
Combinations of Model Checking
and Theorem Proving ?

Tomás E. Uribe

Computer Science Department,
Stanford University, Stanford, CA. 94305-9045

uribe@cs.stanford.edu

Abstract. The two main approaches to the formal verification of re-
active systems are based, respectively, on model checking (algorithmic
verification) and theorem proving (deductive verification). These two ap-
proaches have complementary strengths and weaknesses, and their com-
bination promises to enhance the capabilities of each. This paper surveys
a number of methods for doing so. As is often the case, the combinations
can be classified according to how tightly the different components are
integrated, their range of application, and their degree of automation.

1 Introduction

Formal verification is the task of proving mathematical properties of mathe-
matical models of systems. Reactive systems are a general model for systems
that have an ongoing interaction with their environment. Such systems do not
necessarily terminate, so their computations are modeled as infinite sequences
of states and their properties specified using temporal logic [48]. The verifica-
tion problem is that of determining if a given reactive system satisfies a given
temporal property.

Reactive systems cover a wide range of hardware and software artifacts, in-
cluding concurrent and distributed systems, which can be particularly difficult
to design and debug. (Sequential programs and programs that terminate are a
special case of this general model.) Reactive systems can be classified accord-
ing to their number of possible states. For finite-state systems, the states are
given by a finite number of finite-state variables. This includes, in particular,
hardware systems with a fixed number of components. Infinite-state systems
feature variables with unbounded domains, typically found in software systems,
such as integers, lists, trees, and other datatypes. (Note that in both cases the
computations are infinite sequences of states.)

The verification of temporal properties for finite-state systems is decidable:
model checking algorithms can automatically decide if a temporal property holds
? This research was supported in part by the National Science Foundation under grant

CCR-98-04100, by the Defense Advanced Research Projects Agency under contract
NAG2-892, by the Army under grants DAAH04-96-1-0122 and DAAG55-98-1-0471,
and by the Army under contract DABT63-96-C-0096 (DARPA).

for a finite-state system. Furthermore, they can produce a counterexample com-
putation when the property does not hold, which can be very valuable in deter-
mining the corresponding error in the system being verified or in its specifica-
tion. However, model checking suffers from the state explosion problem, where
the number of states to be explored grows exponentially in the size of the system
description, particularly as the number of concurrent processes grows.

The verification problem for general infinite-state systems is undecidable, and
finite-state model checking techniques are not directly applicable. (We will see,
however, that particular decidable classes of infinite-state systems can be model
checked using specialized tools.) First-order logic is a convenient language for
expressing relationships over the unbounded data structures that make systems
infinite-state. Therefore, it is natural to use theorem proving tools to reason
formally about such data and relationships. Deductive verification, based on
general-purpose theorem proving, applies to a wide class of finite- and infinite-
state reactive systems. It provides relatively complete proof systems, which can
prove any temporal property that indeed holds over the given system, provided
the theorem proving tools used are expressive and powerful enough [42]. Unfor-
tunately, if the property fails to hold, deductive methods normally do not give
much useful feedback, and the user must try to determine whether the fault lies
with the system and property being verified or with the failed proof.

Algorithmic Methods Deductive Methods Combination

Automatic /
decidable?

yes no sometimes

Generates
counterexamples?

yes no sometimes

Handles general
infinite-state systems?

no yes yes

Table 1. Deductive vs. algorithmic verification

The strengths and weaknesses of model checking and deductive verification,
as discussed above, are summarized in Table 1. Given their complementary na-
ture, we would like to combine the two methods in such a way that the desirable
features of each are retained, while minimizing their shortcomings. Thus, com-
binations of model checking and theorem proving usually aim to achieve one or
more of the following goals:

– More automatic (or, less interactive) verification of infinite-state systems for
which model checking cannot be directly applied.

– Verifying finite-state systems that are larger than what stand-alone model
checkers can handle.

– Conversely, verifying infinite-state systems with control structures that are
too large or complex to check with purely deductive means.

2

– Generating counterexamples (that is, falsifying properties) for infinite-state
systems for which classical deductive methods can only produce proofs.

– Formalizing, and sometimes automating, verification steps that were previ-
ously done in an informal or manual way.

Outline: Section 2 presents background material, including the basic model for
reactive systems. We then describe the main components of verification systems
based on model checking (Section 3) and theorem proving (Section 4). In Sec-
tion 5 we describe abstraction and invariant generation, which are important
links between the two. This defines the basic components whose combination we
discuss in the remaining sections.

In Section 6, we describe combination methods that use the components as
“black boxes,” that is, which do not require the modification of their internal
workings. In Section 7, we present combination approaches that require a tighter
integration, resulting in new “hybrid” formalisms.

References to combination methods and related work appear throughout the
paper, which tries to present a general overview of the subject. However, since
much of the work on formal verification during the last decade is related to the
subject of this paper, the bibliography can only describe a subset of the work in
the field. Furthermore, this paper is based on [58], which presents the author’s
own view on the subject, and thus carries all the biases which that particular
proposal may have. For this, we apologize in advance.

2 Preliminaries

2.1 Kripke Structures and Fair Transition Systems

A reactive system S : 〈Σ,Θ,R〉 is given by a set of states Σ, a set of initial
states Θ ⊆ Σ, and a transition relation R ⊆ Σ ×Σ. If 〈s1, s2〉 ∈ R, the system
can move from s1 to s2. A system S can be identified with the corresponding
Kripke structure, or state-space. This is the directed graph whose vertices are
the elements of Σ and whose edges connect each state to its successor states.

If Σ is finite, S is said to be finite-state. Describing large or infinite state-
spaces explicitly is not feasible. Therefore, the state-space is implicitly repre-
sented in some other form: a hardware description, a program, or an ω-automaton.

Fair transition systems are a convenient formalism for specifying both finite-
and infinite-state reactive systems [44]. They are “low-level” in the sense that
many other formalisms can be translated or compiled into them.

The state-space of the system is determined by a set of system variables
V, where each variable has a given domain (e.g., booleans, integers, recursive
datatypes, or reals). The representation relies on an assertion language, usually
based on first-order logic, to represent sets of states.

Definition 1 (Assertion). A first-order formula whose free variables are a
subset of V is an assertion, and represents the set of states that satisfy it. For
an assertion φ, we say that s ∈ Σ is a φ-state if s |= φ, that is, φ holds given
the values of V at the state s.

3

In practice, an assertion language other than first-order logic can be used.
The basic requirements are the ability to represent predicates and relations,
and automated support for validity and satisfiability checking (which need not
be complete). Examples of other suitable assertion languages include ordered
binary decision diagrams (OBDD’s) [12] and their variants, for finite-state sys-
tems (see Section 3), and the abstract domains used in invariant generation (see
Section 5.1).

The initial condition is now expressed as an assertion, characterizing the set
of possible system states at the start of a computation. The transition relation
R is described as a set of transitions T . Each transition τ ∈ T is described by its
transition relation τ(V,V ′), a first-order formula over the set of system variables
V and a primed set V ′, indicating their values at the next state.

Definition 2 (Transition system). A transition system S : 〈V, Θ, T 〉 is given
by a set of system variables V, an initial condition Θ, expressed as an assertion
over V, and a set of transitions T , each an assertion over (V,V ′).

In the associated Kripke structure, each state in the state-space Σ is a possi-
ble valuation of V. We write s |= ϕ if assertion ϕ holds at state s, and say that
s is a ϕ-state. A state s is initial if s |= Θ. There is an edge from s1 to s2 if
〈s1, s2〉 satisfy τ for some τ ∈ T .

The Kripke structure is also called the state transition graph for S. Note
that if the domain of a system variable is infinite, the state-space is infinite
as well, even though the reachable state-space, the set of states that can be
reached from Θ, may be finite. We can thus distinguish between syntactically
finite-state systems and semantically finite-state ones. Establishing whether a
system is semantically finite-state may not be immediately obvious (and is in
fact undecidable), so we prefer the syntactic characterization.

The global transition relation is the disjunction of the individual transition
relations: R(s1, s2) iff τ(s1, s2) holds for some τ ∈ T . For assertions φ and ψ and
transition τ , we write

{φ} τ {ψ} def= (φ(V) ∧ τ(V,V ′))→ ψ(V ′) .

This is the verification condition that states that every τ -successor of a φ-state
must be a ψ-state.

A run of S is an infinite path through the Kripke structure that starts at an
initial state, i.e., a sequence of states (s0, s1, . . .) where s0 ∈ Θ and R(si, si+1)
for all i ≥ 0. If τ(si, si+1) holds, then we say that transition τ is taken at si. A
transition is enabled if it can be taken at a given state.

Fairness and Computations: Our computational model represents concur-
rency by interleaving : at each step of a computation, a single action or transi-
tion is executed [44]. The transitions from different processes are combined in all
possible ways to form the set of computations of the system. Fairness expresses
the constraint that certain actions cannot be forever prevented from occurring—
that is, that they do have a fair chance of being taken. Describing R as a set of
transition relations is convenient for modeling fairness:

4

Definition 3 (Fair transition system). A fair transition system (FTS) is
one where each transition is marked as just or compassionate. A just (or weakly
fair) transition cannot be continually enabled without ever being taken; a compas-
sionate (or strongly fair) transition cannot be enabled infinitely often but taken
only finitely many times. A computation is a run that satisfies these fairness
requirements (if any exist).

To ensure that R is total on Σ, so that sequences of states can always be
extended to infinite sequences, we assume an idling transition, with transition
relation V = V ′. The set of all computations of a system S is written L(S), a
language of infinite strings whose alphabet is the set of states of S.

2.2 Temporal Logic

We use temporal logic to specify properties of reactive systems [48, 44]. Linear-
time temporal logic (LTL) describes sets of sequences of states, and can thus
capture universal properties of systems, which are meant to hold for all computa-
tions. However, LTL ignores the branching structure of the system’s state-space,
and thus cannot express existential properties, which assert the existence of par-
ticular kinds of computations. The logic CTL* includes both the branching-time
computation tree logic (CTL) and LTL, and is strictly more expressive than both.
Due to space limitations, we refer the reader to [44, 16] for the corresponding
definitions.

A temporal formula is S-valid if it holds at all the initial states of the kripke
structures of S, considering only the fair runs of the system. For LTL, a con-
venient definition of S-validity can be formulated in terms of the set L(ϕ) of
models of ϕ, which is the set of all infinite sequences that satisfy ϕ:

Proposition 1 (LTL system validity). S |= ϕ for an LTL formula ϕ if and
only if all the computations of S are models of ϕ, that is, L(S) ⊆ L(ϕ).

3 Finite-State Model Checking

Given a reactive system S and a temporal property ϕ, the verification problem
is to establish whether S |= ϕ. For finite-state systems, model checking [14, 50]
answers this question by a systematic exploration of the state-space of S, based
on the observation that checking that a formula is true in a particular model is
generally easier than checking that it is true in all models; the Kripke structure
of S is the particular model in question, and ϕ is the formula being checked.

Model checkers, such as SPIN [32], SMV [45], Murϕ [24], and those in STeP
[7], take as input what is essentially a finite-state fair transition system and a
temporal formula in some subset of CTL*, and automatically check that the sys-
tem satisfies the property. (See [16] for a recent and comprehensive introduction
to model checking.)

The complexity of model checking depends on the size of the formula being
checked (linear for CTL and exponential for LTL and CTL*) and the size of the

5

system state-space (linear for all three logics). While the temporal formulas of
interest are usually small, the size of the state-space can grow exponentially in the
size of its description, e.g., as a circuit, program, or fair transition system. This
is known as the state explosion problem, which limits the practical application
of model checking tools.

Symbolic Model Checking: Model checking techniques that construct and
explore states of the system, one at a time, are called explicit-state. In con-
trast, symbolic model checking combats the state-explosion problem by using
specialized formalisms to represent sets of states. Ordered Binary Decision Di-
agrams (OBDD’s) [12] are an efficient data structure for representing boolean
functions and relations. They can be used to represent the transition relation
of finite-state systems, as well as subsets of the systems’ state-space. The effi-
cient algorithms for manipulating OBDD’s can be used to compute predicate
transformations, such as pre- and post-condition operations, over the transition
relation and large, symbolically represented sets of states [45].

Symbolic model checking extends the size of finite-state systems that can be
analyzed, and is particularly successful for hardware systems. However, it is still
restricted to finite-state systems of fixed size. The size of the OBDD representa-
tion can grow exponentially in the number of boolean variables, leading to what
can be called the OBDD explosion problem, where the model checker runs out of
memory before the user runs out of time. In these cases, efficient explicit-state
model checkers such as Murϕ [24] are preferred.

We arrive now at our first general combination scheme, which we can infor-
mally call “SMC(X);” here, symbolic model checking is parameterized by the
constraint language used to describe and manipulate sets of states. For instance,
extensions of OBDD’s are used to move from bit-level to word-level represen-
tations [15]; more expressive assertions are used in [36]. Similarly, finite-state
bounded model checking [5] abandons BDD’s and relies instead on the “black-
box” use of a propositional validity checker. This method can find counterexam-
ples in cases for which BDD-based symbolic model checking fails.

4 Deductive Verification

For assertions ϕ and p,
I1. Θ → ϕ
I2. {ϕ} τ {ϕ} for each τ ∈ T
I3. ϕ → p

S |= 2p

Fig. 1. General invariance rule g-inv

6

Figure 1 presents the general invariance rule, g-inv, which proves the S-
validity of formulas of the form 2p for an assertion p [44]. The premises of
the rule are first-order verification conditions. If they are valid, the temporal
conclusion must hold for the system S.

An assertion is inductive if it is preserved by all the system transitions and
holds at all initial states. The invariance rule relies on finding an inductive aux-
iliary assertion ϕ that strengthens p, that is, ϕ implies p.

The soundness of the invariance rule is clear: if φ holds initially and is pre-
served by all transitions, it will hold for every reachable state of S. If p is implied
by ϕ, then p will also hold for all reachable states. Rule g-inv is also relatively
complete: if p is an invariant of S, then the strengthened assertion ϕ always ex-
ists [44]. Assuming that we have a complete system for proving valid assertions,
then we can prove the S-validity of any S-valid temporal property. Note, how-
ever, that proving invariants is undecidable for general infinite-state systems,
and finding a suitable ϕ can be non-trivial.

Other verification rules can be used to verify different classes of temporal
formulas, ranging from safety to progress properties. Together, these rules are
also relatively complete and yield a direct proof of any S-valid temporal property
[42]. However, they may require substantial user guidance to succeed, and do not
produce counterexample computations when the property fails.

When we require that a premise of a rule or a verification condition be valid,
we mean for it to be S-valid; therefore, verification conditions can be established
with respect to invariants of the system, which can be previously proved or
generated automatically. In general, axioms and lemmas about the system or the
domain of computation can also be used. As we will see, this simple observation
is an important basis for combined verification techniques.

4.1 Decision Procedures (and their Combination)

Most verification conditions refer to particular theories that describe the domain
of computation, such as linear arithmetic, lists, arrays and other data types. De-
cision procedures provide specialized and efficient validity checking for particular
theories. For instance, equality need not be axiomatized, but its consequences
can be efficiently derived by congruence closure. Similarly, specialized methods
can efficiently reason about integers, lists, bit vectors and other datatypes fre-
quently used in system descriptions.

Thus, using appropriate decision procedures can be understood as specializ-
ing the assertion language to the particular domains of computation used by the
system being verified. However, this domain of computation is often a mixed one,
resulting in verification conditions that do not fall in the decidable range of any
single decision procedure. Thus, combination problems in automated deduction
are highly relevant to the verification task. The challenge is to integrate existing
decision procedures for the different decidable fragments and their combination
into theorem-proving methods that can be effectively used in verification. See
Bjørner [6] for examples of such combinations.

7

4.2 Validity Checking and First-Order Reasoning

Decision procedures usually operate only at the ground level, where no quan-
tification is allowed. This is sufficient in many cases; for instance, the Stanford
Validity Checker (SVC) [2] is an efficient checker specialized to handle large
ground formulas, including uninterpreted function symbols, that occur in hard-
ware verification.

However, program features such as parameterization and the tick transition
in real-time systems introduce quantifiers in verification conditions. Fortunately,
the required quantifier instantiations are often “obvious,” and use instances that
can be provided by the decision procedures themselves. Both the Extended Static
Checking system (ESC) [23] and the Stanford Temporal Prover (STeP) [6, 7, 9]
feature integrations of first-order reasoning and decision procedures that can
automatically prove many verification conditions that would otherwise require
the use of an interactive prover.

Finally, we note that automatic proof methods for first-order logic and certain
specialized theories are necessarily incomplete, not guaranteed to terminate, or
both. In practice, automatic verification tools abandon completeness and focus
instead on quickly deciding particular classes of problems that are both tractable
and likely to appear when verifying realistic systems.

To achieve completeness, interactive theorem proving must be used, and the
above techniques must be integrated into interactive theorem proving frame-
works, as done, for instance, in STeP and PVS [47]. Combining decision proce-
dures, validity checkers and theorem provers, and extending them to ever-more
expressive assertion languages, are ongoing challenges.

5 Abstraction and Invariant Generation

Abstraction is a fundamental and widely-used verification technique. Together
with modularity, it is the basis of most combinations of model checking and
deductive verification [37], as we will see in Sections 6 and 7.

Abstraction reduces the verification of a property ϕ over a concrete system S,
to checking a related property ϕA over a simpler abstract system A. It allows the
verification of infinite-state systems by constructing abstract systems that can be
model checked. It can also mitigate the state explosion problem in the finite-state
case, by constructing abstract systems with a more manageable state-space.

Abstract interpretation [18] provides a general framework and a methodol-
ogy for automatically producing abstract systems given a choice of the abstract
domain ΣA. The goal is to construct abstractions whose state-space can be
represented, manipulated and approximated in ways that could not be directly
applied to the original system. Originally designed for deriving safety properties
in static program analysis, this framework has recently been extended to include
reactive systems and general temporal logic, e.g., [39, 20].

One simple but useful instance of this framework is based on Galois connec-
tions. Two functions, α : 2ΣC 7→ ΣA and γ : ΣA 7→ 2ΣC , connect the lattice

8

of sets of concrete states and an abstract domain ΣA, which we assume to be
a complete boolean lattice. The abstraction function α maps each set of con-
crete states to an abstract state that represents it. The concretization function
γ : ΣA → 2ΣC maps each abstract state to the set of concrete states that it
represents.

In general, the abstract and concrete systems are described using different
assertion languages, specialized to the respective domains of computation (see
Section 4.1). We say that an assertion or temporal formula is abstract or concrete
depending on which language it belongs to.

For an abstract sequence of states πA : a0, a1, . . ., its concretization γ(πA) is
the set of sequences {s0, s1, . . . | si ∈ γ(ai) for all i ≥ 0}. The abstraction α(S)
of a set of concrete states S is

α(S) def=
∧A
{a ∈ ΣA | S ⊆ γ(a)} .

This is the smallest point in the abstract domain that represents all the elements
of S. In practice, it is enough to soundly over-approximate such sets [17].

Definition 4 (Abstraction and concretization of CTL* properties). For
a concrete CTL* temporal property ϕ, its abstraction αt(ϕ) is obtained by re-
placing each assertion f in ϕ by an abstract assertion α−(f) that characterizes
the set of abstract states α−(f) :

∨A {a ∈ ΣA | γ(a) ⊆ f}. Conversely, given an
abstract temporal property ϕA, its concretization γ(ϕA) is obtained by replacing
each atom a in ϕA by an assertion that characterizes γ(a).

We can now formally define weak property preservation, where properties of
the abstract system can be transferred over to the concrete one:

Definition 5 (Weak preservation). A is a weakly preserving abstraction of
S relative to a class of concrete temporal properties P if for any property ϕ ∈ P,

1. If A |= αt(ϕ) then S |= ϕ. Or, equivalently:
2. For any abstract temporal property ϕA where γ(ϕA) ∈ P, if A |= ϕA then
S |= γ(ϕA).

Note that the failure of ϕA for A does not imply the failure of φ for S.
Strong property preservation ensures the transfer of properties from S to A as
well; however, it severely limits the degree of abstraction that can be performed,
so weak preservation is more often used.

There are two general applications of this framework: In the first, we can
transfer any property of a correct abstraction over to the concrete system, inde-
pendently of any particular concrete property to be proved. Thus, this is called
the bottom-up approach. In the second, given a concrete property to be proved,
we try to find an abstract system that satisfies the corresponding abstract prop-
erty. The abstraction is now tailored to a specific property, so this is called the
top-down approach. We return to this classification in Section 7.

The question now is how to determine that a given abstract system is indeed
a sound abstraction of S. The following theorem expresses sufficient conditions
for this, establishing a simulation relation between the two systems:

9

Proposition 2 (Weakly preserving ∀CTL* abstraction). Consider sys-
tems S : 〈ΣC , ΘC , RC〉, and A : 〈ΣA, ΘA, RA〉 such that for a concretization
function γ : ΣA → 2ΣC the following hold:

1. Initiality: ΘC ⊆ γ(ΘA).
2. Consecution: If RC(s1, s2) for some s1 ∈ γ(a1) and s2 ∈ γ(a2), then

RA(a1, a2).

Then A is a weakly preserving abstraction of S for ∀CTL*.

Informally, the conditions ensure that A can do everything that S does, and
perhaps some more. Note that this proposition is limited to universal properties
and does not consider fairness. The framework can, however, be extended to
include existential properties and take fairness into account—see [20, 58].

5.1 Invariant Generation

Once established, invariants can be very useful in all forms of deductive and
algorithmic verification, as we will see in Section 6. Given a sound ∀CTL∗-
preserving abstraction A of S, if 2ϕA is an invariant of A, then 2γ(ϕA) is
an invariant of S. Thus, in particular, the concretization of the reachable state-
space of the abstract system is an invariant of the concrete one; furthermore, any
over-approximation of this state-space is also an invariant. This is the basis for
most automatic invariant generation methods based on abstract interpretation,
which perform the following steps:

1. Construct an abstract system A over some suitable domain of computation;
2. Compute an over-approximation of the state-space of A, expressed as an

abstract assertion or a set of constraints;
3. Concretize this abstract assertion, to produce an invariant over the concrete

domain.

Widening , a classic abstract interpretation technique, can be used to speed
up or ensure convergence of the abstract fixpoint operations, by performing
safe over-approximations. This is the approach taken in [8] to automatically
generate invariants for general infinite-state systems. The abstract domains used
include set constraints, linear arithmetic, and polyhedra. These methods are
implemented as part of STeP [7].

6 Loosely Coupled Combinations

The preceding sections have presented model checking, deductive verification,
and abstraction, including the special case of invariant generation. Numerous
stand-alone tools that perform these tasks are available. This section surveys
combination methods that can use these separate components as “black boxes,”
while Section 7 describes methods that require a closer integration.

10

6.1 Modularity and Abstraction

Given the complementary nature of model checking and theorem proving, as
discussed in Section 1, a natural combination is to decompose the verification
problem into sub-problems that fall within the range of application of each of the
methods. Since theorem proving is more expressive and model checking is more
automatic, the most reasonable approach is to use deductive tools to reduce the
main verification problem to subgoals that can be model checked.

Abstraction is one of the two main methods for doing this: abstractions are
deductively justified and algorithmically model checked. The other is modular
verification. Here, the system being verified is split into its constituent compo-
nents, which are analyzed independently, provided assumptions on their environ-
ment. The properties of the individual components are then combined, usually
following some form of assumption-guarantee reasoning , to derive properties of
the complete system. This avoids the state-space explosion and allows the re-
use of properties and components. Different specialized tools can be applied to
different modules; finite-state modules can be model checked, and infinite-state
modules can be verified deductively.

Abstraction and modularity are orthogonal to each other: modules can be
abstracted, and abstractions can be decomposed. Together, they form a powerful
basis for scaling up formal verification [37, 52].

6.2 General Deductive Environments

A general-purpose theorem prover can formalize modular decomposition and
assume-guarantee reasoning, formalize and verify the correctness of abstractions,
apply verification rules, and put the results together. It can also handle param-
eterization, where an arbitrary number of similar modules are composed, and
provide decision procedures and validity checkers for specialized domains (see
Section 4.1). This often includes OBDD’s for finite-state constraint solving and
model checking.

Provers such as HOL, the Boyer-Moore prover, and PVS, have been equipped
with BDD’s and used in this way. From the theorem-proving point of view, this
is a tight integration: model checking becomes a proof rule or a tactic. However,
it is usually only used at the leaves of the proof tree, so the general verification
method remains loosely coupled.

The above theorem provers do not commit to any particular system repre-
sentation, so the semantics of reactive systems and temporal properties must
be formalized within their logic. The STeP system [7] builds in the notion of
fair transition systems and LTL, and provides general model checking and the-
orem proving as well (and more specialized tools, which we will see below). The
Symbolic Model Prover (SyMP) [4] is an experimental deductive environment
oriented to model checking, featuring a modular system specification language
and interfaces to SMV and decision procedures.

Verification environments such as the above, which include model checking
and theorem proving under a common deductive environment, support the fol-
lowing tasks:

11

Debugging using Model Checking: A simple but important application of
model checking in a deductive environment is to check (small) finite instances of
an infinite-state or parameterized system specification. In this way, many errors
can quickly be found before the full deductive verification effort proceeds.

Incremental Verification: As mentioned in Section 4, verification conditions
need not be valid in general, but only valid with respect to the invariants of the
system. Therefore, deductive verification usually proceeds by proving a series
of invariants of increasing strength, where each is used as a lemma to prove
subsequent ones [44]. The database of system properties can also help justify new
reductions or abstractions, which in turn can be used to prove new properties.

Automatically generated invariants can also be used to establish verification
conditions. Different abstract domains generate different classes of invariants;
in some cases, expressing the invariants so that they can be effectively used
by the theorem proving machinery is a non-trivial task, and presents another
combination challenge. So is devising invariant generation methods that take
advantage of system properties already proven.

Invariants can also be used to constrain the set of states explored in symbolic
model checking [49], for extra efficiency. Here, too, it may be necessary to trans-
late the invariant into a form useful to the model checker, e.g. if an individual
component or an abstracted finite-state version is being checked.

Formal Decomposition: System abstraction and modular verification are of-
ten performed manually and then proved correct. If done within a general the-
orem proving environment, these steps can be formally checked. For instance,
Müller and Nipkow [46] use the Isabelle theorem prover to prove the sound-
ness of an I/O-automata abstraction, which is then model checked. Hungar [33]
constructs model-checkable abstractions based on data independence and mod-
ularity. Abstraction is also used by Rajan et. al. [51] to obtain subgoals that can
be model checked, where the correctness of the abstraction is proved deductively.
Kurshan and Lamport [38] use deductive modular decomposition to reduce the
correctness of a large hardware system to that of smaller components that can
be model checked.

6.3 Abstraction Generation Using Theorem Proving

Many of the works cited above use theorem proving to prove that an abstraction
given a priori is correct. This abstraction is usually constructed manually, which
can be a time-consuming and error-prone task. An attractive alternative is to
use theorem proving to construct the abstraction itself.

The domain most often used for this purpose is that of assertion-based
abstractions, also known as predicate or boolean abstractions. Here, the ab-
stract state-space is the complete boolean algebra over a finite set of assertions
B : {b1, . . . , bn}, which we call the basis of the abstraction. For a point p in the
boolean algebra, its concretization γ(p) is the set of concrete states that satisfy
p (see Section 5). For an abstract assertion fA, a concrete assertion that charac-
terizes γ(fA) is obtained simply by replacing each boolean variable in fA by the

12

corresponding basis element. Similarly, for an abstract temporal formula ϕA, its
concretization γ(ϕA) is obtained by replacing each assertion in ϕA by its con-
cretization. Since the abstract system is described in terms of logical formulas,
off-the-shelf theorem proving can be used to construct and manipulate it.

Graf and Saidi [28] presented the first automatic procedure for generating
such abstractions, using theorem proving to explicitly generate the abstract
state-space. Given an abstract state s, an approximation of its successors is
computed by deciding which assertions are implied by the postcondition of γ(s).
This is done using a tactic of the PVS theorem prover [47]. If the proof fails,
the next-state does not include any information about the corresponding as-
sertions, thus safely coarsening the abstraction: the abstract transition relation
over-approximates the concrete one.

An alternative algorithm is presented by Colón and this author in [17], using
the decision procedures in STeP. Rather than performing an exhaustive search
of the reachable abstract states while constructing A, this algorithm transforms
S to A directly, leaving the exploration of the abstract state-space to an off-
the-shelf model checker. Thus, this procedure is applicable to systems whose
abstract state-space is too large to enumerate explicitly, but can still be handled
by a symbolic model checker. The price paid by this approach, compared to [28],
is that a coarser abstraction may be obtained.

Bensalem et. al. [3] present a similar framework for generating abstractions.
Here, the invariant to be proved is assumed when generating the abstraction,
yielding a better abstract system.

From the combination point of view, all of these approaches have the ad-
vantage of using a validity checker purely as a black box, operating only under
the assumption of soundness; more powerful checkers will yield better abstrac-
tions. For instance, SVC [2] (see Section 4.1) has been used to generate predicate
abstractions as well [21]. As with invariant generation, these methods can be pa-
rameterized by the abstract assertion language and validity checker used. Note
that some user interaction is still necessary, in the choice of assertions for the
abstraction basis; but the correctness of the resulting abstraction is guaranteed.
A related method for generating abstract systems is presented in [40], intended
for the practical analysis and debugging of complex software systems.

These finite-state abstractions can be used to generate invariants; as noted in
Section 5.1, the concretization of the reachable state-space of A is an invariant
of the original system (but may be an unwieldy formula); on the other hand,
previously proven invariants of S can be used as lemmas in the abstraction
generation process, yielding finer abstract systems.

7 Tight Combinations

We now describe and classify more tightly-coupled combination methods that
are based on abstraction; its counterpart, modularity, is only briefly mentioned
in the interest of satisfying space constraints.

13

Abstraction Refinement: Recall that weak property preservation (Section 5)
only guarantees that S |= φ whenever A |= ϕA; if the abstract property fails,
it is possible that ϕ does hold for S, but the abstraction was not fine enough
to prove it. Thus, in general, abstractions must be refined in order to prove the
desired property. In predicate abstraction, refinement occurs by performing new
validity checks over the existing basis, or adding new assertions to the basis.

A generic abstraction-based verification procedure for proving S |= φ pro-
ceeds as follows: First, an initial weakly-preserving abstraction A of S is given
by the user or constructed automatically. If model checking A |= ϕA succeeds,
the proof is complete. Otherwise, A is used as the starting point for producing
a finer abstraction A′, which is still weakly-preserving for S but satisfies more
properties. This process is repeated until ϕ is proved (if it indeed holds for S).

At each step, the model checker produces an abstract counterexample, which
does not necessarily correspond to any concrete computation. However, it can
help choose the next refinement step, or serve as the basis for finding a concrete
counterexample that indeed falsifies ϕ. Finding effective procedures to distin-
guish between these two cases and perform the refinement remains an intriguing
research problem, which is addressed by some of the methods described below.
(In the general case, we are still faced with an undecidable problem, so no method
can guarantee that the process will terminate.)

Methods that combine deductive and algorithmic verification through ab-
straction can be classified according to the following criteria:

– whether the abstraction is constructed a priori or or dynamically refined
(static vs. dynamic);

– whether the abstraction generation is tailored specifically for the property
of interest (bottom-up vs. top-down);

– whether the process is automatic or interactive.

Focusing on a particular formula allows for coarser abstract systems, which sat-
isfy fewer properties but can be easier to construct and model check.

The automatic abstraction generation algorithms of Section 6.3 are gener-
ally bottom-up, but can be focused towards a particular temporal property by
including its atomic subformulas as part of the assertion basis. The tighter com-
binations described below are mostly top-down, using a mixture of model check-
ing and theorem proving that is specialized to the particular temporal property
being proved.

7.1 Diagram-based Formalisms

We begin by describing a number of diagram-based verification formalisms that
have been developed as part of the STeP project [7]. They offer deductive-
algorithmic proof methods that are applicable to arbitrary temporal properties.

Static Abstractions: GVD’s: The Generalized Verification Diagrams (GVD’s)
of Browne et. al. [11] provide a graphical representation of the verification con-
ditions needed to establish an arbitrary temporal formula, extending the spe-
cialized diagrams of Manna and Pnueli [43].

14

A GVD serves as a proof object, but is also a weakly-preserving assertion-
based abstraction of the system, where the basis is the set of formulas used in
the diagram [41]. Each node in the diagram is labeled with an assertion f , and
corresponds to an abstract state representing the set of states that satisfy f . The
diagram Φ is identified with a set of computations L(Φ), and a set of verification
conditions associated with the diagram show that L(S) ⊆ L(Φ). This proves,
deductively, that Φ is a correct abstraction of S. The proof is completed by
showing that L(Φ) ⊆ L(ϕ). This corresponds to model checking ϕ over Φ, when
Φ is seen as an abstract system, and is done algorithmically, viewing the diagram
as an ω-automata.

Diagrams can be seen as a flexible generalization of the classic deductive rules.
(As noted in, e.g., [3, 37], the success of a deductive rule such as g-inv of Section 4
implies the existence of an abstraction for which the proven property can be
model checked.) Since the diagram is tailored to prove a particular property
ϕ, this can be classified as a top-down approach. Since the formalism does not
include refinement operations in the case that the proof attempt fails, it is static.

Dynamic Abstractions: Deductive Model Checking: Deductive Model
Checking (DMC), presented by Sipma et. al. [57], is a method for the inter-
active model checking of possibly infinite-state systems. To prove a property ϕ,
DMC searches for a counterexample computation by refining an abstraction of
the (S,¬ϕ) product graph.

The DMC procedure interleaves the theorem proving and model checking
steps, refining the abstraction as the model checking proceeds. This focuses the
theorem proving effort to those aspects of the system that are relevant to the
property being proved. On the other hand, the expanded state-space is restricted
by the theorem proving, so that space savings are possible even in the case of
finite-state systems.

Sipma [56] describes DMC, GVD’s, and their application to the verification of
real-time and hybrid systems. The fairness diagrams of de Alfaro and Manna [22]
present an alternate dynamic refinement method that combines the top-down
and bottom-up approaches.

7.2 Model Checking for Infinite-State Systems

Abstraction is also the basis of model checking algorithms for decidable classes
of infinite-state systems, such as certain classes of real-time and hybrid systems.
In some cases, the exploration of a finite quotient of the state-space is sufficient.
For others, the convergence of fixpoint operations is ensured by the right choice
of abstract assertion language, such as polyhedra [30] or Presburger arithmetic
[13]. The underlying principles are explored in [26, 31].

A number of “local model checking” procedures for general infinite-state
systems, such as that of Bradfield and Stirling [10], are also hybrid combinations
of deductive verification rules and model checking. Another top-down approach is
presented by Damm et. al. [19] as a “truly symbolic” model checking procedure,
analyzing the separation between data and control. A tableau-based procedure

15

for ∀CTL generates the required verification conditions in a top-down, local
manner, similarly to DMC.

Model Checking and Static Analysis: The relationship between model
checking and abstract interpretation continues to be the subject of much re-
search. Static program analysis methods based on abstract interpretation have
been recently re-formulated in terms of model checking. For instance, Schmidt
and Steffen [55] show how many program analysis techniques can be understood
as the model checking of particular kinds of abstractions.

ESC [23] and Nitpick [34] are tools that automatically detect errors in soft-
ware systems by combining static analysis and automatic theorem proving meth-
ods. Another challenge is to further combine program analysis techniques with
formal verification and theorem proving (see [52]).

Finally, we note that there is also much work on applying abstraction to
finite-state systems, particularly large hardware systems. Abstracting from the
finite-state to an infinite-state abstract domain has proved useful here, namely,
using uninterpreted function symbols and symbolically executing the system
using a decidable logic, as shown, e.g., by Jones et. al. [35].

7.3 Integrated Approaches

A number of verification environments and methodologies have been proposed
that combine the above ingredients in a systematic way.

As mentioned above, STeP [7] includes deductive verification, generalized
verification diagrams, symbolic and explicit-state model checking, abstraction
generation, and automatic invariant generation, which share a common system
and property specification language. To this, modularity and compositional ver-
ification are being added as well—see Finkbeiner et. al. [27].

Dingel and Filkorn [25] apply abstraction and error trace analysis to infinite-
state systems. The abstract system is generated automatically given a data ab-
straction that maps concrete variables and functions to abstract ones. If an
abstract counterexample is found that does not correspond to a concrete one, an
assumption that excludes this counterexample is generated. This is a temporal
formula that should hold for the concrete system S. The model checker, which
takes such assumptions into account, is then used again. The process is iterated
until a concrete counterexample is found, or model checking succeeds under a
given set of assumptions. In the latter case, the assumptions are deductively
verified over the concrete system. If they hold, the proof is complete.

Rusu and Singerman [53] present a framework that combines abstraction,
abstraction refinement and theorem proving specialized to the case of invariants,
where the different components are treated as “black boxes.” After an assertion-
based abstraction is generated (using the method of Graf and Saidi [28]), abstract
counterexamples are analyzed to refine the abstraction or produce a concrete
counterexample. Conjectures generated during the refinement process are given
to the theorem prover, and the process repeated.

16

A similar methodology is proposed by Saidi and Shankar [54]. The ongoing
Symbolic Analysis Laboratory (SAL) project at SRI [52] proposes a collection
of multiple different analysis tools, including theorem provers, model checkers,
abstraction and invariant generators, that communicate through a common lan-
guage in a blackboard architecture.

An Abstraction-based Proposal: Table 2 summarizes the classification of the
abstraction-based methods discussed in this section. For general infinite-state
systems, the automatic methods are incomplete, and the complete methods are
interactive.

Method refinement? uses ϕ? automatic?

Static Analysis and Invariant Generation static bottom-up automatic
(Abstract Interpretation)

(Generalized) Verification Diagrams static top-down interactive
(includes verification rules)

Deductive Model Checking dynamic top-down interactive
Fairness Diagrams dynamic [both] interactive
Infinite-state Model Checking dynamic top-down [both]

Table 2. Classification of some combination methods based on abstraction

In [58], this author proposes combining these approaches by exploiting their
common roots in abstraction. Each different proof attempt (including failed ones)
and static analysis operation provides additional information about the system
being verified. This information can be captured, incrementally, as an extended
finite-state abstraction, which includes information about fairness constraints
and well-founded orders over the original system. Once generated, these abstrac-
tions can be combined and re-used, given a (correspondingly extended) model
checker to reason about them.

Thus, abstractions can serve as the repository for all the information about
the system that is shared by the different components. An important challenge is
to manage and combine abstractions from different domains, finding a common
language to express them.

The tight integration found in DMC’s and GVD’s (Section 7.1) is an obstacle
for their implementation using off-the-shelf tools. However, it allows for more
detailed user input and feedback. Given tools whose input is expressive and
flexible enough, such as a model checker for the extended abstractions, it will be
possible to implement such tightly coupled methods in a more modular way.

The abstraction framework has the advantage of leaving the combinatorial
problems to the automatic tools, as well as getting the most out of the automatic
theorem-proving tools; the user can then focus on defining the right abstractions
and guiding their refinement, until a proof or counterexample are found. We
believe that such approaches will lead to more automated, lightweight and useful
verification tools.

17

Acknowledgements: The author thanks: the FROCOS organizers, for their
kind invitation; the STeP team, and in particular Nikolaj Bjørner, Anca Browne,
Michael Colón, Bernd Finkbeiner, Zohar Manna, and Henny Sipma, for their
inspiration and feedback—but even though much of the work described above
is theirs, they are not to be held responsible for the views expressed herein; and
the Leyva-Uribe family, for its hospitality and patience while the final version of
this paper was prepared.

References

1. R. Alur and T. A. Henzinger, editors. Proc. 8th Intl. Conf. on Computer Aided
Verification, vol. 1102 of LNCS. Springer, July 1996.

2. C. Barrett, D. L. Dill, and J. Levitt. Validity checking for combinations of theories
with equality. In 1st Intl. Conf. on Formal Methods in Computer-Aided Design,
vol. 1166 of LNCS, pp. 187–201, Nov. 1996.

3. S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of infinite state
systems compositionally and automatically. In Proc. 10th Intl. Conf. on Computer
Aided Verification, vol. 1427 of LNCS, pp. 319–331. Springer, July 1998.

4. S. Berezin and A. Groce. SyMP: The User’s Guide. Comp. Sci. Department,
Carnegie-Mellon Univ., Jan. 2000.

5. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking
using SAT procedures instead of BDDs. In Design Autom. Conf. (DAC’99), 1999.

6. N. S. Bjørner. Integrating Decision Procedures for Temporal Verification. PhD
thesis, Comp. Sci. Department, Stanford Univ., Nov. 1998.

7. N. S. Bjørner, A. Browne, E. S. Chang, M. Colón, A. Kapur, Z. Manna, H. B.
Sipma, and T. E. Uribe. STeP: Deductive-algorithmic verification of reactive and
real-time systems. In [1], pp. 415–418.

8. N. S. Bjørner, A. Browne, and Z. Manna. Automatic generation of invariants and
intermediate assertions. Theoretical Comp. Sci., 173(1):49–87, Feb. 1997.

9. N. S. Bjørner, M. E. Stickel, and T. E. Uribe. A practical integration of first-order
reasoning and decision procedures. In Proc. of the 14th Intl. Conf. on Automated
Deduction, vol. 1249 of LNCS, pp. 101–115. Springer, July 1997.

10. J. C. Bradfield and C. Stirling. Local model checking for infinite state spaces.
Theoretical Comp. Sci., 96(1):157–174, Apr. 1992.

11. A. Browne, Z. Manna, and H. B. Sipma. Generalized temporal verification dia-
grams. In 15th Conf. on the Foundations of Software Technology and Theoretical
Comp. Sci., vol. 1026 of LNCS, pp. 484–498. Springer, 1995.

12. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, Aug. 1986.

13. T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite state
systems using Presburger arithmetic. In Grumberg [29], pp. 400–411.

14. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In Proc. IBM Workshop on Logics of
Programs, vol. 131 of LNCS, pp. 52–71. Springer, 1981.

15. E. M. Clarke, M. Fujita, and X. Zhao. Hybrid decision diagrams. Overcoming the
limitations of MTBDDs and BMDs. In IEEE/ACM Intl. Conf. on Computer-Aided
Design, pp. 159–163, Nov. 1995.

16. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Dec. 1999.

18

17. M. A. Colón and T. E. Uribe. Generating finite-state abstractions of reactive
systems using decision procedures. In Proc. 10th Intl. Conf. on Computer Aided
Verification, vol. 1427 of LNCS, pp. 293–304. Springer, July 1998.

18. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th ACM
Symp. Princ. of Prog. Lang., pp. 238–252. ACM Press, 1977.

19. W. Damm, O. Grumberg, and H. Hungar. What if model checking must be truly
symbolic. In TACAS’95, vol. 1019 of LNCS, pp. 230–244. Springer, May 1995.

20. D. R. Dams. Abstract Interpretation and Partition Refinement for Model Checking.
PhD thesis, Eindhoven Univ. of Technology, July 1996.

21. S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In Proc.
11th Intl. Conf. on Computer Aided Verification, vol. 1633 of LNCS. Springer,
1999.

22. L. de Alfaro and Z. Manna. Temporal verification by diagram transformations. In
[1], pp. 287–299.

23. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static checking.
Tech. Report 159, Compaq SRC, Dec. 1998.

24. D. L. Dill. The Murϕ verification system. In [1], pp. 390–393.
25. J. Dingel and T. Filkorn. Model checking of infinite-state systems using data ab-

straction, assumption-commitment style reasoning and theorem proving. In Proc.
7th Intl. Conf. on Computer Aided Verif., vol. 939 of LNCS, pp. 54–69, July 1995.

26. E. A. Emerson and K. S. Namjoshi. On model checking for non-deterministic
infinite-state systems. In Proc. 13th IEEE Symp. Logic in Comp. Sci., pp. 70–80.
IEEE Press, 1998.

27. B. Finkbeiner, Z. Manna, and H. B. Sipma. Deductive verification of modular
systems. In COMPOS’97, vol. 1536 of LNCS, pp. 239–275. Springer, Dec. 1998.

28. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Grumberg
[29], pp. 72–83.

29. O. Grumberg, editor. Proc. 9th Intl. Conf. on Computer Aided Verification, vol.
1254 of LNCS. Springer, June 1997.

30. T. A. Henzinger and P. Ho. HyTech: The Cornell hybrid technology tool. In
Hybrid Systems II, vol. 999 of LNCS, pp. 265–293. Springer, 1995.

31. T. A. Henzinger and R. Majumdar. A classification of symbolic transition systems.
In Proc. of the 17th Intl. Conf. on Theoretical Aspects of Comp. Sci. (STACS 2000),
LNCS. Springer, 2000.

32. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
Engelwood Cliffs, NJ, 1991.

33. H. Hungar. Combining model checking and theorem proving to verify parallel
processes. In Proc. 5th Intl. Conf. on Computer Aided Verification, vol. 697 of
LNCS, pp. 154–165. Springer, 1993.

34. D. Jackson and C. A. Damon. Nitpick reference manual. Tech. report, Carnegie-
Mellon Univ., 1996.

35. R. B. Jones, J. U. Skakkebæk, and D. L. Dill. Reducing manual abstraction in
formal verification of out-of-order execution. In G. Gopalakrishnan and P. Windley,
editors, 2nd Intl. Conf. on Formal Methods in Computer-Aided Design, vol. 1522
of LNCS, pp. 2–17, Nov. 1998.

36. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model
checking with rich assertional languages. In Grumberg [29], pp. 424–435.

37. Y. Kesten and A. Pnueli. Modularization and abstraction: The keys to practical
formal verification. In Mathematical Foundations of Comp. Sci., vol. 1450 of LNCS,
pp. 54–71, Aug. 1998.

19

38. R. P. Kurshan and L. Lamport. Verification of a multiplier: 64 bits and beyond.
In Proc. 5th Intl. Conf. on Computer Aided Verification, vol. 697 of LNCS, pp.
166–179. Springer, 1993.

39. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6:1–35, 1995.

40. M. Lowry and M. Subramaniam. Abstraction for analytic verification of concurrent
software systems. In Symp. on Abstraction, Reformulation, and Approx., May 1998.

41. Z. Manna, A. Browne, H. B. Sipma, and T. E. Uribe. Visual abstractions for
temporal verification. In A. Haeberer, editor, Algebraic Methodology and Software
Technology (AMAST’98), vol. 1548 of LNCS, pp. 28–41. Springer, Dec. 1998.

42. Z. Manna and A. Pnueli. Completing the temporal picture. Theoretical Comp.
Sci., 83(1):97–130, 1991.

43. Z. Manna and A. Pnueli. Temporal verification diagrams. In M. Hagiya and J. C.
Mitchell, editors, Proc. Intl. Symp. on Theoretical Aspects of Computer Software,
vol. 789 of LNCS, pp. 726–765. Springer, 1994.

44. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, New York, 1995.

45. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Pub., 1993.
46. O. Müller and T. Nipkow. Combining model checking and deduction for I/O-

automata. In TACAS’95, vol. 1019 of LNCS, pp. 1–12. Springer, May 1995.
47. S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS: Combining

specification, proof checking, and model checking. In [1], pp. 411–414.
48. A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. Found. of

Comp. Sci., pp. 46–57. IEEE Computer Society Press, 1977.
49. A. Pnueli and E. Shahar. A platform for combining deductive with algorithmic

verification. In [1], pp. 184–195.
50. J. Queille and J. Sifakis. Specification and verification of concurrent systems in

CESAR. In M. Dezani-Ciancaglini and U. Montanari, editors, Intl. Symp. on
Programming, vol. 137 of LNCS, pp. 337–351. Springer, 1982.

51. S. Rajan, N. Shankar, and M. K. Srivas. An integration of model checking with
automated proof checking. In Proc. 7th Intl. Conf. on Computer Aided Verification,
vol. 939 of LNCS, pp. 84–97, July 1995.

52. J. Rushby. Integrated formal verification: Using model checking with automated
abstraction, invariant generation, and theorem proving. In Theoretical and Prac-
tical Aspects of SPIN Model Checking, vol. 1680 of LNCS, pp. 1–11, July 1999.

53. V. Rusu and E. Singerman. On proving safety properties by integrating static
analysis, theorem proving and abstraction. In TACAS’99, vol. 1579 of LNCS.
Springer, Mar. 1999.

54. H. Saidi and N. Shankar. Abstract and model check while you prove. In Proc. 11th

Intl. Conf. on Computer Aided Verification, vol. 1633 of LNCS. Springer, 1999.
55. D. A. Schmidt and B. Steffen. Program analysis as model checking of abstract

interpretations. In Proc. 5th Static Analysis Symp., LNCS. Springer, Sept. 1998.
56. H. B. Sipma. Diagram-based Verification of Discrete, Real-time and Hybrid Sys-

tems. PhD thesis, Comp. Sci. Department, Stanford Univ., Feb. 1999.
57. H. B. Sipma, T. E. Uribe, and Z. Manna. Deductive model checking. Formal

Methods in System Design, 15(1):49–74, July 1999.
58. T. E. Uribe. Abstraction-based Deductive-Algorithmic Verification of Reactive Sys-

tems. PhD thesis, Comp. Sci. Department, Stanford Univ., Dec. 1998. Tech. Report
STAN-CS-TR-99-1618.

20

