
CS156: The Calculus of

Computation
Zohar Manna
Winter 2010

Chapter 2: First-Order Logic (FOL)

Page 1 of 37

First-Order Logic (FOL)

Also called Predicate Logic or Predicate Calculus

FOL Syntax

variables x , y , z , · · ·
constants a, b, c , · · ·
functions f , g , h, · · ·
terms variables, constants or

n-ary function applied to n terms as arguments
a, x , f (a), g(x , b), f (g(x , f (b)));

(
(

(
(

(
(

((

f (g(x , f (b, y))) ??
predicates p, q, r , · · ·

atom ⊤, ⊥, or an n-ary predicate applied to n terms
literal atom or its negation

p(f (x), g(x , f (x))), ¬p(f (x), g(x , f (x)))

Note: 0-ary functions: constants
0-ary predicates (propositional variables): P, Q, R, . . .

Page 2 of 37

quantifiers

existential quantifier ∃x . F [x]
“there exists an x such that F [x]”
Note: the dot notation (∃x .,∀x .) means the scope
of the quantifier should extend as far as possible.

universal quantifier ∀x . F [x]
“for all x , F [x]”

FOL formula

literal,
application of logical connectives (¬,∨,∧,→,↔) to formulae,
or application of a quantifier to a formula

Page 3 of 37

Example: FOL formula

∀x . p(f (x), x) → (∃y . p(f (g(x , y)), g(x , y))
︸ ︷︷ ︸

G

) ∧ q(x , f (x))

︸ ︷︷ ︸

F

The scope of ∀x is F .
The scope of ∃y is G .
The formula reads:

“for all x,
if p(f (x), x)
then there exists a y such that p(f (g(x , y)), g(x , y))
and q(x , f (x))”

Page 4 of 37

FOL Semantics

An interpretation I : (DI , αI) consists of:
◮ Domain DI

non-empty set of values or objects

cardinality |DI | deck of cards (finite)
integers (countably infinite)
reals (uncountably infinite)

◮ Assignment αI

◮ each variable x assigned value xI ∈ DI

◮ each n-ary function f assigned

fI : Dn

I → DI

In particular, each constant a (0-ary function) assigned value
aI ∈ DI

◮ each n-ary predicate p assigned

pI : Dn

I → {true, false}

In particular, each propositional variable P (0-ary predicate)
assigned truth value (true, false)

Page 5 of 37

Example: F : p(f (x , y), z) → p(y , g(z , x))

Interpretation I : (DI , αI) with

DI = Z = {· · · ,−2,−1, 0, 1, 2, · · · }

αI :

{

f 7→ +, g 7→ −, p 7→>,

x 7→ 13, y 7→ 42, z 7→ 1

}

Therefore, we can write

FI : 13 + 42 > 1 → 42 > 1 − 13.

F is true under I .

Page 6 of 37

Semantics: Quantifiers

An x-variant of interpretation I : (DI , αI) is an
interpretation J : (DJ , αJ) such that

◮ DI = DJ

◮ αI [y] = αJ [y] for all symbols y , except possibly x

That is, I and J agree on everything except possibly
the value of x .

Denote by J : I ⊳ {x 7→ v} the x-variant of I in which αJ [x] = v
for some v ∈ DI . Then

◮ I |= ∀x . F iff for all v ∈ DI , I ⊳ {x 7→ v} |= F

◮ I |= ∃x . F iff there exists v ∈ DI , s.t. I ⊳ {x 7→ v} |= F

Page 7 of 37

Example: Consider

F : ∃x . f (x) = g(x)

and the interpretation

I : (D : {◦, •}, αI)

in which

αI : {f (◦) 7→ ◦, f (•) 7→ •, g(◦) 7→ •, g(•) 7→ ◦}.

The truth value of F under I is false; i.e., I [F] = false.

Page 8 of 37

Satisfiability and Validity I

F is satisfiable iff there exists I s.t. I |= F

F is valid iff for all I , I |= F

F is valid iff ¬F is unsatisfiable

Semantic rules: given an interpretation I with domain DI ,

I |= ∀x . F [x]

I ⊳ {x 7→ v} |= F [x]
for any v ∈ DI

I 6|= ∀x . F [x]

I ⊳ {x 7→ v} 6|= F [x]
for a fresh v ∈ DI

I |= ∃x . F [x]

I ⊳ {x 7→ v} |= F [x]
for a fresh v ∈ DI

I 6|= ∃x . F [x]

I ⊳ {x 7→ v} 6|= F [x]
for any v ∈ DI

Page 9 of 37

Contradiction rule

A contradiction exists if two variants of the original interpretation I

disagree on the truth value of an n-ary predicate p for a given
tuple of domain values:

J : I ⊳ · · · |= p(s1, . . . , sn)

K : I ⊳ · · · 6|= p(t1, . . . , tn)

I |= ⊥

for i ∈ {1, . . . , n}, αJ [si] = αK [ti]

Intuition: The variants J and K are constructed only through the
rules for quantification. Hence, the truth value of p on the given
tuple of domain values is already established by I . Therefore, the
disagreement between J and K on the truth value of p indicates a
problem with I .

Page 10 of 37

Example: Is

F : (∀x . p(x)) ↔ (¬∃x . ¬p(x))

valid?

Suppose not. Then there is an I such that I 6|= F (assumption).

First case:

1a. I 6|= (∀x . p(x))

→ (¬∃x . ¬p(x)) assumption and ↔

2a. I |= ∀x . p(x) 1a and →

3a. I 6|= ¬∃x . ¬p(x) 1a and →

4a. I |= ∃x . ¬p(x) 3a and ¬

5a. I ⊳ {x 7→ v} |= ¬p(x) 4a and ∃, v∈ DI fresh

6a. I ⊳ {x 7→ v} 6|= p(x) 5a and ¬

7a. I ⊳ {x 7→ v} |= p(x) 2a and ∀

6a and 7a are contradictory.
Page 11 of 37

Example (continued):

Second case:

1b. I 6|= (¬∃x . ¬p(x))

→ (∀x . p(x)) assumption and ↔

2b. I 6|= ∀x . p(x) 1b and →

3b. I |= ¬∃x . ¬p(x) 1b and →

4b. I ⊳ {x 7→ v} 6|= p(x) 2b and ∀, v∈ DI fresh

5b. I 6|= ∃x . ¬p(x) 3b and ¬

6b. I ⊳ {x 7→ v} 6|= ¬p(x) 5b and ∃

7b. I ⊳ {x 7→ v} |= p(x) 6b and ¬

4b and 7b are contradictory.
Both cases end in contradictions for arbitrary I . Thus F is valid.

Page 12 of 37

Example: Prove
F : p(a) → ∃x . p(x)

is valid.

Assume otherwise; i.e., F is false under interpretation I : (DI , αI):

1. I 6|= F assumption

2. I |= p(a) 1 and →

3. I 6|= ∃x . p(x) 1 and →

4. I ⊳ {x 7→ αI [a]} 6|= p(x) 3 and ∃

2 and 4 are contradictory. Thus, F is valid.

Page 13 of 37

Translations of English Sentences (famous theorems) into FOL

◮ The length of one side of a triangle is less than the sum of the
lengths of the other two sides

∀x , y , z . triangle(x , y , z) → length(x) < length(y)+length(z)

◮ Fermat’s Last Theorem.

∀n. integer(n) ∧ n > 2

→ ∀x , y , z .

integer(x) ∧ integer(y) ∧ integer(z)

∧x > 0 ∧ y > 0 ∧ z > 0

→ exp(x , n) + exp(y , n) 6= exp(z , n)

Page 14 of 37

Example: Show that

F : (∀x . p(x , x)) → (∃x . ∀y . p(x , y))

is invalid.

Find interpretation I such that F is false under I .

Choose DI = {0, 1}
pI = {(0, 0), (1, 1)} i.e., pI (0, 0) and pI (1, 1) are true

pI (0, 1) and pI (1, 0) are false

I [∀x . p(x , x)] = true and I [∃x . ∀y . p(x , y)] = false.

We found a falsifying interpretation for F , therefore F is invalid.

Is F : (∀x . p(x , x)) → (∀x . ∃y . p(x , y)) valid?

Page 15 of 37

Substitution

Suppose we want to replace one term with another in a formula;
e.g., we want to rewrite

F : ∀y . (p(x , y) → p(y , x))

as follows:
G : ∀y . (p(a, y) → p(y , a)).

We call the mapping from x to a a substitution denoted as

σ : {x 7→ a}.

We write Fσ for the formula G .

Another convenient notation is F [x] for a formula containing the
variable x and F [a] for Fσ.

Page 16 of 37

Substitution

Definition (Substitution)

A substitution is a mapping from terms to terms; e.g.,

σ : {t1 7→ s1, . . . , tn 7→ sn}.

By Fσ we denote the application of σ to formula F ;
i.e., the formula F where all occurrences of t1, . . . , tn are
replaced by s1, . . . , sn.

For a formula named F [x] we write F [t] as shorthand for
F [x]{x 7→ t}.

Page 17 of 37

Renaming

Replace x in ∀x by x ′ and all free occurrences1 of x in G [x], the
scope of ∀x , by x ′:

∀x . G [x] ⇔ ∀x ′. G [x ′].

Same for ∃x :
∃x . G [x] ⇔ ∃x ′. G [x ′],

where x ′ is a fresh variable.

Example (renaming):

(∀x . p(x) → ∃x . q(x)) ∧ r(x)

↑ ∀x ↑ ∃x ↑ free

replace by the equivalent formula

(∀y . p(y) → ∃z . q(z)) ∧ r(x)

1Note: these occurrences are free in G [x], not in ∀x . G [x].
Page 18 of 37

Safe Substitution I

Care has to be taken in the presence of quantifiers:

F [x] : ∃y . y = Succ(x)

↑ free

What is F [y]?

We need to rename bound variables occurring in the substitution:

F ′[x] : ∃y ′. y ′ = Succ(x)

Bound variable renaming does not change the models of a formula:

(∃y . y = Succ(x)) ⇔ (∃y ′. y ′ = Succ(x))

Then under safe substitution

F ′[y] : ∃y ′. y ′ = Succ(y)

Page 19 of 37

Safe Substitution II
Example: Consider the following formula and substitution:

F : (∀x . p(x ,y)) → q(f (y), x)

↑ free ↑ free↑

Note that the only bound variable in F is the x in p(x , y). The
variables x and y are free everywhere else.

σ : {y 7→ f (x), f (y) 7→ h(x , y), x 7→ g(x)}.

What is Fσ? Use safe substitution!

1. Rename the bound x with a fresh name x ′:

F ′ : (∀x ′. p(x ′, y)) → q(f (y), x)

2. Fσ : (∀x ′. p(x ′, f (x))) → q(h(x , y), g(x))

Page 20 of 37

Safe Substitution III
Proposition (Substitution of Equivalent Formulae)

σ : {F1 7→ G1, · · · , Fn 7→ Gn}

s.t. for each i , Fi ⇔ Gi

If Fσ is a safe substitution, then F ⇔ Fσ.

Page 21 of 37

Semantic Tableaux (with Substitution)

We assume that there are infinitely many constant symbols.
The following rules are used for quantifiers:

I |= ∀x . F [x]

I |= F [t]
for any term t

I 6|= ∀x . F [x]

I 6|= F [a]
for a fresh constant a

I |= ∃x . F [x]

I |= F [a]
for a fresh constant a

I 6|= ∃x . F [x]

I 6|= F [t]
for any term t

The contradiction rule is similar to that of propositional logic:

I |= p(t1, . . . , tn)

I 6|= p(t1, . . . , tn)

I |= ⊥
Page 22 of 37

Example: Show that

F : (∃x . ∀y . p(x , y)) → (∀x . ∃y . p(y , x)) is valid.

Rename to F ′ : (∃x . ∀y . p(x , y)) → (∀x ′. ∃y ′. p(y ′, x ′)).

Assume otherwise.

1. I 6|= F ′ assumption

2. I |= ∃x . ∀y . p(x , y) 1 and →

3. I 6|= ∀x ′. ∃y ′. p(y ′, x ′) 1 and →

4. I |= ∀y . p(a, y) 2, ∃ (a fresh)

5. I 6|= ∃y ′. p(y ′, b) 3, ∀ (b fresh)

6. I |= p(a, b) 4, ∀ (t := b)

7. I 6|= p(a, b) 5, ∃ (t := a)

8. I |= ⊥ 6, 7 contradictory

Thus, the formula is valid.

Page 23 of 37

Example: Is F : ∃x , y . (p(x , y) → (p(y , x) → ∀z .p(z , z)))
valid?

Assume I falsifies F and apply semantic argument:

1. I 6|= ∃x , y . (p(x , y) → (p(y , x) → ∀z .p(z , z)))

assumption

2. I 6|= (p(t1, t2) → (p(t2, t1) → ∀z .p(z , z)))

1, ∃, temporary x 7→ t1, y 7→ t2

3. I |= p(t1, t2) 2 and →

4. I 6|= p(t2, t1) → ∀z .p(z , z) 2 and →

5. I |= p(t2, t1) 4, →

6. I 6|= ∀z .p(z , z) 4, →

7. I 6|= p(a, a) 6, ∀, fresh z 7→ a

8. I |= p(a, a) 5, t1 7→ a, t2 7→ a

9. I |= ⊥ 7, 8, contradiction

Page 24 of 37

Contradiction. So, F is valid

Page 25 of 37

Example: Is F : (∀x , y .p(x , y) → p(y , x)) → ∀z .p(z , z)
valid?

Assume I falsifies F ′ and apply semantic argument:

1. I 6|= (∀x , y .p(x , y) → p(y , x)) → ∀z .p(z , z)

assumption

2. I |= ∀x , y .p(x , y) → p(y , x)

1, →

3. I 6|= ∀z .p(z , z)

1, →

4. I 6|= p(a, a)

3, ∀, fresh z 7→ a

5. I |= p(a, a) → p(a, a)

2, ∀, any x 7→ a, y 7→ a

Page 26 of 37

We branch on 5 ...

6a. I |= p(a, a) 5, →

7a. I |= ⊥ 4, 6a

6b. I 6|= p(a, a) 5, →

7b. No contradiction for this branch

Falsifying interpretation: Domain: D = {0, 1} and
PI (0, 0) = PI (0, 1) = PI (1, 0) = PI (1, 1) = false.
Since PI (0, 0) and PI (1, 1) are false, ∀z .p(z , z) is false,
∀x , y .p(x , y) → p(y , x) is true.
F is invalid

Page 27 of 37

Formula Schemata

Formula

(∀x . p(x)) ↔ (¬∃x . ¬p(x))

Formula Schema

H1 : (∀x . F) ↔ (¬∃x . ¬F)
↑ place holder

Formula Schema (with side condition)

H2 : (∀x . F) ↔ F provided x /∈ free(F)

Valid Formula Schema

H is valid iff it is valid for any FOL formula Fi

obeying the side conditions.

Example: H1 and H2 are valid.

Page 28 of 37

Substitution σ of H

σ : {F1 7→ G1, . . . ,Fn 7→ Gn}

mapping place holders Fi of H to FOL formulae Gi ,
obeying the side conditions of H

Proposition (Formula Schema)

If H is a valid formula schema, and
σ is a substitution obeying H’s side conditions,

then Hσ is also valid.

Example:

H : (∀x . F) ↔ F provided x /∈ free(F) is valid.

σ : {F 7→ p(y)} obeys the side condition.

Therefore Hσ : ∀x . p(y) ↔ p(y) is valid.

Page 29 of 37

Proving Validity of Formula Schemata I

Example: Prove validity of

H : (∀x . F) ↔ F provided x /∈ free(F).

Proof by contradiction. Consider the two directions of ↔ .

◮ First case

1. I |= ∀x . F assumption

2. I 6|= F assumption

3. I |= F 1, ∀, since x 6∈ free(F)

4. I |= ⊥ 2, 3

Page 30 of 37

Proving Validity of Formula Schemata II
◮ Second Case

1. I 6|= ∀x . F assumption

2. I |= F assumption

3. I |= ∃x . ¬F 1 and ¬

4. I |= ¬F 3, ∃, since x 6∈ free(F)

5. I |= ⊥ 2, 4

Hence, H is a valid formula schema.

Page 31 of 37

Normal Forms

1. Negation Normal Forms (NNF)

Apply the additional equivalences (left-to-right)

¬∀x . F [x] ⇔ ∃x . ¬F [x]

¬∃x . F [x] ⇔ ∀x . ¬F [x]

when converting PL formulae into NNF.

Example: G : ∀x . (∃y . p(x , y) ∧ p(x , z)) → ∃w .p(x , w) .

1. ∀x . (∃y . p(x , y) ∧ p(x , z)) → ∃w . p(x , w)

2. ∀x . ¬(∃y . p(x , y) ∧ p(x , z)) ∨ ∃w . p(x , w)
F1 → F2 ⇔ ¬F1 ∨ F2

3. ∀x . (∀y . ¬(p(x , y) ∧ p(x , z))) ∨ ∃w . p(x , w)
¬∃x . F [x] ⇔ ∀x . ¬F [x]

4. G ′ : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃w . p(x , w)

G ′ in NNF and G ′ ⇔ G .
Page 32 of 37

2. Prenex Normal Form (PNF)

All quantifiers appear at the beginning of the formula

Q1x1 · · ·Qnxn. F [x1, · · · , xn]

where Qi ∈ {∀, ∃} and F is quantifier-free.

Every FOL formula F can be transformed to formula F ′ in PNF
s.t. F ′ ⇔ F :

◮ Write F in NNF,

◮ rename quantified variables to fresh names, and

◮ move all quantifiers to the front. Be careful!

Page 33 of 37

Example: Find equivalent PNF of

F : ∀x . ¬(∃y . p(x , y) ∧ p(x , z)) ∨ ∃y . p(x , y)
↑ to the end of the formula

1. Write F in NNF

F1 : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃y . p(x , y)

2. Rename quantified variables to fresh names

F2 : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃w . p(x , w)
↑Both are in the scope of ∀x↑

3. Remove all quantifiers to produce quantifier-free formula

F3 : ¬p(x , y) ∨ ¬p(x , z) ∨ p(x , w)

Page 34 of 37

4. Add the quantifiers before F3

F4 : ∀x . ∀y . ∃w . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x , w)

Alternately,

F ′
4 : ∀x . ∃w . ∀y . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x , w)

Note: In F2, ∀y is in the scope of ∀x , therefore the order of
quantifiers must be · · · ∀x · · · ∀y · · · .
Also, ∃w is in the scope of ∀x , therefore the order of the
quantifiers must be · · · ∀x · · · ∃w · · ·

F4 ⇔ F and F ′
4

⇔ F

Note: However, possibly, G < F and G ′
< F , for

G : ∀y . ∃w . ∀x . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x , w)

G ′ : ∃w . ∀x . ∀y . · · · .

Page 35 of 37

Decidability of FOL

◮ FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL
formula F is {valid, satisfiable}; i.e., that always halts and
says “yes” if F is {valid, satisfiable} or “no” if F is {invalid,
unsatisfiable}.

◮ FOL is semi-decidable
There is a procedure that always halts and says “yes” if F is
{valid, unsatisfiable}, but may not halt if F is {invalid,
satisfiable}.

On the other hand,

◮ PL is decidable
There does exist an algorithm for deciding if a PL formula F

is {valid, satisfiable}; e.g., the truth-table procedure.

Page 36 of 37

Semantic Argument Method

To show FOL formula F is valid, assume I 6|= F and derive a
contradiction I |= ⊥ in all branches

◮ Method is sound
If every branch of a semantic argument proof reaches I |= ⊥,
then F is valid

◮ Method is complete
Each valid formula F has a semantic argument proof in which
every branch reaches I |= ⊥

Page 37 of 37

