Course Overview

Goal I Develop abstract, mathematical models of computation, such as:
- Finite State Machines
- Push Down Machines
- Turing Machines

Note physically realizable computers correspond to the simplest such model — F.S.M.

However, rest are useful abstractions of machines we could build in principle, given unlimited resources.

Goal II Understand properties & power of these models, especially in terms of their ability to solve computational problems.

Q5. A What problems can they solve at all?
Q5. B What problems can they solve efficiently?

History

1930s Alan Turing defined machines more powerful than any in existence, or even any that we could imagine — goal was to establish the boundary between what was and was not computable.

1940s/50s In an attempt to model “brain function,” researchers defined finite state machines.

Late 1950s Linguist Noam Chomsky began the study of formal grammars.
To see a convergence of all this into a formal theory of computer science with very deep philosophical implications as well as practical applications (compilers, web searching, hardware, AI, algorithm design, software engineering...)

Culmination In 1970s, Steve Cook extended all this to the "theory of NP-completeness" which separated out a class (in fact, most interesting problems in practice) which:

- could be solved, in principle
- but cannot be efficiently solved, even given Moore's law for hardware.

Hidden Agenda To teach you how to think precisely and develop powers of reasoning in a precise/formal/abstract fashion.

Key This is what separates mere programmers from computer scientists

Precision is key Computers/programs are very unforgiving of "fuzzy" thinking.

At the same time, everything you learn will be eminently practical and useful in real life.

Except you may not realize this till a year or two from now.

Very Important Review various types of proofs in chapter 1—this is critical to understanding the material presented in class.
SOFTWARE FOR DESIGNING/VERIFYING DIGITAL CIRCUIT.
LEXICAL ANALYZERS OF COMPILERS
SCANNING/SEARCHING LARGE BODIES OF TEXT (WEB SEARCH ENGINES, GREP, NAPSTER, ...)
DESIGN/VERIFICATION/IMPLEMENTATION OF SOFTWARE SYSTEMS INVOLVING INTERACTION (E.G. NETWORK PROTOCOLS, ELECTRONIC COMMERCE, ...)

PROBLEMS?

THIS COURSE WE TAKE THE FOLLOWING VIEW OF A PROBLEM.

LANGUAGE L - SET OF STRINGS
INPUT STRING x
PROBLEM DECIDE WHETHER $x \in L$ OR NOT.

MACHINE SOLVES PROBLEM L BY ACCEPTING/REJECTING x.

REMARK WHILE REAL-LIFE PROBLEMS ARE OFTEN NOT A SIMPLE LANGUAGE RECOGNITION PROBLEM, WE CAN CAPTURE THEIR ESSENTIAL STRUCTURE IN SOME L.

EXAMPLE $L =$ VALID C PROGRAMS

IN COMPILER COURSE YOU WILL SEE THAT A MACHINE WHICH CAN CHECK "LEGALITY" OR "VALIDITY" OF A PROGRAM, CAN BE ADAPTED TO GENERATE "OBJECT CODE" IN THE PROCESS OF DOING SO.
Review of Basic Definitions

Alphabet
Any finite set of symbols — \(\Sigma \)

- \(\Sigma = \{0, 1\} \)
- \(\Sigma = \{a, b, c, \ldots, z\} \)
- \(\Sigma = \text{ASCII Characters} \)

String
Finite sequence of symbols from \(\Sigma \)

\(w = w_1 \ldots w_n \) where \(\forall i, w_i \in \Sigma \)

Examples

- 1001
- string
- \$1,000,000

Special Strings
- \(\emptyset \) Empty string
- \(\# \) Blank or space

Length

\(|w| = |w_1 \ldots w_n| = n \)

- \(|\emptyset| = 0 \)
- \(|\#| = 1 \)
- \(|\text{string}| = 6 \)

Cartesian Product

\(\Sigma^r = \Sigma \times \Sigma \times \ldots \times \Sigma \)
\(\text{r times} \)

Means all strings of length \(r \) from \(\Sigma \)

Defn — Closure

\(\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \ldots \)

Means all finite-length strings from \(\Sigma \)
But \(\Sigma^* \) itself is infinite.
\[Z = \varepsilon^3 \]
\[\Sigma^1 = \Sigma \]

Example

\[\Sigma = \{0, 1\} \]
\[\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\} \]

Concatenation

\[x = x_1 \ldots x_n \in \Sigma^* \]
\[y = y_1 \ldots y_m \in \Sigma^* \]

\[\Rightarrow x \cdot y = x_1 \ldots x_n y_1 \ldots y_m \]

Note

\[\varepsilon \cdot x = x \varepsilon = x \varepsilon \]

Note

\[|x \cdot y| = |x| + |y| \]

Language

\(L \) \text{ any collection of strings} \ L \subseteq \Sigma^*

Subtle Point

\(L, \Sigma^* \) \text{ are potentially infinite in size, but contain only finite-length strings}

Examples

\[\left\{ \begin{array}{l}
\Sigma = \{a, b, c, \ldots, z\} \\
L = \text{all English words}
\end{array} \right. \]

\[\left\{ \begin{array}{l}
\Sigma = \{0, 1\} \\
L = \{\varepsilon, 01, 0011, 000111, \ldots\} \text{ all strings with equal \# of 0's & 1's, but with 0's preceding the 1's.}
\end{array} \right. \]

\[\left\{ \begin{array}{l}
\Sigma = \text{ASCII} \\
L = \text{compilable C programs}
\end{array} \right. \]
Finite State Machines

Finite Automata

- Simplest model of computation
- Describes class of languages called "regular"
- Operation
 - Always in one of finitely-many states
 - Changes state in response to input
 - Accepts input by ending up in one of so-called final or accepting states

Example
F.A. below scans HTML documents, looking for a list of what could be title-author pairs, perhaps in reading list for some course.

Note
- Accepts when it finds end of a list
- Observe strings that matched the title (before \(\text{by} \) \(\text{by} \)) and author (after \(\text{by} \) \(\text{by} \)) would be stored in a table of such pairs being accumulated.

In HTML

```html
<ol> — Numbered/ordered list
<ol> — Unnumbered/unordered list.
```

Example

```html
<ol>
  <li> Othello \( \text{by} \) \( \text{by} \) Shakespeare <li>
  <li> Foundation \( \text{by} \) \( \text{by} \) Asimov <li>
</ol>
```
NOTATION

STATE TRANSITION DIAGRAM

• STATE 6
• START STATE → 1 (ALSO CALLED INITIAL STATE)
• FINAL STATE → 9 (ALSO CALLED ACCEPTING)
• TRANSITION 4 → B 5

MEANS IN STATE 4, IF THE F.A. SEES "B" IN THE INPUT, IT MOVES TO STATE 5.
Example

Consider the problem of checking whether a binary string w contains the pattern 01.

Here

$$
\Sigma = \{0, 1\}
$$

$$
L = \{ \omega \in \Sigma^+ \mid \omega \text{ has substring } 01 \}
$$

$$
= \{ x01y \mid x, y \in \Sigma^+ \}
$$

Note

$$
\begin{align*}
11010 & \in L \\
000111 & \in L \\
111000 & \notin L
\end{align*}
$$

F.A.

![Finite Automaton Diagram]

Meaning

q_0: Waiting for first 0

q_1: Seen 0, waiting for 1

q_2: Seen 01, waiting for end of input.

Observe

F.A. scans input w in L-to-R order (cannot back up!), symbol-by-symbol, making state transitions.

Accepts

If it is in accepting/final state when it reaches the end of the input.

Note

$$
L = \{ \omega \in \Sigma^+ \mid \text{F.A. accepts } \omega \}
$$
To formally define a Finite Automaton (FA), we have:

1) \(\mathcal{Q} \) \text{ Finite Set of States}
 \[\text{E.g., } \mathcal{Q} = \{ q_0, q_1, q_2 \} \]

2) \(\Sigma \) \text{ Input Alphabet}
 \[\text{E.g., } \Sigma = \{ 0, 1 \} \]

3) \(q_0 \) \text{ Initial or Start State, } q_0 \in \mathcal{Q}

4) \(F \) \text{ Set of Final or Accepting States, } F \subseteq \mathcal{Q}
 \[\text{E.g., } F = \{ q_2 \} \]

5) \(\delta \) \text{ State Transition Function.}

Transition Function \(\delta : \mathcal{Q} \times \Sigma \rightarrow \mathcal{Q} \)

Here, \(\delta(q_1, 0) = q_2 \) is the same as \(\begin{array}{c}
\begin{array}{c}
\text{Diagram}
\end{array}
\end{array} \)

\(\begin{array}{c}
\begin{array}{c}
\text{Transition Table}
\end{array}
\end{array} \)

\[\begin{array}{c|cc}
\delta & 0 & 1 \\
\hline
q_0 & q_1 & q_0 \\
q_1 & q_1 & q_2 \\
q_2 & q_2 & q_2 \\
q_0 & q_1 & q_0 \\
\end{array} \]
Extended Transition Function

Goal Extend \(S \) to multiple transitions

Idea
- \(S \): Single transition on input symbol \(a \in \Sigma \)
- \(\hat{S} \): Sequence of transitions on substring \(x \in \Sigma^* \)

Formally \(\hat{S} : \mathbb{Q} \times \Sigma^* \rightarrow \mathbb{Q} \)

Meaning \(\hat{S}(q, x) = p \) denotes that starting at state \(q \), portion \(x \) of input string will take F.A. to state \(p \).

Example

\[
\begin{align*}
\hat{S}(q_0, \text{11}) &= q_0 \\
\hat{S}(q_0, \text{110}) &= q_1 \\
\hat{S}(q_0, \text{1100}) &= q_2 \\
\hat{S}(q_0, \text{1110111}) &= q_2
\end{align*}
\]

\(\hat{S}(p_0, a_1a_2...a_n) = p_n \)

Question How do we get \(\hat{S} \) from \(S \)?

Inductive Defn \(\forall q \in \mathbb{Q}, \forall a \in \Sigma, \forall x \in \Sigma^* \),

Basis \(\hat{S}(q, \epsilon) = q \)

Induction \(\hat{S}(q, xa) = \hat{S}(\hat{S}(q, x), a) \)

Application

\[
\begin{align*}
\hat{S}(q_0, \epsilon) &= q_0 \\
\hat{S}(q_0, 1) &= S(\hat{S}(q_0, \epsilon), 1) = S(q_0, 1) = q_0 \\
\hat{S}(q_0, 10) &= S(\hat{S}(q_0, 1), 0) = S(q_0, 0) = q_1 \\
\hat{S}(q_0, 101) &= S(\hat{S}(q_0, 10), 1) = S(q_1, 1) = q_2
\end{align*}
\]
FACT
\[\forall a \in \Sigma, \forall q \in Q, \]
\[\hat{s}(q, a) = s(q, a) \]

Proof
\[\hat{s}(q, a) = s(\hat{s}(q, \epsilon), a) \]
\[= s(q, a). \]

Thus \(\hat{s} \) and \(s \) agree on strings of length 1, and \(s \) is only defined for such strings. — **Convention** can call \(\hat{s} \) as \(\hat{s} \) without any confusion.

Exercise Prove that
\[\forall q \in Q, \forall x, y \in \Sigma^*, \]
\[\hat{s}(q, xy) = \hat{s}(\hat{s}(q, x), y). \]

Language of F.A. M.
- \(M = (Q, \Sigma, s, q_0, F) \)
- \(L(M) = \{ \text{all strings accepted by } M \} \)

Defined
\[L(M) = \{ w \in \Sigma^* \mid \hat{s}(q_0, w) \in F \} \]

Exercise Consider \(M \) below — what is \(L(M) \)?

![Diagram of a Finite Automaton](image)
NON-DETERMINISM

DETERMINISTIC F.A. (DFA)

- \[S(q, a) \text{ is unique (each } q \text{ has exactly one arrow going out for each } a \in \Sigma \) \]
- **Means** for specific input \(w \), execution is totally predictable & repeatable.

NON-DETERMINISTIC F.A. (NFA)

- \[S(q, a) \text{ is a set of states} \]
 - Empty set is possible
 - Multiple states are possible
- Thus \(q \) could have multiple (or no) arrows going out for each \(a \in \Sigma \)
- **Means** multiple choices allows NFA to "guess") the right action, instead of having it hardwired in advance.

EXAMPLE

\[L_{01} = \{ w \mid w \text{ ends in } 01 \} \]

IDEA

NFA "guesses" the end of input and then looks for \(01 \) — using nondeterminism.

Diagram

![Diagram of NFA]

Observe

Non-determinism implies that instead of unique execution trace (as in DFA's), we have a tree of possible executions.
Example for input $w = 0010$

- $q_0 \rightarrow q_1$ (Stuck)
- $q_1 \rightarrow q_0$
- $q_0 \rightarrow q_0$
- $q_0 \rightarrow q_0$
- $q_0 \rightarrow q_1$
- $q_1 \rightarrow q_1$

But for $w = 0001$

- $q_0 \rightarrow q_0$
- $q_0 \rightarrow q_0$
- $q_0 \rightarrow q_0$
- $q_0 \rightarrow q_0$
- $q_0 \rightarrow q_1$
- $q_1 \rightarrow \text{(Accept)}$

Acceptance when there exists at least one execution path ends in a final state.

Reselection when all possible execution paths either get "Stuck" or end in a non-final state.

Interpretation

View 1 It always makes the right choices to ensure acceptance — assuming an accepting path exists.

View 2 It spawns off multiple copies of itself to explore all possible paths.

View 3 It explores multiple paths in parallel.
An NFA \(N \) for language \(L \) must ensure:
\[\forall x \in L, \forall x \in L \]
all paths are rejecting.
\[\forall x \in L, \]
at least one path is accepting.

Thus while \(N \) is free to "guess", it must verify its guesses are "correct".

Formally \(N = (Q, \Sigma, S, q_0, F) \)
where everything is same as in DFA except \(S \)
\[S : Q \times \Sigma \rightarrow 2^Q \]
\((2^Q : \text{powerset of } Q) \)

That is \(S(q_1, a) \) is subset of \(Q \).

Above example \(N_{01} \) has following \(S \)-transition table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>{(q_0, q_1)}</td>
<td>{(q_0)}</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(\emptyset)</td>
<td>{(q_1)}</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

Extending \(S \) to \(\hat{S} \)
\[\hat{S}(q_1, w) : \{ \text{states that can be reached from } q_1 \text{ on input } w \} \]

Examples
\[\hat{S}(q_0, 00) = \{ q_0, q_0, q_1 \} \]
\[\hat{S}(q_0, 000) = \{ q_0, q_1 \} \]

Inductive Defn
\[\forall q \in Q, \forall x \in \Sigma^*, \forall a \in \Sigma \]

Basis \(\hat{S}(q_1, \varepsilon) = \{ q_1 \} \)

Induction
Suppose \(\hat{S}(q_1, x) = \{ b_1, b_2, \ldots, b_k \} \)
Suppose \(S(b_i, a) = S_i \) \((\forall i = 1, \ldots, k)\)

Then \(S(q_1, wa) = S_1 \cup S_2 \cup \ldots \cup S_k \)
\[\hat{S}(q_1, x_1) = \bigcup_{p_i \in \hat{S}(q_1, x_1)} S(p_i, a) \]

Shorthand

Example

- \[\hat{S}(q_0, 0) = S(q_0, 0) = \{q_0, q_1\} \]
- \[\hat{S}(q_0, 00) = \bigcup_{p_i \in \hat{S}(q_0, 0)} S(p_i, a) = S(q_0, 0) \cup S(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\} \]
- \[\hat{S}(q_0, 001) = \bigcup_{p_i \in \hat{S}(q_0, 00)} S(p_i, 1) = S(q_0, 1) \cup S(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\} \]

Observe \[\hat{S}(q_0, 001) \] contains final state \(q_2 \)

\[\implies 001 \text{ is accepted} \]

Language of an NFA

Given NFA \(N = (Q, \Sigma, \delta, q_0, F) \)

Then \[L(N) = \{ \omega \in \Sigma^* | \hat{S}(q_0, \omega) \cap F \neq \emptyset \} \]

Verify this is consistent with earlier explanations.
Example
$L_{123} \subseteq \{1, 2, 3\}^*$

Language
All strings $w \in \{1, 2, 3\}^*$ such that the largest symbol in w appears previously without any intervening larger symbol.

E.G.

```
...11
...2112
...3121213
```

N_{123}

```
START 1 1
\[ \begin{array}{ccc}
1 & 2 & 1 \\
2 & 9 & 1 \\
3 & 3 & 3
\end{array} \]
```

In p

HAVEN'T GUESSED YET

In s

GUSSSED LAST SYMBOL IS A 3, AND JUST SAW THE PRECEDING 3 — WAITING TO VERIFY THAT INTERVENING SYMBOLS ARE LESS THAN 3

Similarly $01, 97$.

\[
\begin{array}{c|ccc}
 & 1 & 2 & 3 \\
\hline
p & \{1, 3\} & \{1, 3\} & \{1, 3\} \\
q & \{e\} & \emptyset & \emptyset \\
r & \{e\} & \{e\} & \emptyset \\
s & \{s\} & \{s, s\} & \{s, s\} \\
t & \emptyset & \emptyset & \emptyset \\
\end{array}
\]
Example \(\omega = 31213 \)

\[\begin{array}{cccccc}
\circ & \rightarrow & \circ & \rightarrow & \circ & \rightarrow \\
\rightarrow & \circ & \rightarrow & \circ & \rightarrow & \circ \\
\rightarrow & \circ & \rightarrow & \circ & \rightarrow & \circ \\
3 & 1 & 2 & 1 & 3 & \text{STUCK}
\end{array} \]

Note \(8121 \notin L_{123} \).

Comparing the power of DFAs & NFAs

Power? Ability to accept languages

Observe DFA is a special case of NFA with \(|S(9,4)| = 1 \)

\[\Rightarrow \text{Power (DFA)} \leq \text{Power (NFA)} \]

Theorem For every NFA \(N \) there is a DFA \(M \) which accepts exactly the same language

Thus \(\text{Power (NFA)} = \text{Power (DFA)} \)

Question Then why bother with NFAs, which we can't really implement directly?

Proof of Theorem Converts an NFA \(N \) with \(k \) states into a DFA \(M \) with \(2^k \) states.

--- Best possible, in that for many NFAs need such a blowup in states when getting DFA.
In general, NFAs are easier to construct, specify, or comprehend due to succinctness. DFAs can be implemented in real-life.

Thus, we use NFAs to capture patterns in string processors (grep, lexical analyzers), but convert to DFAs in finding patterns.

Theorem. For every NFA N, there exists a DFA M with $L(M) = L(N)$.

Proof idea. Given N, M will simulate the entire execution tree of N in one execution.

\[
\begin{align*}
\Sigma & = \{0, 1\} \\
\delta_N & = \{ (q_0, q_1) \rightarrow q_0, (q_0) \rightarrow q_0, (q_1) \rightarrow q_1 \} \\
\delta_M & = \{ (q_0) \rightarrow \{q_0, q_1\}, (q_1) \rightarrow \{q_1\}, (q_0, q_1) \rightarrow \{q_0, q_1, q_2\} \}
\end{align*}
\]

Trick. A state in M will correspond to a subset of N's states.
FORMALLY

\[\text{Given} \quad N = (Q_N, \Sigma, \delta_N, q_0, F_N) \]

\[\text{Construct} \quad M = (Q_M, \Sigma, \delta_M, \{q_0\}, F_M) \]

\[\text{Such that} \quad Q_M = 2^{\text{ALL SUBSETS OF} \quad Q_N} \]

\[F_M = \{S \subseteq Q_N \mid S \cap F_N \neq \emptyset\} \]

WHAT ABOUT \(\delta_M \)?

\[\delta_M (\{p_1, \ldots, p_k\}, a) = \delta_N (p_1, a) \cup \delta_N (p_2, a) \cup \ldots \cup \delta_N (p_k, a) \]

\[\delta_M (S, a) = \bigcup_{p_i \in S} \delta_N (p_i, a) \]

MEANS \(\delta_M (S, a) \) IS THE SET OF STATES IN \(N \) REACHABLE FROM \(p_i \in S \) ON INPUT SYMBOL \(a \).

EXAMPLE

\[\xymatrix{ \{q_0\} \ar[r] & \{q_0, q_1, q_2\} \ar[r] & \{q_0, q_1, q_2\} } \]
SOME STATES CAN'T BE REACHED FROM START STATE & HENCE CAN BE ELIMINATED AS BEING NON-ESSENTIAL STATES

DEAD STATE \emptyset CAN NEVER LEAVE IT (STUCK)

SIMPIFIED DFA

![DFA Diagram]

Lemma

$\forall q \in Q_N \setminus \emptyset, \forall w \in \Sigma^*$

$\widehat{S}_M (\{q_0\}, w) = \widehat{S}_N (q_0, w)$

Proof by induction on length of w.

But First LET'S FINISH PROOF OF THEOREM.

$L(M) = \{ w \in \Sigma^* \mid \widehat{S}_M (\{q_0\}, w) \in F_M \} = \{ w \in \Sigma^* \mid \widehat{S}_M (\{q_0\}, w) \cap F_N \neq \emptyset \}$ (BY DEFINITION OF F_M)

$= \{ w \in \Sigma^* \mid \widehat{S}_N (q_0, w) \cap F_N \neq \emptyset \}$ (BY LEMMA)

$= L(N)$ (BY DEFINITION OF $L(N)$)
Induction Lemma

Induction on Length of \(w \)

Basis \(|w| = 0 \) or \(w = \varepsilon \)

\[
\hat{S}_M (\{q\}, \varepsilon) = \bigcup_{p \in \hat{S}_N (q, \varepsilon)} \hat{S}_N (q, \varepsilon)
\]

Induction

Assume lemma for \(|w| = n-1 \)

Show for \(|w| = n \).

Consider \(|w| = n \) and write \(w = x \cdot q \)

\(1x1 = n-1 \), \(1q1 = 1 \)

Clearly

\[
\hat{S}_M (\{q\}, x) = \hat{S}_N (q, x)
\]

(By I.H.)

Now

\[
\begin{align*}
\hat{S}_M (\{q\}, w) &= \hat{S}_M (\{q\}, xcq) \quad [w = xcq] \\
&= \hat{S}_M (\hat{S}_M (\{q\}, x), q) \\
&= \hat{S}_M (\hat{S}_N (q, x), q) \quad [\text{Defn of } \hat{S}_M] \\
&= \hat{S}_N (\hat{S}_N (q, x), q) \quad [\text{Defn of } \hat{S}_N] \\
&= \hat{S}_N (q, xq) \quad [\text{Defn of } \hat{S}_N] \\
&= \hat{S}_N (q, \varepsilon) \quad [\text{Defn of } \hat{S}_N] \\
&= \hat{S}_N (q, \varepsilon) \\
&= \hat{S}_N (q, w) \quad \text{Done}
\end{align*}
\]
EXAMPLE

\[L = \{ \omega \mid \omega \text{ ends in } 001, 010 \text{ or } 100 \} \]

```
EXERCISE  CONVERT TO DFA

EXERCISE  TRY TO WRITE A DFA DIRECTLY.
```

```
OBSERVE  DFA IS QUITE COMPLEX & SECOND EXERCISE IS PRETTY TOUGH

BUT  WRITING NFA IS QUITE EASY & CONVERTING TO DFA IS AN AUTOMATED PROCESS
```