CS156: The Calculus of

Computation

Zohar Manna
Autumn 2008

Chapter 10: Combining Decision Procedures

Combining Decision Procedures: Nelson-Oppen Method

Given

Theories T_{i} over signatures Σ_{i} with corresponding decision procedures P_{i} for T_{i}-satisfiability.

Goal
Decide satisfiability of a formula F in theory $\cup_{i} T_{i}$.
Example: How do we show that

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-unsatisfiable?

Combining Decision Procedures

Σ_{1}-theory T_{1}
P_{1} for T_{1}-satisfiability

$$
P \text { for }\left(T_{1} \cup T_{2}\right) \text {-satisfiability }
$$

Problem:

Decision procedures are domain specific.
How do we combine them?

Nelson-Oppen Combination Method (N-O Method)

$$
\Sigma_{1} \cap \Sigma_{2}=\{=\}
$$

Σ_{1}-theory T_{1} stably infinite

$$
\begin{aligned}
& \Sigma_{2} \text {-theory } T_{2} \\
& \text { stably infinite }
\end{aligned}
$$

P_{1} for T_{1}-satisfiability
of quantifier-free Σ_{1}-formulae
:---
of quantifier-free Σ_{2}-formulae

P for $\left(T_{1} \cup T_{2}\right)$-satisfiability of quantifier-free $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formulae

Nelson-Oppen: Limitations

Given formula F in theory $T_{1} \cup T_{2}$.

1. F must be quantifier-free.
2. Signatures Σ_{i} of the combined theory only share $=$, i.e.,

$$
\Sigma_{1} \cap \Sigma_{2}=\{=\}
$$

3. Theories must be stably infinite.

Note:

- Algorithm can be extended to combine arbitrary number of theories T_{i} - combine two, then combine with another, and so on.
- We restrict F to be conjunctive formula - otherwise convert to equivalent DNF and check each disjunct.

Stably Infinite Theories

A Σ-theory T is stably infinite iff
for every quantifier-free Σ-formula F :
if F is T-satisfiable
then there exists some T-interpretation that satisfies F with infinite domain

Example: Σ-theory T

$$
\Sigma:\{a, b,=\}
$$

Axiom

$$
\forall x . x=a \vee x=b
$$

For every T-interpretation $I,\left|D_{I}\right| \leq 2$ (by the axiom - at most two elements).
Hence, T is not stably infinite.
All the other theories mentioned so far are stably infinite.

Example: T_{E} is stably infinite

Proof.

Let F be T_{E}-satisfiable quantifier-free Σ_{E}-formula

$\alpha_{\text {I }}$ maps $=$ to $=$ ।.
Let A be any infinite set disjoint from D_{l}. Construct new interpretation $J:\left(D_{J}, \alpha_{J}\right)$ such that

- $D_{J}=D_{l} \cup A$
- α_{J} agrees with α_{I} : the extension of functions and predicates for A is irrelevant, except $=\jmath$. For $v_{1}, \mathrm{v}_{2} \in D_{\jmath}$,

$$
v_{1}=\jmath v_{2} \equiv \begin{cases}v_{1}=\jmath v_{2} & \text { if } v_{1}, v_{2} \in D_{l} \\ \text { true } & \text { if } v_{1} \text { is the same element as } v_{2} \\ \text { false } & \text { otherwise }\end{cases}
$$

J is a $T_{E \text {-interpretation satisfying } F}$ with infinite domain. Hence, T_{E} is stably infinite.

Example

Consider quantifier-free conjunctive $\left(\Sigma_{E} \cup \Sigma_{\mathbb{Z}}\right)$-formula

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

The signatures of T_{E} and $T_{\mathbb{Z}}$ only share $=$. Also, both theories are stably infinite. Hence, the $\mathrm{N}-\mathrm{O}$ combination of the decision procedures for T_{E} and $T_{\mathbb{Z}}$ decides the ($\left.T_{E} \cup T_{\mathbb{Z}}\right)$-satisfiability of F.

Intuitively, F is ($T_{E} \cup T_{\mathbb{Z}}$)-unsatisfiable.
For the first two literals imply $x=1 \vee x=2$ so that $f(x)=f(1) \vee f(x)=f(2)$.
Contradict last two literals.
Hence, F is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-unsatisfiable.

Nelson-Oppen Method: Overview

Consider quantifier-free conjunctive $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F.
Two versions:

- nondeterministic - simple to present, but high complexity
- deterministic - efficient

Nelson-Oppen ($\mathrm{N}-\mathrm{O}$) method proceeds in two steps:

- Phase 1 (variable abstraction)
- same for both versions
- Phase 2
nondeterministic: guess equalities/disequalities and check deterministic: generate equalities/disequalities by equality propagation

Phase 1: Variable abstraction

Given quantifier-free conjunctive $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F.
Transform F into two quantifier-free conjunctive formulae

$$
\Sigma_{1} \text {-formula } F_{1} \quad \text { and } \quad \Sigma_{2} \text {-formula } F_{2}
$$

s.t. F is $\left(T_{1} \cup T_{2}\right)$-satisfiable iff $F_{1} \wedge F_{2}$ is $\left(T_{1} \cup T_{2}\right)$-satisfiable
F_{1} and F_{2} are linked via a set of shared variables:

$$
\operatorname{shared}\left(F_{1}, F_{2}\right)=\operatorname{free}\left(F_{1}\right) \cap \operatorname{free}\left(F_{2}\right)
$$

For term t, let $h d(t)$ be the root symbol, e.g. $h d(f(x))=f$.

Generation of F_{1} and F_{2}

For $i, j \in\{1,2\}$ and $i \neq j$, repeat the transformations
(1) if function $f \in \Sigma_{i}$ and $\operatorname{hd}(t) \in \Sigma_{j}$,

$$
F\left[f\left(t_{1}, \ldots, t, \ldots, t_{n}\right)\right] \Rightarrow F\left[f\left(t_{1}, \ldots, w, \ldots, t_{n}\right)\right] \wedge w=t
$$

(2) if predicate $p \in \Sigma_{i}$ and $h d(t) \in \Sigma_{j}$,

$$
F\left[p\left(t_{1}, \ldots, t, \ldots, t_{n}\right)\right] \quad \Rightarrow \quad F\left[p\left(t_{1}, \ldots, w, \ldots, t_{n}\right)\right] \wedge w=t
$$

(3) if $h d(s) \in \Sigma_{i}$ and $h d(t) \in \Sigma_{j}$,

$$
\begin{aligned}
& F[s=t] \Rightarrow F[w=t] \wedge w=s \\
& F[s \neq t] \Rightarrow F[w \neq t] \wedge w=s
\end{aligned}
$$

where w is a fresh variable in each application of a transformation.

Example

Consider $\left(\Sigma_{E} \cup \Sigma_{\mathbb{Z}}\right)$-formula

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

By transformation 1 , since $f \in \Sigma_{E}$ and $1 \in \Sigma_{\mathbb{Z}}$, replace $f(1)$ by $f\left(w_{1}\right)$ and add $w_{1}=1$. Similarly, replace $f(2)$ by $f\left(w_{2}\right)$ and add $w_{2}=2$.
Hence, construct the $\Sigma_{\mathbb{Z}}$-formula

$$
F_{\mathbb{Z}}: 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
$$

and the Σ_{E}-formula

$$
F_{E}: f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right)
$$

$F_{\mathbb{Z}}$ and F_{E} share the variables $\left\{x, w_{1}, w_{2}\right\}$.
$F_{\mathbb{Z}} \wedge F_{E}$ is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-equisatisfiable to F.

Example

Consider $\left(\Sigma_{E} \cup \Sigma_{\mathbb{Z}}\right)$-formula
$F: f(x)=x+y \wedge x \leq y+z \wedge x+z \leq y \wedge y=1 \wedge f(x) \neq f(2)$.
In the first literal, $\operatorname{hd}(f(x))=f \in \Sigma_{E}$ and $\operatorname{hd}(x+y)=+\in \Sigma_{\mathbb{Z}}$; thus, by (3), replace the literal with

$$
w_{1}=x+y \wedge w_{1}=f(x)
$$

In the final literal, $f \in \Sigma_{E}$ but $2 \in \Sigma_{\mathbb{Z}}$, so by (1), replace it with

$$
f(x) \neq f\left(w_{2}\right) \wedge w_{2}=2
$$

Now, separating the literals results in two formulae:

$$
F_{\mathbb{Z}}: w_{1}=x+y \wedge x \leq y+z \wedge x+z \leq y \wedge y=1 \wedge w_{2}=2
$$

is a $\Sigma_{\mathbb{Z}}$-formula, and

$$
F_{E}: w_{1}=f(x) \wedge f(x) \neq f\left(w_{2}\right)
$$

is a Σ_{E}-formula.
The conjunction $F_{\mathbb{Z}} \wedge F_{E}$ is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-equisatisfiable to F.

Nondeterministic Version

Phase 2: Guess and Check

- Phase 1 separated $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F into two formulae:

$$
\Sigma_{1} \text {-formula } F_{1} \text { and } \quad \Sigma_{2} \text {-formula } F_{2}
$$

- F_{1} and F_{2} are linked by a set of shared variables:

$$
V=\operatorname{shared}\left(F_{1}, F_{2}\right)=\operatorname{free}\left(F_{1}\right) \cap \operatorname{free}\left(F_{2}\right)
$$

- Let E be an equivalence relation over V.
- The arrangement $\alpha(V, E)$ of V induced by E is:

$$
\begin{aligned}
& \alpha(V, E): \\
& \bigwedge_{u, v \in V, u E v} u=v \\
& \wedge \bigwedge_{u, v \in V . \neg(u E v)} u \neq v
\end{aligned}
$$

Page 14 of 31

Nondeterministic Version

Lemma

the original formula F is $\left(T_{1} \cup T_{2}\right)$-satisfiable iff there exists an equivalence relation E over V s.t.
(1) $F_{1} \wedge \alpha(V, E)$ is T_{1}-satisfiable, and
(2) $F_{2} \wedge \alpha(V, E)$ is T_{2}-satisfiable.

Otherwise, F is $\left(T_{1} \cup T_{2}\right)$-unsatisfiable.

Example 1

Consider $\left(\Sigma_{E} \cup \Sigma_{\mathbb{Z}}\right)$-formula

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

Phase 1 separates this formula into the $\Sigma_{\mathbb{Z}}$-formula

$$
F_{\mathbb{Z}}: 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
$$

and the Σ_{E}-formula

$$
F_{E}: f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right)
$$

with

$$
V=\operatorname{shared}\left(F_{1}, F_{2}\right)=\left\{x, w_{1}, w_{2}\right\}
$$

There are 5 equivalence relations over V to consider, which we list by stating the partitions:

Example 1

1. $\left\{\left\{x, w_{1}, w_{2}\right\}\right\}$, i.e., $x=w_{1}=w_{2}$:
$x=w_{1}$ and $f(x) \neq f\left(w_{1}\right) \Rightarrow F_{E} \wedge \alpha(V, E)$ is T_{E}-unsatisfiable.
2. $\left\{\left\{x, w_{1}\right\},\left\{w_{2}\right\}\right\}$, i.e., $x=w_{1}, x \neq w_{2}$:
$x=w_{1}$ and $f(x) \neq f\left(w_{1}\right) \Rightarrow F_{E} \wedge \alpha(V, E)$ is $T_{E \text {-unsatisfiable. }}$
3. $\left\{\left\{x, w_{2}\right\},\left\{w_{1}\right\}\right\}$, i.e., $x=w_{2}, x \neq w_{1}$: $x=w_{2}$ and $f(x) \neq f\left(w_{2}\right) \Rightarrow F_{E} \wedge \alpha(V, E)$ is $T_{E \text {-unsatisfiable. }}$
4. $\left\{\{x\},\left\{w_{1}, w_{2}\right\}\right\}$, i.e., $x \neq w_{1}, w_{1}=w_{2}$: $w_{1}=w_{2}$ and $w_{1}=1 \wedge w_{2}=2$
$\Rightarrow F_{\mathbb{Z}} \wedge \alpha(V, E)$ is $T_{\mathbb{Z}}$-unsatisfiable.
5. $\left\{\{x\},\left\{w_{1}\right\},\left\{w_{2}\right\}\right\}$, i.e., $x \neq w_{1}, x \neq w_{2}, w_{1} \neq w_{2}$:
$x \neq w_{1} \wedge x \neq w_{2}$ and $x=w_{1}=1 \vee x=w_{2}=2$
(since $1 \leq x \leq 2$ implies that $x=1 \vee x=2$ in $T_{\mathbb{Z}}$)
$\Rightarrow F_{\mathbb{Z}} \wedge \alpha(V, E)$ is $T_{\mathbb{Z}}$-unsatisfiable.
Hence, F is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-unsatisfiable.

Example 2

Consider the $\left(\Sigma_{\text {cons }} \cup \Sigma_{\mathbb{Z}}\right)$-formula

$$
F: \operatorname{car}(x)+\operatorname{car}(y)=z \wedge \operatorname{cons}(x, z) \neq \operatorname{cons}(y, z) .
$$

After two applications of (1), Phase 1 separates F into the $\Sigma_{\text {cons }}$-formula

$$
F_{\text {cons }}: w_{1}=\operatorname{car}(x) \wedge w_{2}=\operatorname{car}(y) \wedge \operatorname{cons}(x, z) \neq \operatorname{cons}(y, z)
$$

and the $\Sigma_{\mathbb{Z}}$-formula

$$
F_{\mathbb{Z}}: w_{1}+w_{2}=z
$$

with

$$
V=\operatorname{shared}\left(F_{\text {cons }}, F_{\mathbb{Z}}\right)=\left\{z, w_{1}, w_{2}\right\}
$$

Example 2

Consider the equivalence relation E given by the partition

$$
\left\{\{z\},\left\{w_{1}\right\},\left\{w_{2}\right\}\right\} .
$$

The arrangement

$$
\alpha(V, E): z \neq w_{1} \wedge z \neq w_{2} \wedge w_{1} \neq w_{2}
$$

satisfies both $F_{\text {cons }}$ and $F_{\mathbb{Z}}$:
$F_{\text {cons }} \wedge \alpha(V, E)$ is $T_{\text {cons }}$-satisfiable, and
$F_{\mathbb{Z}} \wedge \alpha(V, E)$ is $T_{\mathbb{Z}}$-satisfiable.
Hence, F is $\left(T_{\text {cons }} \cup T_{\mathbb{Z}}\right)$-satisfiable.

Practical Efficiency

Phase 2 was formulated as "guess and check":

1. First, guess an equivalence relation E,
2. then check the induced arrangement.

The number of equivalence relations grows super-exponentially with the \# of shared variables. It is given by Bell numbers.
E.g., 12 shared variables \Rightarrow over four million equivalence relations.

Solution: Deterministic Version

Deterministic Version

Phase 1 as before
Phase 2 asks the decision procedures P_{1} and P_{2} to propagate new equalities.

Example 3

Theory of equality T_{E}

$$
\begin{gathered}
\stackrel{P_{E}}{F: \quad f(f(x)-f(y)) \neq f(z) \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z}
\end{gathered}
$$

Rational linear arithmethic $T_{\mathbb{Q}}$

$$
\left(T_{E} \cup T_{\mathbb{Q}}\right) \text {-unsatisfiable }
$$

Intuitively,
last 3 conjuncts $\Rightarrow x=y \wedge z=0$
contradicts 1st conjunct
Page 21 of 31

Phase 1: Variable Abstraction

Example 3

$$
F: f(f(x)-f(y)) \neq f(z) \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
$$

Replace $f(x)$ by $u, \quad f(y)$ by $v, \quad u-v$ by w
$F_{E}: \quad f(w) \neq f(z) \wedge u=f(x) \wedge v=f(y) \quad \ldots T_{E}$-formula
$F_{\mathbb{Q}}: \quad x \leq y \wedge y+z \leq x \wedge 0 \leq z \wedge w=u-v \ldots T_{\mathbb{Q}}$-formula

$$
\operatorname{shared}\left(F_{E}, F_{\mathbb{Q}}\right)=\{x, y, z, u, v, w\}
$$

Nondeterministic version - over 200 Es!
Let's try the deterministic version.

Phase 2: Equality Propagation

Example 3

$$
\begin{array}{cc}
F_{E}: \quad f(w) \neq f(z) \wedge u=f(x) \wedge v=f(y) \\
F_{\mathbb{Q}}: \quad x \leq y \wedge y+z \leq x \wedge 0 \leq z \wedge w=u-v \\
\frac{P_{\mathbb{Q}}}{F_{\mathbb{Q}}}=x=y
\end{array}
$$

Contradiction. Thus, F is $\left(T_{\mathbb{Q}} \cup T_{E}\right)$-unsatisfiable.
(If there were no contradiction, F would be ($T_{\mathbb{Q}} \cup T_{E}$)

Convex Theories

Definition

A \sum-theory T is convex iff
for every quantifier-free conjunctive Σ-formula F
and for every disjunction $\bigvee\left(u_{i}=v_{i}\right)$

$$
\begin{aligned}
& \text { if } F \Rightarrow \bigvee_{i=1}^{n}\left(u_{i}=v_{i}\right) \\
& \text { then } F \stackrel{y}{\Rightarrow} u_{i}=v_{i}, \text { for some } i \in\{1, \ldots, n\}
\end{aligned}
$$

Claim
Equality propagation is a decision procedure for convex theories.

Convex Theories

- $T_{E}, T_{\mathbb{R}}, T_{\mathbb{Q}}, T_{\text {cons }}$ are convex
- $T_{\mathbb{Z}}, T_{\mathrm{A}}$ are not convex

Example: $T_{\mathbb{Z}}$ is not convex
Consider quantifier-free conjunctive $\Sigma_{\mathbb{Z}}$-formula

$$
F: \quad 1 \leq z \wedge z \leq 2 \wedge u=1 \wedge v=2
$$

Then

$$
F \Rightarrow z=u \vee z=v
$$

but

$$
\begin{aligned}
& F \nRightarrow \quad z=u \\
& F \nRightarrow \quad z=v
\end{aligned}
$$

Convex Theories

Example: Theory of arrays T_{A} is not convex
Consider the quantifier-free conjunctive Σ_{A}-formula

$$
F: \quad a\langle i \triangleleft v\rangle[j]=v
$$

Then

$$
F \Rightarrow i=j \vee a[j]=v
$$

but

$$
\begin{aligned}
& F \nRightarrow i=j \\
& F \nRightarrow a[j]=v .
\end{aligned}
$$

What if T is Not Convex?

Case split when:

$$
F \Rightarrow \bigvee_{i=1}^{n}\left(u_{i}=v_{i}\right)
$$

but $F \nRightarrow u_{i}=v_{i}$ for any $i=1, \ldots, n$

- For each $i=1, \ldots, n$, construct a branch on which $u_{i}=v_{i}$ is assumed.
- If all branches are contradictory, then unsatisfiable. Otherwise, satisfiable.

Claim: Equality propagation (with branching) is a decision procedure for non-convex theories too.

Example 1: Non-Convex Theory

$T_{\mathbb{Z}}$ not convex!
T_{E} convex P_{E}

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

in $T_{\mathbb{Z}} \cup T_{E}$.

- Replace $f(1)$ by $f\left(w_{1}\right)$, and add $w_{1}=1$.
- Replace $f(2)$ by $f\left(w_{2}\right)$, and add $w_{2}=2$.

Result:

$$
\begin{aligned}
& F_{\mathbb{Z}}: 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2 \\
& F_{E}: f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right)
\end{aligned}
$$

and

$$
V=\operatorname{shared}\left(F_{\mathbb{Z}}, F_{E}\right)=\left\{x, w_{1}, w_{2}\right\}
$$

$$
\begin{aligned}
& F_{E} \wedge x=w_{1} \models \perp \left\lvert\,\left\{\begin{array}{c}
\left\{x=w_{1}\right\} \\
\left\{x=w_{1}\right\} \\
\left\{x=w_{2}\right\} \\
F_{E} \wedge x=w_{2} \models \perp
\end{array}\right.\right. \\
& \perp \quad \perp
\end{aligned}
$$

$\star: F_{\mathbb{Z}} \models x=w_{1} \vee x=w_{2}$
All leaves are labeled with $\perp \Rightarrow F$ is $\left(T_{\mathbb{Z}} \cup T_{E}\right)$-unsatisfiable.

Example 4: Non-Convex Theory

Consider

$$
\begin{aligned}
F: & 1 \leq x \wedge x \leq 3 \wedge \\
& f(x) \neq f(1) \wedge f(x) \neq f(3) \wedge f(1) \neq f(2)
\end{aligned}
$$

in $T_{\mathbb{Z}} \cup T_{E}$.

- Replace $f(1)$ by $f\left(w_{1}\right)$, and add $w_{1}=1$.
- Replace $f(2)$ by $f\left(w_{2}\right)$, and add $w_{2}=2$.
- Replace $f(3)$ by $f\left(w_{3}\right)$, and add $w_{3}=3$.

Result:

$$
\begin{aligned}
& F_{\mathbb{Z}}: 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3 \\
& F_{E}: f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right)
\end{aligned}
$$

and

$$
V=\operatorname{shared}\left(F_{\mathbb{Z}}, F_{E}\right)=\left\{x, w_{1}, w_{2}, w_{3}\right\}
$$

Example 4: Non-Convex Theory

No more equations on middle leaf $\Rightarrow F$ is $\left(T_{\mathbb{Z}} \cup T_{E}\right)$-satisfiable.

