
CS156: The Calculus of

Computation
Zohar Manna
Winter 2008

Chapter 11: Arrays

Page 1 of 55

Arrays I: Quantifier-free Fragment of TA

Signature:
ΣA : {·[·], ·〈· ⊳ ·〉, =}

where

◮ a[i] binary function –
read array a at index i (“read(a,i)”)

◮ a〈i ⊳ v〉 ternary function –
write value v to index i of array a (“write(a,i ,v)”)

Axioms

1. the axioms of (reflexivity), (symmetry), and (transitivity) of
TE

2. ∀a, i , j . i = j → a[i] = a[j] (array congruence)

3. ∀a, v , i , j . i = j → a〈i ⊳ v〉[j] = v (read-over-write 1)

4. ∀a, v , i , j . i 6= j → a〈i ⊳ v〉[j] = a[j] (read-over-write 2)

Page 2 of 55

Infinite Domain

We add an axiom schema to TA that forbids interpretations with
finite arrays.

For each positive natural number n, the following is an axiom:

∀x1, . . . , xn. ∃y .

n∧

i=1

y 6= xi

Page 3 of 55

Equality in TA

Note: = is only defined for array elements:

a[i] = e → a〈i ⊳ e〉 = a

not TA-valid, but

a[i] = e → ∀j . a〈i ⊳ e〉[j] = a[j] ,

is TA-valid.

Also
a = b → a[i] = b[i]

is not TA-valid: We only axiomatized a restricted congruence.

TA is undecidable
Quantifier-free fragment of TA is decidable

Page 4 of 55

Example: Quantifier-free fragment (QFF) of TA

Is
a[i] = e1 ∧ e1 6= e2 → a〈i ⊳ e2〉[i] 6= a[i]

TA-valid?

Alternatively, is

a[i] = e1 ∧ e1 6= e2 ∧ a〈i ⊳ e2〉[i] = a[i]

TA-unsatisfiable?

Page 5 of 55

Decision Procedure for TA

Given quantifier-free conjunctive ΣA-formula F .
To decide the TA-satisfiability of F :

Step 1

If F does not contain any write terms a〈i ⊳ v〉, then

1. associate array variables a with fresh function symbol fa, and
replace read terms a[i] with fa(i);

2. decide the TE-satisfiability of the resulting formula.

Page 6 of 55

Decision Procedure for TA

Step 2

Select some read-over-write term a〈i ⊳ v〉[j] (note that a may itself
be a write term) and split on two cases:

1. According to (read-over-write 1), replace

F [a〈i ⊳ v〉[j]] with F1 : F [v] ∧ i = j ,

and recurse on F1. If F1 is found to be TA-satisfiable, return
satisfiable.

2. According to (read-over-write 2), replace

F [a〈i ⊳ v〉[j]] with F2 : F [a[j]] ∧ i 6= j ,

and recurse on F2. If F2 is found to be TA-satisfiable, return
satisfiable.

If both F1 and F2 are found to be TA-unsatisfiable, return
unsatisfiable.

Page 7 of 55

Example

Consider ΣA-formula

F : i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ a〈i1 ⊳ v1〉〈i2 ⊳ v2〉[j] 6= a[j] .

F contains a write term,

a〈i1 ⊳ v1〉〈i2 ⊳ v2〉[j] 6= a[j] .

According to (read-over-write 1), assume i2 = j and recurse on

F1 : i2 = j ∧ i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ v2 6= a[j] .

F1 does not contain any write terms, so rewrite it to

F ′
1 : i2 = j ∧ i1 = j ∧ i1 6= i2

︸ ︷︷ ︸
∧ fa(j) = v1 ∧ v2 6= fa(j) .

Contradiction — F ′
1

is TE-unsatisfiable.

Page 8 of 55

Returning, we try the second case:
according to (read-over-write 2), assume i2 6= j and recurse on

F2 : i2 6= j ∧ i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ a〈i1 ⊳ v1〉[j] 6= a[j] .

F2 contains a write term. According to (read-over-write 1),
assume i1 = j and recurse on

F3 : i1 = j ∧ i2 6= j ∧ i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ v1 6= a[j]
︸ ︷︷ ︸

.

Contradiction. Thus, according to (read-over-write 2),
assume i1 6= j and recurse on

F4 : i1 6= j ∧ i2 6= j ∧ i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ a[j] 6= a[j]
︸ ︷︷ ︸

.

Contradiction: all branches have been tried, and thus F is
TA-unsatisfiable.

Question: Suppose instead that F does not contain the literal
i1 6= i2. Is this new formula TA-satisfiable?

Page 9 of 55

Decision Procedure for Arrays

The quantifier free fragment of TA is decidable.
However too weak to express important properties:

◮ Containment: ∀i . ℓ ≤ i ≤ u =⇒ a[i] 6= e

◮ Sortedness: ∀i , j . ℓ ≤ i ≤ j ≤ u =⇒ a[i] ≤ a[j]

◮ Partitioning: ∀i , j . ℓ1 ≤ i ≤ u1 ∧ ℓ2 ≤ j ≤ u2 =⇒ a[i] ≤ a[j]

The general theory of arrays TA with quantifier is not decidable.

Is there a decidable fragment of TA that contains the above
formulae?

Page 10 of 55

Example

We want to prove validity for a formula, such as:

(∀i .a[i] 6= e) ∧ e 6= f → (∀i .a〈j ⊳ f 〉[i] 6= e) .

Equivalently show unsatisfiability of

(∀i .a[i] 6= e) ∧ e 6= f ∧ (∃i .a〈j ⊳ f 〉[i] = e) .

or the equisatisfiable formula

(∀i .a[i] 6= e) ∧ e 6= f ∧ a〈j ⊳ f 〉[i] = e .

We need to handle a universal quantifier.

Page 11 of 55

Arrays II: Array Property Fragment of TA

Decidable fragment of TA that includes ∀ quantifiers

Array property

ΣA-formula of form
∀i . α[i] → β[i] ,

where i is a list of variables.

◮ index guard α[i]:

iguard → iguard ∧ iguard | iguard ∨ iguard | atom

atom → var = var | evar 6= var | var 6= evar | ⊤

var → evar | uvar

where uvar is any universally quantified index variable,
and evar is any unquantified free variable.

Page 12 of 55

Arrays II: Array Property Fragment of TA (cont)
◮ value constraint β[i]:

Any qff, but a universally quantified index can occur only in a
read a[i], where a is an array term.

Array property Fragment:

Boolean combinations of quantifier-free ΣA-formulae and array
properties

Note: a[b[k]] for unquantified variable k is okay, but a[b[i]] for
universally quantified variable i is forbidden. Cannot replace it by

∀i , j b[i] = j ∧ a[j] . . .

In β, the universally quantified variable j may occur in a[j] but not
in b[i] = j .

Page 13 of 55

Example: Array Property Fragment

Is this formula in the array property fragment?

F : ∀i . i 6= a[k] → a[i] = a[k]

The antecedent is not a legal index guard since a[k] is not a
variable (neither a uvar nor an evar); however, by simple
manipulation

F ′ : v = a[k] ∧ ∀i . i 6= v → a[i] = a[k]

Here, i 6= v is a legal index guard, and a[i] = a[k] is a legal value
constraint. F and F ′ are equisatisfiable.
However, no manipulation works for:

G : ∀i . i 6= a[i] → a[i] = a[k] .

Thus, G is not in the array property fragment.

Page 14 of 55

Array property fragment and extensionality

Array property fragment allows expressing equality between arrays
(extensionality): two arrays are equal precisely when their
corresponding elements are equal.

For given formula

F : · · · ∧ a = b ∧ · · ·

with array terms a and b, rewrite F as

F ′ : · · · ∧ (∀i . ⊤ → a[i] = b[i]) ∧ · · · .

F and F ′ are equisatisfiable.

Page 15 of 55

Decision Procedure for Array Property Fragment

Basic Idea: Replace universal quantification ∀i .F [i]
by finite conjunction F [t1] ∧ . . . ∧ F [tn].

We call t1, . . . , tn the index terms and they depend on the formula.

Page 16 of 55

Example

Consider
F : a〈i ⊳ v〉 = a ∧ a[i] 6= v ,

which expands to
F ′ : ∀j . a〈i ⊳ v〉[j] = a[j] ∧ a[i] 6= v .

Intuitively, to determine that F ′ is TA-unsatisfiable requires merely
examining index i :

F ′′ :

∧

j∈{i}

a〈i ⊳ v〉[j] = a[j]

 ∧ a[i] 6= v ,

or simply
a〈i ⊳ v〉[i] = a[i] ∧ a[i] 6= v .

Simplifying,
v = a[i] ∧ a[i] 6= v ,

it is clear that this formula, and thus F , is TA-unsatisfiable.

Page 17 of 55

The Algorithm

Given array property formula F , decide its TA-satisfiability by the
following steps:

Step 1

Put F in NNF.

Step 2

Apply the following rule exhaustively to remove writes:

G [a〈i ⊳ v〉]

G [a′] ∧ a′[i] = v ∧ (∀j . j 6= i → a[j] = a′[j])
for fresh a′ (write)

After an application of the rule, the resulting formula contains at least
one fewer write terms than the given formula.

Step 3

Apply the following rule exhaustively to remove existential
quantification:

F [∃i . G [i]]

F [G [j]]
for fresh j (exists)

Existential quantification can arise during Step 1 if the given formula
has a negated array property.

Page 18 of 55

Steps 4-6 accomplish the reduction of universal quantification to finite
conjunction.
Main idea: select a set of symbolic index terms on which to instantiate
all universal quantifiers. The set is sufficient for correctness.

Step 4

From the output F3 of Step 3, construct the index set I:

I = ∪ {t : ·[t] ∈ F3 such that t is not a universally quantified variable}

∪ {t : t occurs as an evar in the parsing of index guards}

∪ {λ}

This index set is the finite set of “symbolic indices” that need to be
examined. It includes

◮ all terms t that occur in some read a[t] anywhere in F3 (unless it
is a universally quantified variable); e.g., k in a[k].

◮ all terms t (unquantified variable) that are compared to a
universally quantified variable in some index guard F [i]; e.g., k in
i = k .

◮ λ is a fresh constant that represents all other index positions that
are not explicitly in I.

Page 19 of 55

Step 5 (Key step)
Apply the following rule exhaustively to remove universal
quantification:

H[∀i . α[i] → β[i]]

H

∧

i∈In

(
α[i] → β[i]

)

(forall)

where n is the size of the list of quantified variables i .

Step 6

From the output F5 of Step 5, construct

F6 : F5 ∧
∧

t ∈ I\{λ}

λ 6= t .

The new conjuncts assert that the variable λ introduced in Step 4
is indeed unique.

Step 7

Decide the TA-satisfiability of F6 using the decision procedure for
the quantifier-free fragment. Page 20 of 55

Example: Extensional theory (Stump et al., 2001)

F : a = b〈i ⊳ v〉 ∧ a[i] 6= v

In array property fragment:

(∀j . a[j] = b〈i ⊳ v〉[j]) ∧ a[i] 6= v

Eliminate write:

(∀j . a[j] = b′[j])

∧ a[i] 6= v

∧ b′[i] = v

∧ (∀j . j 6= i → b′[j] = b[j])

Index set:
I : {i , λ}

Page 21 of 55

Example: Extensional theory (Stump et al., 2001) (cont)
QF formula:

a[i] = b′[i] ∧ a[λ] = b′[λ]

∧ a[i] 6= v ∧ b′[i] = v

∧ (i 6= i → b′[i] = b[i]) ∧ (λ 6= i → b′[λ] = b[λ])

∧ λ 6= i

Simplified:

a[i] = b′[i] ∧ a[λ] = b′[λ]

∧ a[i] 6= v ∧ b′[i] = v

∧ b′[λ] = b[λ]

∧ λ 6= i

Contradiction. So F is unsatisfiable.

Page 22 of 55

Example

Is this T=

A
-formula (arrays with extensionality) valid?

F : (∀i . i 6= k → a[i] = b[i]) ∧ b[k] = v → a〈k ⊳ v〉 = b

Check unsatisfiability of TA-formula:

¬((∀i . i 6= k → a[i] = b[i]) ∧ b[k] = v → (∀i . a〈k⊳v〉[i] = b[i]))

Step 1: NNF

F1 : (∀i . i 6= k → a[i] = b[i]) ∧ b[k] = v ∧ (∃i . a〈k ⊳v〉[i] 6= b[i])

Step 2: Remove array writes

F2 : (∀i . i 6= k → a[i] = b[i]) ∧ b[k] = v ∧ (∃i . a′[i] 6= b[i])

∧ a′[k] = v ∧ (∀i . i 6= k → a′[i] = a[i])

Page 23 of 55

Example (cont)
Step 3: Remove existential quantifier

F3 : (∀i . i 6= k → a[i] = b[i]) ∧ b[k] = v ∧ a′[j] 6= b[j]

∧ a′[k] = v ∧ (∀i . i 6= k → a′[i] = a[i])

Page 24 of 55

Example (cont)
Step 4: Compute index set I = {λ, k , j}
Step 5+6: Replace universal quantifier:

F6 : (λ 6= k → a[λ] = b[λ])

∧ (k 6= k → a[k] = b[k])

∧ (j 6= k → a[j] = b[j])

∧ b[k] = v ∧ a′[j] 6= b[j] ∧ a′[k] = v

∧ (λ 6= k → a′[λ] = a[λ])

∧ (k 6= k → a′[k] = a[k])

∧ (j 6= k → a′[j] = a[j])

∧ λ 6= k ∧ λ 6= j

Case distinction on j = k (4th line) and j 6= k (3rd line, 4th line,
and 7th line) proves unsatisfiability of F6.
Therefore F is valid.

Page 25 of 55

The importance of λ

Is this formula satisfiable?

F : (∀i .i 6= j → a[i] = b[i]) ∧ (∀i .i 6= k → a[i] 6= b[i])

The algorithm produces (for {λ, j , k}):

F6 : λ 6= j → a[λ] = b[λ]

∧ j 6= j → a[j] = b[j]

∧ k 6= j → a[k] = b[k]

∧ λ 6= k → a[λ] 6= b[λ]

∧ j 6= k → a[j] 6= b[j]

∧ k 6= k → a[k] 6= b[k]

∧ λ 6= j ∧ λ 6= k

The 1st, 4th and last lines give a contradiction! F is unsatisfiable.

Page 26 of 55

The importance of λ (cont)
Without λ we had the formula:

F ′
6 : j 6= j → a[j] = b[j]

∧ k 6= j → a[k] = b[k]

∧ j 6= k → a[j] 6= b[j]

∧ k 6= k → a[k] 6= b[k]

which simplifies to:

j 6= k → a[k] = b[k] ∧ a[j] 6= b[j] .

This formula F is satisfiable!

Page 27 of 55

Example

Consider array property formula

F : a〈ℓ ⊳ v〉[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v

∧ (∀i . i 6= ℓ → a[i] = b[i])
︸ ︷︷ ︸

array property

By Step 2, rewrite F as

F2 :
a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i . i 6= ℓ → a[i] = b[i])

∧ a′[ℓ] = v ∧ (∀j . j 6= ℓ → a[j] = a′[j])

F2 does not contain any existential quantifiers. Its index set is

I = {λ, k , ℓ} .

Page 28 of 55

Example (cont)
Thus, by Step 5, replace universal quantification (and step 6):

F6 :

a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧
∧

i ∈ I

(i 6= ℓ → a[i] = b[i])

∧ a′[ℓ] = v ∧
∧

j ∈ I

(
j 6= ℓ → a[j] = a′[j]

)

∧ λ 6= k ∧ λ 6= ℓ

Expanding produces

F ′
6 :

a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v

∧ (λ 6= ℓ → a[λ] = b[λ])

∧ (k 6= ℓ → a[k] = b[k])

∧ (ℓ 6= ℓ → a[ℓ] = b[ℓ])

∧ a′[ℓ] = v

∧ (λ 6= ℓ → a[λ] = a′[λ])

∧ (k 6= ℓ → a[k] = a′[k]) ∧ (ℓ 6= ℓ → a[ℓ] = a′[ℓ])

∧ λ 6= k ∧ λ 6= ℓ
Page 29 of 55

Example (cont)
Simplifying,

F ′′
6 :

a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v

∧ a[λ] = b[λ] ∧ (k 6= ℓ → a[k] = b[k])

∧ a′[ℓ] = v

∧ a[λ] = a′[λ] ∧ (k 6= ℓ → a[k] = a′[k])

∧ λ 6= k ∧ λ 6= ℓ

There are two cases to consider.

◮ If k = ℓ, then a′[ℓ] = v (3rd line) and a′[k] = b[k] (1st line)
imply b[k] = v ,
yet b[k] 6= v .

◮ If k 6= ℓ, then a[k] = v (1st line) and a[k] = b[k] (2nd line)
imply b[k] = v ,
but again b[k] 6= v .

Hence, F ′′
6

is TA-unsatisfiable, indicating that F is TA-unsatisfiable.

Page 30 of 55

Correctness of Decision Procedure

Theorem
Consider a ΣA-formula F from the array property fragment of TA.

The output F6 of Step 6 of the algorithm is TA-equisatisfiable to F .

This also works when extending the Logic with an arbitrary theory
T with signature Σ for the elements:

Theorem
Consider a ΣA ∪ Σ-formula F from the array property fragment of

TA ∪ T. The output F6 of Step 6 of the algorithm is

TA ∪ T-equisatisfiable to F .

Page 31 of 55

Nelson-Oppen Combination Method

Given:

◮ Theories T1, . . . ,Tk that share only = (and are stably infinite)

◮ Decision procedures P1, . . . ,Pk

◮ Quantifier-free (Σ1 ∪ · · · ∪ Σk)-formula F

Decide if F is (T1 ∪ · · · ∪ Tk)-satisfiable using P1, . . . ,Pk .

Think about arrays in context of Nelson-Oppen.

Page 32 of 55

History

◮ 1962: John McCarthy formalizes arrays as first-order theory
TA.

◮ 1969: James King describes and implements DP for QFF of
TA.

◮ 1979: Nelson & Oppen describe combination method for QF
theories sharing =.

◮ 1980s: Suzuki, Jefferson; Jaffar; Mateti describe DPs for QFF
of theories of arrays with predicates for sorted, partitioned, etc.

◮ 1997: Levitt describes DP for QFF of extensional theory of
arrays in thesis.

◮ 2001: Stump, Barrett, Dill, Levitt describe DP for QFF of
extensional theory of arrays.

◮ 2006: Bradley, Manna, Sipma describe DP for array property
fragment of TA, TZ

A
.

Page 33 of 55

Arrays III: Theory of Integer-Indexed Arrays T
Z

A

Signature:

ΣZ
A : ΣA ∪ ΣZ = {a[i], a〈i ⊳ v〉, =, 0, 1, +,≤}

≤ enables reasoning about subarrays and properties such as
whether the subarray is sorted or partitioned.

Axioms of TZ
A

: both axioms of TA and TZ

Page 34 of 55

Array Property Fragment of T
Z

A

Array property: ΣZ
A
-formula of the form

∀i . α[i] → β[i] ,

where i is a list of integer variables.

◮ α[i] index guard:

iguard → iguard ∧ iguard | iguard ∨ iguard | atom

atom → expr ≤ expr | expr = expr

expr → uvar | pexpr

pexpr → pexpr′

pexpr′ → Z | Z · evar | pexpr′ + pexpr′

where uvar is any universally quantified integer variable,
and evar is any unquantified free integer variable.

Note: Why both pexpr and pexpr′? E.g., in i ≤ 3k + j , the
expression 3k + j is pexpr, but not k or j .

Page 35 of 55

Array Property Fragment of T
Z

A (cont)
◮ value constraint β[i]:

Any qff, but a universally quantified index can occur only in a
read a[i], where a is an array term.

Array property Fragment (APF):

Boolean combinations of quantifier-free ΣZ
A
-formulae and array

properties

Note: a[b[k]] for unquantified variable k is okay, but a[b[i]] for
universally quantified variable i is forbidden.

Page 36 of 55

Application: array property fragments

◮ Array equality a = b in TA:

∀i . a[i] = b[i]

◮ Bounded array equality beq(a, b, ℓ, u) in TZ
A

:

∀i . ℓ ≤ i ≤ u → a[i] = b[i]

◮ Universal properties F [x] in TA:

∀i . F [a[i]]

◮ Bounded universal properties F [x] in TZ
A

:

∀i . ℓ ≤ i ≤ u → F [a[i]]

◮ Bounded sorted arrays sorted(a, ℓ, u) in TZ
A

or TZ
A
∪ TQ:

∀i , j . ℓ ≤ i ≤ j ≤ u → a[i] ≤ a[j]

◮ Partitioned arrays partitioned(a, ℓ1, u1, ℓ2, u2) in TZ
A

or
TZ

A
∪ TQ:

∀i , j . ℓ1 ≤ i ≤ u1 < ℓ2 ≤ j ≤ u2 → a[i] ≤ a[j]
Page 37 of 55

The Decision Procedure (Step 1–2)

The idea again is to reduce universal quantification to finite
conjunction.
Given F from the array property fragment of TZ

A
, decide its

TZ
A
-satisfiability as follows:

Step 1

Put F in NNF.

Step 2

Apply the following rule exhaustively to remove writes:

G [a〈i ⊳ e〉]

G [a′] ∧ a′[i] = e ∧ (∀j . j 6= i → a[j] = a′[j])
for fresh a′ (write)

To meet the syntactic requirements on an index guard, rewrite the
third conjunct as

∀j . j ≤ i − 1 ∨ i + 1 ≤ j → a[j] = a′[j] .

Page 38 of 55

The Decision Procedure (Step 3–4)

Step 3

Apply the following rule exhaustively to remove existential
quantification:

F [∃i . G [i]]

F [G [j]]
for fresh j (exists)

Existential quantification can arise during Step 1 if the given
formula has a negated array property.

Step 4

From the output of Step 3, F3, construct the index set I:

I =
{t : ·[t] ∈ F3 such that t is not a universally quantified variable}

∪ {t : t occurs as a pexpr in the parsing of index guards}

If I = ∅, then let I = {0}. The index set contains all relevant
symbolic indices that occur in F3. Note: no λ!

Page 39 of 55

The Decision Procedure (Step 5–6)

Step 5

Apply the following rule exhaustively to remove universal
quantification:

H[∀i . F [i] → G [i]]

H

∧

i∈In

(
F [i] → G [i]

)

(forall)

n is the size of the block of universal quantifiers over i .

Step 6

F5 is quantifier-free in the combination theory TA ∪ TZ. Decide
the (TA ∪ TZ)-satisfiability of the resulting formula.

Page 40 of 55

Example

ΣZ
A
-formula:

F :
(∀i . ℓ ≤ i ≤ u → a[i] = b[i])

∧ ¬(∀i . ℓ ≤ i ≤ u + 1 → a〈u + 1 ⊳ b[u + 1]〉[i] = b[i])

In NNF, we have

F1 :
(∀i . ℓ ≤ i ≤ u → a[i] = b[i])

∧ (∃i . ℓ ≤ i ≤ u + 1 ∧ a〈u + 1 ⊳ b[u + 1]〉[i] 6= b[i])

Step 2 produces

F2 :

(∀i . ℓ ≤ i ≤ u → a[i] = b[i])

∧ (∃i . ℓ ≤ i ≤ u + 1 ∧ a′[i] 6= b[i])

∧ a′[u + 1] = b[u + 1]

∧ (∀j . j ≤ u ∨ u + 2 ≤ j → a[j] = a′[j])

Page 41 of 55

Step 3 removes the existential quantifier by introducing a fresh
constant k :

F3 :

(∀i . ℓ ≤ i ≤ u → a[i] = b[i])

∧ ℓ ≤ k ≤ u + 1 ∧ a′[k] 6= b[k]

∧ a′[u + 1] = b[u + 1]

∧ (∀j . j ≤ u ∨ u + 2 ≤ j → a[j] = a′[j])

The index set is

I = {k , u + 1} ∪ {ℓ, u, u + 2} ,

which includes the read indices k and u + 1 and the terms ℓ, u,
and u + 2 that occur as pexprs in the index guards.

Page 42 of 55

Step 5 rewrites universal quantification to finite conjunction over
this set:

F5 :

∧

i ∈ I

(ℓ ≤ i ≤ u → a[i] = b[i])

∧ ℓ ≤ k ≤ u + 1 ∧ a′[k] 6= b[k]

∧ a′[u + 1] = b[u + 1]

∧
∧

j ∈ I

(j ≤ u ∨ u + 2 ≤ j → a[j] = a′[j])

Expanding the conjunctions according to the index set I and
simplifying according to trivially true or false antecedents (e.g.,
ℓ ≤ u + 1 ≤ u simplifies to ⊥, while u ≤ u ∨ u + 2 ≤ u simplifies
to ⊤) produces:

Page 43 of 55

F ′
5 :

(ℓ ≤ k ≤ u → a[k] = b[k]) (1)

∧ (ℓ ≤ u → a[ℓ] = b[ℓ] ∧ a[u] = b[u]) (2)

∧ ℓ ≤ k ≤ u + 1 (3)

∧ a′[k] 6= b[k] (4)

∧ a′[u + 1] = b[u + 1] (5)

∧ (k ≤ u ∨ u + 2 ≤ k → a[k] = a′[k]) (6)

∧ (ℓ ≤ u ∨ u + 2 ≤ ℓ → a[ℓ] = a′[ℓ]) (7)

∧ a[u] = a′[u] ∧ a[u + 2] = a′[u + 2] (8)

(TA ∪ TZ)-unsatisfiability of this quantifier-free (ΣA ∪ ΣZ)-formula
can be decided using the techniques of Combination of Theories.
Informally, ℓ ≤ k ≤ u + 1 (3)

◮ If k ∈ [ℓ, u] then a[k] = b[k] (1). Since k ≤ u then
a[k] = a′[k] (6), contradicting a′[k] 6= b[k] (4).

◮ if k = u + 1, a′[k] 6= b[k] = b[u + 1] = a′[u + 1] = a′[k] by
(4) and (5), a contradiction.

Hence, F is TZ
A

-unsatisfiable.
Page 44 of 55

Correctness of Decision Procedure

Theorem
Consider a ΣZ

A
∪ Σ-formula F from the array property fragment of

TZ
A
∪ T.

The output F5 of Step 5 of the algorithm is TZ
A
∪ T-equisatisfiable

to F .

Page 45 of 55

Example

sorted(a, ℓ, u) : ∀i , j . ℓ ≤ i ≤ j ≤ u → a[i] ≤ a[j]

Is

sorted(a〈0 ⊳ 0〉〈5 ⊳ 1〉, 0, 5) ∧ sorted(a〈0 ⊳ 10〉〈5 ⊳ 11〉, 0, 5)

TZ
A
-satisfiable?

0 w x y z 1

10 w x y z 11

Page 46 of 55

Example

sorted(a〈0 ⊳ 0〉〈5 ⊳ 1〉, 0, 5) ∧ sorted(a〈0 ⊳ 10〉〈5 ⊳ 11〉, 0, 5)

Index set: {−1, 0, 1, 4, 5, 6}

◮ {0, 5} from 0 ≤ i ≤ j ≤ 5

◮ {−1, 1} from ·〈0 ⊳ ·〉

◮ {4, 6} from ·〈5 ⊳ ·〉

Contradiction:

a[0] ≤ a[1] ≤ a[5] ∧ a[0] ≤ a[1] ≤ a[5]

0 ≤ a[1] ≤ 1 ∧ 10 ≤ a[1] ≤ 11

Need 1 or 4 in index set.

Page 47 of 55

Undecidable Extensions

◮ Extra quantifier alternation (e.g., ∀i∃j . · · ·)

◮ Nested reads: a[a[i]]

◮ No separation: ∀i . F [a[i], i] (e.g., a[i] = i)

◮ Arithmetic: a[i + 1] when i is universal

◮ Strict comparison: i < j when i , j are universal

◮ Permutation predicate (even weak permutation)

Page 48 of 55

Theory of Sets

Consider a theory Tset of sets with signature

Σset : {∈, ⊆, =, ⊂, ∩, ∪, \} ,

where symbols are intended as follows:

◮ e ∈ s: e is a member of s;

◮ s ⊆ t: s is a subset of t;

◮ s = t: s and t are equal;

◮ s ⊂ t: s is a strict subset of t;

◮ s ∩ t is the intersection of s and t;

◮ s ∪ t is the union of s and t;

◮ s \ t, the set difference of s and t, is the set that includes all
elements of s that are not members of t.

Page 49 of 55

Theory of Sets (cont)
Let us encode an arbitrary Σset-formula as a ΣE-formula (or a
ΣA-formula). To do so, simply consider the atoms:

◮ e ∈ s: let s(·) be a unary predicate; then replace

e ∈ s by s(e)

◮ s ⊆ t: ∀e. e ∈ s → e ∈ t, or in other words,
∀e. s(e) → t(e);

◮ s = t: ∀e. s(e) ↔ t(e);

◮ s ⊂ t: s ⊆ t ∧ s 6= t;

◮ u = s ∩ t: ∀e. u(e) ↔ s(e) ∧ t(e);

◮ u = s ∪ t: ∀e. u(e) ↔ s(e) ∨ t(e);

◮ u = s \ t: ∀e. u(e) ↔ s(e) ∧ ¬t(e).

Page 50 of 55

Theory of Sets (cont)
Atoms with complex terms can be written more simply via
“flattening” (as in the Nelson-Oppen procedure); for example,
write

s ∩ (t ∩ u) as s ∩ w ∧ w = t ∩ u .

Then the encodability of an arbitrary Σset-formula into a
ΣE-formula (or a ΣA-formula) follows by structural induction.

Claim

Satisfiability of the quantifier-free fragment of Tset is decidable:

◮ simply apply the decision procedure for TE (or TA) to the new
formula.

Page 51 of 55

Theory of Multisets

Consider a theory Tmset of multisets with signature

Σmset : {C , ≤, =, <, ⊎, ∩, −} .

Multisets can have multiple occurrences of elements.
For example: {1, 3, 5} is a set and {1, 1, 3, 5, 5, 5} is a multiset.
The symbols are intended as follows:

◮ C (s, e): the number of occurrences (the “count”) of e in s;

◮ s ≤ t: the count of each element of s is bounded by its count
in t;

◮ s = t: element counts are the same in s and t;

◮ s < t: the count of each element of s is bounded by its count
in t, and some element has a lower count;

◮ s ⊎ t is the multiset union, whose counts are the element-wise
sums of counts in s and t;

Page 52 of 55

Theory of Multisets (cont)
◮ s ∩ t is the multiset intersection, whose counts are the

element-wise minima of counts in s and t;

◮ s − t is the multiset difference, whose counts are the
element-wise maxima of 0 and the difference of counts in s

and t.

Let us encode an arbitrary Σmset-formula as a (ΣE ∪ ΣZ)-formula
(or a (ΣA ∪ ΣZ)-formula). A multiset is modeled by an
uninterpreted function whose range is the nonnegative integers.

Page 53 of 55

Theory of Multisets (cont)
Now consider the atoms:

◮ C (s, e): let s be a unary function whose range is N; then
replace

C (s, e) by s(e)

and conjoin ∀e. s(e) ≥ 0 to the formula;

◮ s ≤ t: ∀e. s(e) ≤ t(e);

◮ s = t: ∀e. s(e) = t(e);

◮ s < t: s ≤ t ∧ s 6= t;

◮ u = s ⊎ t: ∀e. u(e) = s(e) + t(e);

◮ u = s ∩ t:

∀e. (s(e) < t(e) ∧ u(e) = s(e)) ∨

(s(e) ≥ t(e) ∧ u(e) = t(e)) ;

Page 54 of 55

Theory of Multisets (cont)
◮ u = s − t:

∀e. (s(e) < t(e) ∧ u(e) = 0) ∨

(s(e) ≥ t(e) ∧ u(e) = s(e) − t(e)) .

As before, encodability follows by structural induction.

Page 55 of 55

