induced by ¢ as well as the literals asserting inequalities
(the set Z):

(q,q2) €E = d(q@)=(..q1...) or (q1,q2)ET

The tests T1 and T2 are now replaced by the test

N: For each pair (q,7) € N (corresponding to g A r) if there is a path (¢, q1,...qn,7)
in G, then the set of constraints is unsatisfiable.

It may not be impossible to establish a correspondence between Tulipani’s tests and
the above saturation rules and then reuse Tulipani’s results. The heavy notation in [Tul94]
resulting in some confusion as to what assumptions are used to establish which properties
makes a direct and straight-forward proof of completeness more desirable.

Soundness is obvious by inspecting each step.

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 103

Theorem 6.2.12 (Soundness) L is inconsistent in the theory of recursive and co-recursive
data types if all branches obtained by applying rules 1-3 are unsatisfiable.

For the theory of co-recursive data types (rational and infinite trees) we can state:

Theorem 6.2.13 (Co-recursive Completeness I) Suppose 7 is non-linear, and con-
tains either two non-linear constructors or has a constructor ¢ : --- X S X --- — 7, where
|S| is infinite, then L is satisfiable if and only if some branch obtained by saturating with
respect to rules 1-8 is non-contradictory.

Proof:

Let X = {z1,..., 2y} be the states in A that are not labeled by constructors. We
extend A to a ground automaton A’ by assigning different ground terms to each
variable in X such that every subterm relation in Z is satisfied, and such that whenever
for nodes ¢, r in A, there is a path from ¢ to r in A’ if and only if there is a path from
g to r in A already. This ensures that all constraints in A/ are satisfied by A’.

Since 7 is non-singular there is a binary constructor f : -7 X -+ X 7-++ = T.
For future notational convenience we fix a binary version of f, by choosing arbitrary
parameters for the domain values of f that are not of sort 7 and group the arguments
of sort 7 in two parts. For example if f’ has arity f' : Sy x7x7x 7 — 7, and s; € Sy,

we set f(z,y) := f'(s1,2,y,9).
If 7 contains two non-linear constructors f’ and ¢’, let f and g be their binary
versions and for each natural number n, consider the system:

()

o = g(yt,yt) <

yio= fysu5) f

! . 2792 The case n = 3: <>
f

Each system has a unique solution by the solution lemma, and furthermore

yn = flyg,ye)

Y=y & i=kAj=I (6.13)
yiyf & i=k (6.14)

We therefore have a sufficient supply of different terms to allocate fresh signature
terms sigq, ... sig,, for each variable in X, none being a subterm of each other or of
any term in A (by choosing instances of y{ to represent sig; where n > |Q|).

If 7 on the other hand contains a constructor ¢ whose domain contains an infinite
S we create signatures by choosing fresh elements from S. For example, if ¢: 7 x § %

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 104

T — T, set for each i = 1,...,m, sig; the unique term satisfying sig, = c(sig;, s;, sig;)
where the s; are different.

We can now construct ground realizations for the variables X by building terms
such that ¢ is a subterm of z € X if and only if there is a path from ¢ to x already in
A. Simply, let q1, ..., qr be the states in A where (q1,z) € Z,..., (g, z) € T and set

5($) = f(qlaf(qQa s 7f(Qk7 Slgx))) .
This defines A’.

By construction all constraints in Z are satisfied. Also the signature terms ensure
that different states in A’ are not bisimilar, so A’ is minimal. Finally, we have to
verify that all constraints in N are satisfied. Let (¢,7) € N, then by saturation step
3, ¢ # r, and there is no path in A from ¢ to r. We must show that there is no path
in A’ from g to r. But by the construction of A’ this could only be the case if ¢ is a
subterm of one of the new states. However ¢ is not a subterm of sig, for any z, and
since sig,, is only a subterm of ¢ if there is a path in A from z to ¢, so ¢ is a subterm
of z in A" iff there is a path from z to ¢ in A.

The assumptions of the theorem are necessary. For instance with the signature
(r,NIL: 7,CONS: 7 X T — T) (6.15)
the following constraints
Q =CONS(Q,9Q) A NILZLz A Q4 z

are not satisfiable, but saturation fails to detect this. The remaining cases thus consists of
signatures of the form

(r, NILy : 7,...,NILg : 7, CONS: 7 X T — T) (6.16)
The constant atomic terms of this signature is the set
constants : {NILi,...,NILg, Q} where Q = CONS((2, () .

These are the terms that must be part of any minimal ground automaton.
To cover the remaining cases we maintain a set sigAvoid(x) with each state in A, which
is initially empty, and add an additional saturation rule:

4. When (q,7) € N and q is ground, let zy,...,z, be the variables that can reach r in

G. Set
sigAvoid(z;) := sigAvoid(xz;) U {q} for each i

If for any z;
constants \ sigAvoid(z;) = {2}

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 105

assert z; = (.

If for any z;
constants \ sigAvoid(z;) =0

report unsatisfiability.
The completeness proof 6.2.13 can now be extended

Theorem 6.2.14 (Co-recursive Completeness II) Suppose T is non-linear and has a
signature isomorphic to (6.16), then L is satisfiable if and only if some branch obtained by
saturating with respect to rules 1-4 is non-contradictory.

The proof is analogous, except this time we use the supply

y§ = CONS(NIL;y}) /‘

yr = CUNS(y”,NIL)
' . ? ' The case n = 3: /

yp = CONS(yg,NIL;) Kﬂ

NIL

of different incompatible terms for sig,, when NIL; € constants \ sigAvoid(zx).

In the case of recursive data types, the subterm relationship is a partial order, and
may imply additional equality constraints. Thus, strongly connected components of G
are collapsed by asserting equalities between the nodes in each component. As discussed
in 6.2.3.1 the unification algorithm for recursive data types provides a built-in occurs check
which reports unsatisfiability in the presence of a cycle traversing a constructor.

In complete analogy with co-recursive completeness we have:

Theorem 6.2.15 (Recursive Completeness I) Suppose 7 is non-linear and contains a
non-recursive constructor ¢ : S;, X --- x S;, — 7 where one of the domain sorts is infinite,
then L 1is satisfiable if and only if some branch obtained by saturating with respect to rules
1-8 is non-contradictory.

When it is only possible to supply a finite set of non-recursive constructor terms the set
constants is finite and we can under certain circumstances use step 4 (without the condition
involving) and easily state:

Theorem 6.2.16 (Recursive Completeness II) Suppose T is non-linear and contains
a constructor ¢ :-+- X S X -+ X T X -+ = T, where |S| is infinite, then L is satisfiable if and
only if some branch obtained by saturating with respect to rules 1-4 is non-contradictory.

This follows as we can here build unique sig, using the non-recursive constructors that are
not in sigAvoid(z) to form the leaves of sig, and by using unique versions of ¢ to distinguish
the signatures.

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 106

The most complicated case is when there is essentially only a finite number of con-
structors (both recursive and non-recursive). For instance, the constraints below of the
signature (6.15) are unsatisfiable

CONS(NIL,NIL) £ 2 A NIL # z

because every finite tree contains a CONS (NIL,NIL) leaf. In general we need an essentially
stronger version of saturation step 4 to handle these cases:

4> When (¢q,7) € N and q is ground, let z1,...,z, be the variables that can reach r in
G. Set
sigAvoid(z;) := sigAvoid(xz;) U {q} for each i

Suppose

1. sigAvoid(x;) # 0,
2. q € sigAvoid(z;) is a term of maximal size in that set,

3. for all terms of length |g| there is some r € sigAvoid(x;) such that r < q.

split L into branches, one for each term ¢ of length less than |g| that is not a subterm
of any term in sigAvoid(z;).

The extra case splitting ensures that every remaining variable z; in a non-contradictory
branch admits arbitrary large signatures by choosing a term ¢; not in sigAvoid(x;) of max-
imal length and extending it using the non-linear constructor ¢ as much as desired. For
instance, c(t;, c(t;, ..., c(t;, t;))). To ensure that none of the signatures are subterms of each
other let n be the size of A (|@Q]) and create the signatures

sigy = cfc(ty, ty), clty, c(ty, ..., clty, 1)), (6.17)
nIl

sigy : c(c(ta, ta), c(ta, clta, . ., clta, 12)))),
n:2

sig; : C(C(ti,ti),f(tiac(tia---ac(tiati))))

v

This leads us to the final result:

Theorem 6.2.17 (Recursive Completeness III) If 7 is non-linear then L is satisfiable
if and only if some branch obtained by saturating with respect to rules 1,2,3, and 4’ is
non-contradictory.

6.2.5.1 The first-order theory of subterms

The first-order theory of equality and subterm relations cannot be easily encoded into wS2S.
In fact it is undecidable [Ven87, Tre92] when there is at least one ternary constructor.

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 107

Undecidability is established by reducing arbitrary instances of the Post correspondence
problem to a statement in the first-order theory of recursive data types with the subterm
relation. See also [Com90], which provides ground decision procedures of lexicographic
orderings. The first-order extension is later proved undecidable by the same author. A
conjecture raised in [Ven87] is that the first-order theory of finite binary trees with subterm
relation ((NIL,CONS,=,=)) is decidable. It is somewhat surprising that neither [Ven87]
nor [Tre92] realize that the Post correspondence problems can also be reduced to the first-
order theory of finite binary trees with subterms. The construction given below is different
from the case when the signature contains a ternary constructor, so we give it here in all
details to settle the conjecture (in the negative).

Theorem 6.2.18 The first-order theory of finite binary trees with subterm relation is un-
decidable.

Proof:

Take an instance of the Post correspondence problem (a Post system), which consists
of a finite set of pairs of strings (vi,w1),..., (v,,wy,) over the alphabet {0,1} and
asks if there is a sequence iy,...,i; of indices ranging over {1,...,n}, such that
Vi Viy * ** Vi), = Wi Wy, - -~ Wj, . There is no effective procedure which takes as input an
arbitrary Post system and provides an answer whether there exists such a sequence or
not. For each Post system we now construct a formula over the theory of finite binary
trees with subterm relations which is valid if and only if there is a solution to the
given system. For this purpose we will give an encoding procedure which can record
the set of string pairs (v, w) that are obtained from a finite set of indices i1, . ..,
such that v = v;,v;, ---v;, and w = w;, w;, ---w;,. The given Post system is then
solvable if there is a tree with a pair (v, w) where v =w # e.

Define string(u) if u is not NIL and every branching point in u has at least one
branch being NIL.

string (u) def #NIL AVz R u .z =NIL V Jy .z = CONS(y,NIL) V x = CONS(NIL,y)

The binary trees that are strings will be used to encode strings over the alphabet
{0,1}, and the empty string is encoded via CONS(NIL,NIL). If u is any term and v is
a sequence of 0’s and 1’s we define the concatenation w - v by:

u-e = u
w-0v CONS(u,NIL) - v
u-1v ¥ CONS(NIL,u) - v

Clearly if u satisfies string(u) then also string(u -v). We can finally convert an entire

string u into a binary tree representing it by defining e def CONS(NIL,NIL) and compute
€ - u. Sample encodings of strings 101 and 100 are illustrated below.

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 108

CONS CONS
NIL /CONS\\ NIL CONS
CONS NIL CONS NIL

< e
SN N

NIL NIL
101 100
Trees representing a pair (v, w) and sequence 41,. .., with v = v; v;, -+ v;, and

w = w;, w;, - - w;, are captured by the predicate Root. To make the definition of Root
less painful to read we will also introduce two auxiliary predicates LHS, RHS for the
immediate left and right branches of terms satisfying Root. Informally Root(u) holds
if and only if u records a pair (v, w) and corresponding history of indices used to form

v and w.
s CONS (z, CONS (v, w))
v, u = CONS ’ ;N
Root(u) © 3w, . CONS (=, CONS (v, w')) > (6.18)
v" A LHS(z,v,w)
w; A RHS(v,w,v',w")
v=w=€¢ N x=NIL
def _ cons(z',y"),
LHS(z,0,w) = qpr @ = CONS | oona o cons(o,w)) | (1Y)
A string(v) A string(w)
def \'
RHS (v, w,v',w') = \/’U-’Ui:’l), A w-w; =w (6.20)
i=1

The branching on a Root is illustrated below

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 109

SANEEYA

vVoow wooowy

We can require recursively that the repeated branch z in the definition of Root
by requiring that every non-NIL subterm of u satisfying LHS for some v, w, is again a
Root. This form of implicit recursion is much similar to the S2S encoding of recursive
and co-recursive data types. Hence, define

Root(u)
def

GoodRoot(u) = A Ve <u . (EI vw, . LHS (z,v,w) N = # NIL) (6.21)

— Root(x)

Finally, the given Post system is solvable if and only if
Ju . GoodRoot(u) A Jx,y,v .v #€e A u = CONS(x,CONS(y, CONS(v,v)))

One direction is trivial, given a solution to a Post system we construct a GoodRoot
encoding the sequence of productions that led to the solution. In the other di-
rection well-founded induction on terms satisfying GoodRoot establishes that they
represent only legal applications of the Post production rules and whenever u =
CONS(z, CONS(y, CONS(v,w))) for some z,y, v, w, then string(v) and string(w). 4

6.2.6 Taking lengths of recursive data types

While the subterm relation is a natural special relation to support for (co-)recursive data
types, a length accessor seems to be a reasonable utility to add to recursive data types. It
is especially relevant in termination arguments for recursive programs. The length of term
t, written |¢[, is interpreted as the number of constructors used to form the term ¢. Thus,
we have the corresponding axiomatization in (6.9).

The thrill in adding this seemingly innocent utility is that constraints with equality,
disequality, and subterm relationships on data types can now depend directly on the theory
of integer (linear) arithmetic and recursive data types. While each ground theory is de-
cidable, checking satisfiability in isolation no longer suffices. For example given the hybrid

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 110

n

Ve e Eav(yla'-'ayn) € dOIl’l(C) : |C(y13'-'ayn)| =1+ Z |yl| (length)
i=1, sort(y;)=T7

Figure 6.9: Length accessor axiomatization

constraint
la| < |b] A b= a, (6.22)

where a and b are variables over a recursive data type, the first constraint |a| < |b| is most
naturally maintained by an integer linear arithmetic solver, whereas b < @ is maintained
by the solvers presented in Section 6.2.5. Each constraint in isolation is satisfiable, but the
combined constraint is clearly not. In an initial attempt we can saturate constraints via the
special relation rule

z=y = |z <yl . (6.23)

Saturating with this special relationship on (6.22) we obtain a contradiction as |b| < |a| is
added. But this does not provide in itself a complete integration.

Example: Consider the data type of trees, from example 6.1.1, where S is a singleton sort
with only element e, and the constraints

|z] =5
Az # node(node(leaf (o), leaf (), leaf (o))
Az # node(leaf (), node(leaf (o), leaf (o)) .

These are unsatisfiable as the only terms of length 5 are the ones z is required to be
different from.

Example: Regardless of the choice of recursive data type the constraints
t<z A sz Alz|<[t|+]|s|] NtAs AN sAt
are unsatisfiable.

Example:
(,NIL:7,f:7T XTXTXT—T)

All terms of 7 have length 1 + 4z for some z.

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 111

6.2.6.1 Decidability

The first question is naturally whether the combined theory is decidable. We claim it is,
though the outline we provide does not encourage a search oriented implementation.

Theorem 6.2.19 Validity in the universal theory of integer linear arithmetic and recursive
data types with lengths is decidable.

As usual, validity of a formula is established by checking unsatisfiability of a negation of
that formula. To check satisfiability of a set of data type and arithmetical constraints C we
will perform a collection of saturation rules, that split C into a finite number of disjunctions.
Each disjunction is normalized to the form L A LA, where L is a set of data type constraints
saturated with respect to the procedure from 6.2.5, and L is satisfiable in some model for
the theory of data types; LA is a set of linear arithmetic inequalities, is satisfiable in a
model for the theory of integer (linear) arithmetic. We then establish that if we reach a
disjunct L A LA that cannot be split any further, then the combined set of constraints for
that disjunct is satisfiable.

We shall consider the case where 7 is non-linear and has a finite number of constructors
(cf. Theorem 6.2.17). To simplify the discussion, but without losing generality, we shall
consider signatures for 7 with two non-linear constructors and an arbitrary number of
non-recursive constructors. This summarizes the general case. Suppose therefore that the
signature of 7 is of the form

(ry NILy :7,...,NILg: 7, f:T7 X+ XT =T, h:T X+ XT—>T,)
———— ————
a b
e Euclid’s algorithm for computing greatest common divisors provides m and n such
that
ged(a,b) = ma — nb
Set g = ged(a, b), then we can create terms of length 1+%nb, 1+§nb+g, 1+%nb+2g, ...

using constructors f and h, because we can write the numbers %nb, 3nb +g,... as
linear combinations of ¢ and b:

%nb,

gnb+g = ma+ (7 —1)nb,

inb+29 = 2ma+(§—2)nb,

a a _a - a
Enb—i- g9 = gma = gnb—l—a

and each linear combination of a and b corresponds to a term using f and h by
applying f and h as many times as the coefficients of @ and b dictate.

For future reference abbreviate

e 2o
g

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 112

e Let z1,...,z, be a permutation of the variables in L, and guess an ordering:
0 < |z = |z2] < lz3| <...=|zp]

The amount of guessing is finite as there are n! permutations of the z; and 2"~! ways
to choose between equality or strict inequality. Add the ordering constraints to LA.

e Saturate L with respect to rules 1,2,3,4’.
e For |z;| = |z;t+1]| split on the constraints

1. z; = z;41. This eliminates one variable.

2. ¢; A i1, Tir1 A x;. This ensures that they cannot be subterms of each other.
e Saturate with respect to the special relations rule (6.23).

e We will now eliminate the variables in the same order as the size ordering constraints
that were guessed above.

sigi |+ > (adl+a—1D+k = 4
(g,21)€ET
1—1]
sig) + Y. (ldl+a—1)+k = L+ allzl
(¢,%:)ET j=1

1. The factor |sig;| provides the space required to build a unique signature as defined
in (6.17).

2. The factor Z (lg] +a — 1) provides the space required to satisfy the subterm

(‘in)eI
relations on top of the signature.

3. The factor k provides the space to build on top of 2 to generate terms within
distance g.

Now split into the cases:

case 1: |z1| <y
case 2: |z| >l A |z =1+yl.,9

In the first case there are finitely many ways to construct z1, so z; can be eliminated
from these branches producing constraints with fewer variables.

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 113

In general we split on the cases

i—1
case 1 : |z;| <l; + Za7~|x]~|

7=1
i—1

case 2 |z >l + Y allzj| A |zl = 1+ g
j=1

In every instance 4 the first branch eliminates a variable by enumerating all possible
ways to form z;.

Suppose therefore that all branches choose the second case and that the integer con-
straints are satisfiable. Then, the constraints are satisfiable in a model where all lower
bounds are respected. But, the lower bounds were chosen such that different x; could
be realized of any size exceeding the lower bound and such that none of the x;’s were
subterms of each other unless explicitly required by the constraints in L.

6.2.6.2 An incomplete search-oriented procedure

Our implementation uses an incomplete procedure based on the saturation rules:

subterm saturation Whenever s < v,# < v are in L, then either ¢ < s or ¢ A s are in or
implied by L.

lower bounds Whenever |v| € dom(Ly), then 0 < |v| is implied by LA.

special relation: forward Whenever ¢t < v is in L and |v| € dom(Ly), then o, (|t]|) < |v]
is implied by LA.

special relation: backward Assuming subterm and lower bound saturation, if ¢; < v,
, tn = v are the (different and incompatible) lower bounds on v in L, n > 0 (n =0
is allowed) and

i = INF(LA,|v| — Z|t| s = SUP(LA,|v| — Z|t|

If s is finite, i.e.,
0 <721 <5 < >

then for each term skeleton (x4, ..., z,) with unique occurrences of the free variables
T1,...,Tn, such that |t(z1,...,2,)| =k + |z1] + ... + |zp| for some i < k < s replace
v by t(t1,...,t,) to obtain a set of new constraints without v. Thus, set the updated

constraints to (L A LA)[v — t(t1,...,t,)] for each of the possible ts.

If the set of terms satisfying [t(z1,...,2,)| =k + |z1]| + ... + |zp| for some i < k < s
is empty, then the set of constraints is unsatisfiable. This could for instance be the
case when s < 0.

CHAPTER 6. RECURSIVE AND CO-RECURSIVE DATA TYPES 114

The saturation rules are not complete as the example with the 4-ary constructor wit-
nesses. The single constraint |z| = 2y is simply not satisfiable.

6.3 Open problems
1. Is the full first-order theory of infinite trees decidable when all constructors have arity
no larger than 17 The problem is posed in [Tul94].

6.4 Summary

This chapter presented decision procedures for data-types, including the sub-term relation
and length constraints. Both recursive as well as co-recursive data-types have been examined
and we have shown how these theories can be integrated within the solver-based combination
of decision procedures.

Chapter 7

Bit-vectors

Bit-vectors are the natural data-type for hardware descriptions. To handle bit-vectors in
computer-aided verification, it is convenient to have specialized decision procedures to solve
constraints involving bit-vectors and their operations.

To verify hardware designs, Mark Pichora developed a compiler from the Verilog hard-
ware description language to fair transition systems. Since bit-vectors are pervasive in
Verilog we have found it useful to develop the decision procedures for bit-vectors described
in this chapter. The presented procedure is easy to integrate tightly within the combination
decision procedures for other theories, which fits well into the wide scope of STeP.

An algorithm that addresses bit-vectors from a perspective similar to ours has been
reported in [CMR97]. In an effort to use that algorithm we were unable to reconstruct the
rutines necessary to handle bit-wise boolean operations. We devised an algorithm where bit-
wise boolean operations could be easily handled. The key feature of the procedure is that it
often only splits contiguous bit-vectors on demand. Its performance is often independent of
the length of the bit-vectors in the input. We also briefly discuss non-equational bit-vector
constraints, which had not received proper attention elsewhere.

Legal inputs to the STeP-Verilog verification tool include parameterized hardware de-
signs where the bit-vector size is not fixed at verification time. The potential need then
arises for a method that can handle both fixed and non-fixed size bit-vectors. In certain
cases our simple procedure for fixed size bit-vectors can be used directly for non-fixed size
bit-vectors. To handle more cases, we first present an optimized decision procedure for
equations s = t, where s and ¢ do not contain bit-wise boolean operations, and then extend
it to handle bit-vectors whose sizes are parameterized (still without supporting boolean
operations). To our knowledge this was the first reported decision procedure that handles
concatenation of a non-trivial class of non-fixed size bit-vectors. Independent of this effort,
however, Moller and Ruefl [MR98] developed much similar transformation rules applying to
a larger set of equality constraints, but without being able to give a termination argument
(albeit, it is a non-trival problem). With a different starting point [BDL98] give optimized
procedures for handling bit-vector arithmetic.

115

CHAPTER 7. BIT-VECTORS 116

7.1 Bit-vectors

Bit-vector terms are of the form

t n= x| tfi:g] [tiota| e |t opte
op = & (bitwise and) | ~ (bitwise xor) | “|” (bitwise or)
c m= 10

t[i : j] denotes subfield extraction, and o concatenates two bit-vectors. The constant 0 is
synonymous with false and 1 with true. For clarity, a term may be annotated by a length,
such that ?[,, indicates that ¢ has length m.

Terms are well-formed when for every subterm #,,j[i : j], 0 <4 < j < m, and for every
S[m] 0P t[n), m = m. Terms without occurrences of op are called basic bit-vector terms.

Bit-vectors can be interpreted as finite functions from an initial segment of the natural
numbers to booleans. Hence, if 1 is a mapping from bit-vector variables z,, to an element
of the function space {0,...,m — 1} — B we interpret composite terms as follows:

[=], = n(z)

' Me €{0,...,5 —i}.[t],(i + k)

m] Oty = Me€{0,...,m+n—1}if k <m then [s],(k) else [t],(k—m)
Ak € 40,...,m — 1} [s]y (k) [op] [, ()

[erm I = Mee{0,....m—1}c=1

—
o~
o~

.

—

=

3

|

=
&
=
Q
IS
o~
=
3
|

Bit-vector terms from the above grammar appear, for instance, throughout the system
description and verification conditions from a split-transaction bus design from SUN Micro-
systems [Kam96]. A sample proof obligation encountered during STeP’s verification of
a safety property of the bus (namely, processes are granted exclusive and non-interfering
access to the bus) takes the form

l-wires =4 A request # O —
(request_h = request) # Ofg) (7.1)
VvV (request # Ojg)) A request = request_h

where request and request_h are bit-vector variables of length 8. While this proof obligation
is evidently valid, a simple encoding of bit-vectors as tuples causes examination of multiple
branches when establishing the verification condition. The procedure developed here avoids
this encoding and its potential case splitting. This and similar verification conditions can
then be established independently of the bit-vector length (and in a fraction of a second).
Thus, our procedure is able to establish this verification condition when the length 8 is
replaced by an arbitrary parameter N.

While other logical operations like shifting can easily be encoded in the language of bit-
vectors we analyze, the arithmetical (signed, unsigned and IEEE-compliant floating point)
operations are not treated at all here.

CHAPTER 7. BIT-VECTORS 117

7.2 Alternative approaches

As usual, a direct axiomatization can be used to establish all verification conditions we
consider. Better than a raw axiomatization, proof assistants like ACL2 and PVS provide
sophisticated libraries containing relevant bit-vector lemmas. But, although highly useful,
libraries do not provide a decision method.

In the symbolic model checking community, BDDs [Bry86] (binary decision diagrams)
are used to efficiently represent and reason about bit-vectors. Purely BDD based represen-
tation of bit-vectors requires allocating one variable for every position in a bit-vector. (Just
two bit-vector variables each of length 64 require allocation of 128 variables, pushing the
limits of current BDD technology). A BMD-based (binary moment diagram) representa-
tion [BCY5] optimizes on this while being able to efficiently perform arithmetical operations
on bit-vectors. Unfortunately it is nontrivial to combine BMDs efficiently into the Shostak
combination.

Since the values of bit-vectors range over strings of 0’s and 1’s it is possible to use
regular automata to constrain the possible values of bit-vectors. Using this approach the
MONA tool [BK95] can effectively represent addition of parameterized bit-vectors using M2L
(Monadic Second-Order Logic). The expressive power of M2L also allows a direct and prac-
tical decision procedure of fixed size bit-vectors encoded either as tuples of boolean variables
or as unary predicates with a constant domain. Furthermore M2L allows quantification over
bit-vectors (with non-elementary complexity as the price). The approach based on regular
automata, however does not admit an encoding of concatenations of parameterized bit-
vectors. For suppose the regular language R, (say 10*1) encodes evaluations of bit-vector
x that satisfy constraint ¢(z). Then the pumping lemma tells us that the evaluations of y
consistent with ¢(z) Ay = z oz is not in general (certainly {ww | w € 10*1} is not) a reg-
ular language. Automata with constraints [CDG198] (see chapter 4) is a possible remedy,
but this imposes even more challenges in obtaining a direct ground integration with other
decision procedures, which we seek here. Our procedure addresses this problem and solves
satisfiability of ground equalities.

7.3 A decision procedure for fixed size bit-vectors

We present a normalization function 7, which takes a bit-vector term #,,,; and a subrange
(initially [0 : m — 1]) and normalizes it to a bit-vector term Fy o Fyo...o0 F, where each F;
is of the form

Fu=FopF|x|cy -

A normalization routine with a similar scope can be found in [BEFS89]. In words, 7
produces a term without occurrences of subfield extraction where every o is above every op.
The translation furthermore maps every original variable z,, to a concatenation z o z3 o
...0Zp, and maintains a decoding of the auxiliary variables into subranges decode ([if : ji]),
such that 41 =0, j, =m—1,and jy + 1 =i fork=1...n —1.

CHAPTER 7. BIT-VECTORS 118

The normalization function shown in Figure 7.3 is designed to satisfy the basic corre-
spondence

[t ln = [T (%0 n — 1))’

for every n, where 1’ coincides with 5 on the free variables in ¢ and, furthermore, if 7 rewrites
x to x1o...oxyo. . .oxy,, with decode(zy) = [i : j], thenn/(zg) = Mk € {0, ..., j—i}.n(z)(k+1).

Normalization works by recursive descent on the syntax tree of ¢, pushing a subfield
extraction [: j| downwards. By maintaining only one copy of each variable, the procedure
may update a variable occurrence z to a concatenation z; o x5 o x3 globally in the cases
where only the subfield [3 : 5] needs to be extracted from z(g. The result of normalizing
x[3 : 5] then becomes x3, such that decode(z2) = [3 : 5]. Since the variable may occur in
a different subterm under the scope of a boolean operator z & y the cutting of = rewrites
this to (z1 oz90x3) & y. The auxiliary procedure cut (that takes a term and a cut-point as
argument) shown in Figure 7.1 recursively cuts y in the same proportions as x, and forms
the normalized concatenation 21 & y7 o 1z & y2 o x3 & y3. It uses a set parents
associated with each variable x to collect the maximal boolean subterms involving z that
have already been normalized. Initially parents(z) = () for each variable. Subterms can
also be marked. By default (and initially) they are unmarked. To avoid cluttering the
pseudocode we have suppressed variable dereferencing. To normalize boolean operators, 7
uses the auxiliary procedure slice shown in Figure 7.2, which aligns the normalized terms s
and ¢ into concatenations of equal length boolean subterms. Operator application can then
be distributed over each of the equally sized portions. The auxiliary symbol € is used for
the empty concatenation.

The proper functioning of 7 relies on the precondition that every time T (), [i @ j])
is invoked, then 0 < i < j < n. This ensures that whenever cut(t[,;,m) is invoked then
m < n.

Example: As an example of the translation of an bit-vector expression, consider:

wp & (ym[0:3] o zpg)
Y | (g o gy o wiy[0: 2])

We first apply 7 (s, [0 : 6]) which results in cutting y into y; o y2, where decode(y;) = [0 :
3], decode(y2) = [4 : 6]. w is cut similarly. The translation of ¢ results in further cutting
Y1 into y3 o y4, where decode(ys) = [0 : 2], in order to align with x5 o 1. The variable
w7) 18 also cut into wy o wyp o w3 overing the same intervals as the parts of y, namely
[0:2],[3:3],[4:6]. The result of translation is then:

s: wi &y o wr &y o wz&kzx t: ys|z o y4|1m) y2|w1

7.3.1 Interfacing to the Shostak combination

To canonize a term t[,,) we first obtain F'o...o F" = T(£,[0 : m — 1]). We will identify
a free variable zj in F" with z[i : j], where decode(zy) = [i : j]. Each F' is represented

CHAPTER 7. BIT-VECTORS 119

cut(F,m) =

mark(F);

let
(F(z'), Fy(Z?)) = dice(F,m)

in
for each j =1,2,27 € 7 do

parents(x?) := parents(z?) U{F};}

return (F(Z'), F»(Z?))

NSO

1. dice(s op t,m) =

2. let

3. (s1,82) = dice(s,m);

4. (t1,t2) = dice(t,m);

O. in

6. return (s1 op t1, 82 op to)

7. dice(c[l],m) = return (C[m], C[lfm})

8. dz'ce(x[lm} o q;[?n],m) = return (7', 7?)

9. dice(x,m) =

10. let

11. [i : j] = decode(z)

12. 71, T2 be fresh variables with () parents
13. in

14. decode(zy) == [i 11 +m — 1];

15. decode(x2) :== [i +m : j];

16. T 1= 10Ty

17. for each unmarked s € parents(z) do
18. s := 81 0 s9 where (s1,s92) = cut(s,m)
19. return (z1,z3)

Figure 7.1: Basic cutting and dicing

CHAPTER 7. BIT-VECTORS 120

apply(op, F(7),G(y)) =
for each x € TU7 do
parents(x) := parents(z) \ {F,G} U{F(Z) op G(1)}
return F(Z) op G(7)

- w =

slice(op,€,€) = €
slice(op, F(T)p) 0 5, G(P)my o 1) =
if m = n then
apply (op, F(T), G(7)) o slice(op, s,t)
else if m > n then
(G1(3)), Gol) = cut(G(F),m);
apply(op, F(E)’ Gl(yl)) ° Slice(opa S, GQ(?2) ° t)
else
(F1 (1), F>(T2)) = cut(F(y),m);
0. apply (op, F1(T), G(G)) o slice(op, F5(T3) o s, t)

2 e ®Noe ot W=

Figure 7.2: Slicing and operator application

T(s opt,]i:j]) = slice(op, T (s,[i : 3]), T (¢, [i = 4]))
T(slk:1],[i:j]) = T(s,[k+1i:k+7])
T (smyotim),[i:7])= if n <ithen T(t,[i —n:j—n]) else
if n > j then T(s,[i: j]) else T(s,[i:n—1]) o T(¢,[0: j —n])
T(zpy), i 5]) = if 0 < 4 then 7T (second(dice(x,7)),[0 : j —i]) else
if j <m—1 (i =0) then first(dice(z,j + 1)) else =
T (cpm)s i 2 J]) = Clj—i+1]

Figure 7.3: Normalization procedure T

CHAPTER 7. BIT-VECTORS 121

in a canonical form (for instance an ordered BDD) based on a total order of the variables.
A consecutive pair F* and F'*! can now be combined whenever F" is equivalent to the
boolean expression obtained from F**! by replacing each variable z[k : I] by z[k —n : [— 1],
where n is the length of F'.

To decide the satisfiability of an equality s,) = f[,) and extract a canonized substitution
¢ we notice that s = ¢ is equivalent to s = ¢ = 0p,). Hence the equality is satisfiable if and
only if T(s = t,[0:n—1]) = Flo...o F™ and A", —F" is satisfiable. At this point we can
apply the technique used in [CMR97], which extract equalities from BDDs using equivalence
preserving transformations of the form ite(z, H,G) = (HV G) A J0.x = H A (-G V 9).
This produces a substitution 6y with subranges of the original variables in the domain and
auxiliary d’s in the range. The resulting substitution can then be extracted by generating
0 as follows:

01: [z 0p(xz1)o...000(zy,) | z; €dom(fy) N z=m10...0x]
Oy: [z zli:j]l|x=z10...02,, k<n, [i:j] = decode(zy), Yi: [l.n].z; dom(6))]
0: [z 0(02(0:1(x))) | x € dom(6y)]

Example: Continuing with the translated versions of our example terms s and t we will
extract a substitution from the equality constraint s = . We therefore complete the
translation to get:

s~ t: (wir&ys)” (yslx) o (w2&wys)” (yallp) o (w3 &)™ (y2|w)

By negating the concatenations, the constraints needed to extract a substitution are
obtained. The second constraint is easiest as it simply imposes wy = y4 = 1p;). The
conjunction of the first and third constraint is transformed:

(w1 & y3) ™ (y3 | 7)) & (w3 & x) = (y2 | w1)) = 1pz)

ite(r, w1 & y3 & w3, ~y2 & w1 & —y3) = 1j3)

(x=w & y3 & w3) A (w1 & y3 & w3) | (—~y2 & —~wy & —y3)) = 1[3}

(z=w & y3 & w3) A (w1 =y3 & ws) A((y3 & w3) | (-y2 & —y3)) =
(z=w1 & y3 & w3) A (w1 = y3 & w3) A (yz = w3) A (w3 | =y2) = 113
(a::wl & ys3 &wg)/\(w1:y3 &wg)/\(y3=w3)/\36.y2:w3 & 6

113

Tl

The composition of the extracted equalities gives an idempotent substitution:
0:[w—ws &, x—ws&d, y2—>ws&d, ysz— ws
From this we generate a substitution, where V,,,, = {ws, d}.

[acr—>w3&5, w = (w3 & J) o 1y) 0wy, yr—>w301[1]o(w3&5)]

CHAPTER 7. BIT-VECTORS 122

7.3.2 Equational running time

For input s = #[,,) not involving op subterms (basic bit-vectors) the presented algorithm can
be tuned to run in time:
O(m + nlog(n)),

where m is the number of o and subfield extraction occurrences in s and ¢. First subfield
extraction is pushed to the leaves in time O(m), then the o subterms are arranged in a
balanced tree and T is applied to the balanced terms while maintaining balance in the tree.
The translated equality s = ¢ is processed in a style similar to slice, but the auxiliary function
apply has been replaced by one that builds a graph by connecting vertices representing
the equated constants or variables. If some connected component contains two different
constants there is a contradiction and the equality is unsatisfiable. Otherwise an equivalence
class representative is appointed for each connected component, choosing a constant if one
is present, or an arbitrary variable vertex otherwise. The extracted substitution then maps
every variable to a concatenation of equivalence class representatives.

A canonized solution for satisfiable equalities can be extracted in time O(n) (which is
dominated by the running time of 7). An algorithm with the same functionality is presented
in [CMR97]. That algorithm has running time O(mlog(m) + n?), but offers some essential
shortcuts that we don’t address. Both procedures may still depend heavily on the parameter
n. For instance, the equality

Opjolpjo@ym) = Tm)o0pyolp (7.2)

requires (the maximal) m cuts of z, and is only satisfiable if m is even. The same function-
ality can, as [CMR97] noticed, be achieved in O(m + n) time, but at the expense of having
this as the minimal running time as well.

Another advantage of our algorithm is that it can be extended (with a few modifications)
to the case where bit-vectors of parameterized length are either exclusively on the right or
exclusively on the left of every concatenation. This excludes cases like (7.2), which we will
address in Section 7.4.

7.3.3 Beyond equalities

The satisfiability problem for constraints involving disequalities is NP-complete in the case
of basic bit-vectors. Membership in NP follows from the fact that we can easily check
in polynomial time that a given instantiation of bit-vector variables satisfies prescribed
constraints. NP-hardness follows from a reduction from 3-SAT to conjunctions of disequality
constraints: take an instance of 3-SAT A;(l;Vk;Vm;) where [;, k; and m; are literals over the
vocabulary V of boolean variables. Translate this into A;(l; o k; o m; # 000) A \,cp (T #),
where for each boolean variable z we associate two bit-vector variables x[;) representing z
and T[] representing the negation of z.

We therefore settle here by handling ¢+ # s as |(t ~ s), and converting |t to #[0 :
0| ... |t[n—1:n—1] =1p. The connectives < and <, as well as operations like + and *

CHAPTER 7. BIT-VECTORS 123

can be handled similarly, though the advantages of this approach are questionable. Natu-

rally these constraints are only analyzed when all equational constraints have been processed

and the resulting substitutions have been applied to the non-equational constraints.
Verification conditions of the form

fLA) #f(B) A f(A)# f(C) = [F(B) = [f(O),

where f is an uninterpreted function symbol, are handled using a complete case analysis
on bit-vectors A, B and C' (it is valid only when A, B and C are bit-vectors of length 1).
Shostak’s approach to combining equational theories misses cases like this as it is originally
designed for theories admitting infinite models (see for example [NO79]).

7.4 Unification of basic bit-vectors

In this section we focus on the problem of finding unifiers for basic bit-vector terms s and
t. The restriction to basic bit-vector terms allows us to develop a more efficient procedure
and at the same time widen its scope to bit-vectors whose lengths are parameterized.

7.4.1 ezxt-terms

To more compactly represent solutions to equations like (7.2) we introduce a new bit-
vector term construct ext(tp,;,m) (the extension of ¢ up to length m), which is well-formed
whenever m > 0. The meaning of ext is given by the equation

[ext(tp), m)In = [to..otot[0:1-1]]n where (k+1)n >m > kn and | = m—kn
k

Thus, ext(f[,),m) repeats t up to the length m. To map ezt-terms to terms in the base
language we use the unfolding function unf

unf (tp),m) = to..otoT(t[0:(-1]) where (k+1)n >m > kn and | = m—kn
k

A solution to equation (7.2) can now be given compactly when m is even as z = ea:t(()m o
]_[1} y m)

7.4.2 Unification with ezt-terms

To decide the satisfiability of equalities s = ¢ of basic bit-vector terms extended with ext-
subterms we will develop a Martelli-Montanari style unification algorithm [MM82] which
takes the singleton set £y : {s =t} as input and works by transforming £y to intermediary
sets £1,&9, . .. by equivalence preserving transformations which simplify, delete or propagate
equalities. It ultimately produces either FAIL, when s = ¢ is unsatisfiable, or a substitution

gﬁnal : {:171 =t1,...,%y = tn}'

CHAPTER 7. BIT-VECTORS 124

Since our procedure uses 7 to decompose terms, every auxiliary variable in & e fur-
thermore corresponds to a unique disjoint subrange of one of the original variables. The
obviously satisfiable conjunction of equalities is equivalent to the original equality.

A canonizer can be obtained by first eliminating the ext-terms by using unfold and then
using the canonizer of Section 7.3.1.

Example: Anticipating the algorithm we will present, consider the following equality as-
sertion:

Y13) © T[16] © T[16] © Z[2) = F[16] © Wa) © Opyy © Tpig) -

In processing the implied equality y[3j0z (16 = Z[16)©- . . We obtain x5 = ext(y[3), 16) as
a solution for z[;5. Continuing with the remaining equalities we get the intermediate
set of equations:

z) = ext(ys), 16), Y31 : 2] 0 y31[0 = 0] = w0 : 2],
zg) = w3 :3] 00y, ext(wiy[3 : 3]0 0pyy, 16) = zpg -

The two equations involving = are combined to produce the implied constraint

ezt(y[g,], 16) = el't(w[zg [3:3]o Opp, 16) .

This equality is evidently equivalent to its unf-unfolding, but as we will later formulated
in a general setting, we can do better and only need to assert:

Yr3) © Y(3)[0 : 0] = wiyy[3 : 3] 0 Oy o wigy[3 : 3] 0 Opyy
In fact this implies y[0 : 0] = y[1 : 1] = y[2: 2] = w[3 : 3] = Ofy}. After propagating the
resulting constraints we obtain the final result:

wyy = Oy, 2ngy = Opep ¥ = Oy 2 = Opg ©

While the full unification algorithm is given in Figure 7.4 we highlight and explain the
more delicate cases below.

T[p) 08 =y 0oy o u whenm+1>n > m, z # y. The situation is described in the picture
below, which suggests that the equality is equivalent to z =t oy; and s = yo o u for
suitable splits y; and ys of y. We use T to cut y into the appropriate pieces. This
replaces y everywhere in £ by y; o yo.

t y u

CHAPTER 7. BIT-VECTORS 125

T[p) © 8 = t[m] © T[] ©u When n > m. For example we are given the configuration:

t X u

Thus, the original equality constraint is equivalent to z = tototot[0 : 0] and
t[1 :2]0t[0:0]ou = s. To more compactly describe the first equality we use the
ext-construct to obtain x = ext(t, 10).

ext(spm),1) = ext(tf), 1) The effect of replacing x by s in the variable elimination step may
introduce equality constraints between ezt-terms. Although the equality constraint is
by definition equivalent to unf (s, 1) = unf(t,),[), we can be even more economical
in the unfolding as the following lemma suggests.

Lemma 7.4.1 Assume | >n+m —ged(m,n) and let g = ged(m,n) then
ext(Spm), 1) = ext(tp),l) < unf(s,m+n—g)=unf(t,m+n—g)

Proof:

First divide s and ¢ into slices each of size g and let p = 2 and ¢ = 2. Assume

without loss of generality that p < g. With s is divided into p pieces and t into
q pieces, unf(s,m +n — g) = unf(t,m +n — g) now creates p + ¢ — 1 equalities
between slices from s and slices from ¢. The assertion is no stronger than the
original equality as the assumptions of the lemma guarantee that m+n —g <.
The bipartite graph associated with these slices and equalities has p 4 ¢ vertices
and p+ q — 1 edges.

If the graph had a cycle of length 2k, then & < p as only the p — 1 first
t slices are repeated. Since the hypothetical cycle starts and ends at the same
position in s and two consecutive vertices of the cycle are in distance ¢ mod p
of eachother it would also imply that p divides k& - (¢ mod p). But then since p
and ¢ are relatively prime 1 = ged(p, q) = ged(p, ¢ mod p) and so p divides k
which is impossible.

Hence, the bipartite graph is a spanning tree and all s slices are equated
with all ¢ slices. It is therefore sufficient to equate the unfoldings of s and ¢ up
to m + n — g as the effect of unfolding is unchanged from this point on. a4

Thus, we will ensure that our algorithm maintains the invariant 2n < [for every
ext(ty,), 1) term, and the equality constraint ezt(s,),l) = ezt(t,),[) is replaced by
unf(s,m+n—g) =unf(t,m+n—g).

Other simpler cases are summarized in Figure 7.4. It omits cases that can be obtained using
symmetry of equality.

CHAPTER 7. BIT-VECTORS 126

Constructor elimination

Rl {sjmjou=tpmov}U€ - {s=t,u=v}UE

R2 {cmjos= c’[n] ot}UE — FAIL where ¢ # ¢
R3 {cmjos=c¢p) ot} UE — {s=cp_mot}UE where n > m
R4 {zpjos=tpoyyoutUE — {x=toy,s=youlUE

where m+[{>n>m>0,z#y,
y1=T(y,[0:m—n—1]),y2=T(y,[m —n:1-1]),

R5 {zjpos=tmorpout Ul — {s = wrap(t,n) o u,x = mk-ext(t,n)} UE
where n > m >0

R6 {zjos=tpocyoufUE — {z=tocy_n)5=Clyn-moufUE&
wherem+1>n>m>0

Sim1 = mk-ext(u, m),
RT {spmy ot = eat(upg,n)ov}UE - { t[:] mk—ext(wr(ap(u,)m),n —m)ou } ue

where m <n
R8 {ext(sp,),m) = ext(ty,,m)} UE — {unf(s,l) = unf(t,[)} UE
where | = [y + lo — ged(ly,12)

Equality and variable elimination
R9 {t=t}uU¢&
R10 {z =s}UE&

£

N
— {x=s}U&[z— 3]

Figure 7.4: Rules for unification with ext-terms

The auxiliary function wrap splits the term ¢ at position k£ and swaps the two pieces.
The function mk-ext produces either an ext-term when the length of ¢ is sufficiently small
or unfolds ¢. It ensures that every ext(f[,),m) term generated by the algorithm satisfies
2n < m. These are defined more precisely below:

wrap(tp,,m) = let k =m mod n in

if k=0thentelse 7(t,[k:n—1])oT(t,[0:k—1])
mk-ext(ty,),m) = if 2n < m then ext(t,m) else unf(t,m)

The unification algorithm terminates since the variable elimination step removes du-
plicate constraints involving x and every other step produces equalities of smaller size (in
terms of the number of bitwise comparisons) than the one eliminated. For instance, in the
R8 rule we rely on m > 2 - max(ly,l3) > 1.

7.4.3 Nonfixed size bit-vectors

The most prominent feature of the unification algorithm in Figure 7.4 is that it can be
used to decide bit-vector equality constraints s = ¢, where lengths and projections are not

CHAPTER 7. BIT-VECTORS 127

restricted to fixed naturals, but are of the form aN + b, where a and b are integers and N
is a parameter (where we assume without loss of generality that N > 0). This allows us
to apply the algorithm in the Shostak combination for deciding verification conditions with
non-fixed bit-vector equalities. The unification problem for non-fixed bit-vectors is also
reminiscent of the word unification problem, see Section 8.2.2. The main difference with
word unification is that variables ranging over words in that problem do not have associated
size constraints which bit-vectors have. By performing comparisons and arithmetic on
these lengths symbolically and allowing admissible answers to be paired with accumulated
constraints (as explained later), we can deal with the following example:

Example: By performing the unification of

{wia) © 01) © Z{v46] © Yiv4+7) = Z[v6) © 1a] © Z(3] © T 4]} (7.3)
we obtain as an intermediate step
T[n46) = ext(wyg o Opyp, N + 6),
YN+ = #3)(2 2] 0 TN)

11y 0 213[0 : 1] = wrap(wyg) © Oy, N + 6)

and finally two cases:

x[N-i—G] = ezt(l[l] ¢) ﬁ[l] o) 0[1], N + 6),

yntr = appoert(lppofyolp, N+6), oo (mod 3)
23] = By o0pyoap,

Wig) = lpjofy

x[N-l—G] 6$t(ﬂ[1] o} 1[1] o} 0[1], N + 6),

ynvr = appeert(fppolp o0, N+6), o (mod 3)
23] = Oy o fpyoaq,

wp) = Buelpy

When N = 0 (mod 3), the evaluation of the wrap function simplifies the second equation
of the intermediate result to 1] 0 213, 0:1] = wrg) © Op17- The case that corresponds to
N =2 (mod 3) requires 1f;) o 23)[0 : 1] = Ofy] o wyy; which results in an inconsistency.
The fj1),a1) are auxiliary variables that are introduced to represent unknown segments
of the bit-vector variables.

Thus, the result produced by the unification algorithm will now be a set of constraints,
each of the form

(ax+b>c¢,[N—azx+bofz;—t|i=1,...,n])

CHAPTER 7. BIT-VECTORS 128

where z is a fresh variable and the first constraint is passed on to decision procedures for
linear arithmetic, and the second constraint is a substitution. We are thus faced with a
finitary as opposed to unitary unification problem (see [BS93] for a survey on unification
theory).

The crucial observation that allows lifting the algorithm to parameterized bit-vector
expressions is that all operations and tests on the lengths and projections are of the form

m+n, m—n, m>n, m>n, m=mn, mmodn.

Since terms of the form aN + b are closed under addition and subtraction, the first two
operations can be performed directly in a symbolic way.

The comparison m > n is rewrittentom—n >0, m >ntom—n+1>0,and n = m to
n—m+1>0 A m—n+1>0. This reduces the evaluation of comparisons to alN +b > 0.
Since

aN+b>0 < (a=0Ab>0 V a>0) iff
(@a>0>bVa<0<b) — N >|b| div |al (7.4)

tests can be evaluated using a = 0Ab > 0 V a > 0 and accumulating auxiliary lower bounds
on N for a separate treatment. Our algorithm then produces answers for all N greater than
the largest accumulated lower bound. For values of N smaller than the accumulated bounds
we instantiate N and run the fixed size version.

The auxiliary function wrap requires us to compute m mod n. To simplify this case our
algorithm will maintain the invariant that m mod n is only invoked when n is a constant
b', whereas m may be of the form N + b. The case N > b’ — b causes case-splitting on each
of the possible solutions k =0,...,0' — 1.

We could represent each case in Presburger arithmetic as 32 > 0. 20’ = N +b — k and
use a Presburger decision procedure [Coo72] to check satisfiability of conjunctions of such
constraints. However, in order to manage these constraints more efficiently we can use the
Chinese Remainder Theorem (see [NZMO91]). If II;pi" is a prime factorization of ' (with
P1,D2,- .. the sequence of all primes), then

N+b=k (modd') iff N+b=k (mod pf) for every i.

Let D(p,3,1) be the predicate that N =1 (mod p”) is true. Let Coq = A; D (0, Bi, bi)
be the conjunction of divisibility constraints imposed on the current system. Only one
predicate is needed for each p;, since:

D(p,A.I) AD(p,c, 1) AB > iff D(p,B,) AI'=1 (mod p°) . (7.5)

In order to split on the case N +b =k (mod ') for different values of k =0,..., (V' — 1) we
can form the product of the case splits on N +b = k; (mod p;") for k; = 0,...,(p;" — 1)
(the product is over ¢ = 1,2,...). The situation is not as bad as it seems, since we can use

CHAPTER 7. BIT-VECTORS 129

the existing Cpoq to merge the new constraints in an optimal way:

pil 1_1
/ : : \/ D(pi, i bi + 30 if o > By
toa = [\ P(i) where P(i)= A 6 & T i i = M
. ‘]:
Z D(pi, Bi, bi) if ; < B

The predicate P(i) represents the enumeration of valid congruences modulo a power of p;.
Statement (7.5) suggests the form of the enumeration for each case in the definition of P(3).
Expressing Cl,,.4 in disjunctive normal form \/; C%,,4 the constraints for the different cases
are obtained. The value of k for a particular case of Cy,0q can be reconstructed using the
congruence

k= (Z nibi> —b (mod b')

where n; = 2,7, z; = Ij;p;", and Z; satisfies 2;z; = 1 (mod p;"') (it exists since ged(p]", 2;) =
1).
Given expressions s and t our algorithm now engages in the following steps:

1. Apply 7 to both s and t, ie., let (s,t) = (T(s,[0 : m — 1]), T (£,[0 : m — 1])).
This generates bit-vector expressions without subfield extraction and an assignment
to each original variable = to a concatenation xy o 2 o ... oz, of distinct variables,
where decode(x;) cover disjoint intervals of z. Using equivalence (7.4) the tests in T
are evaluated unambiguously, and possibly generating a new lower bound on N. The
cases where NV is smaller than this bound are processed later.

2. Every variable x|,y remaining in s or ¢, where a > 0, is replaced by a concatenation

of a fresh variables: g:(]lv) o "EE?V)] 0...0 x(;i,)%]. Constants are cut in a similar way'. If b

is negative the lower bound 1 — b on N is added.

Every variable occurring in s and ¢ now has length N + k or k, where k is an integer.

3. The algorithm in Figure 7.4 is invoked on the equality {s = ¢}. Each comparison accu-
mulates a lower bound on N and each invocation of mod may cause a multi-way case
split while accumulating modulus constraints on N. The unification algorithm there-
fore generates constraints of the form (£1,Cy),. .., (En,Cpn), where the &; are equalities
and C; is a conjunction of N > k and D(p;, o, a;) constraints.

We need to ensure that every step is well defined: in particular that unf(¢,m) and, as
we assumed, n mod m are only invoked when m is a constant. This is a consequence
of the following invariant:

Invariant 7.4.2 For every occurrence of ext(tanip,n): a=0A2b <n.

!This step is not strictly necessary, but simplifies the further presentation of the algorithm.

CHAPTER 7. BIT-VECTORS 130

This holds as ext terms are only generated when mk-ext(t,ns),a’ N + b') is invoked
and 2(aN + b) < a’N +b'. Since both a and o’ are either 0 or 1, this inequality can
only hold if a = 0 or N is bounded above by (b’ — 2b) div (2a — a’). The cases where
N is bounded above by a constant are treated separately.

4. The solved form can now be extracted. For each (£,C) generated from the previous
step let C be of the form N > kA /\2:1 D(p;, ;,a;). The Chinese Remainder Theorem
tells us how to find n; such that the constraints can be rewritten to the equivalent
form

N>kA3w.N=Az+B where A=[[_,p¥ B= (zgﬂ niai) mod A

Since we extract the Shostak substitution 6 from £ as in the fixed-length case the
combined constraint returned for this case is

(Az + B > k,[N > Az + B] o #).

For each k less than the least lower bound accumulated above we instantiate N by
k and extract 0 by running the fixed-size version of the algorithm (that is, running
{s = t}[N — k]). For these cases the returned constraints have the form

(true, [N — k] ob).

The algorithm now concludes by returning the entire set of the constraints extracted
above.

As we have argued above we now have

Theorem 7.4.3 (Correctness) When the non-fized unification algorithm terminates on the
input constraint s = t with a set of constraints {(pi(z),0;) | i =0,...n} then s =t <+

\/ Az, Vaus-pi(x) N ;.
=0

Finally we must ensure that we can make the unification algorithm modified for param-
eterized lengths terminate. To this end we apply the transformation rules from Figure 7.4
by preferring the variable and equality elimination rules to the other rules.

We will proceed to prove the termination by induction on the number of distinct non-
fixed variables k in £ that participate in some equality where rule R1-R8 can be applied.
The base case (k = 0) operates only on fixed-size variables, and so it terminates.

Whenever a variable x has been isolated using one of the rules R4-R6, it is eliminated
from the rest of £. Indeed it is eliminated as # cannot be a proper subterm of ¢ in the equality
constraint = ¢, since the length of ¢ is the sum of the lengths of its variable and constant
subterms, which equals the length of z. Since rules R1-R8 produce equalities between
smaller bit-vectors we cannot repeatedly apply these rules without eventually eliminating
a non-fixed size variable. Rule R4 may split a non-fixed length variable y into two parts

CHAPTER 7. BIT-VECTORS 131

1. | equation (7.3) from page 127 satisfiable 0.06 s
OpjolpyoOpyoznygolpyeOpyolpjoynyy | unsatisfiable | 0.06 s
= TIN+7] ° L[N+7]
3. | @ng4a100p70 11300070 Y19 unsatisfiable | 0.09 s
= Y[N—9] © 1ny © Oy 0 Ipyj 0 Ty gy
4. | (7.3) — 23] [0:0] = 0[1] V 2[3][1 1] = 0[1} valid 0.07 s

Table 7.1: Non-fixed bit-vectors examples

y1 and gy, but only one of these parts will have non-fixed length, so the overall number of
non-fixed length variables is constant.
We therefore have

Theorem 7.4.4 (Termination) The non-fized unification algorithm terminates.

A reduction from the problem of simultaneous incongruences [SM73] can establish that
the unification problem for non-fixed bit-vectors is NP-hard. As it is formulated in Garey
and Johnson [GJ79]: given a collection {(a1,b1),..., (an,bn)} of ordered pairs of positive
integers with a; < b; for 1 <1 < n the question whether there is an integer N such that
for g < i < mn, N # a; (mod b;) is NP-complete. This problem is reduced to basic bit-
vector unification using auxiliary bit-vector variables z* of length 2b; — 1 and ¢ of length
2N — 2a; +2b; — 1 for 1 <7 < n. (the factor 2 is used to guarantee that all lengths are
positive). Now N exists if and only if the equations

e:l“;t(xi o 1[1}, 2N — 2a; 4+ 2b;) = yi o 0[1}

are satisfiable (can be unified). Naturally the n equalities can be combined to form one
equality by concatenating all left-hand sides and all right-hand sides. On the other hand,
a simple analysis of the termination argument can establish that a satisfying unifier can be
verified in time polynomial in the constant parameter sizes and number of subterms.

The unification algorithm finally needs to be supplied also with a canonizer that works
on ext-terms of non-fixed length to enable an integration with other decision procedures.
While simple unfoldings cannot be performed this time our implementation normalizes terms
into a concatenation of variables, constants and ezt-terms whose arguments are fixed size
terms in canonical form. The occurrences of ezt in the resulting expression are then shifted
as much as possible to the left. This step cannot be performed unambiguously without
asserting congruence constraints on the parameter and hence also leads to case splits.

Table 7.1 gives a list of examples that were presented to our prototype implementation.
The tests were made on a 200MHz Sun Ultra II.

CHAPTER 7. BIT-VECTORS 132

7.5 Problems

Problem 7.5.1 Integrate arithmetical reasoning “efficiently” with bit-wise boolean opera-
tions.

Problem 7.5.2 Eztend non-fized solving to bit-wise boolean operations.

Problem 7.5.3 Solve arithmetical constraints over the p-adics instead of over field of fixed
size (say 2%2).

Problem 7.5.4 Find a terminating solver for non-fixed bit-vector constraints for bit-vectors
whose lengths are given in quantifier-free Presburger (integer linear) arithmetic.

7.6 Summary

This chapter presented two algorithms: one algorithm handles boolean operations on fixed-
size bit-vectors, the other handles equational constraints in the absence of boolean opera-
tions on parameterized bit-vectors. A completed picture would combine the algorithms to
handle boolean operations on parameterized bit-vectors.

Chapter 8

Queues

This chapter offers a solver-oriented decision procedure for queues. We first solve equational
constraints. In analogy with recursive data-types we also develop decision methods for queue
prefix, suffix, and sub-queue relations. We first motivate the decision procedures for queues
with a small example.

8.1 Verification with queues

A generic situation for network routers and controllers whose input is a sequence of bits,
is to congest the bit sequence in some way for a consumer. Take for instance the situation
where a random sequence of bits has to be ordered in equal valued chunks of length N > 0
to the consumer. After the router has emitted IV bits of the same value it is required to emit
the other value, but it may only emit bits that have been received. Although seemingly
artificial, this very scenario has been used to model a traffic controller along the Californian
coast in [Bjg98al.

It should be noted that linear time temporal logic provides a convenient formalism for
capturing more precise requirements of the router. In this chapter we will only concentrate
on how queues are used to model the protocol and how decision procedures are used to au-
tomatically establish properties for queues. We will not discuss how temporal requirements
may be captured for this example, but proceed to present a sample implementation directly.
Figure 8.1 suggests an implementation of such a router. It uses a stack to keep track of
bits that cannot be sent immediately, a counter ¢ to maintain how many bits of the same
value have been sent, and a flag turn to record whose turn it is. The use of a stack allows
to adapt the implementation to the case where the bits are replaced by records where only
one of the fields contains the bits used in this simplification. The asynchronous channels
producer and consumer are modeled using queues, such that the statement

CONSUMEr <—— v

133

CHAPTER 8. QUEUES 134

const N 1]

in producer :channel[l..] of boolean where producer = e
out consumer :channel [1..] of boolean where consumer = ¢
local stack : boolean list where stack = ¢

local turn : boolean where —turn

local : integer where ; =0

consumer <— v;
procedure emit(v) = |i:=if i+ 1> N then 0 else i + 1;
turn :=if 7 =0 then —turn else turn

Producer ::

loop forever do
[pl : producer <= false or ps : producer <= true]

[local z : boolean T
loop forever do
[0y: if head(stack) = turn A € # stack
then
¢y: emit(head(stack))
Router :: ly: stack := tail(stack)
else
[l3: producer = x;
Ly if x = turn

then /5: emit(z)

else /lg: stack := cons(z, stack)

Figure 8.1: Program ROUTER

CHAPTER 8. QUEUES 135

has as effect to put v in the end of consumer. The statement
producer = x

can be executed when producer is non-empty, and has the effect of dequeueing the first
element from producer and updating x to it.

It is a property of the implementation that the stack variable contains only bits of the
same value. We can check this by postulating the invariant:

(—head(stack)) & stack (8.1)

The invariant is not inductive, but it is possible to use the automatically generated local
invariants:

at L34 N (head(stack) <> turn) = stack =€ (8.2)
at lsg = (z <> turn) A ((head(stack) <> turn) — stack = ¢) (8.3)

We can use rule INV from Figure 1.2 and the decision procedures presented later in this
chapter to automatically prove the property.

Suppose now that we wish to express that the bits in the consumer do not change value
within distance N. Pictorially, if x and y are the same in consumer, and the distance
between z and y does not exceed N, then any z between x and y must have the same value.

consumer
X V4

Y
|

<N

Using a sub-queue relation symbol <, operations head, and last, which pick first and last
elements in a queue, and a length measure | | we can express this consisely using the
invariant:

s =< consumer
(Vs) AN 1< |s|<N = (—head(s)) & s (8.4)
A head(s) = last(s)

The invariant is unfortunately not inductive, but can be established using the auxiliary
invariants below. The predicate suffiz states that s is a suffix of the queue consumer.

(0 <i < N) (8.5)

CHAPTER 8. QUEUES 136

i>0 = last(consumer) = turn (8.6)

i=0 A consumer #¢ = last(consumer) # turn

(¥s) ((suffiz(s, consumer) A 1< |s|< N) > (8.8)

= if |s| <ithen —turn € selse (1 =0 — turn &€ s)

The good news is on the other hand that verification of both the auxiliary invariants and
the main specification proceeds practically automatically thanks to the decision procedures
for queues that we develop in the following. The verification condition below is one of the
proof-obligations that is established in 22 seconds using the decision procedures.

0<i Ai<N)

(
0

A < 1 — last(consumer) = turn)
(consumer =€) —
A
1ast consumer) = turn)
suffix(first(s), consumer)
A1 <|first(s)| A |first(s)|< N
A 1f |first(s)| <1
then (—turn) ¢ first(s)
else (1 =0 — turn ¢ first(s)) — (~head(s)) & s
s%consumer AN1<|s| A|s|<N —
A
head(s) = last(s) — (—head(s)) & s
A hea = last()

A s <X revcons(consumer, turn)
AN 1<]s| A|s| <N

first(s) < consumer A

1 < |first(s)| A |[first(s)| < N —
head(first(s)) = last(first(s)) —
(—head(first(s))) ¢ first(s)

Finally, we can verify that elements in distance N + 1 in the consumer are always different
using the auxiliary invariant (8.9) in establishing (8.10).

(Vs) (suffiz(s, consumer) Ai <|s| < N = head(s) # last(s)) (8.9)
(Vs) (s = consumer A |s| =N +1 = head(s) # last(s)) (8.10)

CHAPTER 8. QUEUES 137

8.2 A theory of queues

We use the sort S queue to refer to queues over the base sort S, and admit the following
operations and relations:

€: S queue,

head: S queue — S, =: S queue X S queue — B
tail: S queue — S queue, prefix : S queue X S queue — B
last: S queue — S, suffix : S queue X S queue — B
first: S queue — S queue, <: S queue X S queue — B
revcons: S queue X S — S queue, €: S queue X S queue — B

cons: S X S queue — S queue

The empty queue is written €, and the usual list oper-

ations, head, tail and cons are supplemented with dual reveons

operations last, first, and revcons. The effect of the
first last

constructors and selectors is summarized in Figure 8.2.
Thus, if z is not €, and ¢« = head(z), y = tail(z),

then x = cons(a,y), and symmetrically for the operators
revcons, first, and last. Figure 8.3 summarizes the first-
order theory of the queue selectors and constructors. The

operations are supplemented by the equality relations, as
well as the binary relations prefix, suffix, <, and €. We
write prefix(z,y) if x is a prefix of y, suffix(z,y) if z is a
suffix of y, and z < y if x is a subsequence of y. Taking o
as the concatenation of sequences we can define these relations using

Figure 8.2: Queue construc-
tors and selectors

prefix(z,y) = Jz.zxo0z=y suffix(z,y) = dz.zox=y
z =y = dz,u.zoxou=y a€y = [a] <Xy

where [a] is shorthand for cons(a, €).
The decision procedures that we develop here will for instance be able to establish
validity of formulas such as

q # ¢ — q = cons(head(q),tail(q)) (8.11)
g # ¢ — head(revcons(q,a)) = head(q) (8.12)
a¢q Nbr=<q — b#a (8.13)

8.2.1 First-order decision procedures

In the full first-order theory of queues we can eliminate selectors completely by introducing
four fresh constants: anead, Gtail, G1ast, Qrirst, and replacing subformulas with selectors

CHAPTER 8. QUEUES 138

For all a,b: S, z,y:S queue

selectors first(revcons(z,a)) =z last(revcons(z,a)) = a
head(cons(a,z)) = a tail(cons(a,x)) ==
constructors revcons(z,a) = revcons(y,b) - z=y A a="b

cons(a,z) =cons(b,y) = a=b A z=y
exchange revcons(e,a) = cons(a, €)

revcons(cons(a, z),b) = cons(a,revcons(z,b))
acyclicity revcons(z,a) # € cons(a,x) # €

x # revcons(..revcons(cons(ay, .., cons(an, x)..),b1),...,bp); n+m >0

domain closure 2z =€ V Ja:S,y:S queue . x = cons(a,y)

Figure 8.3: Equational axioms for queue operations

using transformations of the form:
plhead(t)] +— t=¢€ A @[aneaa] V Ja,z .t =cons(a,z) A ¢[a] (8.14)

When the base sort S is finite one can use wS1S (weak S1S, where set variables range over
finite sets) to encode queue operations revcons, cons, €, prefix, and suffix [KMS98]. A
direct encoding automatically gives the ability to quantify over queues, as well as accessing
elements from queues by their index. On the other hand, concatenation of queues cannot
be encoded when these are non-lossy and of unbounded length as the results reviewed in
the next Section imply. A direct encoding of queue constraints into wS1S also does not
support subsequence relations.

8.2.2 Queues as a sub-theory of concatenation

Instead of taking cons and revcons as primitive queue constructors one could alternatively
base a theory of queues on concatenation and formation of singleton queues, and define
cons and revcons as derived operations: cons(a,q) = [a] o q, revcons(q,a) = qo [a]. Solv-
ing equalities over sequences with concatenation is known as the word unification problem.
Special cases of the word unification problem were addressed in [Hme76]. Makanin [Mak77]
gives an algorithm for word unification showing that word unification problem is decidable.
Jaffar [Jaf90] provides a modification of Makanin’s algorithm for generating all minimial
word unifiers. He notes that infinitely many minimal unifiers may exist. An example is the
word equation ax = za, which has unifiers a*. This equation is also a legal constraint be-
tween queues, and we show how to represent the infinitely many unifiers with one constraint.

CHAPTER 8. QUEUES 139

Our solver based approach in the integration of decision procedures is precisely limited to
theories where the set of possibly implied equalities can be represented by a finite quotient.
gives a more streamlined and bug-free presentation with generalizations. Although 3-SAT
can be immediately reduced to word unification with a one-character alphabet, showing
that word unification is NP-hard, the general word unification problem has caused more
pains to implement efficiently. Makanin’s algorithm requires at most doubly exponential
time [Gut98]. Biichi and Senger [BS86] show that the word disunification problem is re-
ducible to the word unification problem. I.e., given a disequation v # w we can effectively
(and very simply) construct words v’ and w’ such that

A*x .v£w) = 3Fx .o =)

The full first-order equational theory of words is unfortunately undecidable as shown by
Quine [Qui46]. The paper gives a number of constructions in this end. The first and simplest
uses concatenation for addition. Multiplication is encoded using a string-based encoding of
finite relations. To encode that = x y = z he encodes a finite relation of pairs consisting of
finite relations. To encode that £ X y = z he encodes a finite relation of pairs consisting of

PN AN N IR NCPNCD)

T y z—1 2y 1 =Xy
The entire finite binary relation can be encoded in a single string w by segments of the form
bzbubzbvbzb where (u,v) is a pair in the relation and z is a string of a’s longer than any
of the u’s and v’s. Intuitively, this can be achieved by requireing the existence of substring
bzbubzbvbzb in w, such that any substring of pure a’s in w is a substring of z. Notice that

the encoding uses concatentation of strings in an essential way.
We do not at present know of a way to reduce negated subsequence relations to the

existential fragment of word equations.

8.3 A decision procedure for queues

To present the ground decision procedure for queues we use concatenation as primitive
constructor rather than cons and revcons. Queues are then simply sequences with a at
most one non-atomic component. In fact all transformations by the solver are sound for
sequences that contain more than one non-atomic component.

We write queue terms succinctly as strings with the following conventions: a, b range
over individual atoms; A, B range over possibly empty strings of atoms; z, y range over
queue variables; v, w range over arbitrary queues (i.e., are of the form A or AzB); let
A = ajay...a; then A[i : j] denotes the sequence a;a;4q...ay, when [= max(1,i) <
min(k, j) = u, and when max(1,4) > min(k, j), then A[i : j] = e. If v is a queue, then |v]| is
the length of v. To reverse a sequence of atoms A we write (A4)%.

CHAPTER 8. QUEUES 140

8.3.1 Selectors

The canonizer ¢ is used to handle selectors. Given a constraint over queue expressions
the canonizer o tries where possible to evaluate selectors when applied to queues. If a
selector is applied to a term where it is not possible to immediately evaluate the selector we
accumulate in C disjunctions of new constraints for later splitting. In the end all selectors
have been eliminated or are applied only to terms of the form:

head(e), tail(e), first(e), last(e) .

The rest of the solver treats terms whose main connective is a selector as uninterpreted.
The effect of canonization on selectors is summarized in Figure 8.4, where the immediate
arguments of the selectors are assumed canonized.

(((C,a)
(((CU{g =€ V q1 = [b] oy}, head(q: © [a]))
(((Cu{a =e Vv q1 = [b] oy} head(q1))
(((C,head(e))
o(C,tail([a] o g2)) = (Ciq)
(((CU{g =€ V g = [b] oy}, tail(g o [a]) 0 g2)
(((CU{r =€V z=[boy} tail(zoq))
(((

C,tail(e))

Figure 8.4: Canonization of selectors

In the figure, ¢ and ¢ are of the form z; o x5 0 ... 0z, i.e., concatenations of queue
variables, and ¢ is an arbitrary concatenation of queue expressions, i.e., of the form x; o
[a1]o---oxpofany]. The atom b and queue variable y are fresh. Canonization rules for dual
operators first and last are similar to the rules for head and tail and are therefore not
listed.

8.3.2 Equations

Equations are solved in three stages. Assume that the constraint context C is of the form £A
D, where € is a set (interpreted as a conjunction) of residue equalities (unsolved equalities),
and D consists of disjunctions or other non-equational constraints. When adding a new
equality constraint v = w, as well as any other constraint, we set the default effect of
addConstraint(C,c) to (C U {c},[]), and then normalize the residue equalities £ relative to
the new constraint to extract a substitution and updated residue equalities. Invocations of

CHAPTER 8. QUEUES 141

split finally eliminates all equalities in €& producing a context C without residue equalities.

Normalizing residue equalities: In augmenting C : £ UD with an equality constraint
v = w we apply the transformations in Figure 8.5 with the initial constraint

(EU{v=wh]) -

to produce either FAIL or the pair (£,6"). In the first case we set the effect of addConstraint(C,v = w)
to (false,[]). In the other case we set addConstraint (€ UD,v =w) to ((£'UD)#', 6.

EU{v=w},0)
EU{av = bw},0)

((FAIL if v is a proper subterm of w
((

(decompose) (£ U{va = wb},0)

((

((

(EU{v=w},0)a— b
(EU{v=w},0)a— b
(€,0)

(&,0)[x — w]

EU{v =v},0)
EU{r =w},0)

11111

Figure 8.5: Rules for decomposing equalities

Rules (fail), (decompose), (simplify), and (reduce) are applied in decreasing order of
preference. When no rules from Figure 8.5 apply to &, each remaining equality takes the

form
Ax = yB

where A and B are non-empty sequences of atoms.

Elimination of connecting residues: A context C containing the constraint Az = yB,
where |A| < |B| and z and y are different queue variables, can be simplified using the
following application of split:

split(C) = (addConstraint(C,y = A[l:4]) |j=0...|A] =1), (8.15)
(addConstraint(C,z = zB)) where z is fresh

By maintaining substitutions in a triangular form each descendent requires the same or
less space as the parent as lemma 8.3.1 shows:

Lemma 8.3.1 (Complexity) Let

Mg = Z max {|A|,|B| | AzB € £}
ze Vars(E)

and let (£',0") be a branch obtained by eliminating a variable in £, then

CHAPTER 8. QUEUES 142

Proof:
Given any pair (£,0), let

M = Z max {|A|,|B| | AzB € £}
ze Vars(E)

Then

1. Each simplification step in Figure (8.5) does not increase M. Trivially (decom-
pose) can not increase M. In the (reduce) step, assume that we are applying the
substitution z — AyB, where

k
l

max {|A|,|B| | AzB € £}
max {|Al, |B| | AyB € &}

then M’ corresponding to (£, 0)[z — AyB] satisfies

M = M-k-I+

max({|A'A|,|BB| | A'zB' € £} U{|AL|B] | AyB € £})
M — k — [+ max(max(|A|,|B|) + k,1)

M

IAINA

2. Variable elimination does not increase M. In a variable elimination step we apply
the substitutions x — 2B,y — Az corresponding to the constraint Ax = yB.

Then
Al < k = max{|A|,|B||AzB €&}
Bl < 1 = max{|A],|B|| AyB € £}
and
M’ M — k-1l +max({|CA|,|D| | CyD € £} U{|C|,|BD| | CzxD € £})

M — k — 1+ max(l + |A],k + |B|)
M

VAVAN

Elimination of looping residues: The first two transformations on C leave us with
residues of the form Az = zB, where A, B can be assumed to be non-empty sequences of
atoms of the same length. If A and B are not of the same length then C is unsatisfiable and
replaced by false. We eliminate residues of this form using split with the effect:

split({Az =zB}UC) =

(addConstraints (C,{r = A[l : j|, B = wrap(A,7)} | 7 =0...]A| — 1), (8.16)
(addConstraints(C, {periodic(z, j, A, |A]), B = wrap(4,j)}) | j =0...|A| = 1)

CHAPTER 8. QUEUES 143

where we use a new predicate periodic. It is treated as a primitive relation, but we intend
the interpretation

periodic(z,7,A,0) : [<|z|] A |z|=j (mod|A|]) A z = ext(A,|z|)
where

wrap(A,7) = if j =0 then A else A[j+1:|A|]A[l: j] (8.17)
ext(A,l) = if |A] <[then A[l:]] else Aezxt(A,l—|A]) (8.18)

Combinations of periodic: We can maintain at most one occurrence of periodic(z, j, A,1)
for every x by supplying the splitting rule:

split ({ periodic(z, 3, A, 1), periodic(z, k, B,m)} UC) = (8.19)
N . i =max(l,m)...n—1,
<addC’0nstmints (c, { i N Ezzgg’ 7;))’ }) i=7 (mod |A]) >
N ’ =k (mod |B|)

periodic(z, k, A[l : g],n),
(addConstraints(C,{ A = ext(A[l : g],|A)),)|1ji=k (mod g))
B = eat(B[1 : g], | B)

where

def

def
g = ged(|A],|B]) =

n = |Al+[Bl-g .

We see that the first branches cover the cases where |z| ranges from max(l,m) to n — 1.
The cases where |z| > n have been collapsed into a single branch. To establish that this
preserves soundness we use a lemma which has also been useful in [BP98]:

Lemma 8.3.2 With A, B, n, and g as above, and m > n, then
ext(A,m) = ext(B,m) < ext(A,n) = ext(B,n)

Thus, unfolding A and B beyond n does not introduce any new constraints. The extended
Chinese Remainder Theorem is used to combine the length constraints on z.

Factorization of periodic: When a substitution replaces a variable x by a compound term
we normalize periodic using transformations

periodic(e, i, A,n) = 1=0An<0

periodic(wa, i, A,n) +— a = Afi:i] A periodic(w,i—1 mod |A|, A,n—1)
periodic(aw, i, A,n) +— a= A[l:1] A periodic(w,i—1 mod |A|, wrap(A,1),n—1)
Context dependent canonization: Since the predicate periodic has been introduced to
summarize constraints of the form Az = B we need to instrument the canonizer o with

CHAPTER 8. QUEUES 144

this information in order to canonize Az and xB to the same term. This can be achieved
by shifting queue variables to the left as much as possible:

o(C,Bz) = (C,zext(wrap(A,j),|B])) (8.20)
if (B)® = ext((A)®,|B|) and periodic(z, i, A,1) € C

Theorem 8.3.8 implies that the resulting effect of o derives all implied equalities. In
particular a disequality g # r is inconsistent if and only if ¢ and r canonize to the same
terms once all constraints in C have been processed.

8.3.3 Subsequences

Having solved equational constraints we are ready to solve disequational constraints. These
constraints are solved using applications of split, which transforms disequational constraints
into normal form, from which an injective model can be extracted.

Uncontextual simplifications: The most basic such transformations are given in Fig-
ure 8.6 and for negated constraints in Figure 8.7. We have used the shorthand

c—c V coNcg
to encode that

split({c} U C) = (addConstraint (C,c1), addConstraints(C,{ca,c3})) .

The rules for suffix follow a similar pattern as for prefix.
These transformations turn an occurrence of v < w into a disjunction of conjunctions,
where each conjunct is either an equality constraint or of the form

AxB <y, prefix(z A, y), suffix(Ax, y),
AxzB Ay, —prefix(z A, y), —suffix(Az, y)

The combined effect so far can be summarized as

Lemma 8.3.3 Let C be a conjunction of literals such that none of the rules in Figures 8.6,
8.7, 8.5, apply, then the literals in C are of the form:

AzB <y, prefix(z A, y), suffix(Az, y), v # w,
AzB Ay, —prefix(z A, y), —suffix(Az, y), periodic(z, 1, C,1) .

Contextual simplifications: A contextual transformation rule depends on at least two
constraints in C and simplify the set of constraints. For instance, if C contains prefix(u, w)
and prefix(v, w) for two different v and v, then as prefix is a linear order, we can simplify C
by replacing these constraints with either

prefix(u,v) A prefix(v,w) or prefix(v,u) A prefix(u,w) .

CHAPTER 8. QUEUES 145

v < qw — prefix(v,aw) V v Jw w =< w — true
v < wa — suffix(v,wa) V v 2w e<w — true
w=e€ =W =¢€ prefix(v,v) +— true
prefix(v,wb) +— v=wb V prefix(v,w) prefix(v,€) +— e=wv
prefix(av,bw) +— a = b A prefix(v,w) prefix(e,v) +> true

prefix(z A, bw) < v 7 = €A prefix(d, bu)

~ x =by A prefix(yA,w)) v ¢ w,y s fresh
prefix(av, x) =z =ay A prefix(v,y) x & v,y is fresh
}_>

prefix(Az, x) |A| =0
|B|-1

prefix(zA, Bx) +— |A| <|B| A \/ Bz = xAext(wrap(B,j),|B| — |A|)
=0

Figure 8.6: Uncontextual positive simplifications

We refer to Figure 8.8 for the complete set of contextual transformation rules.

Rules for | periodic suffix ‘ and are similar to | periodic prefix |respectively | prefix?

and have not been included in Figure 8.8.
An effect of the contextual transformation rules is that they ensure that prefix and suffix
are linear orders and = is a partial order, which we describe below.

Definition 8.3.4 (Partial variable ordering) Let C be a conjunction of constraints,
then C is the transitive closure of the binary relation defined by

rCy = prefix(zA,y) € C, suffix(Az,y) € C, or AxB <y eC
We now have:

Lemma 8.3.5 Let C be a conjunction of constraints closed under equality, disequality, un-
contextual simplifications and the contextual simplifications from Figure 8.8, then

o The relation C is a partial ordering of the queue variables.

e For every queue variable y there is at most one constraint prefix(w,y) and at most
one constraint suffix(w,y) in C.

e IfC contains a constraint periodic(z, j, A,1), then there are no constraints of the form
—prefix(w, x), —suffix(w,), or w Lz in C.

CHAPTER 8. QUEUES

146

v A aw

v A wa

€ Aw

wAE

w A w
—prefix(av, bw)

—prefix(v, wb)
—prefix(z A, bw)
—prefix(av, z)
—prefix(v, €)

(
—prefix(e, v)
(

—prefix(Az, x)

—prefix(z A, Bx)

N S A A A

I

—prefix(v,aw) A v A w
=suffix(v, wa) A v A w
false

w# €

false

a#b VvV —prefix(v, w)
v #wb A —prefix(v, w)

z =€ A —prefix(A, bw) p”
Vo Jy,c.xz=cy N —prefix(cyA, bw)
r=e T v
Vo Jy,b.xz=by N —prefix(av, by)
€Fv
false
|A| >0
|B|-1
Al > Bl v N\ zAext(wrap(B,j),|B| - |A]) # Bz
j=0

Figure 8.7: Uncontextual negative simplifications

Saturation rules: Using c¢; A co—c3 as shorthand for ¢; A co — ¢1 A co A ¢c3 we finally
saturate C with rules such as

IC]-1

periodic(y,1,C,1) A prefix(zA,y) — \/ zAwrap(C,j) = CzA

j=0

to guarantee that the following lemma holds

Lemma 8.3.6

e Ifperiodic(y,i,C) € C andw <y € C, then w is constrained by periodic(w, j, wrap(C, k))
in C for some j and k. Similar statements hold for prefix(w,y) and suffix(w,y).

e If w Ay, then for every subsequence v of y C implies that w is not a subsequence of

V.

The full set of saturation rules required for Lemma 8.3.6 is given in Figure 8.9.

CHAPTER 8. QUEUES 147

prefix?

prefix(u,v) A prefix(v, w))

prefix(u,w) A prefix(v, w) — < vV prefix(v,u) A prefix(u,w)

prefix(ug,u1) A ... A suffix(uj, uir1) A oo A uy Sug
U =u1 N ... Nuy = Up

‘ periodic-—prefix ‘
periodic(y,i,C) A —prefix(zA,y) —

icl-1
periodic(y,i,C) A (/\ CzA # xAwrap(C,j) V prefix(y,zA) A y#Am)
j=0

periodic(y,i,C) N AzB Ly +—
periodic(y,1,C) A

|C|—1
(/\ wrap(C, j)AxB # AxBwrap(C,k) V y X AzB A y # AmB)
J,k=0

Figure 8.8: Contextual simplifications

8.3.4 Correctness, Complexity and Completeness
A simple inspection reveals:
Theorem 8.3.7 (Soundness) All rules preserve satisfiability.

The accumulated effect of the splits works both as a satisfiability checker and generator
of an injective model, which is important for obtaining a complete integration.

Theorem 8.3.8 (Completeness) If a context C is closed under all splitting rules, then
1. C is satisfiable.

2. For any terms q; and r;, C E \/ qi =i iff oc(q;) = oc(r;) for some i.

)

Proof:

Outline From a context C closed under all splitting rules we construct an injective
model by differentiating all atoms that have not been eliminated, and starting with
the smallest elements in the partial order C we build different realizations for the

queue variables.

CHAPTER 8. QUEUES 148

‘ periodic prefix ‘

ICl-1
periodic(y, 1, C,1) A prefix(zA,y) — \/ xAwrap(C,j) = CzA
j=0
|C|—1
periodic(y,i,C,l) N AzB <y — \/ Az Bwrap(C, j) = wrap(C, k)AzB
k=0
‘ —prefix-prefix ‘ —prefix(v,y) A prefix(w, y) — —prefix(v, w)
=suffix(v, y) A suffix(w, y) — =suffix(v, w)
£-= vAy AN w2y — v A w
vAy A prefix(w,y) — vAw
ZA-suffix v Ay A suffix(w,y) — vAw

Figure 8.9: Saturation rules

Initially let 9 : V +— X* be a map with empty domain. A full evaluation of

all queue variables is extracted in stages starting from a queue variable that has no
sub-queues. Let 7, be the partial evaluation of queue variables extracted at stage n,
and y be the n’th queue variable to be processed. We distinguish two cases:

Periodic periodic(y,i,C) € C for some i and C. Then whenever w <y € C, then by

Lemma 8.3.6 C implies periodic(w, j, wrap(C, k)) for some j and k.

Also by Lemma 8.3.5 there are no constraints AzB A y, —prefix(zA,y) or
—suffix(Az, y).
Let

m — max {In(CzD)|| CzD # AyB € C,z < y}
U A{lmn(w)] | w 2y, prefix(w,y), or suffix(w,y) € C}

and set
M1 = 1n U [y ext(C,m|C| +1)]

It is then straight-forward to verify that n,,1 satisfies all disequalities and sub-
queue relations between queue expressions whose variables are in the domain of

Mn+1-

Aperiodic If it is not the case that y is constrained by periodic(y, i, C'), then assume

CHAPTER 8. QUEUES 149

we have the following constraints on y:
prefix(zoAo,y), Aix;B; Sy, fori=1,...,k suffix(Ags12ks1,9)
Set
M1 = N U [y = 20Aoz1 A1z B ... 2, Apti B2 1 A1 41,

where z; are queues of length at least one containing fresh atoms such that |y| is
longer than max {|CzD| | CzD # AyB € C,z < y}.

The saturation rules ensure that whenever AzB A y, —prefix(z A, y) or —suffix(Az, y)
is asserted, then we may assume by induction on n that that these are not sub-
queues of the sub-queues of y. The use of fresh atoms in the z; prevents any of
these queues to be sub-queues of any other part of .

ol

Theorem 8.3.9 (Complexity) The satisfiability problem for constraints over queues is
NP-complete, and our procedure is in NP.

Proof outline:

By inspecting the constraint solving steps we see that each branch can be represented
in space bounded by the size of the input. The disjunctive splitting causes branches of
at most polynomial depth. The theory is on the other hand NP-hard. We can reduce
an arbitrary instance (V,) of the graph 3 coloring problem to the constraints:

r g ANg#b Ab#r A /\vv’v"acvzacvrgb/\ /\ vVEW
vey (v,w)eE

8.4 Implementation

The present prototype implementation of the decision procedures for queues uses concate-
nation as the basic constructor. Consequently constraints of the form

zolaoy= [plozoz
are legal inputs and are decomposed to
{zofa] =[bloz, y=2z}.

Presently the constraints involving the predicate periodic are not generated.

CHAPTER 8. QUEUES 150

8.4.1 Arithmetical integration

Similarly to recursive data-types one can add a length function on queues. The empty queue
is given length zero, and every application of revcons and cons contributes by incrementing
the length by one. This is summarized by the effect of canonization in Figure 8.4.

Unfortunately we do not have a complete integration of arithmetic and sub-queue rela-
tions. Instead we use an incomplete combination with the arithmetic solver via SUP and INF
to access lower and upper bounds on variables. If a variable has a positive lower bound it
is replaced by a fresh instance of the length of the bound. If the length of a queue variable
has a finite upper bound we enumerate the possible instances.

Besides being essential in establishing the example from Section 8.1, support for the
length function was noted essential in small lemmas from [NG98]. They are established
automatically here using the decision procedures. In general one should note that the
automatic support allows to avoid having to state and prove such lemmas separately.

macro cadr(l) = head(tail(l))
macro caddr(l) = head(tail(tail(l)))

|I| >1 — | = cons(head(l),tail(l)) 0.01
cons(myq,l1) = cons(ma,la) — mi =ma Al =1y | 0.00
I =1 — [= [head(l)] 0.01
|I| =2 — [= [head(l), cadr(l)] 0.02
lI| =3 — | = [head(l), cadr(l), caddr(l)] 0.03
[l o la| =[] + |I2] 0.00
llil =2A|lo] >1 — caddr(ly olz) =head(ls) 0.05
|li| >2 — cadr(ly oly) = cadr(ly) 0.03
Io = cons(m, 1) — |la] = [l1] + 1 0.00

cons(m,ll) = l2 — |lg| >2 =
cadr(lo) = head(l;) A tail(ly) =1 0.01
|lg| >1vVv |ll| >1 — head(h Olg) =
if [; = empty then head(ls) else head(l;) 0.06

Figure 8.10: Lemmas from [NG98]

8.4.2 Other examples

The buffer system discussed in [Sha93] provided some of the early motivation for developing
decision support for queues. The decision procedures developed in this chapter trivially

CHAPTER 8. QUEUES 151

establishes all verification conditions associated with this example, including;:
Initially e =e€oeo L

read input_h = output_h o bo input A input # 1L —
input_h = output_h o revcons(b, input) o L

write input_h = output_hobo input N\b#e —
input_h = revcons(output_h,head(b)) o tail(b) o input

where

€' if 2 =1 then ¢ else [z]

which need not be established using induction, but directly using the decision procedures.

In [Fis98] a software retrieval system for functions manipulating lists is discussed. Bernd
Fischer kindly provided around 15,000 formulas including the relations =<, prefix(,), and
suffix(,); and functions head, tail, cons, and o. A large fragment of the formulas included
also predicates for ordered lists. These predicates were left uninterpreted in our tests. Our
implementation of the decision procedures given in this Chapter together with the quan-
tifier instantiation heuristics was able to automatically establish 1,266 of the 1,800 valid
formulas, while spending in average 0.20 seconds on each formula, valid or not. Of the
remaining verification conditions it was possible to identify only four valid formulas that
were in the scope of the decision procedures, but where quantifier instantation had failed to
properly find the right instantiations. In contast a good resolution theorem prover (SPASS,
Gandalf, or SETHEO) requires about ten seconds to prove as many verification conditions
given appropriate sets of axioms to work with. With a time limit of 90 seconds, however,
SPASS and Gandalf outperform our implementation proving up to 1,500 of the 1,800 con-
ditions. One can therefore be tempted to conclude that even simple decision procedures
offer competitive performance for the common case to well-tuned general theorem provers
as they tend to provide well-directed pruning of the search-space.

8.5 Open problems

Problem 8.5.1 How expressive is the first-order theory of queues with the sub-queue rela-
tion? In particular, how does this compare with the theory of concatenation?

Problem 8.5.2 Give a complete decision procedure for a combination of integer linear
programming and sub-queue relations.

Problem 8.5.3 Eztend queue decision procedures with constraints for lists over an ordered
domain.

Problem 8.5.4 Represent unifiers for the word unification problem using finitely many
unifiers as done with bit-vectors.

CHAPTER 8. QUEUES 152

8.6 Summary

We gave decision procedures for the universal theory of queues including the sub-queue
relationship. Along the way we established that the satisfiability problem for quantifier free
formulas with queue constraints is NP-complete.

Bibliography

[Acz88]
[AH96]

[And81]
[AS80]

[BBMO95]

[BBM97]

[BCY5]

[BCYS]
[BD94]

[BDLY6]

[BDLOg]

[Bec98|

[BEFS89)

Peter Aczel. Non-well-founded sets. CSLI Lecture Notes, 1988.

Rajeev Alur and Thomas A. Henzinger, editors. Proc. 8" Intl. Conference on Computer
Aided Verification, volume 1102 of LNCS. Springer-Verlag, July 1996.

Peter B. Andrews. Theorem proving via general matings. J. ACM, 28(2):193-214, April
1981.

Bengt Aspvall and Yossi Shiloach. A fast algorithm for solving systems of linear equations
with two variables per equation. Linear Algebra and its Applications, 34:117-124, 1980.

Nikolaj S. Bjgrner, Anca Browne, and Zohar Manna. Automatic generation of invariants
and intermediate assertions. In 1% Intl. Conf. on Principles and Practice of Constraint
Programming, volume 976 of LNCS, pages 589—-623. Springer-Verlag, September 1995.

Nikolaj S. Bjgrner, Anca Browne, and Zohar Manna. Automatic generation of invariants
and intermediate assertions. Theoretical Computer Science, 173(1):49-87, February 1997.
Preliminary version appeared in 15¢ Intl. Conf. on Principles and Practice of Constraint
Programming, vol. 976 of LNCS, pp. 589-623, Springer-Verlag, 1995.

Randal E. Bryant and Y.-A. Chen. Verification of arithmetic circuits with binary moment
diagrams. In Proc. of the 32"" ACM/IEEE Design Automation Conference, 1995.

Clark W. Barrett and David Cyrluk. . Private communication, 1998.

Jerry R. Burch and David L. Dill. Automatic verification of pipelined microprocessor
control. In David L. Dill, editor, Proc. 6! Intl. Conference on Computer Aided Verifi-
cation, volume 818 of LNCS, pages 68-80. Springer-Verlag, 1994.

Clark Barrett, David L. Dill, and Jeremy Levitt. Validity checking for combinations of
theories with equality. In st Intl. Conf. on Formal Methods in Computer-Aided Design,
volume 1166 of LNCS, pages 187201, November 1996.

Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A decision procedure for bit-
vector arithmetic. In Proc. of the 35!" ACM/IEEE Design Automation Conference, June
1998.

Bernhard Beckert. Rigid E-unification. In Wolfgang Bibel and Peter H. Schmitt, editors,
Automated Deduction — A Basis for Applications, volume I: Foundations, pages 265—
289. Kluwer, Dordrecht, 1998.

A. Bratsch, H. Eveking, H.-J. Farber, and U. Schellin. LOVERT - A Logic Verifier of
Register-Transfer Level Descriptions. In L. Claesen, editor, IMEC-IFIP International
Workshop on Applied Formal Methods for Correct VLSI Design. Elsevier, 1989.

153

BIBLIOGRAPHY 154

[BFPY2]

[BGY5]

[Bib&2]
[Bir35]

[Bjs98a]

[Bj@98b]

[BK95]

[Ble75]

[BLMY7]

[BLO9S]

[BLS96]

[BMT9]
[BMSS]

[BMO6]
[BMS95]

[BMSU97]

[BMSU9S]

Peter Baumgartner, Ulrich Furbach, and Uwe Petermann. A unified approach to theory
reasoning. Research Report 15-92, Fachbereich Informatik, Universitit Koblenz, 1992.

Leo Bachmair and Harald Ganzinger. Ordered chaining calculi for first-order theories of
binary relations. Technical Report MPI-1-95-2-009, Max Plank Institute, Saarbriicken,
1995. Revised version to appear in JACM.

Wolfgang Bibel. Automated Theorem Proving. Friedr. Vieweg & Sohn, Braunschweig,
Germany, 1982.

Garrett Birkhoff. On the structure of abstract algebras. In Cambridge Philosophical
Society, pages 433-454, Trinity College, April 1935.

Nikolaj S. Bjgrner. Reactive Verification with Queues. In FEngineer-
ing Automation for Computer Based Systems, 1998. To appear, but see
theory.stanford.edu/people/nikolaj.

Nikolaj S. Bjgrner. Symbolic temporal tableaux. Draft manuscript, Computer Science
Department, Stanford University, 1998. Implemented in STeP.

David Basin and Nils Klarlund. Hardware verification using monadic second-order logic.
In Pierre Wolper, editor, Proc. 7t" Intl. Conference on Computer Aided Verification,
volume 939 of LNCS, pages 31-41. Springer-Verlag, July 1995.

Woody W. Bledsoe. A new method for proving certain Presburger formulas. In Proc. of
the 4" Intl. Joint Conference on Artificial Intelligence, pages 15-21, September 1975.

Nikolaj S. Bjgrner, Uri Lerner, and Zohar Manna. Deductive verification of parame-
terized fault-tolerant systems: A case study. In Intl. Conf. on Temporal Logic. Kluwer,
1997. To appear.

Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Computing abstractions of infinite
state systems compositionally and automatically. In Hu and Vardi [HV98], pages 319—
331.

Saddek Bensalem, Yassine Lakhnech, and Hassen Saidi. Powerful techniques for the
automatic generation of invariants. In Alur and Henzinger [AH96], pages 323-335.

Robert S. Boyer and J Strother Moore. A Computational Logic. Academic Press, 1979.

Robert S. Boyer and J Strother Moore. Integrating decision procedures into heuristic
theorem provers: A case study with linear arithmetic. Machine Intelligence, 11:83-124,
1988.

Jon Barwise and Lawrence Moss. Vicious Circles. CSLI publications, 1st edition, 1996.

Anca Browne, Zohar Manna, and Henny B. Sipma. Generalized temporal verification
diagrams. In 15th Conference on the Foundations of Software Technology and Theoretical
Computer Science, volume 1026 of LNCS, pages 484-498. Springer-Verlag, 1995.

Nikolaj S. Bjgrner, Zohar Manna, Henny B. Sipma, and Tom&s E. Uribe. Deductive
verification of real-time systems using STeP. In 4th Intl. AMAST Workshop on Real-
Time Systems, volume 1231 of LNCS, pages 22—43. Springer-Verlag, May 1997.

Nikolaj S. Bjgrner, Zohar Manna, Henny B. Sipma, and Tom&s E. Uribe. Verifying
temporal properties of reactive systems: A STeP tutorial. Technical report, Computer
Science Department, Stanford University, March 1998.

BIBLIOGRAPHY 155

[BNOS]

[BP9S]

[Bry86]
[BS86]

[BS93]

[BSY6]
[BSO8]

[BSU97]

[BT97]

[Buc65]

[Biir91]

[CC77]

[CC90]

[CDG*98]

[CE81]

Franz Baader and Tobias Nipkow. Term Rewriting and all that. Cambridge University
Press, Cambridge, 1998.

Nikolaj S. Bjgrner and Mark C. Pichora. Deciding fixed and non-fixed size bit-vectors.
In 4th Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1384 of LNCS, pages 376-392. Springer-Verlag, 1998.

Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEFE
Transactions on Computers, C-35(8):677-691, August 1986.

J. Richard Biichi and Steven Senger. Coding in the existential theory of concatenation.
Archiv fiir mathematiche Logik, 26:101-106, 1986.

Franz Baader and Jiirgen H. Siekmann. Unification theory. In D.M. Gabbay, C.J.
Hogger, and J.A. Robinson, editors, Handbook of Logic in Artificial Intelligence and
Logic Programming. Oxford University Press, Oxford, UK, 1993.

Franz Baader and Klaus U. Schulz, editors. Frontiers of Combining Systems: Proceedings
of the 1st International Workshop. Kluwer, March 1996.

Franz Baader and Klaus U. Schulz. Combination of constraint solvers for free and quasi-
free structures. Theoretical Computer Science, pages 107-161, February 1998.

Nikolaj S. Bjgrner, Mark E. Stickel, and Tomdas E. Uribe. A practical integration of
first-order reasoning and decision procedures. In Proc. of the 14" Intl. Conference on
Automated Deduction, volume 1249 of LNCS, pages 101-115. Springer-Verlag, July 1997.

Franz Baader and Cesare Tinelli. A new approach for combining decision procedures
for the word problem, and its connection to the Nelson-Oppen combination method. In
William McCune, editor, Proceedings of the 14th International Conference on Automated
deduction, volume 1249 of LNAI, pages 19-33, Berlin, July13-17 1997. Springer.

Bruno Buchberger. Fin Algorithmus zum Auf finden der Basiselemente des Restklassen-
ringes nach einem nulldimensionalen Polynomideal. Dissertation, Mathematisches In-
stitut der Universitdt Innsbruck, Innsbruck, Osterreich, 1965.

Hans-Jiirgen Biirckert. A Resolution Principle for a Logic with Restricted Quantifiers,
volume 568 of LNAI Springer-Verlag, 1991.

Patrick Cousot and Rhadia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In 4" ACM
Symp. Princ. of Prog. Lang., pages 238-252. ACM Press, 1977.

Domenico Cantone and V. Cutello. A decidable fragment of the elementary theory of
relations and some applications. In Shunro Watanabe and Morio Nagata, editors, ISSAC
’90: proceedings of the International Symposium on Symbolic and Algebraic Computa-
tion: August 20-24, 1990, Tokyo, Japan, pages 24-29, New York, NY 10036, USA and
Reading, MA, USA, 1990. ACM Press and Addison-Wesley.

Hubert Comon, Max Dauchet, Remi Gilleron, Denis Lugiez, Sophie Tison, and
Marc Tommasi. Tree Automata Techniques and Applications. Obtainable from
http://13ux02.univ-1ille3.fr/tata/, 1998.

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proc. IBM Workshop on Logics of
Programs, volume 131 of LNCS, pages 52-71. Springer-Verlag, 1981.

BIBLIOGRAPHY 156

[CGZ96]
[Chv8&3]

[CK90]

[CKM*91]

[CLS96]

[CMR97]
[Col75]

[Col84]

[Col93]

[Com90]
[CooT2]
[CST0]
[CU9S|
[Dam96]
[Dan62]
[Dav8l]

[Det96]

Edmund M. Clarke, Steven M. German, and X. Zhao. Verifying the SRT division algo-
rithm using theorem-proving techniques. In Alur and Henzinger [AH96], pages 111-122.

Vagek Chvatal. Linear Programming. W. H. Freeman and Company, New York, 1983.

Chen Chung Chang and H. Jerome Keisler. Model Theory, volume 73 of Studies in Logic
and the Foundations of Mathematics. North-Holland, Amsterdam, 3rd edition, 1990.
(1st ed., 1973; 2nd ed., 1977).

Dan Craigen, Sentot Kromodimoeljo, Irwin Meisels, Bill Pase, and Mark Saaltink.
EVES: An overview. In Soren Prehn and Hans Toetenel, editors, Proceedings of Formal
Software Development Methods (VDM ’91), volume 552 of LNCS, pages 389-405, Berlin,
Germany, October 1991. Springer.

David Cyrluk, Patrick Lincoln, and Natarajan Shankar. On Shostak’s decision proce-
dure for combinations of theories. In Proc. of the 13t" Intl. Conference on Automated
Deduction, volume 1104 of LNCS, pages 463—477. Springer-Verlag, 1996.

David Cyrluk, Oliver Mdller, and Harald Ruef. An efficient decision procedure for the
theory of fixed-sized bit-vectors. In Grumberg [Gru97], pages 60-71.

George E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic
Decomposition, LNCS 32. Springer Verlag, 1975.

Alain Colmerauer. Equations and inequations on finite and infinite trees. In Proceedings
of the International Conference on Fifth Generation Computer Systems, pages 85-99,
1984.

Alain Colmerauer. Naive Solving of Non-linear Constraints. In Frédéric Benhamou and

Alain Colmerauer, editors, Constraint Logic Programming: Selected Research, pages 89—
112. MIT Press, 1993.

Hubert Comon. Solving symbolic ordering constraints. International Journal of Foun-
dations of Computer Science, 1(4):387-411, 1990.

D. C. Cooper. Theorem proving in arithmetic without multiplication. In Machine
Intelligence, volume 7, pages 91-99. American Elsevier, 1972.

John Cocke and Jack T. Schwartz. Programming languages and their compilers. Tech-
nical report, Courant Institute of Mathematical Sciences, New York, 1970.

Michael A. Colén and Tomés E. Uribe. Generating finite-state abstractions of reactive
systems using decision procedures. In Hu and Vardi [HV98], pages 293-304.

Dennis R. Dams. Abstract Interpretation and Partition Refinement for Model Checking.
PhD thesis, Eindhoven University of Technology, July 1996.

George. B. Dantzig. Linear Programming and Eztensions. Princeton Univ. Press, Prince-
ton, NJ, 1962.

Martin Davis. Obvious logical inferences. In Proceedings of the Seventh International
Joint Conference on Artificial Intelligence, pages 530-531, August 1981.

Dave Detlefs. An overview of the extended static checking system. In Proc. First Work-
shop on Formal Methods in Software Practice, pages 1-9. ACM (SIGSOFT), January
1996.

BIBLIOGRAPHY 157

[DGGY4]

[Diw98]
[AK94]
[DLL62]

[DP60]
[DS97]
[DST80)]

[DV95]

[DV96]

[ELTT65]

[Fef96]

[Fis98]
[FMSO8]

[Fri91]

[GDYS]

[GDHHO8]

[Gen69]

Dennis R. Dams, Orna Grumberg, and Rob Gerth. Abstract interpretation of reactive
systems: Abstractions preserving VCTL*, JECTL*, CTL*. In IFIP Working Conference
on Programming Concepts, Methods and Calculi (PROCOMET 94), pages 573-592, June
1994.

Amer Diwan. Array bounds checking. In preparation, 1998.
Eric de Kogel. Rigid E-Unification Simplified. In TABLEAUX 9/, pages 17-30, 1994.

Martin Davis, George Logemann, and Donald W. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394-397, July 1962.

Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J.
ACM, 7:201-215, 1960.

Andreas Dolzmann and Thomas Sturm. Simplification of quantifier-free formulae over
ordered fields. Journal of Symbolic Computation, 24(2):209-231, August 1997.

P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpression
problem. J. ACM, 27(4):758-771, March 1980.

Anatoli Degtyarev and Andrei Voronkov. Simultaneous rigid E-unification is undecid-
able. UPMAIL Technical Report No. 105, Computing Science Department, Uppsala
University, 1995.

Anatoli Degtyarev and Andrei Voronkov. What you always wanted to know about rigid
E-Unification. In José Julio Alferes, Luis Moniz Pereira, and Ewa Orlowska, editors, Pro-
ceedings of the European JELIA Workshop (JELIA-96): Logics in Artificial Intelligence,
volume 1126 of LNAI pages 50-69, Berlin, September 30—October3 1996. Springer.

Y.L. Ershov, I.A. Lavrov, A.D. Taimanov, and M.A. Taitslin. Elementary theories. Russ.
Math. Survey, 20:35-106, 1965.

Solomon Feferman. Computation on abstract data types. The extensional approach,
with an application to streams. Annals of Pure and Applied Logic, 81:75-113, 1996.

Bernd Fischer. Automatic software retrieval. PhD thesis, TU Braunschweig, 1998.

Bernd Finkbeiner, Zohar Manna, and Henny B. Sipma. Deductive verification of modular
systems. In Willem-Paul de Roever, Hans Langmaack, and Amir Pnueli, editors, Com-
positionality: The Significant Difference, COMPO0OS’97, volume 1536 of LNCS, pages
239-275. Springer-Verlag, 1998.

Alan M. Frisch. The substitutional framework for sorted deduction: Fundamental results
on hybrid reasoning. Artificial Intelligence, 49:161-198, 1991.

Shankar G. Govindaraju and David L. Dill. Verification by approximate forward and
backward reachability. In Proceedings of International Conference on Computer-Aided
Design, November 1998. San Jose, CA.

Shankar G. Govindaraju, David L. Dill, Alan J. Hu, and Mark A. Horowitz. Approximate
reachability with bdds using overlapping projections. In Proceedings of the 35th Design
Automation Conference, June 1998. San Francisco, CA.

Gerhard Gentzen. Investigations into logical deductions, 1935. In M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68-131. North-Holland Publishing Co.,
Amsterdam, 1969.

BIBLIOGRAPHY 158

[GJ79]

[GNP+93]

[GNRS92]

[Gra79]
[Gru97]

[GS97]
[Gut98]
[GW75]

[HLLIO]

[HMD97]
[Hme76]
[Hod93]
[Hon92]

[HSGOS]

[HV95]
[HVO8]

[THO3]

[Tss90]

Michael R. Garey and David S. Johnson. Computers and Intractability - A Guide to the
Theory of NP-Completeness. Freeman, 1979.

Jean Gallier, Paliath Narendran, David Plaisted, Stan Raatz, and Wayne Snyder. An
algorithm for finding canonical sets of ground rewrite rules in polynomial time. Journal
of the ACM, 40(1):1-16, January 1993.

Jean Gallier, Paliath Narendran, Stan Raatz, and Wayne Snyder. Theorem proving
using equational matings and rigid E-unification. J. ACM, 39(2):377-429, April 1992.

George Gritzer. Universal Algebra. Springer, New York, second edition, 1979.

Orna Grumberg, editor. Proc. 9" Intl. Conference on Computer Aided Verification,
volume 1254 of LNCS. Springer-Verlag, June 1997.

Susanne Graf and Hassen Saidi. Construction of abstract state graphs with PVS. In
Grumberg [Gru97], pages 72-83.

Claudio Gutierrez. Satisfiability of word equations with constants is in exponential space.
In FOCS’98, 1998.

Steven M. German and B. Wegbreit. A Synthesizer of Inductive Assertions. IEEE
transactions on Software Engineering, 1(1):68-75, March 1975.

Tien Huynh, Catherine Lassez, and Jean-Louis Lassez. Fourier algorithm revisited.
In Héleéne Kirchner and Wolfgang Wechler, editors, Algebraic and Logic Programming,
volume 463 of LNCS, pages 117-131. Springer-Verlag, 1990.

Pascal Van Hentenryck, Laurent Michel, and Yves Deville. Numerica: A Modeling
Language for Global Optimization. The MIT Press, Cambridge, MA, USA, 1997.

Ju. I. Hmelevskii. Equations in Free Semigroups. Number 107 in Proceedings of the
Steklov Institute of Mathematics. American Mathematical Society, 1976. Translated
from the Russian original: Trudy Mat. Inst. Steklov. 107, 1971.

Wilfred A. Hodges. Model Theory. Cambridge University Press, Cambridge, 1993.

Hoon Hong. Heuristic Search Strategies for Cylindrical Algebraic Decomposition. Tech-
nical Report 92-16, RISC-Linz, Johannes Kepler University, Linz, Austria, 1992.

Ravi Hosabettu, Mandayam K. Srivas, and Ganesh Gopalakrishnan. Decomposing the
proof of correctness of pipelined microprocessors. In Proc. 108" Intl. Conference on
Computer Aided Verification, July 1998.

J. N. Hooker and V. Vinay. Branching rules for satisfiability. J. Automated Reasoning,
15:359-383, 1995.

Alan J. Hu and Moshe Y. Vardi, editors. Proc. 10t" Intl. Conference on Computer Aided
Verification, volume 1427 of LNCS. Springer-Verlag, June 1998.

Jean Louis Imbert and Pascal Van Hentenryck. Efficient Handling of Disequations in
CLP over Linear Rational Arithmetics. In Frédéric Benhamou and Alain Colmerauer,
editors, Constraint Logic Programming: Selected Research, pages 49-71. MIT Press,
1993.

Sunil Issar. Path-focused duplication: A search procedure for general matings. In
Proceedings of the Eighth National Conference on Artificial Intelligence, pages 221-226,
July—August 1990.

BIBLIOGRAPHY 159

[Jaf81]

[Jafo0]
[TK90]

[TM94]
[Kam96]
[Kap97]
[K1a98]
[KM76]
[KMS98]
[Koz77]
[KPY6]
[KS97]

[LFMMO92]

[LGS*95]

[LHM93]

[LO97]

[LW93]

Joxan Jaffar. Presburger arithmetic with array segments. Information Processing Let-
ters, 12(2):79-82, April 1981.

Joxan Jaffar. Minimal and complete word unification. J. ACM, 37(1):47-85, 1990.

Jean Pierre Jouannaud and Claude Kirchner. Solving equations in abstract algebras: A
rule based survey of unification. Technical report, University de Paris-Sud, 1990.

Joxan Jaffar and M.J. Maher. Constraint logic programming: a survey. Journal of Logic
Programming, 19-20(3):503-81, 1994.

Jeff Kamerer. Bus scheduler verification using STeP. Unpublished manuscript, Stanford
University, Computer Science Department, January 1996.

Deepak Kapur. Shostak’s congruence closure as completion. In International Conference
on Rewriting Techniques and Applications, RTA ‘97, June 1997.

Nils Klarlund. MoNA & F1Do: The logic-automaton connection in practice. In Computer
Science Logic, CSL ’97, LNCS, 1998.

Shmuel Katz and Zohar Manna. Logical analysis of programs. Communications of the
ACM, 19(4):188-206, April 1976.

Nils Klarlund, Anders Mpgller, and Michael Schwartzbach. QBDD representation using
MONA. http://www.brics.dk/mona/mona examples.html, 1998.

Dexter C. Kozen. Complexity of finitely presented algebras. In Proc. 9th ACM Symp.
Theory of Comp., pages 164-177, 1977.

A. Koscielski and L. Pacholski. Complexity of Makanin’s algorithms. J. ACM, 43(4),
July 1996.

Nils Klarlund and Michael Schwartzbach. A domain-specific language for regular sets of
strings and trees. In DSL’97, 1997.

Beth Levy, Ivan Filippenko, Leo Marcus, and Telis Menas. Using the state delta verifi-
cation system (SDVS) for hardware verification. In Tom F Melham, V Stavridou, and
Raymond T Boute, editors, Theorem Provers in Circuit Design: Theory, Practice and
Ezperience, pages 337-360. Elsevier Science Publishers B.V. (North-Holland), Nijmegen,
Netherlands, 1992.

Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani, and Saddek Bensalem.
Property preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design, 6:1-35, 1995.

Jean-Louis Lassez, Tien Huynh, and Ken McAloon. Simplification and elimination of
redundant linear arithmetic constraints. In Frédéric Benhamou and Alain Colmerauer,
editors, Constraint Logic Programming: Selected Research, pages 73-87. MIT Press,
1993.

Jeremy Levitt and Kunle Olukotun. Verifying correct pipeline implementation for mi-
croprocessors. In IEEE/ACM International Conference on Computer Aided Design; Di-
gest of Technical Papers (ICCAD ’97), pages 162-169, Washington - Brussels - Tokyo,
November 1997. IEEE Computer Society Press.

Riidiger Loos and Volker Weispfenning. Applying linear quantifier elimination. The
Computer Journal, 36(5):450-462, October 1993.

BIBLIOGRAPHY 160

[MAB*94] Zohar Manna, Anuchit Anuchitanukul, Nikolaj Bjgrner, Anca Browne, Eddie S. Chang,

[Mah88a]

[Mah88b]

[Mak77]

[Mal71]
[Mat81]

[McA91]

[McM93]
[Meg83]

[Mil89]
[Min92]
[MMS82]

[MNTOg]

[Mos88]

[MP94]

[MP95]
[MROS]

[MS98]

M. Colén, Luca de Alfaro, Harish Devarajan, Henny B. Sipma, and Tomés E. Uribe.
STeP: The Stanford temporal prover. Technical Report STAN-CS-TR-94-1518, Com-
puter Science Department, Stanford University, July 1994.

Michael J. Maher. Complete axiomatizations of the algebras of finite, rational and
infinite trees. In Proc. 8rd IEEE Symp. Logic in Comp. Sci., pages 348-357, 1988.

Michael J. Maher. Complete axiomatizations of the algebras of finite, rational and
infinite trees. Technical report, IBM Research Report, T.J. Watson Research Center,
1988.

G. S. Makanin. The problem of solvability of equations in a free semigroup. Math. USSR
Sbornik, 32(2):129-198, 1977.

Anatoli Mal’cev. The Metamathematics of Algebraic Systems. North-Holland, 1971.

Prabhaker Mateti. A decision procedure for the correctness of a class of programs.
Journal of the ACM, 28(2):215-222, April 1981.

David McAllester. Grammar rewriting. Technical Report A.I. Memo No. 1342, Mas-
sachusetts Institute of Technology, Artificial Intelligence Laboratory, December 1991.

Ken L. McMillan. Symbolic Model Checking. Kluwer Academic Pub., 1993.

Nimrod Megiddo. Towards a genuinely polynomial algorithm for linear programming.
SIAM Journal on Computing, 12(2):347-353, 1983.

Robin Milner. Communication and Concurrency. Prentice Hall, New York, 1989.
Grigory Mints. Selected papers in proof theory. Napoli, Bibliopolis, 1992.

Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Trans.
Prog. Lang. Sys., 4(2):258-282, 1982.

Martin Miller, Joachim Niehren, and Ralf Treinen. The first-order theory of order-
ing constraints over feature trees. In Thirteenth annual IEEE Symposium on Logic in
Computer Sience (LICS98), Indianapolis, Indiana, 21-24 June 1998.

Louise E. Moser. A decision procedure for unquantified formulas of graph theory. In
E. Lusk; R. Overbeek, editor, Proceedings on the 9th International Conference on Au-
tomated Deduction, volume 310 of LNCS, pages 344-357, Berlin, May 1988. Springer.

Zohar Manna and Amir Pnueli. Temporal verification diagrams. In M. Hagiya and
John C. Mitchell, editors, Proc. International Symposium on Theoretical Aspects of
Computer Software, volume 789 of LNCS, pages 726-765. Springer-Verlag, 1994.

Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

Oliver Moller and Harald Ruef. Solving bit-vector equalities. In Formal Methods in
Computer Aided Design, volume 1522 of LNCS, pages 36—48. Springer Verlag, 1998.

Zohar Manna and Henny B. Sipma. Deductive verification of hybrid systems using STeP.
In T.A. Henzinger and S. Sastry, editors, Hybrid Systems: Computation and Control,
volume 1386 of LNCS, pages 305-318. Springer-Verlag, 1998.

BIBLIOGRAPHY 161

[MSWO1]

[MWS6]

[MW92]

[MW93]
[Nel81]
[Nel82]

[NGOS]

[NOT7S]

[NOTY]
[NOSO]

[NP93]

[NZMO1]
[Opp80al
[Opp80b]

[ORR+96]

[Pau93]

Zohar Manna, Mark E. Stickel, and Richard Waldinger. Monotonicity properties in
automated deduction. In V. Lifschitz, editor, Artificial Intelligence and Mathematical
Theory of Computation: Papers in Honor of John McCarthy, pages 261-280. Academic
Press, Boston, MA, 1991.

Zohar Manna and Richard Waldinger. Special relations in automated deduction. J.
ACM, 33(1):1-59, 1986.

Zohar Manna and Richard Waldinger. The special-relation rules are incomplete. In
Proc. of the 11t* Intl. Conference on Automated Deduction, volume 607 of LNCS, pages
492-506. Springer-Verlag, 1992.

Zohar Manna and Richard Waldinger. The Deductive Foundations of Computer Pro-
gramming. Addison-Wesley, Reading, MA, 1993.

Greg C. Nelson. Techniques for Program Verification. Technical Report CSL-81-10,
Xerox Palo Alto Research Center Research Report, 1981.

Greg C. Nelson. An n'°8" algorithm for the two-variable-per-constraint linear program-
ming satisfiability problem. Technical report, Stanford University, 1982.

Ratan Nalumasu and Ganesh Gopalakrishnan. Deriving efficient cache coherence pro-
tocols through refinement. In Third International Workshop on Formal Methods for
Parallel Programs: Theory and Applications 98, April 1998.

Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure.
Technical Report STAN-CS-77-646, Computer Science Department, Stanford University,
Stanford, California, February 1978.

Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. Prog. Lang. Sys., 1(2):245-257, October 1979.

Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure.
J. ACM, 27(2):356-364, April 1980.

J. Niehren and A. Podelski. Feature automata and recognizable sets of feature trees. In
Marie-Claude Gaudel and Jean-Pierre Jouannaud, editors, TAPSOFT 93: Theory and
Practice of Software Development, volume 668 of LNCS, pages 356-375. Springer-Verlag,
April 1993.

I. Niven, H.S. Zuckerman, and H.L. Montgomery. An Introduction to the Theory of
Numbers. John Wiley & Sons, New York, 1991.

Derek C. Oppen. Complexity, convexity and combinations of theories. Theoretical Com-
puter Science, 12(3):291-302, November 1980.

Derek C. Oppen. Reasoning about recursively defined data structures. J. ACM, 27(3),
July 1980.

Sam Owre, Sreeranga Rajan, John M. Rushby, Natarajan Shankar, and Mandayam K.
Srivas. PVS: Combining specification, proof checking, and model checking. In Alur and
Henzinger [AH96], pages 411-414.

Lawrence C. Paulson. Co-induction and Co-recursion in Higher-order Logic. Technical
report, University of Cambridge, 1993.

BIBLIOGRAPHY 162

[Pau97]

[Plo72]
[Pnu77]

[Pra77]
[Pro93]
[PTS7]

[Pug9l]

[Qui46]

[Rac75]

[Rob65]
[RP89]
[RSS96]
[Sch86]
[Sch93]

[SDBY6]

[Sha93]

[Sho77]

[Sho78]

Lawrence C. Paulson. Mechanizing coinduction and corecursion in higher-order logic.
Journal of Logic and Computation, 7(2):175-204, April 1997.

Gordon Plotkin. Building in equational theories. Machine Intelligence, 7:73-90, 1972.

Amir Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. Found. of
Comp. Sci., pages 46-57. IEEE Computer Society Press, 1977.

Vaughan Pratt. Two simple theories whose combination is hard. Unpublished, 1977.

Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem. Compu-
tational Intelligence, 9(3):268-299, August 1993. (Also available as Technical Report
AISL-46-91, Stratchclyde, 1991).

Robert Paige and Robert E. Tarjan. Three partition refinement algorithms. SIAM
Journal on Computing, 16(6):973-989, 1987.

William Pugh. The Omega test: a fast and practical integer programming algorithm for
dependence analysis. In IEEE, editor, Proceedings, Supercomputing '91: Albuquerque,
New Mezico, November 18-22, 1991, pages 4-13, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 1991. IEEE Computer Society Press.

William V. O. Quine. Concatenations as basis for arithmetic. J. Symb. Logic, 11:105-119,
1946.

C. Rackoff. The computational complexity of some logical theories. Technical Report
MIT-LCS//MIT/LCS/TR-144, Massachusetts Institute of Technology, Laboratory for
Computer Science, February 1975.

J.A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23-41, 1965.

P. Ruzick and I. Privara. An almost linear Robinson unification algorithm. Acta Infor-
matica, 27:61-71, 1989.

Harald Ruef}, Natarajan Shankar, and Mandayam K. Srivas. Modular verification of
SRT division. Lecture Notes in Computer Science, 1102:123—-134, 1996.

Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
New York, 1986.

Klaus U. Schulz. Word unification and transformation of generalized equations. Journal
of Automated Reasoning, 11(2):149-184, October 1993.

Jeffrey X. Su, David L. Dill, and Clark W. Barrett. Automatic generation of invariants
for processor verification. In Ist Intl. Conf. on Formal Methods in Computer-Aided
Design, volume 1166 of LNCS, pages 377—-388. Springer-Verlag, November 1996.

Natarajan Shankar. A lazy approach to compositional verification. Technical report,
Computer Science Laboratory, SRI International, Menlo Park, California, December
1993.

Robert E. Shostak. On the SUP-INF method for proving Presburger formulas. J. ACM,
24(4):529-543, 1977.

Robert E. Shostak. An algorithm for reasoning about equality. Communications of the
ACM, 21(2):583-585, July 1978.

BIBLIOGRAPHY 163

[Sho79]
[Sho81]
[Sho84]
[Sip9s]
[SJ80]
[SM73]
[Smo92]

[SS98]

[Sti85)]
[SUM96)

[SV94]

[SvH95]
[Tar51]
[Tar75]
[THO6]
[TR98]

[Tre91]

[Tre92]

Robert, E. Shostak. A practical decision procedure for arithmetic with function symbols.
J. ACM, 26(2):351-360, April 1979.

Robert E. Shostak. Deciding linear inequalities by computing loop residues. J. ACM,
28(4):769-779, October 1981.

Robert E. Shostak. Deciding combinations of theories. J. ACM, 31(1):1-12, January
1984.

Henny B. Sipma. Diagram-based Verification of Discrete, Real-time and Hybrid Systems.
PhD thesis, Computer Science Department, Stanford University, December 1998.

N. Suzuki and D. Jefferson. Verification of Presburger array programs. Jrnl. A.C. M.,
27(1):191-205, January 1980.

Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time.
In Proc. 5rd ACM Symp. Theory of Comp., pages 1-9, 1973.

Gert Smolka. Feature constraint logics for unification grammars. Journal of Logic
Programming, 12:51-87, 1992.

Mary Sheeran and Gunnar Stalmarck. A tutorial on stalmarck’s proof procedure for
propositional logic. In Formal methods in Computer Aided Verification, volume 1522 of
LNCS, pages 82-99, November 1998.

Mark E. Stickel. Automated deduction by theory resolution. J. Automated Reasoning,
1(4):333-355, 1985.

Henny B. Sipma, Tomdas E. Uribe, and Zohar Manna. Deductive model checking. In
Alur and Henzinger [AH96], pages 208-219.

Bolek K. Szymanski and J. M. Vidal. Automatic verification of a class of symmetric
parallel programs. In Proc. 13th IFIP World Computer Congress, volume A-51, pages
571-576, 1994.

Vijay Saraswat and Pascal van Hentenryck, editors. Principles and Practice of Con-
straint Programming., Cambridge, MA, 1995. MIT Press.

Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. University of
California Press, Berkeley and Los Angeles, 1951.

Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22(2):215-225, April 1975.

Cesare Tinelli and Mehdi Harandi. A new correctness proof of the Nelson—-Oppen com-
bination procedure. In Baader and Schulz [BS96], pages 103-120.

Cesare Tinelli and Christophe Ringeissen. Combination of non-disjoint theories. First
results. Technical report, University of Illinois at Urbana-Champaign, April 1998.

Ralf Treinen. First-Order Data Types and First-Order Logic. In Takayasu Ito and
Albert R. Meyer, editors, Theoretical Aspects of Computer Software, Lecture Notes
in Computer Science, vol. 526, pages 594-614, Sendai, Japan, 24-27 September 1991.
Springer-Verlag.

Ralf Treinen. A New Method for Undecidability Proofs of First-Order Theories. Journal
of Symbolic Computation, 14(5):437-457, November 1992.

BIBLIOGRAPHY 164

[Tre96]

[Tul94]
[Uri98]
[Ven87]

[Vor96]

[WD95]

[Wei94]

[Wei97]

[Zha92]

Ralf Treinen. Feature trees over arbitrary structures. In Patrick Blackburn and Maarten
de Rijke, editors, Specifying Syntactic Structures, Studies in Logic, Language and Infor-
mation. CSLI Publications, 1996.

Sauro Tulipani. Decidability of the existential theory of infinite terms with subterm
relation. Information and Computation, 108(1):1-33, January 1994.

Tomas E. Uribe. Abstraction-based Deductive-Algorithmic Verification of Reactive Sys-
tems. PhD thesis, Computer Science Department, Stanford University, December 1998.

K. N. Venkataraman. Decidability of the purely existential fragment of the theory of
term algebras. J. ACM, 34(2):492-510, April 1987.

Sergei Vorobyov. An Improved Lower Bound for the Elementary Theories of Trees. In
Proc. of the 13" Intl. Conference on Automated Deduction, volume 1104 of LNCS, April
1996.

Howard Wong-Toi and David L. Dill. Verification of real-time systems by successive over
and under approximation. In International Conference on Computer-Aided Verification,
Lecture Notes in Computer Science. Springer-Verlag, 1995.

Volker Weispfenning. Quantifier elimination for real algebra-the cubic case. In ACM,
editor, ISSAC ’94: Proceedings of the 199/ International Symposium on Symbolic and
Algebraic Computation: July 20-22, 1994, Ozford, England, United Kingdom, pages
258-263, New York, NY 10036, USA, 1994. ACM Press.

Volker Weispfenning. Quantifier elimination for real algebra—the quadratic case and
beyond. In Applied Algebra and Error-Correcting Codes (AAECC) 8, pages 85-101,
1997.

Hantao Zhang. A linear Robinson unification algorithm. Technical report, Argonne,
Nlinois., 1992. Presented at U.S./Japan Joint Workshop on Automated Reasoning,.

Index

m, 93
o canonizer
congruence closure, 47

o

canonizer, 20
~. 99
T-automaton, 93
T-tree, 80

f-compatible rigid C'C-unifier, 56
canonize

congruence closure, 42
insert

congruence closure, 40
merge

congruence closure, 40
interpreted

congruence closure, 48
INV, 4

addConstraint, 23
alternating 7-tree, 87

bit-vector, 115

bit-vectors
o, 116
bit-vector normalization, 118
bitwise and, 116
bitwise or, 116
procedure 7, 120
procedure apply, 120
procedure cut, 119
procedure dice, 119
procedure slice, 120
sub-field extraction, 116
ext, 123
unf, 123
wrap, 126

canonical, 40
canonizer

165

o, 20, 24, 47
children, 40
congruence closure

o canonizer, 47

canonize, 42

insert, 40

merge, 40

solve, 48

interpreted, 48
convex theories, 20

data type, 79
domain closure, 84

eager equational completeness, 25
enumerative
data type, 79

flat
data type, 79
function updates, 16

ground automaton, 99
instantiate, 26

lazy equational completeness, 25
linear
data type, 79

monotone relations, 52
non-linear arithmetic, 71

Program BAKERY, 6
Program ROUTER, 134
Program Szv-A, 8

reachability, 93
record

data type, 80
redex closure, 98

INDEX 166

reduced automata, 99
rigid PO-unification, 55
rigid S-unification, 61
rigid T-unification, 57
root node, 39

selector, 79
signature table, 46

singular

data type, 79
solve

congruence closure, 48
solver

Shostak’s requirements, 20
special relations, 25, 52
split, 24
stable-infiniteness, 18
state differentiator, 98

temporal formula, 3
tester, 79
transition system, 1

union-find, 39
use, 40

well-founded
data type, 79

