Transitions

\[S: \Sigma \times \Gamma \rightarrow \Sigma \times \Gamma \times \{L, R\} \]

Thus \(S(q, x) = (p, y, l) \) means that if in state \(q \) and tape head is scanning the symbol \(x \), then move to state \(p \), replace \(x \) by \(y \) on tape cell, and move tape head \(1 \) cell left.

Deterministic TM (DTM), above defines a DTM — for each \(S(q, x) \) we have at most one possible move — although \(S(q, x) \) could be undefined.

Acceptance? If when DTM is started with \(w \) on tape it eventually enters a final state

Thus we may as well assume that all final/accepting states are “halting states” — in that no transitions are defined out of them.

Rejection? Halt in non-final state

\[\text{NEVER HALT} \text{ (INFINITE LOOP)} \]

Recall in NFA/PDA we would halt when end of input is reached — then we check if state is final.

In T.M. input is not streaming by but is instead given on tape — so we need explicit notion of halting.

Halting when in state \(q \) and head sees \(x \), such that \(S(q, x) \) is undefined.

Any states have absolutely no transitions — always halts
EXAMPLE \(L = \{0^n1^n \mid n \geq 1 \} \)

INITIALLY
\[\cdots \text{BBB} \text{OOOO}1111 \text{BBB} \cdots \]
\[\uparrow \text{HEAD} \]

T.M. IDEA

MATCH LEFTMOST 0 WITH LEFTMOST 1,
REPLACING THEM BY \(X \) AND \(Y \) (RESPECTIVELY)
AND REPEAT.

T.M. M
\[M = (Q, \Sigma, \Gamma, S, q_0, B, F) \]
\[Q = \{q_0, q_1, q_2, q_3, q_4\} \quad F = \{q_4\} \]
\[\Sigma = \{0, 1, ?\} \quad \Gamma = \{0, 1, X, Y, 1, B\} \]

TRANSITIONS

\[\delta(q_0, 0) = (q_1, X, R) \quad \text{REPLACE 0 BY X AND LOOK} \]
\[\delta(q_0, Y) = (q_3, Y, R) \quad \text{FOR A MATCHING 1 — BUT} \]
\[\text{IF Y IS SEEN, GO FOR ENDGAME} \]

\[\delta(q_1, 0) = (q_1, 0, R) \quad \text{SKIP OVER 0'S, Y'S TILL} \]
\[\delta(q_1, Y) = (q_1, Y, R) \quad \text{1 IS FOUND — REPLACE} \]
\[\delta(q_1, 1) = (q_4, Y, L) \quad \text{IT BY Y AND START} \]
\[\text{HEADING BACK TO LEFT} \]

\[\delta(q_2, Y) = (q_2, Y, L) \quad \text{MOVE LEFT SKIPPING 0/Y} \]
\[\delta(q_2, 0) = (q_2, 0, L) \quad \text{TILL FIRST X IS FOUND} \]
\[\delta(q_2, X) = (q_0, X, R) \quad \text{— MOVE RIGHT TO LOOK} \]
\[\delta(q_3, Y) = (q_3, Y, R) \quad \text{FOR LEFTMOST 0} \]
\[\delta(q_3, \eta) = (q_3, \eta, R, \eta) \quad \text{ENDGAME — MAKE SURE NO} \]
\[\text{EXTRA 1'S LEFT OVER.} \]
Transition Diagram

Diagram showing states and transitions labeled with symbols like 0, 1, Y, and X.

Notation:
A/B → means replace A by B on tape cell being scanned, move right.

Remark:
Lots of transitions undefined — if input does not meet desired format, the T.M. will get "stuck" and halt in non-final state.

I.D.:
Used to show execution like in PDAs.

I.D. = q₁, q₁q₂ with qₖ ∈ Q
q₁, q₂ ∈ Σ*

Means:
Non-blank portion of tape has q₁q₂ with head at leftmost symbol.
Thus \(q \) \(d_1 q d_2 \) corresponds to

\[
\begin{array}{c}
\text{Blanks} \quad \alpha_1 \quad \alpha_2 \quad \text{Blanks} \\
\uparrow \\
\text{State } q.
\end{array}
\]

As before we use \(\vdash^* \) to show ID's changing.

Example

\[
q_0011 \vdash xq_1011 \vdash xoq_111 \\
\vdash xq_2oy_1 \vdash q_2xoy_1 \\
\vdash xq_1oy_1 \vdash xxq_1y_1 \\
\vdash xxq_1y_1 \vdash xxq_2yy \\
\vdash xq_2xyy \vdash xxq_0yy \\
\vdash xxq_3y \vdash xxyyq_3 \\
\vdash xxyybyq_4.
\]

Language

Given DTM \(M \)

\[
L(M) = \{ w \mid q_0w \vdash^* d_1p d_2 \} \\
\text{where } |EF \text{ and } \alpha_1, \alpha_2 \in \Gamma^* \}
\]

Remark

We use language recognition as a convenient notion of problem-solving ability.

However, T.M. can easily compute functions and produce output by leaving it on the tape.

Recursively Enumerable Languages

Class of Languages accepted by TM.
PROGRAMMING TRICKS.

Idea We present some notational conveniences which make it easier to "program" T.M. and also serve to highlight their generality and power.

Basically we impose notational structure on states and tape symbols.

Trick 1 [CPU registers — using states as memory store]

Idea allow state names to be of the type
\[[q_1, x_1, \ldots, x_k] \]

where \(x_i \) acts as memorized symbols.

Example \(L = \{ w w^R \mid w \in \{0,1\}^* \} \)

Define \(M \)

\(Q = \{ [q_1, -], [q_0, 0], [q_1, 1], [s_1, 0], [s_1, 1] \} \)

\(\Sigma = \{ 0, 1 \} \quad \Pi = \{ 0, 1, \beta \} \)

\(q_0 = [q_1, -] \quad F = \{ \theta \} \)

Idea given \(w w^R \), match leftmost symbol with rightmost, erasing both.

Use CPU register to store leftmost symbol while heading right to find rightmost
TRANSITIONS

STEP 1
\[
\begin{align*}
S([q, -], 0) &= ([q, 0], B, R) \\
S([q, -], 1) &= ([q, 1], B, R) \\
S([q, -], B) &= (\emptyset, B, R)
\end{align*}
\]

REMEMBER LEFTMOST SYMBOL & REPLACE BY BLANK, OR ACCEPT \emptyset

STEP 2
\[
\begin{align*}
S([q, i], j) &= ([q, i], j, R) \\
\quad \forall i, j \in \{0, 1\}
\end{align*}
\]

SKIP TO RIGHTMOST SYMBOL

\[
S([q, i], B) = ([q, i], B, L)
\]

STEP 3
\[
\begin{align*}
S([s, i], i) &= (s, B, L) \\
\quad \forall i \in \{0, 1\}
\end{align*}
\]

MATCH RIGHTMOST WITH REGISTER

STEP 4
\[
\begin{align*}
S(s, i) &= (s, i, L), \forall i \\
S(s, B) &= ([q, -], B, R)
\end{align*}
\]

SKIP OVER TO LEFTMOST SYMBOL

TRICK 2

MULTIPLE TRACKS

IDEA: VIEW TAPE AS HAVING MULTIPLE TRACKS AND Γ AS HAVING COMPOSITE SYMBOLS

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

THUS Γ NOW CONTAINS SYMBOLS SUCH AS

\[
\begin{bmatrix}
0 \\
1 \\
X
\end{bmatrix}, \quad \begin{bmatrix}
Y \\
1 \\
0
\end{bmatrix}, \quad \begin{bmatrix}
0 \\
2 \\
1
\end{bmatrix}
\]

NOTE: UNNECESSARY
Consider \(L = \{ w w \mid w \in \{0,1\}^+ \} \)

Note first needs to find mid-point, and then we can use matching process as in \(w w^R \) to find mid-point we view tape as 2 tracks

\[
\begin{array}{c|c|c|c}
\text{0} & \text{1} & \text{1} & \text{0,1,1} \\
\end{array}
\]

Where we use the top track to put markers over symbols.

Idea: put markers on leftmost/rightmost symbols and slowly move them in till they meet at the mid-point.

Tape symbols: \([B], [B], [B], [0], [1], [0], [\ast], [\ast]\)

Could call these \(B, 0, 1, A, B \) but it would be less insightful in general.

Assume initially in state \(q_0 \), scanning leftmost

\[
S(q_0, [B]) = (q_1, [\ast], R)
\]

\[
S(q_1, [B]) = (q_1, [B], R)
\]

\[
S(q_1, [B]) = (q_1, [B], R)
\]
\[\delta(q_0, [\mathbf{B}]) = (q_1, [\mathbf{B}], L) \]
\[\delta(q_1, [\mathbf{B}]) = (q_2, [\mathbf{B}], L) \]
\[\delta(q_2, [\mathbf{B}]) = (q_3, [\mathbf{B}], L) \]
\[\delta(q_3, [\mathbf{B}]) = (q_0, [\mathbf{B}], R) \]

Note: One each of above transitions for \(i \in \{0, 1\} \)

At end we have head pointing to first symbol of second \(w \) with a * above it, in state \(q_0 \)

Trick 3
[Subroutines | Procedure Calls]

Example: Shifting over

Given \(ID_1 = \alpha \ q_i \times \beta \) \(\forall \alpha, \beta \in \sum^* \) \(\square \in \sum \)

Want \(ID_2 = \alpha \square \ q_i \times \beta \) \(\forall \alpha, \beta \in \sum^* \) \(\square \in \sum \)

Subroutine can be used repeatedly to create space in middle of the tape

For example, useful for implementing counters as a part of complex processes

\(\#0\# \rightarrow \#1\# \rightarrow \#\square1\# \rightarrow \#01\# \)

\(\rightarrow \#10\# \rightarrow \#11\# \rightarrow \#\square11\# \)

\(\rightarrow \#011\# \rightarrow \#100\# \rightarrow \ldots \)
PROCEDURE CALL

\[s(q_i, x) = ([P, x], [\hat{\delta}], R), \forall x \in \Gamma \]

- MEMORIZE RETURN STATE \(p_i \) ERASED SYMBOL \(x \)
- STATE \(p \) INVOKES PROCEDURE

PROCEDURE \(p \)

1) SHIFT 1 CELL TO THE RIGHT

\[s([P, x], y) = ([P, y], x, R) \]
\[\forall x, y \in \Gamma \text{ with } y \neq \text{B} \]

2) TILL REACHED END OF \(\text{B} \)

\[s([P, y], \text{B}) = ([\epsilon, y, L]) \quad \forall y \in \Gamma \]

3) RETURN TO CALLING POINT

\[s([\epsilon, y]) = ([\epsilon, y, L]) \quad \forall y \in [\hat{\delta}] \]

4) EXIT RETURN TO STATE \(p_i \)

\[s([\epsilon, [\hat{\delta}]], \text{B}) = (q_i, [\square], R) \]

NOTE WE CAN IMPLEMENT ANY KIND OF PROCEDURE FUNCTION CALL WITH ANY KIND OF PARAMETER PASSING — WITH ENOUGH WORK.

TEXTBOOK SEE SIMPLER NOTION OF SUBROUTINES
ENHANCING T.M.

Observe if T.M. seen so far is able to capture all that we can compute, then adding features to it should not enhance its power.

We show adding following features gives T.M. which can be easily simulated by our standard T.M.

- **Multiple Tapes/Heads**
- **Non-determinism**

Exercise try to think of other ways to enhance T.M. and whether standard T.M. can simulate these features.

Multi-tape T.M.

![Diagram of multi-tape T.M.]

Initially, input w is on tape 1 with tape-head at leftmost symbol — remaining tapes are blank.

Each head independent & part of transition

\[s(q_j, h_1, h_2, ..., h_k) = (p, (w_1, m_1), (w_2, m_2), ...) \]

- \(h_i \) symbol under head \(i \)
- \(w_i \) write in \(h_i \)
Consider simulating 2-tape T.M. \(M_R \) by 1-tape T.M. \(M_1 \)

Idea

Use 2\(k \) tracks in \(M_1 \) — for each tape of \(M_R \)
Use one track of \(M_1 \) to store tape contents
And another track to mark head position with *.

<table>
<thead>
<tr>
<th>TAPE 1</th>
<th>A</th>
<th>B</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAD 1</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>TAPE 2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HEAD 2</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAPE 3</td>
<td>0</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>HEAD 3</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

In \(M_1 \) each transition of \(M_R \) is simulated by a whole series of transitions

Step 0
Start at leftmost cell where some track contains a non-blank symbol

Step 1
Sweep right — picking up each \(h_i \) by noting symbol marked by each *; storing \(h_i \)'s in “CPU register”

Step 2
Sweep left — writing \(w_i \) and moving *’s as per \(M_R \)’s transition

Verify
Can construct \(M_1 \) to simulate \(M_R \) without affecting the language.

Remark
From now on, I will provide only such a high-level view of T.M. constructions — low-level programming details are very cumbersome and omitted — just verify T.M. can be constructed...
SIMULATION SPEED.

Observe while enhancements do not affect the power of T.M., they do impact its efficiency.

Running time A T.M. M is said to have running time $T(n)$ if it halts within $T(n)$ steps on all inputs of length n (Note $T(n)$ could be infinite).

THEM If M(R) has running time $T(n)$, then M(R) will simulate it with running time $O(T(n)^2)$.

Proof Suppose input w has length n. Then M(R) can use $T(n)$ time on it.

Claim The R heads of M(R) cannot be more than $2T(n)$ apart and M(R) uses $\leq 2T(n)$ tape cells on each tape.

Why? At each step, leftmost and rightmost tape heads can drift apart by at most 2 additional cells.

Consider M(R)

- Makes 2 sweeps for transition of M(R)
- Time per sweep is $O(T(n))$
- Number of transitions of M(R) is $\leq 2T(n)$

Thus total time = $O(T(n)^2)$.