CS156: The Calculus of Computation Zohar Manna Winter 2010

Chapter 2: First-Order Logic (FOL)

First-Order Logic (FOL)

Also called Predicate Logic or Predicate Calculus

FOL Syntax

<u>variables</u>	x, y, z, \cdots
<u>constants</u>	a, b, c, \cdots
functions	f, g, h, \cdots
<u>terms</u>	variables, constants or
	n-ary function applied to n terms as arguments
	a, x, $f(a)$, $g(x, b)$, $f(g(x, f(b)))$; $f(g(x, f(b, y)))$??
predicates	p, q, r, \cdots
atom	op , ot , or an n-ary predicate applied to n terms
<u>literal</u>	atom or its negation
	$p(f(x),g(x,f(x))), \neg p(f(x),g(x,f(x)))$

Note: 0-ary functions: constants 0-ary predicates (propositional variables): $P_{a}, Q, R, \dots = P_{a}$ Page 2 of 37 quantifiers

existential quantifier $\exists x. F[x]$ "there exists an x such that F[x]" <u>Note</u>: the dot notation ($\exists x., \forall x.$) means the scope of the quantifier should extend as far as possible. universal quantifier $\forall x. F[x]$ "for all x, F[x]"

FOL formula

literal,

application of logical connectives $(\neg, \lor, \land, \rightarrow, \leftrightarrow)$ to formulae, or application of a quantifier to a formula

Example: FOL formula

The scope of $\forall x$ is F. The scope of $\exists y$ is G. The formula reads: "for all x, if p(f(x), x)then there exists a y such that p(f(g(x, y)), g(x, y))and q(x, f(x))"

> • □ ▶ • ⓓ ▶ • ≧ ▶ • ≧ ▶ • ≧ • ⊅ ۹.. Page 4 of 37

FOL Semantics

An interpretation $I : (D_I, \alpha_I)$ consists of:

► Domain *D*_l

non-empty set of values or objects

cardinality $|D_I|$ deck of cards (finite) integers (countably infinite) reals (uncountably infinite)

• Assignment α_I

- each variable x assigned value $x_I \in D_I$
- each n-ary function f assigned

 $f_I: D_I^n \to D_I$

In particular, each constant a (0-ary function) assigned value $a_I \in D_I$

each n-ary predicate p assigned

$$p_I: D_I^n \to \{\text{true, false}\}$$

In particular, each propositional variable P (0-ary predicate) assigned truth value (true, false)

Example:
$$F: p(f(x, y), z) \rightarrow p(y, g(z, x))$$

Interpretation $I : (D_I, \alpha_I)$ with

$$D_{I} = \mathbb{Z} = \{ \cdots, -2, -1, 0, 1, 2, \cdots \}$$
$$\alpha_{I} : \left\{ \begin{array}{l} f \mapsto +, \ g \mapsto -, \ p \mapsto >, \\ x \mapsto 13, \ y \mapsto 42, \ z \mapsto 1 \end{array} \right\}$$

Therefore, we can write

$$F_I: 13 + 42 > 1 \rightarrow 42 > 1 - 13.$$

F is true under *I*.

Semantics: Quantifiers

An <u>x-variant</u> of interpretation $I : (D_I, \alpha_I)$ is an interpretation $J : (D_J, \alpha_J)$ such that

 $\blacktriangleright D_I = D_J$

• $\alpha_I[y] = \alpha_J[y]$ for all symbols y, except possibly x That is, I and J agree on everything except possibly the value of x.

Denote by $J : I \triangleleft \{x \mapsto v\}$ the x-variant of I in which $\alpha_J[x] = v$ for some $v \in D_I$. Then

- ► $I \models \forall x. F$ iff for all $v \in D_I$, $I \triangleleft \{x \mapsto v\} \models F$
- ► $I \models \exists x. F$ iff there exists $v \in D_I$, s.t. $I \triangleleft \{x \mapsto v\} \models F$

◆□> ◆□> ◆三> ◆三> ・三> のへで

Example: Consider

$$F: \exists x. f(x) = g(x)$$

and the interpretation

$$I: (D: \{\circ, \bullet\}, \alpha_I)$$

in which

$$\alpha_I: \ \{f(\circ) \mapsto \circ, f(\bullet) \mapsto \bullet, g(\circ) \mapsto \bullet, g(\bullet) \mapsto \circ\}.$$

The truth value of F under I is false; i.e., I[F] = false.

Satisfiability and Validity I

F is <u>satisfiable</u> iff there exists *I* s.t. $I \models F$ *F* is <u>valid</u> iff for all *I*, $I \models F$

F is valid iff $\neg F$ is unsatisfiable

<u>Semantic rules</u>: given an interpretation I with domain D_I ,

$$\frac{I \models \forall x. F[x]}{I \triangleleft \{x \mapsto v\} \models F[x]} \quad \text{for any } v \in D_{I}$$

$$\frac{I \not\models \forall x. F[x]}{I \triangleleft \{x \mapsto v\} \not\models F[x]} \quad \text{for a } \underline{\text{fresh}} \ v \in D_{I}$$

$$\frac{I \models \exists x. F[x]}{I \triangleleft \{x \mapsto v\} \models F[x]} \quad \text{for a } \underline{\text{fresh}} \ v \in D_{I}$$

$$\frac{I \not\models \exists x. F[x]}{I \triangleleft \{x \mapsto v\} \models F[x]} \quad \text{for any } v \in D_{I}$$

$$\frac{I \not\models \exists x. F[x]}{I \triangleleft \{x \mapsto v\} \not\models F[x]} \quad \text{for any } v \in D_{I}$$

$$\frac{Page 9 \text{ of } 37}{Page 9 \text{ of } 37}$$

Contradiction rule

A contradiction exists if two variants of the original interpretation I disagree on the truth value of an *n*-ary predicate p for a given tuple of domain values:

$$J: I \triangleleft \cdots \models p(s_1, \dots, s_n)$$

$$K: I \triangleleft \cdots \not\models p(t_1, \dots, t_n)$$
for $i \in \{1, \dots, n\}, \alpha_J[s_i] = \alpha_K[t_i]$
$$I \models \bot$$

<u>Intuition</u>: The variants J and K are constructed only through the rules for quantification. Hence, the truth value of p on the given tuple of domain values is already established by I. Therefore, the disagreement between J and K on the truth value of p indicates a problem with I.

Example: Is

$$F: (\forall x. \ p(x)) \leftrightarrow (\neg \exists x. \ \neg p(x))$$

valid?

Suppose not. Then there is an I such that $I \not\models F$ (assumption). First case:

1a. $I \not\models (\forall x. p(x))$ $\rightarrow (\neg \exists x. \neg p(x))$ assumption and \leftrightarrow 2a. $I \models \forall x. p(x)$ 1a and \rightarrow 3a. $I \not\models \neg \exists x. \neg p(x)$ 1a and \rightarrow $I \models \exists x. \neg p(x)$ 4*a*. 3a and \neg 5a. $I \triangleleft \{x \mapsto v\} \models \neg p(x)$ 4a and \exists , $v \in D_I$ fresh 6a. $I \triangleleft \{x \mapsto v\} \not\models p(x)$ 5a and \neg 7a. $I \triangleleft \{x \mapsto v\} \models p(x)$ 2a and \forall 6a and 7a are contradictory. ▲ロ → ▲ 翻 → ▲ 臣 → ▲ 臣 → ● ● ● ● ● ●

Page 11 of 37

Example (continued):

Second case:

1 <i>b</i> .	1	$\not\models$	$(\neg \exists x. \neg p(x))$	
			\rightarrow ($\forall x. p(x)$)	assumption and \leftrightarrow
2 <i>b</i> .	Ι	¥	$\forall x. \ p(x)$	1b and \rightarrow
3 <i>b</i> .	Ι	\models	$\neg \exists x. \neg p(x)$	1b and \rightarrow
4 <i>b</i> .	$I \triangleleft \{x \mapsto v\}$	$\not\models$	p(x)	2b and \forall , v $\in D_I$ fresh
5 <i>b</i> .	1	$\not\models$	$\exists x. \neg p(x)$	3b and \neg
6 <i>b</i> .	$I \triangleleft \{x \mapsto v\}$	$\not\models$	$\neg p(x)$	5b and $∃$
7 <i>b</i> .	$I \triangleleft \{x \mapsto v\}$	\models	p(x)	6b and \neg

4b and 7b are contradictory.

Both cases end in contradictions for arbitrary I. Thus F is valid.

Example: Prove

$$F: p(a) \rightarrow \exists x. p(x)$$

is valid.

Assume otherwise; i.e., F is false under interpretation $I : (D_I, \alpha_I)$:

1.
$$I \not\models F$$
assumption2. $I \models p(a)$ 1 and \rightarrow 3. $I \not\models \exists x. p(x)$ 1 and \rightarrow 4. $I \triangleleft \{x \mapsto \alpha_I[a]\} \not\models p(x)$ 3 and \exists

2 and 4 are contradictory. Thus, F is valid.

Translations of English Sentences (famous theorems) into FOL

The length of one side of a triangle is less than the sum of the lengths of the other two sides

 $\forall x, y, z. triangle(x, y, z) \rightarrow length(x) < length(y) + length(z)$

Fermat's Last Theorem.

 $\forall n. integer(n) \land n > 2$ $\rightarrow \forall x, y, z.$ $integer(x) \land integer(y) \land integer(z)$ $\land x > 0 \land y > 0 \land z > 0$ $\rightarrow \exp(x, n) + \exp(y, n) \neq \exp(z, n)$

$$F: (\forall x. \ p(x,x)) \rightarrow (\exists x. \ \forall y. \ p(x,y))$$

is invalid.

Find interpretation I such that F is false under I.

Choose
$$D_I = \{0, 1\}$$

 $p_I = \{(0, 0), (1, 1)\}$ i.e., $p_I(0, 0)$ and $p_I(1, 1)$ are true
 $p_I(0, 1)$ and $p_I(1, 0)$ are false

 $I[\forall x. \ p(x, x)] =$ true and $I[\exists x. \ \forall y. \ p(x, y)] =$ false.

We found a falsifying interpretation for F, therefore F is invalid.

Is
$$F: (\forall x. \ p(x,x)) \rightarrow (\forall x. \exists y. \ p(x,y))$$
 valid?

Substitution

Suppose we want to replace one term with another in a formula; e.g., we want to rewrite

$$F: \forall y. (p(x, y) \rightarrow p(y, x))$$

as follows:

$$G: \forall y. (p(a, y) \rightarrow p(y, a)).$$

We call the mapping from x to a a substitution denoted as

$$\sigma: \{ \boldsymbol{x} \mapsto \boldsymbol{a} \}.$$

We write $F\sigma$ for the formula G.

Another convenient notation is F[x] for a formula containing the variable x and F[a] for $F\sigma$.

Substitution

Definition (Substitution)

A substitution is a mapping from terms to terms; e.g.,

$$\sigma: \{t_1 \mapsto s_1, \ldots, t_n \mapsto s_n\}.$$

By $F\sigma$ we denote the application of σ to formula F; i.e., the formula F where all occurrences of t_1, \ldots, t_n are replaced by s_1, \ldots, s_n .

For a formula named F[x] we write F[t] as shorthand for $F[x]{x \mapsto t}$.

Renaming

Replace x in $\forall x$ by x' and all <u>free occurrences</u>¹ of x in G[x], the scope of $\forall x$, by x':

$$\forall x. \ G[x] \quad \Leftrightarrow \quad \forall x'. \ G[x'].$$

Same for $\exists x$:

$$\exists x. \ G[x] \quad \Leftrightarrow \quad \exists x'. \ G[x'],$$

where x' is a fresh variable.

Example (renaming):

$$(\forall x. \ p(x) \rightarrow \exists x. \ q(x)) \land \ r(x)$$

 $\uparrow \forall x \qquad \uparrow \exists x \qquad \uparrow \text{ free}$

replace by the equivalent formula

$$(\forall y. p(y) \rightarrow \exists z. q(z)) \land r(x)$$

¹<u>Note</u>: these occurrences are free in G[x], not in $\forall x$: G[x].

Safe Substitution I

Care has to be taken in the presence of quantifiers:

$$F[x]: \exists y. \ y = Succ(x)$$

$$\uparrow \text{ free}$$

What is F[y]?

We need to rename bound variables occurring in the substitution:

$$F'[x]$$
: $\exists y'. y' = Succ(x)$

Bound variable renaming does not change the models of a formula:

$$(\exists y. y = Succ(x)) \Leftrightarrow (\exists y'. y' = Succ(x))$$

Then under safe substitution

$$F'[y]: \exists y'. y' = Succ(y)$$
Page 19 of 37

Safe Substitution II

Example: Consider the following formula and substitution:

$$\begin{array}{rcl} F: (\forall x. \ p(x,y)) & \rightarrow & q(f(y), \quad x) \\ & \uparrow \ {\rm free} & \uparrow \ {\rm free} \uparrow \end{array}$$

Note that the only bound variable in F is the x in p(x, y). The variables x and y are free everywhere else.

$$\sigma: \{y \mapsto f(x), f(y) \mapsto h(x, y), x \mapsto g(x)\}.$$

What is $F\sigma$? Use safe substitution!

1. Rename the bound x with a fresh name x':

$$F': (\forall x'. p(x', y)) \rightarrow q(f(y), x)$$

2. $F\sigma: (\forall x'. p(x', f(x))) \rightarrow q(h(x, y), g(x))$

◆□> ◆□> ◆三> ◆三> ・三 のへで

Safe Substitution III

Proposition (Substitution of Equivalent Formulae)

$$\sigma: \{F_1 \mapsto G_1, \cdots, F_n \mapsto G_n\}$$

s.t. for each *i*, $F_i \Leftrightarrow G_i$

If $F\sigma$ is a safe substitution, then $F \Leftrightarrow F\sigma$.

Semantic Tableaux (with Substitution)

We assume that there are infinitely many constant symbols. The following rules are used for quantifiers:

$$\frac{I \models \forall x. F[x]}{I \models F[t]} \quad \text{for any term } t$$

$$\frac{I \not\models \forall x. F[x]}{I \not\models F[a]} \quad \text{for a } \underline{\text{fresh constant } a}$$

$$\frac{I \models \exists x. F[x]}{I \models F[a]} \quad \text{for a } \underline{\text{fresh constant } a}$$

$$\frac{I \not\models \exists x. F[x]}{I \models F[a]} \quad \text{for any term } t$$

The contradiction rule is similar to that of propositional logic:

$$\frac{I \models p(t_1, \dots, t_n)}{I \models \bot} \xrightarrow{I \models \bot} \xrightarrow{Page 22 \text{ of } 37} \circ \circ \circ \circ$$

Example: Show that

$$F : (\exists x. \forall y. p(x, y)) \rightarrow (\forall x. \exists y. p(y, x)) \text{ is valid.}$$

Rename to $F' : (\exists x. \forall y. p(x, y)) \rightarrow (\forall x'. \exists y'. p(y', x')).$

Assume otherwise.

1.	1	¥	F'	assumption
2.	1	Þ	$\exists x. \forall y. p(x, y)$	1 and \rightarrow
3.	1	$\not\models$	$\forall x'. \exists y'. p(y', x')$	1 and \rightarrow
4.	1	Þ	$\forall y. \ p(a, y)$	2, ∃ (<i>a</i> fresh)
5.	1	$\not\models$	$\exists y'. \ p(y', b)$	3, \forall (<i>b</i> fresh)
6.	1	Þ	p(a, b)	4, \forall ($t := b$)
7.	Ι	¥	p(a, b)	5, \exists ($t := a$)
8.	1	Þ	\perp	6, 7 contradictory

Thus, the formula is valid.

Example: Is $F : \exists x, y. (p(x, y) \rightarrow (p(y, x) \rightarrow \forall z.p(z, z)))$ valid?

Assume *I* falsifies *F* and apply semantic argument:

1.
$$I \not\models \exists x, y. (p(x, y) \rightarrow (p(y, x) \rightarrow \forall z.p(z, z)))$$

assumption

2.
$$I \not\models (p(t_1, t_2) \rightarrow (p(t_2, t_1) \rightarrow \forall z.p(z, z)))$$

1, \exists , temporary $x \mapsto t_1, y \mapsto t_2$

3.
$$I \models p(t_1, t_2)$$

4. $I \not\models p(t_2, t_1) \rightarrow \forall z.p(z, z)$
5. $I \models p(t_2, t_1)$
6. $I \not\models \forall z.p(z, z)$
7. $I \not\models p(a, a)$
8. $I \models p(a, a)$
9. $I \models \bot$
2 and \rightarrow
4, \rightarrow
6, \forall , fresh $z \mapsto a$
5, $t_1 \mapsto a, t_2 \mapsto a$
7, 8, contradiction
Page 24 of 37

Contradiction. So, F is valid

Example: Is $F: (\forall x, y.p(x, y) \rightarrow p(y, x)) \rightarrow \forall z.p(z, z)$ valid?

Assume I falsifies F' and apply semantic argument:

1.
$$I \not\models (\forall x, y.p(x, y) \rightarrow p(y, x)) \rightarrow \forall z.p(z, z)$$

assumption
2. $I \not\models \forall x, y.p(x, y) \rightarrow p(y, x)$
1, \rightarrow
3. $I \not\models \forall z.p(z, z)$
1, \rightarrow
4. $I \not\models p(a, a)$
3, \forall , fresh $z \mapsto a$
5. $I \not\models p(a, a) \rightarrow p(a, a)$
2, \forall , any $x \mapsto a, y \mapsto a$

We branch on 5 ...

6b.
$$I \not\models p(a, a)$$
5, \rightarrow 7b.No contradiction for this branch

Falsifying interpretation: Domain: $D = \{0, 1\}$ and $P_I(0,0) = P_I(0,1) = P_I(1,0) = P_I(1,1) = false.$ Since $P_I(0,0)$ and $P_I(1,1)$ are false, $\forall z.p(z,z)$ is false, $\forall x, y.p(x,y) \rightarrow p(y,x)$ is true. F is invalid

Page 27 of 37

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへで

Formula Schemata

<u>Formula</u>

$$(\forall x. \ p(x)) \leftrightarrow (\neg \exists x. \neg p(x))$$

Formula Schema

$$H_1: (\forall x. F) \leftrightarrow (\neg \exists x. \neg F)$$

^ place holder

$$\frac{\text{Formula Schema (with side condition)}}{H_2: (\forall x. F) \leftrightarrow F \text{ provided } x \notin free(F)}$$

Valid Formula Schema

H is valid iff it is valid for any FOL formula F_i obeying the side conditions.

Example: H_1 and H_2 are valid.

$$\sigma: \{F_1 \mapsto G_1, \ldots, F_n \mapsto G_n\}$$

mapping place holders F_i of H to FOL formulae G_i , obeying the side conditions of H

Proposition (Formula Schema)

If H is a valid formula schema, and σ is a substitution obeying H's side conditions, then $H\sigma$ is also valid.

Example:

 $\begin{array}{ll} H: (\forall x. \ F) \ \leftrightarrow \ F & \mbox{provided } x \notin free(F) & \mbox{is valid.} \\ \sigma: \{F \mapsto p(y)\} & \mbox{obeys the side condition.} \end{array}$

Therefore $H\sigma: \forall x. \ p(y) \leftrightarrow p(y)$ is valid.

Proving Validity of Formula Schemata I

Example: Prove validity of

 $H: (\forall x. F) \leftrightarrow F$ provided $x \notin free(F)$.

Proof by contradiction. Consider the two directions of \leftrightarrow . \blacktriangleright First case

1.	Ι	\models	$\forall x. F$	assumption
2.	1	$\not\models$	F	assumption
3.	1	⊨	F	1, \forall , since $x \notin free(F)$
4.	1	Þ	\perp	2, 3

Proving Validity of Formula Schemata II

Second Case

1. $I \not\models \forall x. F$ assumption2. $I \not\models F$ assumption3. $I \not\models \exists x. \neg F$ 1 and \neg 4. $I \not\models \neg F$ 3, \exists , since $x \notin$ free(F)5. $I \not\models \bot$ 2, 4

Hence, H is a valid formula schema.

Normal Forms

1. Negation Normal Forms (NNF)

Apply the additional equivalences (left-to-right)

$$\neg \forall x. \ F[x] \Leftrightarrow \exists x. \ \neg F[x]$$
$$\neg \exists x. \ F[x] \Leftrightarrow \forall x. \ \neg F[x]$$

when converting PL formulae into NNF.

2. Prenex Normal Form (PNF)

All quantifiers appear at the beginning of the formula

$$Q_1 x_1 \cdots Q_n x_n$$
. $F[x_1, \cdots, x_n]$

where $Q_i \in \{\forall, \exists\}$ and F is quantifier-free.

Every FOL formula F can be transformed to formula F' in PNF s.t. $F' \Leftrightarrow F$:

- Write F in NNF,
- rename quantified variables to fresh names, and
- move all quantifiers to the front. Be careful!

Example: Find equivalent PNF of

$$F: \forall x. \neg (\exists y. p(x, y) \land p(x, z)) \lor \exists y. p(x, y)$$

^ to the end of the formula

1. Write F in NNF

$$F_1: \forall x. (\forall y. \neg p(x, y) \lor \neg p(x, z)) \lor \exists y. p(x, y)$$

2. Rename quantified variables to fresh names

$$F_2: \ \forall x. \ (\forall y. \ \neg p(x, y) \lor \neg p(x, z)) \lor \exists w. \ p(x, w)$$

^Both are in the scope of $\forall x^{\uparrow}$

3. Remove all quantifiers to produce quantifier-free formula

$$F_3: \neg p(x,y) \lor \neg p(x,z) \lor p(x,w)$$

4. Add the quantifiers before F_3

$$F_4: \forall x. \forall y. \exists w. \neg p(x, y) \lor \neg p(x, z) \lor p(x, w)$$

Alternately,

$$F'_4$$
: $\forall x. \exists w. \forall y. \neg p(x, y) \lor \neg p(x, z) \lor p(x, w)$

<u>Note</u>: In F_2 , $\forall y$ is in the scope of $\forall x$, therefore the order of quantifiers must be $\cdots \forall x \cdots \forall y \cdots$. Also, $\exists w$ is in the scope of $\forall x$, therefore the order of the quantifiers must be $\cdots \forall x \cdots \exists w \cdots$

$$F_4 \Leftrightarrow F \text{ and } F'_4 \Leftrightarrow F$$

<u>Note</u>: However, possibly, $G \Leftrightarrow F$ and $G' \Leftrightarrow F$, for

$$G: \forall y. \exists w. \forall x. \neg p(x, y) \lor \neg p(x, z) \lor p(x, w)$$

$$G': \exists w. \forall x. \forall y. \cdots$$

Decidability of FOL

- FOL is undecidable (Turing & Church) There does not exist an algorithm for deciding if a FOL formula F is {valid, satisfiable}; i.e., that always halts and says "yes" if F is {valid, satisfiable} or "no" if F is {invalid, unsatisfiable}.
- FOL is semi-decidable

There is a procedure that always halts and says "yes" if F is {valid, unsatisfiable}, but may not halt if F is {invalid, satisfiable}.

On the other hand,

PL is decidable

There does exist an algorithm for deciding if a PL formula F is {valid, satisfiable}; e.g., the truth-table procedure.

Semantic Argument Method

To show FOL formula F is valid, assume $I \not\models F$ and derive a contradiction $I \models \bot$ in all branches

Method is sound

If every branch of a semantic argument proof reaches $I \models \bot$, then F is valid

Method is complete
 Each valid formula F has a semantic argument proof in which every branch reaches I ⊨ ⊥