CS156: The Calculus of Computation Data Mana Winter 2010Chapter 2: First-Order Logic (FOL)	First-Order Logic (FOL) Also called <u>Predicate Logic or Predicate Calculus</u> FOL Syntax <u>variables</u> x, y, z, \cdots <u>constants</u> a, b, c, \cdots <u>terms</u> x, y, z, \cdots <u>constants</u> a, b, c, \cdots <u>terms</u> variables, constants or n-ary function applied to n terms as arguments $a, x, (a), g(x, (x, b), f(g(x, f(b))); f(g(x, f(b, y))))??predicates p, q, r, \cdotsatom T, L, or an n-ary predicate applied to n terms iteral atom or its negation p(f(x), g(x, f(x))), \neg p(f(x), g(x, f(x))))Note: 0-ary functions: constants0-ary predicates (propositional variables): P_r Q_r R_r \cdots$
Page 1 of 37 guantifiers existential quantifier $\exists x. F[x]$ "there exists an x such that $F[x]$ " <u>Note</u> : the dot notation $(\exists x., \forall x.)$ means the scope of the quantifier should extend as far as possible. universal quantifier $\forall x. F[x]$ "for all $x. F[x]$ " <u>FOL formula</u> literal, application of logical connectives $(\neg, \lor, \land, \rightarrow, \leftrightarrow)$ to formulae, or application of a quantifier to a formula	Page 2 of 37 Example: FOL formula $\forall x. \ p(f(x), x) \rightarrow (\exists y. \ p(f(g(x, y)), g(x, y))) \land q(x, f(x)))$ f The scope of $\exists y$ is F . The formula reads: "for all x, if $p(f(x), x)$ then there exists a y such that $p(f(g(x, y)), g(x, y))$ and $q(x, f(x))$ "

FOL Semantics	Example: $F: p(f(x,y),z) \rightarrow p(y,g(z,x))$
An interpretation $I : (D_I, \alpha_I)$ consists of:	Interpretation $I: (D_l, \alpha_l)$ with
► Domain D _I	
non-empty set of values or objects cardinality $ D_l $ deck of cards (finite)	$D_I = \mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$
cardinality D _I deck of cards (finite) integers (countably infinite)	$(f \mapsto +, g \mapsto -, p \mapsto >,)$
reals (uncountably infinite)	$\alpha_{I}:\left\{\begin{array}{l}f\mapsto+,\ g\mapsto-,\ p\mapsto>,\\x\mapsto13,\ y\mapsto42,\ z\mapsto1\end{array}\right\}$
• Assignment α_l	Therefore, we can write
 each variable x assigned value x_l ∈ D_l each n-ary function f assigned 	
$f_l: D_l^n \to D_l$	$F_I: 13+42 > 1 \rightarrow 42 > 1-13.$
In particular, each constant a (0-ary function) assigned value	F is true under I.
a _l $\in D_l$	
 each n-ary predicate p assigned 	
$p_I: D_I^n o \{ true, false \}$	
In particular, each propositional variable P (0-ary predicate)	
assigned truth value (true, false)	· ㅁ · · 경 · · (혼 · · 혼 · · 혼 · · 혼 · · 혼 · · 혼 · · 혼 · · 후 · · · ·
· · · · · · · · · · · · · · · · · · ·	
Semantics: Quantifiers	Example: Consider
Semantics: Quantifiers An <u>x-variant</u> of interpretation $I : (D_I, \alpha_I)$ is an	Example: Consider $F : \exists x. f(x) = g(x)$
	$F: \exists x. f(x) = g(x)$
An <u>x-variant</u> of interpretation $I : (D_I, \alpha_I)$ is an interpretation $J : (D_J, \alpha_J)$ such that $\blacktriangleright D_I = D_J$	
An <u>x-variant</u> of interpretation $I : (D_I, \alpha_I)$ is an interpretation $J : (D_J, \alpha_J)$ such that $\blacktriangleright D_I = D_J$ $\blacktriangleright \alpha_I[y] = \alpha_J[y]$ for all symbols y, except possibly x	$F: \exists x. f(x) = g(x)$
An <u>x-variant</u> of interpretation $I : (D_I, \alpha_I)$ is an interpretation $J : (D_J, \alpha_J)$ such that $\blacktriangleright D_I = D_J$ $\blacktriangleright \alpha_I[y] = \alpha_J[y]$ for all symbols y, except possibly x That is, I and J agree on everything except possibly	F : $\exists x. f(x) = g(x)$ and the interpretation $I: (D: \{\circ, \bullet\}, \alpha_I)$
An <u>x-variant</u> of interpretation $I : (D_I, \alpha_I)$ is an interpretation $J : (D_J, \alpha_J)$ such that $\blacktriangleright D_I = D_J$ $\blacktriangleright \alpha_I[y] = \alpha_J[y]$ for all symbols y, except possibly x	$F: \ \exists x. \ f(x) = g(x)$ and the interpretation $I: (D: \{\circ, \bullet\}, \alpha_I)$ in which
An <u>x-variant</u> of interpretation $I : (D_I, \alpha_I)$ is an interpretation $J : (D_J, \alpha_J)$ such that $\blacktriangleright D_I = D_J$ $\blacktriangleright \alpha_I[y] = \alpha_J[y]$ for all symbols y, except possibly x That is, 1 and J agree on everything except possibly the value of x. Denote by $J : I \triangleleft \{x \mapsto v\}$ the x-variant of I in which $\alpha_J[x] = v$	F : $\exists x. f(x) = g(x)$ and the interpretation $I: (D: \{\circ, \bullet\}, \alpha_I)$
An <u>x-variant</u> of interpretation $I : (D_I, \alpha_I)$ is an interpretation $J : (D_J, \alpha_J)$ such that $\blacktriangleright D_I = D_J$ $\blacktriangleright \alpha_I[y] = \alpha_J[y]$ for all symbols y, except possibly x That is, I and J agree on everything except possibly the value of x. Denote by $J : I \triangleleft \{x \mapsto v\}$ the x-variant of I in which $\alpha_J[x] = v$ for some $v \in D_I$. Then	$F: \exists x. f(x) = g(x)$ and the interpretation $I: (D: \{\circ, \bullet\}, \alpha_I)$ in which $\alpha_I: \{f(\circ) \mapsto \circ, f(\bullet) \mapsto \bullet, g(\circ) \mapsto \bullet, g(\bullet) \mapsto \circ\}.$
An <u>x-variant</u> of interpretation $I : (D_I, \alpha_I)$ is an interpretation $J : (D_J, \alpha_J)$ such that $\blacktriangleright D_I = D_J$ $\blacktriangleright \alpha_I[y] = \alpha_J[y]$ for all symbols y , except possibly x That is, I and J agree on everything except possibly the value of x . Denote by $J : I \triangleleft \{x \mapsto v\}$ the x-variant of I in which $\alpha_J[x] = v$ for some $v \in D_I$. Then $\blacktriangleright I \models \forall x. F$ iff for all $v \in D_I, I \triangleleft \{x \mapsto v\} \models F$	$F: \ \exists x. \ f(x) = g(x)$ and the interpretation $I: (D: \{\circ, \bullet\}, \alpha_I)$ in which
An <u>x-variant</u> of interpretation $I : (D_I, \alpha_I)$ is an interpretation $J : (D_J, \alpha_J)$ such that $\blacktriangleright D_I = D_J$ $\blacktriangleright \alpha_I[y] = \alpha_J[y]$ for all symbols y, except possibly x That is, I and J agree on everything except possibly the value of x. Denote by $J : I \triangleleft \{x \mapsto v\}$ the x-variant of I in which $\alpha_J[x] = v$ for some $v \in D_I$. Then	$F: \exists x. f(x) = g(x)$ and the interpretation $I: (D: \{\circ, \bullet\}, \alpha_I)$ in which $\alpha_I: \{f(\circ) \mapsto \circ, f(\bullet) \mapsto \bullet, g(\circ) \mapsto \bullet, g(\bullet) \mapsto \circ\}.$
An <u>x-variant</u> of interpretation $I : (D_I, \alpha_I)$ is an interpretation $J : (D_J, \alpha_J)$ such that $\blacktriangleright D_I = D_J$ $\blacktriangleright \alpha_I[y] = \alpha_J[y]$ for all symbols y , except possibly x That is, I and J agree on everything except possibly the value of x . Denote by $J : I \triangleleft \{x \mapsto v\}$ the x-variant of I in which $\alpha_J[x] = v$ for some $v \in D_I$. Then $\blacktriangleright I \models \forall x. F$ iff for all $v \in D_I, I \triangleleft \{x \mapsto v\} \models F$	$F: \exists x. f(x) = g(x)$ and the interpretation $I: (D: \{\circ, \bullet\}, \alpha_I)$ in which $\alpha_I: \{f(\circ) \mapsto \circ, f(\bullet) \mapsto \bullet, g(\circ) \mapsto \bullet, g(\bullet) \mapsto \circ\}.$
An <u>x-variant</u> of interpretation $I : (D_I, \alpha_I)$ is an interpretation $J : (D_J, \alpha_J)$ such that $\blacktriangleright D_I = D_J$ $\blacktriangleright \alpha_I[y] = \alpha_J[y]$ for all symbols y , except possibly x That is, I and J agree on everything except possibly the value of x . Denote by $J : I \triangleleft \{x \mapsto v\}$ the x-variant of I in which $\alpha_J[x] = v$ for some $v \in D_I$. Then $\blacktriangleright I \models \forall x. F$ iff for all $v \in D_I, I \triangleleft \{x \mapsto v\} \models F$	$F: \exists x. f(x) = g(x)$ and the interpretation $I: (D: \{\circ, \bullet\}, \alpha_I)$ in which $\alpha_I: \{f(\circ) \mapsto \circ, f(\bullet) \mapsto \bullet, g(\circ) \mapsto \bullet, g(\bullet) \mapsto \circ\}.$
An <u>x-variant</u> of interpretation $I : (D_I, \alpha_I)$ is an interpretation $J : (D_J, \alpha_J)$ such that $\blacktriangleright D_I = D_J$ $\blacktriangleright \alpha_I[y] = \alpha_J[y]$ for all symbols y , except possibly x That is, I and J agree on everything except possibly the value of x . Denote by $J : I \triangleleft \{x \mapsto v\}$ the x-variant of I in which $\alpha_J[x] = v$ for some $v \in D_I$. Then $\blacktriangleright I \models \forall x. F$ iff for all $v \in D_I, I \triangleleft \{x \mapsto v\} \models F$	$F: \exists x. f(x) = g(x)$ and the interpretation $I: (D: \{\circ, \bullet\}, \alpha_I)$ in which $\alpha_I: \{f(\circ) \mapsto \circ, f(\bullet) \mapsto \bullet, g(\circ) \mapsto \bullet, g(\bullet) \mapsto \circ\}.$

Satisfiability and Validity I

F is <u>satisfiable</u> iff there exists I s.t. $I \models F$ F is <u>valid</u> iff for all $I, I \models F$

F is valid iff $\neg F$ is unsatisfiable

Semantic rules: given an interpretation I with domain DI,

$$\begin{array}{c} I \models \forall x. \ F[x] \\ \hline I \triangleleft \{x \mapsto v\} \models F[x] \end{array} \quad \text{for any } v \in D_I \\ \hline \\ I \not \models \forall x. \ F[x] \\ \hline I \triangleleft \{x \mapsto v\} \not \models F[x] \end{array} \quad \text{for a } \underbrace{\text{fresh}}_{I \triangleleft \{x \mapsto v\}} v \in D_I \\ \hline \\ I \models \exists x. \ F[x] \\ \hline \\ I \triangleleft \{x \mapsto v\} \models F[x] \end{array} \quad \text{for a fresh } v \in D_I \\ \hline \\ \hline \\ I \not \models \exists x. \ F[x] \\ \hline \\ I \triangleleft \{x \mapsto v\} \not \models F[x] \end{array} \quad \text{for any } v \in D_I \\ \hline \\ \hline \\ Page 9 \text{ of } 37 \end{array}$$

Example: Is

 $F: (\forall x. p(x)) \leftrightarrow (\neg \exists x. \neg p(x))$

valid?

Suppose not. Then there is an I such that $I \not\models F$ (assumption).

First case:

1 <i>a</i> .	1	¥	$(\forall x. p(x))$	
			\rightarrow $(\neg \exists x. \neg p(x))$	assumption and \leftrightarrow
2a.	1	Þ	$\forall x. p(x)$	1a and \rightarrow
3a.	1	¥	$\neg \exists x. \neg p(x)$	1a and \rightarrow
4a.	1	Þ	$\exists x. \neg p(x)$	3a and \neg
5a.	$I \triangleleft \{x \mapsto v\}$	Þ	$\neg p(x)$	4a and \exists , $v \in D_I$ fresh
6a.	$I \triangleleft \{x \mapsto v\}$	¥	p(x)	5a and \neg
7a.	$I \triangleleft \{x \mapsto v\}$	Þ	p(x)	2a and ∀
6a an	d 7a are contr	adict	ory.	
				Page 11 of 37

Contradiction rule

A contradiction exists if two variants of the original interpretation I disagree on the truth value of an *n*-ary predicate p for a given tuple of domain values:

$$\begin{array}{c} J: I \triangleleft \cdots \models p(s_1, \dots, s_n) \\ K: I \triangleleft \cdots \not\models p(t_1, \dots, t_n) \\ \hline I \models \bot \end{array} \quad \text{for } i \in \{1, \dots, n\}, \alpha_J[s_i] = \alpha_K[t_i] \end{array}$$

Intuition: The variants J and K are constructed only through the rules for quantification. Hence, the truth value of ρ on the given tuple of domain values is already established by I. Therefore, the disagreement between J and K on the truth value of ρ indicates a problem with I.

Page 10 of 37

Examp	le (continued	<u>)</u> :		
Second	d case:			
1 <i>b</i> .	1	¥	$(\neg \exists x. \neg p(x))$	
			\rightarrow ($\forall x. p(x)$)	assumption and \leftrightarrow
2 <i>b</i> .	1	⊭	$\forall x. p(x)$	1b and \rightarrow
3 <i>b</i> .	1	Þ	$\neg \exists x. \neg p(x)$	1b and \rightarrow
4 <i>b</i> .	$I \triangleleft \{x \mapsto v\}$	⊭	p(x)	2b and \forall , $v \in D_I$ fresh
5 <i>b</i> .	1	⊭	$\exists x. \neg p(x)$	3b and \neg
6 <i>b</i> .	$I \triangleleft \{x \mapsto v\}$	⊭	$\neg p(x)$	5b and ∃
7 <i>b</i> .	$I \triangleleft \{x \mapsto v\}$	Þ	p(x)	6b and \neg

4b and 7b are contradictory. Both cases end in contradictions for arbitrary I. Thus F is valid.

Page 12 of 37

$\begin{array}{c} \underline{Example:} & Prove \\ F : \ p(\mathfrak{a}) \to \exists x. \ p(x) \\ \text{is valid.} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{l} \hline \mbox{Translations of English Sentences (famous theorems) into FOL} \\ \hline \mbox{I} he length of one side of a triangle is less than the sum of the lengths of the other two sides \\ \hline \mbox{$\forall x, y, z. triangle(x, y, z) \rightarrow length(x) < length(y) + length(z)$} \\ \hline \mbox{I} hermat's Last Theorem. \\ \hline \mbox{$\forall n. integer(n) \land n > 2$} \\ \hline \mbox{$\rightarrow$ \forall x, y, z.$} \\ integer(x) \land integer(y) \land integer(z) \\ \hline \mbox{$\land x > 0 \land y > 0 \land z > 0$} \\ \hline \mbox{$\rightarrow$ exp(x, n) + exp(y, n) \neq exp(z, n)$} \end{array}$
েচ (ট) (ই) (ই) হ ৩৭৫ Page 13 of 37	লে জিলাই কেন্দ্র হ Page 14 of 37
$\begin{array}{ll} \underline{\text{Example:}} & \text{Show that} \\ & F: (\forall x. p(x, x)) \rightarrow (\exists x. \forall y. p(x, y)) \\ \text{is invalid.} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Substitution Suppose we want to replace one term with another in a formula; e.g., we want to rewrite $F: \forall y. (p(x, y) \rightarrow p(y, x)))$ as follows: $G: \forall y. (p(a, y) \rightarrow p(y, a)).$ We call the mapping from x to a a substitution denoted as $\sigma: \{x \mapsto a\}.$ We write F \sigma for the formula G. Another convenient notation is $F[x]$ for a formula containing the variable x and $F[a]$ for F σ .
নেটা জোন হোৱা হয় বিজ্ঞান হয় বিজ্ঞা বিজ্ঞান হয় বিজ গ্ৰহ বিজ্ঞান হয় বজ্ঞান হয় বিজ্ঞান হয় বিজ্ঞান হয় বিজ্ঞান হয় বিজ্ঞান হয় বিজ্ঞান হয় বিজ্ঞান হয় বিজে গ্ৰহ বিজ্ঞান হযে বজ	েচন কোন হোন হয় ৩৭৫ Page 16 of 37

Substitution Renaming Replace x in $\forall x$ by x' and all free occurrences¹ of x in G[x], the Definition (Substitution) scope of $\forall x$, by x': A substitution is a mapping from terms to terms: e.g., $\forall x, G[x] \Leftrightarrow \forall x', G[x'].$ $\sigma: \{t_1 \mapsto s_1, \ldots, t_n \mapsto s_n\}.$ Same for $\exists x$: By $F\sigma$ we denote the application of σ to formula F: $\exists x. G[x] \Leftrightarrow \exists x'. G[x'],$ i.e., the formula F where all occurrences of t_1, \ldots, t_n are where x' is a fresh variable replaced by s_1, \ldots, s_n . Example (renaming): For a formula named F[x] we write F[t] as shorthand for $(\forall x, p(x) \rightarrow \exists x, q(x)) \land r(x)$ $F[x]{x \mapsto t}.$ $\uparrow \forall x$ $\uparrow \exists x$ \uparrow free replace by the equivalent formula $(\forall v, p(v) \rightarrow \exists z, q(z)) \land r(x)$ ¹Note: these occurrences are free in G[x], not in $\forall x$: $G[x] \mapsto \langle z \rangle \land z \to \langle z \rangle$ Page 17 of 37 Page 18 of 37 Safe Substitution I Safe Substitution II Example: Consider the following formula and substitution: Care has to be taken in the presence of quantifiers: F[x]: $\exists y. y = Succ(x)$ $F: (\forall x. p(x,y)) \rightarrow q(f(y), x)$ ↑ free ↑ free↑ ↑ free

What is F[y]?

We need to rename bound variables occurring in the substitution:

$$F'[x]: \exists y'. y' = Succ(x)$$

Bound variable renaming does not change the models of a formula:

$$(\exists y. y = Succ(x)) \Leftrightarrow (\exists y'. y' = Succ(x))$$

Then under safe substitution

 $F'[y]: \exists y'. y' = Succ(y)$ Page 19 of 37

Note that the only bound variable in F is the x in p(x, y). The variables x and y are free everywhere else.

$$\sigma: \{y \mapsto f(x), f(y) \mapsto h(x, y), x \mapsto g(x)\}.$$

What is $F\sigma$? Use safe substitution!

1. Rename the bound x with a fresh name x':

$$F': (\forall x'. p(x', y)) \rightarrow q(f(y), x)$$

2. $F\sigma: (\forall x'. p(x', f(x))) \rightarrow q(h(x, y), g(x))$
Page 20 of 37

Safe Substitution III Proposition (Substitution of Equivalent Formulae) $\sigma : \{F_1 \mapsto G_1, \dots, F_n \mapsto G_n\}$ s.t. for each $i, F_i \Leftrightarrow G_i$ If $F\sigma$ is a safe substitution, then $F \Leftrightarrow F\sigma$.	Semantic Tableaux (with Substitution) We assume that there are infinitely many constant symbols. The following rules are used for quantifiers: $\frac{I \models \forall x. F[x]}{I \models F[t]} \text{ for any term } t$ $\frac{I \not\models \forall x. F[x]}{I \not\models F[a]} \text{ for a fresh constant } a$ $\frac{I \models \exists x. F[x]}{I \models F[a]} \text{ for a fresh constant } a$ $\frac{I \not\models \exists x. F[x]}{I \models F[t]} \text{ for any term } t$
دة، روم، دوم، دوم، دوم، دوم، دوم، دوم، دوم، د	The contradiction rule is similar to that of propositional logic: $I \models p(t_1, \dots, t_n)$ $\frac{I \not\models p(t_1, \dots, t_n)}{I \models \bot}$ Page 22 of 37
Example: Show that $F : (\exists x. \forall y. p(x, y)) \rightarrow (\forall x. \exists y. p(y, x))$ is valid. Rename to $F' : (\exists x. \forall y. p(x, y)) \rightarrow (\forall x'. \exists y'. p(y', x')).$ Assume otherwise. 1. $I \not\models F'$ 2. $I \models \exists x. \forall y. p(x, y)$ 1 and \rightarrow 2. $I \models \exists x. \forall y. p(x, y)$ 1 and \rightarrow	Example:Is $F : \exists x, y. (p(x, y) \to (p(y, x) \to \forall z.p(z, z)))$ valid?Assume I falsifies F and apply semantic argument:1. $I \not\models \exists x, y. (p(x, y) \to (p(y, x) \to \forall z.p(z, z)))$ assumption2. $I \not\models (p(t_1, t_2) \to (p(t_2, t_1) \to \forall z.p(z, z)))$ 1. \exists , temporary $x \mapsto t_1, y \mapsto t_2$
3. $I \not\models \forall x'. \exists y'. p(y', x')$ 1 and \rightarrow 4. $I \models \forall y. p(a, y)$ 2, $\exists (a \text{ fresh})$ 5. $I \not\models \exists y'. p(y', b)$ 3, $\forall (b \text{ fresh})$ 6. $I \models p(a, b)$ 4, $\forall (t := b)$ 7. $I \not\models p(a, b)$ 5, $\exists (t := a)$ 8. $I \models \bot$ 6, 7 contradictory Thus, the formula is valid.	3. $I \models p(t_1, t_2)$ 2 and \rightarrow 4. $I \not\models p(t_2, t_1) \rightarrow \forall z, p(z, z)$ 2 and \rightarrow 5. $I \models p(t_2, t_1)$ 4. \rightarrow 6. $I \not\models \forall z, p(z, z)$ 4. \rightarrow 7. $I \not\models p(a, a)$ 6. \forall , fresh $z \mapsto a$ 8. $I \models p(a, a)$ 5. $t_1 \mapsto a, t_2 \mapsto a$ 9. $I \models \bot$ 7.8. contradiction Page 24 of 37

Contradiction. So, <i>F</i> is valid	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Page 25 of 37	Page 26 of 37
We branch on 5 $\begin{array}{rcl} 6a. & l &\models & p(a,a) & 5, &\rightarrow \\ 7a. & l &\models & \bot & 4, 6a \end{array}$ $\begin{array}{rcl} 6b. & l &\not\models & p(a,a) & 5, &\rightarrow \\ 7b. & \text{No contradiction for this branch} \end{array}$ Falsifying interpretation: Domain: $D = \{0, 1\}$ and $P_l(0, 0) = P_l(0, 1) = P_l(1, 0) = P_l(1, 1) = false.$ Since $P_l(0, 0)$ and $P_l(1, 1)$ are false, $\forall z. p(z, z)$ is false, $\forall x, y. p(x, y) &\rightarrow p(y, x)$ is true. F is invalid	Formula Schemata $\underline{Formula}$ $(\forall x. p(x)) \leftrightarrow (\neg \exists x. \neg p(x))$) Formula Schema $H_1: (\forall x. F) \leftrightarrow (\neg \exists x. \neg F)$ \uparrow place holder Formula Schema (with side condition) $H_2: (\forall x. F) \leftrightarrow F$ provided $x \notin$ free(F) Valid Formula Schema H is valid iff it is valid for any FOL formula F_i obeying the side conditions. Example: H_1 and H_2 are valid.
লেচ কেন্দ্র হার বিষয়ে ব	ाः (क्रि.२२) २ १९२ Page 28 of 37

Substitution σ of H	Proving Validity of Formula Schemata I
$\sigma:\{F_1\mapsto G_1,\ldots,F_n\mapsto G_n\}$	Example: Prove validity of
mapping place holders F_i of H to FOL formulae G_i , obeying the side conditions of H Proposition (Formula Schema) If H is a valid formula schema, and σ is a substitution obeying H 's side conditions, then $H\sigma$ is also valid. Example: $H : (\forall x. F) \leftrightarrow F$ provided $x \notin free(F)$ is valid. $\sigma : \{F \mapsto p(y)\}$ obeys the side condition. Therefore $H\sigma : \forall x. p(y) \leftrightarrow p(y)$ is valid. Page 29 of 37	$H: (\forall x. F) \leftrightarrow F \text{provided } x \notin free(F).$ Proof by contradiction. Consider the two directions of \leftrightarrow . • First case $1. I \models \forall x. F \text{assumption}$ $2. I \nvDash F \text{assumption}$ $3. I \models F 1, \forall, \text{ since } x \notin \text{free}(F)$ $4. I \models \bot 2, 3$
Proving Validity of Formula Schemata II ► Second Case 1. I ⊭ ∀x. F assumption 2. I ⊨ F assumption 3. I ⊨ ∃x. ¬F 1 and ¬	Instant Normal Forms 1. Negation Normal Forms (NNF) Apply the additional equivalences (left-to-right) $\neg \forall x. F[x] \Leftrightarrow \exists x. \neg F[x]$
4. $I \models \neg F$ 3, \exists , since $x \notin free(F)$ 5. $I \models \bot$ 2, 4 Hence, H is a valid formula schema.	$ \begin{array}{c} \neg \exists x. \ F[x] \ \Leftrightarrow \ \forall x. \ \neg F[x] \\ \text{when converting PL formulae into NNF.} \\ \\ \hline $

 2. Prenex Normal Form (PNF) All quantifiers appear at the beginning of the formula Q₁x₁Q_nx_n. F[x₁,,x_n] where Q_i ∈ {∀, ∃} and F is quantifier-free. Every FOL formula F can be transformed to formula F' in PNF s.t. F' ⇔ F: Write F in NNF, rename quantified variables to fresh names, and move all quantifiers to the front. Be careful! 	Example: Find equivalent PNF of $F : \forall x. \neg (\exists y. p(x, y) \land p(x, z)) \lor \exists y. p(x, y) \\ \uparrow \text{ to the end of the formula}$ 1. Write F in NNF $F_1 : \forall x. (\forall y. \neg p(x, y) \lor \neg p(x, z)) \lor \exists y. p(x, y)$ 2. Rename quantified variables to fresh names $F_2 : \forall x. (\forall y. \neg p(x, y) \lor \neg p(x, z)) \lor \exists w. p(x, w) \\ \uparrow \text{Both are in the scope of } \forall x^{\uparrow}$ 3. Remove all quantifiers to produce quantifier-free formula $F_3 : \neg p(x, y) \lor \neg p(x, z) \lor p(x, w)$
4. Add the quantifiers before F_3	 Decidability of FOL • FOL is undecidable (Turing & Church)
$F_4: \forall x. \forall y. \exists w. \neg p(x, y) \lor \neg p(x, z) \lor p(x, w)$	There does not exist an algorithm for deciding if a FOL
Alternately,	formula <i>F</i> is {valid, satisfiable}; i.e., that always halts and
$F'_4: \forall x. \exists w. \forall y. \neg p(x, y) \lor \neg p(x, z) \lor p(x, w)$	says "yes" if <i>F</i> is {valid, satisfiable} or "no" if <i>F</i> is {invalid,
<u>Note</u> : In F_2 , $\forall y$ is in the scope of $\forall x$, therefore the order of quantifiers must be $\cdots \forall x \cdots \forall y \cdots$.	unsatisfiable}. • FOL is semi-decidable
Also, $\exists w$ is in the scope of $\forall x$, therefore the order of the quantifiers must be $\cdots \forall x \cdots \forall y \cdots$.	There is a procedure that always halts and says "yes" if <i>F</i> is
$F_4 \Leftrightarrow F$ and $F'_4 \Leftrightarrow F$	{valid, unsatisfiable}, but may not halt if <i>F</i> is {invalid,
<u>Note</u> : However, possibly, $G \Leftrightarrow F$ and $G' \Leftrightarrow F$, for	satisfiable}. On the other hand, • PL is decidable
$G: \forall y. \exists w. \forall x. \neg p(x, y) \lor \neg p(x, z) \lor p(x, w)$	There does exist an algorithm for deciding if a PL formula <i>F</i>
$G': \exists w. \forall x. \forall y. \cdots$.	is {valid, satisfiable}; e.g., the truth-table procedure.

Semantic Argument Method

To show FOL formula *F* is valid, assume $I \not\models F$ and derive a contradiction $I \models \bot$ in all branches

Method is sound

If every branch of a semantic argument proof reaches $I \models \bot$, then F is valid

Method is complete

Each valid formula *F* has a semantic argument proof in which every branch reaches $I \models \bot$

Page 37 of 37