Non-Deterministic T.M. (NTM)

Recall in D.T.M.'s $s(q_i, q_j)$ is either unique or undefined.

N.T.M.'s $s(q_i, q_j)$ is a finite set of the type

$$\{ (p_1, b_1, M_1), \ldots, (p_R, b_R, M_R) \}$$

And any of these options can be used when performing the transition.

As before, string w is accepted if N.T.M. has at least one execution leading to a final state.

Example

$$\Sigma = \{0, 1, 2, 3, \ldots, 9\}$$

$$L = \{ w \in \Sigma^* \mid \text{a zero appears} \ i \ \text{positions to left of some} \ j \ \text{in} \ w, \ \text{with} \ i > 0 \}$$

$$= \{ w \mid \exists j > 0, w_{j-i} = 0 \}$$

Thus $03156 \notin L$

$3720654432 \in L$

NTM N

$$Q = \{ q_0, q_f, [p, 0], [p, 1], \ldots, [p, 9] \}$$

$$F = \{ q_f \} \quad \Pi = \{ B, 0, 1, 2, \ldots, 9 \}$$

Idea: scan w left-to-right, guess at some $w_j = i$, store i in CPU register and move i steps left to find 0.
Transitions

\[\begin{align*}
\cdot & \quad S(q_0, o) = \{(q_0, o, R)\} \quad (\text{since } \omega_j > 0) \\
\cdot & \quad \forall i \geq 0 \\
& \quad S(q_0, i) = \{(q_0, i, R), ([p, i], i, L)\} \\
& \quad \uparrow \\
& \quad \text{GUESSING CURRENT CELL IS } \omega_j \\
\cdot & \quad \forall i > 1, \forall x \in \Gamma \\
& \quad S([p, i], x) = \{(p, i-1], x, L)\} \\
\cdot & \quad \text{ACCEPT} \\
& \quad S([p, 1], o) = \{(0, o, R)\}
\end{align*} \]

Execution Trace

INPUT \(\omega = 103332 \)

\[
q_0 \xrightarrow{1} 19q_0 03332 \xrightarrow{1} 10q_3 3332 \\
\xrightarrow{1} 103 q_3 332 \xrightarrow{1} 10 [p, 3] 3332 \\
\xrightarrow{1} [p, 2] 03332 \xrightarrow{1} [p, 1] 103332 \\
\text{(REJECT)}
\]

\[
q_0 \xrightarrow{1} 103332 \xrightarrow{1} 103 q_0 332 \xrightarrow{1} 103 q_0 332 \\
\xrightarrow{1} 103 [p, 3] 332 \xrightarrow{1} 10 [p, 2] 3332 \\
\xrightarrow{1} [p, 1] 03332 \xrightarrow{1} 10 p 3332 \\
\text{(ACCEPT)}
\]
Theorem
If N is an NTM, then there exists a DTM D such that $L(D) = L(N)$.

Proof
Given N and input w, we will show how a multi-tape DTM can simulate N's execution on input w. Clearly, we can convert D to a single-tape later.

Simulation Idea
Consider the execution tree of N on w.

```
I_0 = \gamma_0 w
\begin{array}{c}
  \text{ID}_0 \\
  \downarrow \\
  \text{ID}_1 \\
  \downarrow \\
  \text{ID}_2 \\
  \downarrow \\
  \text{ID}_3 \\
  \downarrow \\
  \text{ID}_{i1} \\
  \downarrow \\
  \text{ID}_{i2} \\
  \downarrow \\
  \ldots
\end{array}
```

DTM D will perform a BFS of this execution, systematically enumerating the ID's until it finds an accepting ID.

Two Tapes

Tape 1 holds a "queue" of ID's of N in BFS order.

Tape 2 scratch tape.
Evolution of Tape 1's Contents.

Initially

\[
\ast I D_0 \ast
\]

\[
\ast I D_0 \ast I D_0 \ast I D_0 \ast I D_0 \ast
\]

\[
\ast I D_0 \ast I D_1 \ast I D_2 \ast I D_3 \ast
\]

\[
\ast I D_0 \ast I D_1 \ast I D_2 \ast I D_3 \ast
\]

\[
\ast I D_0 \ast I D_1 \ast I D_2 \ast I D_3 \ast I D_1 \ast I D_1 \ast
\]

\[
\ast I D_0 \ast I D_1 \ast I D_2 \ast I D_3 \ast I D_1 \ast I D_2 \ast I D_2 \ast
\]

\[
\ast I D_0 \ast I D_1 \ast I D_2 \ast I D_3 \ast I D_1 \ast I D_2 \ast I D_2 \ast I D_2 \ast
\]

\[
\ast I D_0 \ast I D_1 \ast I D_2 \ast I D_3 \ast I D_1 \ast I D_2 \ast I D_2 \ast I D_2 \ast I D_2 \ast
\]

\[
\vdots
\]

Algorithm for D.

- **Tape 1** contains sequence of ID's in BFS order separated by \(\ast\)'s.

- \(\ast\) marks next ID to be explored — all to left of this have been explored already, and all to right have yet to be explored.

- Initially only I D_0 is \(\ast\) on the tape.

- Use multiple tracks to store \(\ast\) and for other purposes in following algorithm.
Algorithm:

Step 0
Examine current IDc (just after *) and read off q1, δ in it.

If q1 ∈ F then accept & halt.

Step 1
Let s(q1, δ) have k possible transitions
Copy IDc onto tape 1 & make k new copies of IDc at end of tape 2.

Step 2
Modify k copies of IDc on tape 2 to the k possible outcomes of s(q1, δ) being applied

Step 3
Move * down past IDc
Clean up tape 2
Return to Step 0

Verify
- Above can be implemented in a DTM
- Correct in that D accepts w if and only if some execution path of N on w will accept w.

Recall
T.M. M (DTM or NTM) is said to have run in time T(n) if on input w with |w| = n all possible execution paths lead to halting in ≤ T(n) transitions.
Simulation Time

- **Suppose** NTM N has running time \(T(n) \).
- **Question** What is D's running time?

Let \(m \) be the maximum size of \(s(q, a) \) in \(N \)—maximum number of non-deter. choices.

For \(N \) on \(w \) let \(t = T(1|w|) \).

Clearly execution tree of \(N \) on \(w \) has at most \(t \) levels.

Tree size \(S \leq 1 + m + m^2 + \ldots + m^t \)

\[S = \frac{m^{t+1} - 1}{m - 1} = O(m^t). \]

Thus D has at most \(O(m^t) \) iterations.

Observe while DPDA's could not simulate NPDA's, DTMs can simulate NTMs even though NTMs are more powerful than DTMs.

Why? Because the very fact that TMs are more powerful gives them the ability to simulate non-determinism—albeit at a terrible increase in running time.
Algorithms vs Procedures.

Algorithms halting T.M. — always halts in finite time on all inputs and execution paths, regardless of acceptance or rejections.

Recursive class of languages accepted by algorithms (also called decidable)

Undecidable languages which are non-recursive or don't have algorithms.

Procedures arbitrary T.M. (may not halt on w & L)

Recursively Enumerably (R.E.) language class defined by T.M. or procedures.

Remark assume DTMs in above definitions, but doesn't really matter as NTM's can be simulated.

Pictures

Algorithm

\[\text{input } w \rightarrow A \rightarrow \text{YES (w & L)} \rightarrow \text{NO (w & L)} \]

Procedure

\[\text{input } w \rightarrow P \rightarrow \text{YES (w & L)} \]
WORLD OF LANGUAGES

L_u / L_d WILL BE DEFINED SHORTLY.

CLOSURE PROPERTIES

THEOREM
L RECURSIVE \Rightarrow L RECURSIVE

PROOF
GIVEN ALGO A FOR L
CONSTRUCT ALGO \overline{A} FOR \overline{L}

ALGO \overline{A}

INPUT \overline{w}

MEANING (OF PICTURE)

YES \rightarrow NO

$+$ A REF, \[\begin{cases} \text{REPLACE } s(q, x) = (\theta, -) \text{ by } s(q, x) \text{ UNDEFINE} \\ \text{NO} \rightarrow \text{YES } \text{IF } s(q, x) \text{ UNDEFINED} \text{ THEN SET } s'(q, x, \overline{R}) \end{cases} \]
THEOREM BOTH L_1, L_2 ARE R.E. \implies BOTH L_1^c, L_2^c ARE REC.

PROOF LET P_1, P_2 BE PROCEDURES FOR L_1, L_2

RUN IN PARALLEL TO GET ALGO. A

\[
\text{INPUT } w \rightarrow \begin{cases}
 P & \text{YES} \rightarrow \text{YES} \\
 \overline{P} & \text{YES} \rightarrow \text{NO}
\end{cases}
\]

\[\text{ALGO } A\]

FOR ANY w ONE OF P_1, P_2 WILL HALT AND GIVE THE RIGHT ANSWER

IMPLEMENTATION?

IN A USE 2 TAPEs, ONE EACH FOR P AND \overline{P}

STATES p IN P, q IN $\overline{P} \implies \langle p, q \rangle$ IN A.

TRANSITIONS \[
\begin{cases}
 s(p, x) = (p', x', M_1) \text{ IN } P \\
 s(q, y) = (q', y', M_2) \text{ IN } \overline{P}
\end{cases}
\]

$\implies s(\langle p, q \rangle, x, y) = (\langle p', q' \rangle, (x', M_1), (y', M_2))$

FINAL? ANY $\langle p, q \rangle$ IN A WHERE p IS FINAL IN P

NOTE IF P ACCEPTS, q IS FINAL SO p CANNOT BE FINAL, SO A WILL REJECT.

DONE
Any language \(L \) is such that:

- Either both \(L \) and \(\overline{L} \) are RE.
- Or at least one of \(L, \overline{L} \) is non-RE.

Possibilities

<table>
<thead>
<tr>
<th></th>
<th>(L) RE</th>
<th>(L) RE but not RE</th>
<th>(L) non-RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L) RE</td>
<td>(\checkmark)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>(L) RE but not RE</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>(L) non-RE</td>
<td>(\times)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
</tr>
</tbody>
</table>

Theorem

\(L, L_2 \) RE \(\Rightarrow \) \(L \cup L_2 \) RE.

Proof

Assume algorithms \(A_1 \) for \(L_1 \) and \(A_2 \) for \(L_2 \).

Combining \(A_1 \) and \(A_2 \) in series?

If \(A_1 \) halts in non-final state \((w \notin L_1)\)

Then have transition to initial state of \(A_2 \) (having saved \(w \) on second tape).
Theorem: \(L_1, L_2 \) are R.E. \(\Rightarrow \) \(L_1 \cup L_2 \) are R.E.

Proof: Assume procedures \(P_1, P_2 \) for \(L_1, L_2 \)

- Input \(\omega \) to \(P_1 \) and \(P_2 \)
- If \(\omega \in L_1 \cup L_2 \), one of \(P_1 \) and \(P_2 \) will halt and say "yes".

Exercise: Check closure under \(\cap \), reversal.

Question: How do we show that a language is undecidable or non-R.E.?

Key Concept: Universal T.M. (UTM)

\[
\text{UTM} \quad \text{Input} \quad \left\{ \begin{array}{l}
\text{T.M. M} \\
\text{M's input } \omega
\end{array} \right.
\]
\[
\text{Output} \quad \text{Accepts } \langle M, \omega \rangle \iff M \text{ accepts } \omega.
\]

Intuition: \(\text{UTM} = \text{Computer} \)
\(\text{TM} \equiv \text{Program} \).

Thus, need "programming language" to be able to specify T.M. M to UTM.
ENCODING T.M. AS INTEGERS

Consider any T.M. $M = (Q, \Sigma, \Pi, \delta, q_0, B, F)$

Assume
- $\Sigma = \{0,1\}$
- $\Pi = \{0,1,B\}$
- $Q = \{q_1, q_2, ..., q_n\}$
 - Initial state q_1
 - Final state q_2

Set
- $x_1 = 0, x_2 = 1, x_3 = B$
- $d_1 = \text{LEFT}, d_2 = \text{RIGHT}$

Consider transition $s(q_i, x_j) = (q_k, x_l, d_m)$

With
- $i, k \in \{1, ..., n\}$
- $j, l \in \{1, 2, 3\}$
- $m \in \{1, 2\}$

Encode as bit string $0^i10^j10^k10^l10^m$.

Encoding T.M.

$\langle M \rangle = C_1 \ 11 \ C_2 \ 11 \ C_3 \ 11 \ ... \ 11 \ C_n$

Where $C_1, C_2, ..., C_n$ are the encodings of the n transitions in M.

Note we use $\langle M \rangle$ to denote the string encoding T.M. M and to avoid confusion with M.
NOTE TO ENCODE T.M. M ALONG WITH ITS INPUT w

\[\langle M, w \rangle = \langle M \rangle \text{III} w \]

OBSERVE ANY BIT-STRING WHICH IS A VALID ENCODING WILL ENCODE A UNIQUE T.M. — BUT IF IT IS NOT A VALID ENCODING, WE WILL ASSUME THAT IT ENCODES THE PARTICULAR MACHINE \(M_0 \) WITH 1 STATE AND NO TRANSITIONS

\((L(M_0) = \emptyset) \).

THUS EACH T.M. M CAN BE ENCODED AS BINARY STRING \(\langle M \rangle \) SUCH THAT:

a) EACH T.M. HAS \(\geq 1 \) ENCODING
b) EACH NUMBER ENCODES A UNIQUE T.M.

ENUMERATING BINARY STRINGS.

WE DEFINE A SPECIFIC ORDERING OF ALL BINARY STRINGS — IN INCREASING ORDER OF LENGTH, AND WITHIN ALL STRINGS OF SAME LENGTH WE ORDER THEM LEXICOGRAPHICALLY

\[\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots \]

LET \(w_i \) BE THE \(i^{\text{th}} \) STRING IN THIS ORDER \((w_1 = \varepsilon) \).

DEFINE \(M_i \) AS THE T.M. ENCODED BY \(w_i \).

THUS WE GET AN ORDERING OF T.M.'S IN WHICH EACH T.M. APPEARS AT LEAST ONCE, BUT POSSIBLY MANY TIMES.
The Diagonalization Language

Consider infinite table \(T \) such that \(\forall i, j \in \mathbb{N} \):

\[
T(i, j) = \begin{cases}
1 & w_j \in L(M_i) \\
0 & w_j \notin L(M_i)
\end{cases}
\]

<table>
<thead>
<tr>
<th>(w_1)</th>
<th>(w_2)</th>
<th>(w_3)</th>
<th>(w_4)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(M_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(M_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(M_4)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thus each row is a characteristic vector of \(L(M_i) \), encoding which strings belong to it.

Note we can postulate this table only because we showed ordering enumeration of \(w_i | M \).

Defn Diagonal Language

\[
L_d = \{ w_i \mid T(i, i) = 0 \}
\]

\[
= \{ w_i \mid w_i \notin L(M_i) \}
\]

Thus \(L_d \) is defined by taking diagonal of \(T \), complementing each bit to obtain a language characteristic vector.
Question Is \(L_d \) R.E.? Is \(L_d \) REC?

Theorem \(L_d \) is non-R.E.

Proof Assume \(L_d \) is R.E. and has a T.M.

Then \(\exists k \in \mathbb{N} \) such that \(L(M_k) = L_d \)

Question Is \(\omega_k \in L_d \)?

Case 1 \([\omega_k \in L_d]\)

\[\Rightarrow \omega_k \in L(M_k) \]
\[\Rightarrow T(k, k) = 1 \]
\[\Rightarrow \omega_k \notin L_d \]

Contradiction

Case 2 \([\omega_k \notin L_d]\)

\[\Rightarrow \omega_k \notin L(M_k) \]
\[\Rightarrow T(k, k) = 0 \]
\[\Rightarrow \omega_k \in L_d \]

Contradiction

Intuition \(L_d \) was defined so that it disagreed with each \(M_k \) on at least string \((\omega_i) \) — thus none of the \(M_k \)'s could have \(L_c \) as its language

But all T.M. 'M are \(M_k \) for some \(i \), so no T.M. can accept \(L_d \)

Problem \(L_d \) is non-constructive.
UNIVERSAL T.M.

UTM

INPUT \(\langle M, w \rangle \) — ENCODING OF SOME T.M. M AND ITS INPUT W

ACTION SIMULATE M ON W, AND ACCEPT \(\langle M, w \rangle \)

IF AND ONLY IF M ACCEPTS W.

QUESTION WHAT IS ITS LANGUAGE?

DEFN UNIVERSAL LANGUAGE \(L_u \)

\[L_u = \{ \langle M, w \rangle \mid w \in L(M) \} \]

THEOREM \(L_u \) IS R.E.

WHY? BECAUSE WE CAN CONSTRUCT A UTM U FOR \(L_u \)

UTM U HAS 4 TAPES

TAPE 1 CONTAINS \(\langle M, w \rangle \) (READ-ONLY)

TAPE 2 SIMULATES M'S TAPE

TAPE 3 CURRENT STATE \(q_i \) OF M

TAPE 4 SCRATCH TAPE.

EXECUTION? STEP-BY-STEP SIMULATION OF M ON W

INITIALLY COPY W TO TAPE 2, \(q_i \) TO TAPE 3

EACH STEP USE TAPE 2/3 TO DETERMINE WHICH TRANSITION, AND MODIFY TAPES 2/3 APPROPRIATELY — ACCEPTING IF FINAL ...
Undecidability of L_U.

Observe L_U is r.e. since $L_U = L(U)$, but now we show that it isn't recursive.

To do so, we will employ notion of a "reduction" which we have seen earlier informally.

Defn L_1 reduces L_2 (denoted $L_1 < L_2$) if there exists a function θ (called the reduction) such that:

1. Some T.M. M_θ computes θ by taking as input a string w and halting with string $\theta(w)$ on its tape.

2. θ is such that $w \in L_1 \iff \theta(w) \in L_2$.

That is, θ maps all strings in L_1 to a subset of strings in L_2, and all strings in \overline{L}_1 to a subset of strings in \overline{L}_2.
Theorem \(L_1 \subset L_2 \text{ and } L_2 \text{ is recursive/decidable} \Rightarrow L_1 \text{ is recursive/decidable} \)

Proof \(\begin{aligned} \text{Gwen} & \quad \{ \text{Algorithm } A_2 \text{ for } L_2 \\ \text{Algorithm } M_0 \text{ for } \emptyset \} \\ \text{Construct Algorithm } A_1 \text{ for } L_1 \end{aligned} \)

\[\text{Algo } A_1 \quad \begin{array}{c} \omega \rightarrow M_0 \rightarrow \beta(\omega) \rightarrow A_2 \quad \text{YES} \\ \text{NO} \end{array} \]

\(A_1 \text{ is correct since } \omega \in L_1 \iff \beta(\omega) \in L_2 \quad \text{DONE} \)

Corollary: \(L_1 \subset L_2 \text{ and } L_1 \text{ is undecidable/non-rec} \Rightarrow L_2 \text{ is undecidable/non-rec} \)

Observe
- Switch in direction of statement
- Can be used to show languages are undecidable

Remark Above results apply to R.E. also

Thus
- If \(L_1 \subset L_2 \text{ and } L_2 \text{ R.E.} \), then \(L_1 \text{ R.E.} \)

And
- If \(L_1 \subset L_2 \text{ and } L_1 \text{ non-R.E.} \), then \(L_2 \text{ non-R.E.} \)
Theorem: \(L_u \) is non-recursvie.

Proof: Since \(L_d \) is non-re.e., follows that \(\overline{L_d} \) is non-rec.

Will show \(\overline{L_d} \) reduces to \(L_u \) \((\overline{L_d} \subset L_u)\)

Thus \(L_u \) must be non-rec.

Recall:

\[L_d = \{ w_i \mid w_i \notin L(M_i) \} \]

\[\Rightarrow \overline{L_d} = \{ w_i \mid w_i \in L(M_i) \} \]

Note by defn, \(w_i = \langle M_i \rangle \)

Thus \(\overline{L_d} \) is set of strings accepted by T.M. \(M \) which they encode.

Reduction:

Given string \(w \) which is input for \(\overline{L_d} \), produce string \(\langle M_i, w \rangle \) — input for \(L_u \).

Define \(\theta (w) = \langle w, w \rangle = w \upharpoonright w \)

Clearly \(\uparrow \) halting T.M. \(M \) to convert \(w \) into \(\langle w, w \rangle \).

Need to show:

\[w \in \overline{L_d} \iff \theta (w) \in L_u . \]

Observe:

\[w_i \in \overline{L_d} \iff w_i \in L(M_i) \]

\[\iff \langle M_i, w_i \rangle \in L_u \]

\[\iff \langle w, w_i \rangle \in L_u \]

\[\iff \theta (w_i) \in L_u \]

Done.
Thus

- L_d is non-R.E. **Diagonalization Proof**
- L_d is R.E. but non-REC. **Simple Exercise**
- L_u is R.E. but non-REC. **By Reduction from L_d**
- L_u is non-R.E. **By Inference from above.**

Observe L_d was shown non-R.E. via a direct proof much like the "Hello-world" proof — since $\forall c L_d$ when M_i doesn't accept its own encoding.

But from now on we can establish new problems are undecidable via reductions, as we did for L_u.

Idea

A. To show L is non-R.E., give a reduction from known non-R.E. language such as L_d or L_u

B. To show L is non-REC, give a reduction from known non-REC language such as L_d or L_u.

Note while reductions from L_d or L_u will show that language L is non-REC too, since it also shows L is non-R.E. It cannot work when L is non-REC but R.E.
Consider the following languages:

\[L_e = \{ <M> \mid L(M) = \emptyset \} \]
\[L_{ne} = \{ <M> \mid L(M) \neq \emptyset \} \]

Here, \(L_e \) is set of all strings \(w \) such that T.M. \(M \) encoded by \(w \) has an empty language, and \(L_{ne} \) is the complement language.

Claim 1 \(L_{ne} \) is RE.

Idea Construct NTM \(N \) for \(L_{ne} \)
- Given input \(<M> \), \(N \) behaves as follows:
 1) Guess a string \(w \in \Sigma^* \)
 2) Simulate \(M \) on \(w \) (like a UTM)
 3) Accept \(<M> \) if \(M \) accepts on \(w \)

Clearly \(<M> \in L(N) \iff \forall w, w \in L(M) \)

Claim 2 \(L_{ne} \) is non-RE.

Proof Give a reduction from \(L_u \) to \(L_{ne} \)

\[\Theta \quad \text{INPUT} \quad <M, w> \quad \text{INSTANCE OF } L_u \]
\[\quad \text{OUTPUT} \quad <M'> \quad \text{INSTANCE OF } L_{ne} \]

such that

\[<M, w> \in L_u \iff <M'> \in L_{ne} \]

\(\Theta \) computable by halting T.M.
DESCRIPTION OF M

Suppose M has input z.

Then M ignores z completely and instead simulates M on w (using UTM).

If M accepts w then M' halts and accepts z.

Otherwise, if M never halts on w or rejects w, M' also never halts or rejects z.

Observe:

\[
\begin{align*}
&\text{if } w \in L(M) \quad L(M') = \Sigma^* \\
&\text{if } w \notin L(M) \quad L(M') = \emptyset
\end{align*}
\]

Thus \(<M,w> \in Lu \iff <M'> \in Lne. \)

Also note it is possible to define halting T.M. M_0 which given M, w can construct M' which behaves as above.

Thus \(Lu < Lne, \) and since Lu is non-REC it follows that Lne is non-REC.

\[Lne \text{ R.E. but not-REC.} \]

\[Le \text{ must then be non-R.E.} \]
Observe we showed that a specific property of T.M.
languages (non-emptiness) is undecidable.

Turns out similar proof shows the undecidability of
all non-trivial properties of R.E. languages.

Property \(P \) can be represented by a language
\[
L_P = \{ <M> \mid L(M) \text{ has property } P \}
\]

Observe \(P \) is not a language property of T.M.'s
(e.g., has \(\leq 100 \) states), but of their languages
— thus all T.M.'s with the same language are
either all in \(L_P \) or all not in \(L_P \)

Non-trivial property at least one R.E. language has
property \(P \), and at least one doesn't.

Rice's Theorem Every non-trivial property of R.E.
languages is undecidable

Proof Fix any non-trivial property \(P \)

Assume \(\varnothing \) doesn't have property \(P \)

(otherwise work with \(\overline{P} \) — since \(P \) is
decidable if and only if \(\overline{P} \) is decidable)

will show \(L_{\varnothing} \subset L_P \).
Since \(P \) is non-trivial, can assume there is some \(M_1 \) such that \(L(M_1) \) has property \(P \) \((M_1 \in L_P)\) and we already assumed \(\emptyset \) doesn't have \(P \).

Idea
Reduction \(\phi \) takes as input \(\langle M, w \rangle \) an instance of \(L_u \) and produces \(M_2 \).

\(M_2 \)'s behavior

- **Ignores** its own input \(z \) at first
- **Simulates** \(M \) on \(w \)
- **If** \(M \) accepts \(w \), \(M_2 \) simulates \(M_1 \) on \(z \) and accepts if \(M_1 \) accepts \(z \)
- **If** \(M \) rejects \(w \) (or doesn't halt)

\(M_2 \) does the same

Thus

- \(w \in L(M) \Rightarrow L(M_2) = L(M_1) \) [has \(P \)]
- \(w \notin L(M) \Rightarrow L(M_2) = \emptyset \) [hasn't \(P \)]

or \(\langle M, w \rangle \in L_u \iff M_2 \in L_P \)

Follows \(L_P \) is undecidable

Done

Note: The proof was same, with \(L(M_1) = \Sigma^* \).