CS156: The Calculus of Computation Zohar Manna Winter 2010

It is reasonable to hope that the relationship between computation and mathematical logic will be as fruitful in the next century as that between analysis and physics in the last. The development of this relationship demands a concern for both applications and mathematical elegance.

John McCarthy
A Basis for a Mathematical Theory of Computation, 1963

Textbook

The Calculus of Computation:
 Decision Procedures with
 Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

> Aaron R. Bradley
> Zohar Manna

The Calculus of Computation

Decision Procedures
with Applications to Verification
4) Springer
opyrighted Ifteterla

Topics: Overview

1. First-Order logic
2. Specification and verification
3. Satisfiability decision procedures

Part I: Foundations

1. Propositional Logic
2. First-Order Logic
3. First-Order Theories
4. Induction
5. Program Correctness: Mechanics Inductive assertion method, Ranking function method

Part II: Decision Procedures

7. Quantified Linear Arithmetic Quantifier elimination for integers and rationals
8. Quantifier-Free Linear Arithmetic Linear programming for rationals
9. Quantifier-Free Equality and Data Structures
10. Combining Decision Procedures Nelson-Oppen combination method
11. Arrays

More than quantifier-free fragment

CS156: The Calculus of

 ComputationZohar Manna

Winter 2010

Motivation

Motivation I

Decision Procedures are algorithms to decide formulae.
These formulae can arise

- in software verification.
- in hardware verification

Consider the following program:
for

$$
\begin{aligned}
& \text { @ } \ell \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e) \\
& (\text { int } i:=\ell ; i \leq u ; i:=i+1)\{ \\
& \text { if }(a[i]=e) r v:=\text { true; }
\end{aligned}
$$

$$
\}
$$

How can we decide whether the formula is a loop invariant?

Motivation II

Prove: (Path 1)
assume $\ell \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e)$
assume $i \leq u$
assume $a[i]=e$
$r v:=$ true;
$i:=i+1$
© $\ell \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e)$

Motivation III

Path 2:

assume $\ell \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e)$
assume $i \leq u$
assume $a[i] \neq e$
$i:=i+1$
$@ \ell \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e)$
Each path generates a Verification Condition (VC). We have to prove that each VC holds (valid).

Motivation IV

The VC for path 1 is computed by substitution:

$$
\begin{aligned}
& \text { assume } \ell \leq i \leq u \wedge(r v \leftrightarrow \exists j \cdot \ell \leq j<i \wedge a[j]=e) \\
& \text { assume } i \leq u \\
& \text { assume } a[i]=e \\
& r v:=\text { true; } \\
& i:=i+1 \\
& @ \ell \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e) \\
& \hline
\end{aligned}
$$

Substituting T for rv and $i+1$ for i, the postcondition (denoted by the @ symbol) holds if and only if the VC:

$$
\begin{aligned}
\quad & \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e) \wedge i \leq u \wedge a[i]=e \\
\rightarrow \ell & \leq i+1 \leq u \wedge(T \leftrightarrow \exists j . \ell \leq j<i+1 \wedge a[j]=e)
\end{aligned}
$$

holds.

Motivation V

We need an algorithm that decides whether this formula holds. If the formula does not hold, the algorithm should give a counterexample; e.g.,

$$
\ell=0, i=1, u=1, r v=\text { false, } a[0]=0, a[1]=1, e=1 .
$$

We will discuss such algorithms in later lectures.

CS156: The Calculus of

Computation
 Zohar Manna
 Winter 2010

Chapter 1: Propositional Logic (PL)

Propositional Logic (PL)

PL Syntax

Atom truth symbols \top ("true") and \perp ("false") propositional variables $P, Q, R, P_{1}, Q_{1}, R_{1}, \ldots$
Literal atom α or its negation $\neg \alpha$
Formula literal or application of a
logical connective to formulae F, F_{1}, F_{2}

$\neg F$	"not"	(negation)
$F_{1} \wedge F_{2}$	"and"	(conjunction)
$F_{1} \vee F_{2}$	"or"	(disjunction)
$F_{1} \rightarrow F_{2}$	"implies"	(implication)
$F_{1} \leftrightarrow F_{2}$	"if and only if"	(iff)

Example:

formula $F:(P \wedge Q) \rightarrow(T \vee \neg Q)$
atoms: P, Q, \top
literals: $P, Q, \top, \neg Q$
subformulae: $P, Q, \top, \neg Q, P \wedge Q, \top \vee \neg Q, F$ abbreviation

$$
F: P \wedge Q \rightarrow \top \vee \neg Q
$$

PL Semantics (meaning of PL)

Formula $F+$ Interpretation $I=$ Truth value
(true, false)
Interpretation

$$
I:\{P \mapsto \text { true }, Q \mapsto \text { false }, \cdots\}
$$

Evaluation of F under I :

F	$\neg F$	where 0 corresponds to value false	
0	1	1	true
1	0		

F_{1}	F_{2}	$F_{1} \wedge F_{2}$	$F_{1} \vee F_{2}$	$F_{1} \rightarrow F_{2}$	$F_{1} \leftrightarrow F_{2}$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Example:

$F: P \wedge Q \rightarrow P \vee \neg Q$
$I:\{P \mapsto$ true, $Q \mapsto$ false $\} \quad$ i.e., $I[P]=$ true, $I[Q]=$ false

P	Q	$\neg Q$	$P \wedge Q$	$P \vee \neg Q$	F
1	0	1	0	1	1

$$
1=\text { true } \quad 0=\text { false }
$$

F evaluates to true under I; i.e., $I[F]=$ true.

Inductive Definition of PL's Semantics

$$
\begin{array}{llll}
I \not F F & \text { if } F \text { evaluates to } & \text { true } & \text { under } I \\
I \not \models F & \text { false } &
\end{array}
$$

Base Case:

$$
\begin{array}{lll}
I & \models \top \quad I \not \models \perp \\
I & \models P & \text { of } \\
I & I[P]=\text { true; ie., } P \text { is true under } I \\
I \not \models P & \text { of } \quad I[P]=\text { false }
\end{array}
$$

Inductive Case:

$$
\begin{array}{ll}
I \models \neg F & \text { iff } I \not \models F \\
I \models F_{1} \wedge F_{2} & \text { iff } I \models F_{1} \text { and } I \models F_{2} \\
I \models F_{1} \vee F_{2} & \text { iff } I \models F_{1} \text { or } I \models F_{2} \text { (or both) } \\
I \models F_{1} \rightarrow F_{2} & \text { iff } I \models F_{1} \text { implies } I \models F_{2} \\
I \models F_{1} \leftrightarrow F_{2} & \text { iff, } I \models F_{1} \text { and } I \models F_{2}, \\
& \\
& \text { or } I \not \models F_{1} \text { and } I \not \models F_{2}
\end{array}
$$

Note:
$I \models F_{1} \rightarrow F_{2} \quad$ iff $\quad I \quad \vDash F_{1}$ or $I \models F_{2}$.
$I \notin F_{1} \rightarrow F_{2}$ iff $\quad l \models F_{1}$ and $l \not \equiv F_{2}$.
$I \not \vDash F_{1} \vee F_{2}$ iff $I \not \vDash F_{1}$ and $I \not \equiv F_{2}$.

Example of Inductive Reasoning:

$$
\begin{aligned}
& F: P \wedge Q \rightarrow P \vee \neg Q \\
& I:\{P \mapsto \text { true, } Q \mapsto \text { false }\} \\
& \text { 1. } I \vDash P \text { since } I[P]=\text { true } \\
& \text { 2. } I \not \models Q \quad \text { since } I[Q]=\text { false } \\
& \text { 3. I } \vDash \neg Q \quad \text { by } 2 \text { and } \neg \\
& \text { 4. I } \neq P \wedge Q \quad \text { by } 2 \text { and } \wedge \\
& \text { 5. I } \vDash P \vee \neg Q \quad \text { by } 1 \text { and } \vee \\
& \text { 6. } I \vDash F \\
& \text { by } 4 \text { and } \rightarrow \quad \text { Why? }
\end{aligned}
$$

Thus, F is true under I.
Note: steps 1, 3, and 5 are nonessential.

Satisfiability and Validity

F satisfiable iff there exists an interpretation $/$ such that $I \models F$. F valid iff for all interpretations $I, I \models F$.

$$
F \text { is valid iff } \neg F \text { is unsatisfiable }
$$

Goal: devise an algorithm to decide validity or unsatisfiability of formula F.

Method 1: Truth Tables

Example $\quad F: P \wedge Q \rightarrow P \vee \neg Q$

P	Q	$P \wedge Q$	$\neg Q$	$P \vee \neg Q$	F
0	0	0	1	1	1
0	1	0	0	0	1
1	0	0	1	1	1
1	1	1	0	1	1

Thus F is valid.
Example $\quad F: P \vee Q \rightarrow P \wedge Q$

P	Q	$P \vee Q$	$P \wedge Q$	F
0	0	0	0	1
0	1	1	0	0
1	0	1	0	0
1	1	1	1	1

Thus F is satisfiable, but invalid.

Method 2: Semantic Argument

- Assume F is not valid and I a falsifying interpretation: l $\neq F$
- Apply proof rules.
- If no contradiction reached and no more rules applicable, F is invalid.
- If in every branch of proof a contradiction reached, F is valid.

Proof Rules for Semantic Arguments I

$$
\begin{aligned}
& \frac{I \models \neg F}{I \not \models F} \\
& \frac{I \not \models \neg F}{I \models F} \\
& I \models F \wedge G \\
& \begin{array}{l}
l \models F \\
l \models G
\end{array} \leftarrow \text { and } \\
& \begin{array}{c}
l \models F \vee G \\
\hline l \models F \\
l \models G
\end{array} \\
& \frac{l \not \models F \wedge G}{\substack{c \\
\text { or }}} \\
& \begin{array}{l}
I \not \models F \vee G \\
I \not \models F \\
I \not \models G
\end{array}
\end{aligned}
$$

Page 23 of 50

Proof Rules for Semantic Arguments II

$$
\begin{gathered}
l \models F \rightarrow G \\
\left.\frac{l \not \models F}{} \right\rvert\, l \models G \\
l \models F \leftrightarrow G \\
I \models F \wedge G \mid l \neq F \vee G \\
l \models F \\
l \not \models F \\
l \models \perp
\end{gathered}
$$

Example: Prove

$$
F: P \wedge Q \rightarrow P \vee \neg Q \quad \text { is valid. }
$$

Let's assume that F is not valid and that I is a falsifying interpretation.

1. I $\neq P \wedge Q \rightarrow P \vee \neg Q \quad$ assumption
2. I $\vDash P \wedge Q$
3. $I \not \vDash P \vee \neg Q$

1 and \rightarrow
1 and \rightarrow
4. $I \vDash P$
5. $I \neq P$
6. $I \vDash \perp$

2 and \wedge
3 and V
4 and 5 are contradictory
Thus F is valid.

Example: Prove

$$
F:(P \rightarrow Q) \wedge(Q \rightarrow R) \rightarrow(P \rightarrow R) \quad \text { is valid. }
$$

Let's assume that F is not valid.

1.	$I \not \models F$	assumption
2.	$I \not \models(P \rightarrow Q) \wedge(Q \rightarrow R)$	1 and \rightarrow
3.	$I \not \models P \rightarrow R$	1 and \rightarrow
4.	$I \not \models P$	3 and \rightarrow
5.	$I \not \models R$	3 and \rightarrow
6. $\quad I \models P \rightarrow Q$	2 and \wedge	
7. $\quad I \not \models Q \rightarrow R$	2 and \wedge	

6.	$l \vDash P \rightarrow Q$	2 and \wedge
7.	$\prime \vDash Q \rightarrow R$	2 and \wedge
8 a.	$l \nmid P$	6 and \rightarrow (case a)
9 a.	$I \vDash \perp$	4 and 8
8 b .	$\prime \models Q$	6 and \rightarrow (case b)
9 ba .	$\prime \not \vDash Q$	7 and \rightarrow (subcase ba)
10ba.	$I \models \perp$	8b and 9ba
9 bb .	$1 \vDash R$	7 and \rightarrow (subcase bb)
10bb.	$l \vDash \perp$	5 and 9bb
9 b .	$\prime \models \perp$	10ba and 10bb
8.	$1 \vDash \perp$	9a and 9b

Our assumption is contradictory in all cases, so F is valid,

Example 3: Is

$$
F: P \vee Q \rightarrow P \wedge Q
$$

valid? Assume F is not valid:

1.		assumption
2.	$I \models P \vee Q$	1 and \rightarrow
3.	I $\neq P \wedge Q$	1 and \rightarrow
4 a .	$I \models P$	2, \vee (case a)
5 aa .	$l \nmid \mathcal{P}$	$3, \vee$ (subcase aa)
6 aa.	$l \models \perp$	4a, 5aa
5 ab .	I $\neq Q$	$3, \vee$ (subcase ab)
6 ab .	?	
5 a .	?	

4b.	$I \not \models Q$	$2, \vee($ case $b)$
5ba.	$I \not \vDash P$	$3, \vee$ (subcase ba)
6ba.	$?$	
5bb.	$l \not \vDash Q$	$3, \vee$ (subcase bb)
6bb.	$l \models \perp$	4b, 5bb
5b.	$?$	
5.	$?$	

We cannot derive a contradiction in both cases (4a and 4b), so we cannot prove that F is valid. To demonstrate that F is not valid, however, we must find a falsifying interpretation (here are two):
$I_{1}:\{P \mapsto$ true, $Q \mapsto$ false $\} \quad I_{2}:\{Q \mapsto$ true, $P \mapsto$ false $\}$
Note: we have to derive a contradiction in all cases for F to be valid!

Equivalence

F_{1} and F_{2} are equivalent $\left(F_{1} \Leftrightarrow F_{2}\right)$
iff for all interpretations $I, I \models F_{1} \leftrightarrow F_{2}$
To prove $F_{1} \Leftrightarrow F_{2}$, show $F_{1} \leftrightarrow F_{2}$ is valid, that is, both $F_{1} \rightarrow F_{2}$ and $F_{2} \rightarrow F_{1}$ are valid.
F_{1} entails $F_{2}\left(F_{1} \Rightarrow F_{2}\right)$
iff for all interpretations $I, I \models F_{1} \rightarrow F_{2}$
Note: $F_{1} \Leftrightarrow F_{2}$ and $F_{1} \Rightarrow F_{2}$ are not formulae!!

Example: Show

$$
P \rightarrow Q \Leftrightarrow \neg P \vee Q
$$

i.e.

$$
F:(P \rightarrow Q) \leftrightarrow(\neg P \vee Q) \text { is valid. }
$$

Assume F is not valid, then we have two cases:
Case a: $I \nvdash \neg P \vee Q$,

$$
I \vDash P \rightarrow Q
$$

Case b: $I \vDash \neg P \vee Q$,

$$
I \not \models P \rightarrow Q
$$

Derive contradictions in both cases.

Normal Forms

1. Negation Normal Form (NNF)
\neg, \wedge, \vee are the only boolean connectives allowed.
Negations may occur only in literals of the form $\neg P$.
To transform F into equivalent F^{\prime} in NNF, apply the following template equivalences recursively (and left-to-right):

$$
\left.\begin{array}{l}
\neg \neg F_{1} \Leftrightarrow F_{1} \quad \neg \top \Leftrightarrow \perp \quad \neg \perp \Leftrightarrow \top \\
\neg\left(F_{1} \wedge F_{2}\right) \Leftrightarrow \neg F_{1} \vee \neg F_{2} \\
\neg\left(F_{1} \vee F_{2}\right) \Leftrightarrow \neg F_{1} \wedge \neg F_{2}
\end{array}\right\} \text { De Morgan's Law } \begin{aligned}
& F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \vee F_{2} \\
& F_{1} \leftrightarrow F_{2} \Leftrightarrow\left(F_{1} \rightarrow F_{2}\right) \wedge\left(F_{2} \rightarrow F_{1}\right)
\end{aligned}
$$

"Complete" syntactic restriction: every F has an equivalent F^{\prime} in NNF.

Example: Convert

$$
F: \neg(P \rightarrow \neg(P \wedge Q))
$$

to NNF.

$$
\begin{array}{rlr}
F^{\prime}: \neg(\neg P \vee \neg(P \wedge Q)) & \rightarrow \\
F^{\prime \prime}: \neg \neg P \wedge \neg \neg(P \wedge Q) & & \text { De Morgan's Law } \\
F^{\prime \prime \prime}: P \wedge P \wedge Q & \neg \neg
\end{array}
$$

$F^{\prime \prime \prime}$ is equivalent to $F\left(F^{\prime \prime \prime} \Leftrightarrow F\right)$ and is in NNF.
2. Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals

$$
\bigvee_{i} \bigwedge_{j} \ell_{i, j} \text { for literals } \ell_{i, j}
$$

To convert F into equivalent F^{\prime} in DNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$
\left.\begin{array}{l}
\left(F_{1} \vee F_{2}\right) \wedge F_{3} \quad \Leftrightarrow \quad\left(F_{1} \wedge F_{3}\right) \vee\left(F_{2} \wedge F_{3}\right) \\
F_{1} \wedge\left(F_{2} \vee F_{3}\right) \quad \Leftrightarrow \quad\left(F_{1} \wedge F_{2}\right) \vee\left(F_{1} \wedge F_{3}\right)
\end{array}\right\} \text { dist }
$$

Note: formulae can grow exponentially as the distributivity laws are applied.

Example: Convert

$$
F:\left(Q_{1} \vee \neg \neg Q_{2}\right) \wedge\left(\neg R_{1} \rightarrow R_{2}\right)
$$

into equivalent DNF

$$
\begin{array}{rll}
F^{\prime}:\left(Q_{1} \vee Q_{2}\right) \wedge\left(R_{1} \vee R_{2}\right) & \text { in NNF } \\
F^{\prime \prime}:\left(Q_{1} \wedge\left(R_{1} \vee R_{2}\right)\right) \vee\left(Q_{2} \wedge\left(R_{1} \vee R_{2}\right)\right) & \text { dist } \\
F^{\prime \prime \prime}:\left(Q_{1} \wedge R_{1}\right) \vee\left(Q_{1} \wedge R_{2}\right) \vee\left(Q_{2} \wedge R_{1}\right) \vee\left(Q_{2} \wedge R_{2}\right) & \text { dist } \\
F^{\prime \prime \prime} \text { is equivalent to } F\left(F^{\prime \prime \prime} \Leftrightarrow F\right) \text { and is in DNF. } &
\end{array}
$$

3. Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals

$$
\bigwedge_{i} \bigvee_{j} \ell_{i, j} \text { for literals } \ell_{i, j}
$$

To convert F into equivalent F^{\prime} in CNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$
\begin{array}{lll}
\left(F_{1} \wedge F_{2}\right) \vee F_{3} & \Leftrightarrow & \left(F_{1} \vee F_{3}\right) \wedge\left(F_{2} \vee F_{3}\right) \\
F_{1} \vee\left(F_{2} \wedge F_{3}\right) & \Leftrightarrow & \left(F_{1} \vee F_{2}\right) \wedge\left(F_{1} \vee F_{3}\right)
\end{array}
$$

A disjunction of literals is called a clause.

Example: Convert

$$
F: P \leftrightarrow(Q \rightarrow R)
$$

to an equivalent formula F^{\prime} in CNF.
First get rid of \leftrightarrow :

$$
F_{1}:(P \rightarrow(Q \rightarrow R)) \wedge((Q \rightarrow R) \rightarrow P)
$$

Now replace \rightarrow with \vee :

$$
F_{2}:(\neg P \vee(\neg Q \vee R)) \wedge(\neg(\neg Q \vee R) \vee P)
$$

Drop unnecessary parentheses and apply De Morgan's Law:

$$
F_{3}:(\neg P \vee \neg Q \vee R) \wedge((\neg \neg Q \wedge \neg R) \vee P)
$$

Simplify double negation (now in NNF):

$$
F_{4}:(\neg P \vee \neg Q \vee R) \wedge((Q \wedge \neg R) \vee P)
$$

Distribute disjunction over conjunction (now in CNF):

$$
F^{\prime}:(\neg P \vee \neg Q \vee R) \wedge(Q \vee P) \wedge(\neg R \vee P)
$$

Equisatisfiability

Definition

F and F^{\prime} are equisatisfiable, iff

$$
F \text { is satisfiable if and only if } F^{\prime} \text { is satisfiable }
$$

Every formula is equisatifiable to either \top or \perp.

Goal: Decide satisfiability of PL formula F
Step 1: Convert F to equisatisfiable formula F^{\prime} in CNF Step 2: Decide satisfiability of formula F^{\prime} in CNF

Step 1: Convert F to equisatisfiable formula F^{\prime} in CNF I

There is an efficient conversion of F to F^{\prime} where

- F^{\prime} is in CNF and
- F and F^{\prime} are equisatisfiable

Note: efficient means polynomial in the size of F.
Basic Idea:

- Introduce a new variable P_{G} for every subformula G of F, unless G is already an atom.

Step 1: Convert F to equisatisfiable formula F^{\prime} in CNF II

- For each subformula

$$
G: G_{1} \circ G_{2},
$$

produce a small formula

$$
P_{G} \leftrightarrow P_{G_{1}} \circ P_{G_{2}} .
$$

Here \circ denotes an arbitrary connective $(\neg, \vee, \wedge, \rightarrow, \leftrightarrow)$; if the connective is \neg, G_{1} should be ignored.

Step 1: Convert F to equisatisfiable formula F^{\prime} in CNF III

Figure: Parse tree for $F: P \vee Q \rightarrow \neg(P \wedge \neg R)$

Step 1: Convert F to equisatisfiable formula F^{\prime} in CNF IV

- Convert each of these (small) formulae separately to an equivalent CNF formula

$$
\operatorname{CNF}\left(P_{G} \leftrightarrow P_{G_{1}} \circ P_{G_{2}}\right) .
$$

Let S_{F} be the set of all non-atom subformulae G of F (including F itself). The formula

$$
P_{F} \wedge \bigwedge_{G \in S_{F}} C N F\left(P_{G} \leftrightarrow P_{G_{1}} \circ P_{G_{2}}\right)
$$

is equisatisfiable to F. (Why?)
The number of subformulae is linear in the size of F. The time to convert one small formula is constant!

Example: CNF I

Convert

$$
F: P \vee Q \rightarrow P \wedge \neg R
$$

to an equisatisfiable formula in CNF.
Introduce new variables: $P_{F}, P_{P \vee Q}, P_{P \wedge \neg R}, P_{\neg R}$.
Create new formulae and convert them to equivalent formulae in CNF separately:

- $F_{1}=\operatorname{CNF}\left(P_{F} \leftrightarrow\left(P_{P \vee Q} \rightarrow P_{P \wedge \neg R}\right)\right):$

$$
\left(\neg P_{F} \vee \neg P_{P \vee Q} \vee P_{P \wedge \neg R}\right) \wedge\left(P_{F} \vee P_{P \vee Q}\right) \wedge\left(P_{F} \vee \neg P_{P \wedge \neg R}\right)
$$

- $F_{2}=\operatorname{CNF}\left(P_{P \vee Q} \leftrightarrow P \vee Q\right):$

$$
\left(\neg P_{P \vee Q} \vee P \vee Q\right) \wedge\left(P_{P \vee Q} \vee \neg P\right) \wedge\left(P_{P \vee Q} \vee \neg Q\right)
$$

Example: CNF II

- $F_{3}=\operatorname{CNF}\left(P_{P \wedge \neg R} \leftrightarrow P \wedge P_{\neg R}\right):$

$$
\left(\neg P_{P \wedge \neg R} \vee P\right) \wedge\left(\neg P_{P \wedge \neg R} \vee P_{\neg R}\right) \wedge\left(P_{P \wedge \neg R} \vee \neg P \vee \neg P_{\neg R}\right)
$$

- $F_{4}=\operatorname{CNF}\left(P_{\neg R} \leftrightarrow \neg R\right):$

$$
\left(\neg P_{\neg R} \vee \neg R\right) \wedge\left(P_{\neg R} \vee R\right)
$$

$P_{F} \wedge F_{1} \wedge F_{2} \wedge F_{3} \wedge F_{4}$ is in CNF and equisatisfiable to F.

Step 2: Decide the satisfiability of PL formula F^{\prime} in CNF

Boolean Constraint Propagation (BCP)

If a clause contains one literal ℓ,
Set ℓ to T :
Remove all clauses containing ℓ :
$\cdots \wedge \ell^{\top} \wedge \cdots$
Remove $\neg \ell$ in all clauses:

$$
\begin{aligned}
& \cdots \wedge(\cdots \vee \ell \vee \cdots) \wedge \cdots \\
& \cdots \wedge(\cdots \vee \not \subset \vee \cdots) \wedge \cdots
\end{aligned}
$$

based on the unit resolution
$\frac{\ell \quad \neg \ell \subset C}{C} \leftarrow$ clause

Pure Literal Propagation (PLP)
If P occurs only positive (without negation), set it to T.
If P occurs only negative set it to \perp.
Then do the simplifications as in Boolean Constraint Propagation

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF
Decision Procedure DPLL: Given F in CNF

$$
\begin{aligned}
& \text { let rec DPLL } F= \\
& \text { let } F^{\prime}=\mathrm{BCP} F \text { in } \\
& \text { let } F^{\prime \prime}=\operatorname{PLP} F^{\prime} \text { in } \\
& \text { if } F^{\prime \prime}=\top \text { then true } \\
& \text { else if } F^{\prime \prime}=\perp \text { then false } \\
& \text { else } \\
& \quad \text { let } P=\text { CHOOSE vars }\left(F^{\prime \prime}\right) \text { in } \\
& \quad\left(\text { DPLL } F^{\prime \prime}\{P \mapsto \top\}\right) \vee\left(\text { DPLL } F^{\prime \prime}\{P \mapsto \perp\}\right)
\end{aligned}
$$

Simplification

Simplify according to the template equivalences (left-to-right) [exercise 1.2]

$$
\begin{gathered}
\neg \perp \Leftrightarrow \top \\
F \wedge \top \Leftrightarrow F \\
F \vee \top \Leftrightarrow \top
\end{gathered}
$$

$$
\neg \top \Leftrightarrow \perp
$$

$$
\neg \neg F \Leftrightarrow F
$$

$$
F \wedge \perp \Leftrightarrow \perp
$$

$$
F \vee \perp \Leftrightarrow F
$$

Example I

Consider

$$
F:(\neg P \vee Q \vee R) \wedge(\neg Q \vee R) \wedge(\neg Q \vee \neg R) \wedge(P \vee \neg Q \vee \neg R)
$$

Branching on Q
On the first branch, we have

$$
F\{Q \mapsto \top\}:(R) \wedge(\neg R) \wedge(P \vee \neg R)
$$

By unit resolution,

so $F\{Q \mapsto \top\}=\perp \Rightarrow$ false.

Example II

Recall

$$
F:(\neg P \vee Q \vee R) \wedge(\neg Q \vee R) \wedge(\neg Q \vee \neg R) \wedge(P \vee \neg Q \vee \neg R)
$$

On the other branch, we have

$$
F\{Q \mapsto \perp\}:(\neg P \vee R) .
$$

Furthermore, by PLP,

$$
F\{Q \mapsto \perp, R \mapsto \top\}=\top \Rightarrow \text { true }
$$

Thus F is satisfiable with satisfying interpretation

$$
I:\{P \mapsto \text { false, } Q \mapsto \text { false, } R \mapsto \text { true }\} .
$$

or

$$
I:\{P \mapsto \text { true, } Q \mapsto \text { false, } R \mapsto \text { true }\} .
$$

Example

$$
\begin{aligned}
& F:(\neg P \vee Q \vee R) \wedge(\neg Q \vee R) \wedge(\neg Q \vee \neg R) \wedge(P \vee \neg Q \vee \neg R)
\end{aligned}
$$

$$
\begin{aligned}
& R \mapsto \top \\
& I:\{P \mapsto \text { false, } Q \stackrel{\top}{\mapsto} \text { false, } R \mapsto \text { true }\} \\
& \text { (No matter what } P \text { is) }
\end{aligned}
$$

