## CS156: The Calculus of

## Computation <br> Zohar Manna <br> Winter 2010

Chapter 2: First-Order Logic (FOL)

## First-Order Logic (FOL)

## Also called Predicate Logic or Predicate Calculus

FOL Syntax

| $\underline{\text { variables }}$ | $x, y, z, \cdots$ |
| :--- | :--- |
| constants | $a, b, c, \cdots$ |
| functions | $f, g, h, \cdots$ |

terms variables, constants or
n -ary function applied to n terms as arguments
$a, x, f(a), g(x, b), f(g(x, f(b))) ; f(g(x, f(b, y)))$ ??
predicates
$p, q, r, \cdots$
$T, \perp$, or an n -ary predicate applied to n terms
atom or its negation
$p(f(x), g(x, f(x))), \quad \neg p(f(x), g(x, f(x)))$
Note: 0-ary functions: constants
0 -ary predicates (propositional variables): $P, Q, R, \ldots$

## quantifiers

existential quantifier $\exists x . F[x]$
"there exists an $x$ such that $F[x]$ "
Note: the dot notation ( $\exists x ., \forall x$.) means the scope
of the quantifier should extend as far as possible.
universal quantifier $\quad \forall x . F[x]$
"for all $x, F[x]$ "
FOL formula
literal, application of logical connectives $(\neg, \vee, \wedge, \rightarrow, \leftrightarrow)$ to formulae, or application of a quantifier to a formula

## Example: FOL formula



The scope of $\forall x$ is $F$.
The scope of $\exists y$ is $G$.
The formula reads:
"for all x ,
if $p(f(x), x)$
then there exists a $y$ such that $p(f(g(x, y)), g(x, y))$
and $q(x, f(x)) "$

## FOL Semantics

An interpretation I: $\left(D_{l}, \alpha_{l}\right)$ consists of:

- Domain $D_{l}$
non-empty set of values or objects
cardinality $\left|D_{l}\right|$ deck of cards (finite) integers (countably infinite)
reals (uncountably infinite)
- Assignment $\alpha_{\text {I }}$
- each variable $x$ assigned value $x_{l} \in D_{l}$
- each n -ary function $f$ assigned

$$
f_{l}: D_{1}^{n} \rightarrow D_{1}
$$

In particular, each constant a (0-ary function) assigned value $a_{l} \in D_{l}$

- each n -ary predicate $p$ assigned

$$
p_{I}: D_{I}^{n} \rightarrow\{\text { true }, \text { false }\}
$$

In particular, each propositional variable $P$ (0-ary predicate) assigned truth value (true, false)

Example: $\quad F: p(f(x, y), z) \rightarrow p(y, g(z, x))$
Interpretation I: $\left(D_{I}, \alpha_{I}\right)$ with

$$
\begin{aligned}
& D_{I}=\mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\} \\
& \alpha_{I}:\left\{\begin{array}{c}
f \mapsto+, g \mapsto-, p \mapsto>, \\
x \mapsto 13, y \mapsto 42, z \mapsto 1
\end{array}\right\}
\end{aligned}
$$

Therefore, we can write

$$
F_{I}: 13+42>1 \rightarrow 42>1-13
$$

$F$ is true under $l$.

## Semantics: Quantifiers

An $x$-variant of interpretation $I:\left(D_{I}, \alpha_{I}\right)$ is an interpretation $J:\left(D_{J}, \alpha_{J}\right)$ such that

- $D_{I}=D_{J}$
- $\alpha_{l}[y]=\alpha_{J}[y]$ for all symbols $y$, except possibly $x$

That is, I and $J$ agree on everything except possibly the value of $x$.

Denote by $J: I \triangleleft\{x \mapsto v\}$ the $x$-variant of $I$ in which $\alpha_{J}[x]=v$ for some $v \in D_{l}$. Then

- $I \vDash \forall x$. $F \quad$ iff for all $v \in D_{l}, I \triangleleft\{x \mapsto v\} \models F$
- $I \models \exists x . F \quad$ iff there exists $\mathrm{v} \in D_{l}$, s.t. $l \triangleleft\{x \mapsto \mathrm{v}\} \models F$


## Example: Consider

$$
F: \exists x . f(x)=g(x)
$$

and the interpretation

$$
I:\left(D:\{\circ, \bullet\}, \alpha_{l}\right)
$$

in which

$$
\alpha_{I}:\{f(\circ) \mapsto 0, f(\bullet) \mapsto \bullet, g(\circ) \mapsto \bullet, g(\bullet) \mapsto \circ\} .
$$

The truth value of $F$ under $I$ is false; i.e., $I[F]=$ false.

## Satisfiability and Validity I

$F$ is satisfiable iff there exists I s.t. I $\models F$
$F$ is valid iff for all $I, I \models F$
$F$ is valid iff $\neg F$ is unsatisfiable
Semantic rules: given an interpretation / with domain $D_{l}$,

$$
\begin{gathered}
\frac{I \models \forall x . F[x]}{I \triangleleft\{x \mapsto v\} \models F[x]} \text { for any } v \in D_{l} \\
\frac{I \not \models \forall x . F[x]}{I \triangleleft\{x \mapsto v\} \not \models F[x]} \\
\frac{I \models \exists x . F[x]}{I \triangleleft\{x \mapsto v\} \models F[x]} \\
\frac{I \not \models \exists x . F[x]}{l \triangleleft\{x \mapsto v\} \not \models F[x]}
\end{gathered} \text { for a fresh } v \in D_{l} \text { fresh } v \in D_{l}
$$

## Contradiction rule

A contradiction exists if two variants of the original interpretation / disagree on the truth value of an $n$-ary predicate $p$ for a given tuple of domain values:

$$
\begin{aligned}
& J: I \triangleleft \cdots \models p\left(s_{1}, \ldots, s_{n}\right) \\
& K: I \triangleleft \cdots \not \models p\left(t_{1}, \ldots, t_{n}\right)
\end{aligned} \quad \text { for } i \in\{1, \ldots, n\}, \alpha_{J}\left[s_{i}\right]=\alpha_{K}\left[t_{i}\right]
$$

Intuition: The variants $J$ and $K$ are constructed only through the rules for quantification. Hence, the truth value of $p$ on the given tuple of domain values is already established by $I$. Therefore, the disagreement between $J$ and $K$ on the truth value of $p$ indicates a problem with $I$.

Example: Is

$$
F:(\forall x . p(x)) \leftrightarrow(\neg \exists x . \neg p(x))
$$

valid?
Suppose not. Then there is an $I$ such that $I \not \models F$ (assumption).
First case:

| 1a. | $I$ | $\not \models$ | $(\forall x . p(x))$ |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | $\rightarrow(\neg \exists x . \neg p(x))$ |  |
| 2a. | $I$ | $\models$ | $\forall x . p(x)$ | assumption and $\leftrightarrow$ |
| 3a. | $I$ | $\not \models$ | $\neg \exists x . \neg p(x)$ | 1a and $\rightarrow$ |
| 4a. | $I$ | $\models$ | $\exists x . \neg p(x)$ | 1a and $\rightarrow$ |
| 5a. | $I \triangleleft\{x \mapsto v\}$ | $\models$ | $\neg p(x)$ | 3a and $\neg$ |
| 6a. | $I \triangleleft\{x \mapsto v\}$ | $\not \models$ | $p(x)$ | 4a and $\exists, \mathrm{v} \in D_{l}$ fresh |
| 7a. | $I \triangleleft\{x \mapsto v\}$ | $\models$ | $p(x)$ | 5a and $\neg$ |

6a and 7a are contradictory.

Example (continued):
Second case:


4 b and 7 b are contradictory.
Both cases end in contradictions for arbitrary $I$. Thus $F$ is valid.

Example: Prove

$$
F: p(a) \rightarrow \exists x \cdot p(x)
$$

is valid.
Assume otherwise; i.e., $F$ is false under interpretation $I:\left(D_{l}, \alpha_{l}\right)$ :

| 1. | $I$ | $\not \models$ | $F$ |
| :--- | ---: | :--- | :--- |
| 2. | $I$ | $\models$ | assumption |
| 3. | $I$ | $\not \models$ | $\exists x . p(x)$ |
| 4. | $I \triangleleft\left\{x \mapsto \alpha_{I}[a]\right\}$ | $\not \models$ | 1 and $\rightarrow$ |
|  |  | $p(x)$ | 3 and $\exists$ |

2 and 4 are contradictory. Thus, $F$ is valid.

Translations of English Sentences (famous theorems) into FOL

- The length of one side of a triangle is less than the sum of the lengths of the other two sides
$\forall x, y, z . \operatorname{triangle}(x, y, z) \rightarrow$ length $(x)<$ length $(y)+$ length $(z)$
- Fermat's Last Theorem.

$$
\begin{aligned}
& \forall n . \text { integer }(n) \wedge n>2 \\
& \qquad \begin{array}{l}
\rightarrow \quad \forall x, y, z \\
\quad \text { integer }(x) \wedge \text { integer }(y) \wedge \text { integer }(z) \\
\\
\wedge x>0 \wedge y>0 \wedge z>0 \\
\quad \rightarrow \exp (x, n)+\exp (y, n) \neq \exp (z, n)
\end{array}
\end{aligned}
$$

Example: Show that

$$
F:(\forall x \cdot p(x, x)) \rightarrow(\exists x \cdot \forall y \cdot p(x, y))
$$

is invalid.
Find interpretation $I$ such that $F$ is false under $I$.
Choose $\quad D_{I}=\{0,1\}$

$$
\begin{array}{ll}
p_{I}=\{(0,0),(1,1)\} & \text { i.e., } p_{l}(0,0) \text { and } p_{l}(1,1) \text { are true } \\
p_{l}(0,1) \text { and } p_{l}(1,0) \text { are false }
\end{array}
$$

$I[\forall x \cdot p(x, x)]=$ true $\quad$ and $\quad I[\exists x . \forall y \cdot p(x, y)]=$ false.
We found a falsifying interpretation for $F$, therefore $F$ is invalid.
Is $F:(\forall x . p(x, x)) \rightarrow(\forall x . \exists y . p(x, y))$ valid?

## Substitution

Suppose we want to replace one term with another in a formula; e.g., we want to rewrite

$$
F: \forall y \cdot(p(x, y) \rightarrow p(y, x))
$$

as follows:

$$
G: \forall y \cdot(p(a, y) \rightarrow p(y, a)) .
$$

We call the mapping from $x$ to $a$ a substitution denoted as

$$
\sigma:\{x \mapsto a\}
$$

We write $F \sigma$ for the formula $G$.

Another convenient notation is $F[x]$ for a formula containing the variable $x$ and $F[a]$ for $F \sigma$.

## Substitution

## Definition (Substitution)

A substitution is a mapping from terms to terms; e.g.,

$$
\sigma:\left\{t_{1} \mapsto s_{1}, \ldots, t_{n} \mapsto s_{n}\right\}
$$

By $F \sigma$ we denote the application of $\sigma$ to formula $F$;
i.e., the formula $F$ where all occurrences of $t_{1}, \ldots, t_{n}$ are replaced by $s_{1}, \ldots, s_{n}$.

For a formula named $F[x]$ we write $F[t]$ as shorthand for $F[x]\{x \mapsto t\}$.

## Renaming

Replace $x$ in $\forall x$ by $x^{\prime}$ and all free occurrences ${ }^{1}$ of $x$ in $G[x]$, the scope of $\forall x$, by $x^{\prime}$ :

$$
\forall x . G[x] \quad \Leftrightarrow \quad \forall x^{\prime} \cdot G\left[x^{\prime}\right]
$$

Same for $\exists x$ :

$$
\exists x \cdot G[x] \quad \Leftrightarrow \quad \exists x^{\prime} \cdot G\left[x^{\prime}\right]
$$

where $x^{\prime}$ is a fresh variable.
Example (renaming):

$$
\begin{array}{ccc}
(\forall x \cdot p(x) \rightarrow & \exists x \cdot q(x)) \wedge & r(x) \\
\uparrow \forall x & \uparrow \exists x & \uparrow \text { free }
\end{array}
$$

replace by the equivalent formula

$$
(\forall y \cdot p(y) \rightarrow \exists z \cdot q(z)) \wedge r(x)
$$

${ }^{1}$ Note: these occurrences are free in $G[x]$, not in $\forall x . G[x]$.
Page 18 of 37

## Safe Substitution I

Care has to be taken in the presence of quantifiers:

$$
F[x]: \exists y \cdot y=\operatorname{Succ}(x)
$$

$\uparrow$ free
What is $F[y]$ ?
We need to rename bound variables occurring in the substitution:

$$
F^{\prime}[x]: \exists y^{\prime} \cdot y^{\prime}=\operatorname{Succ}(x)
$$

Bound variable renaming does not change the models of a formula:

$$
(\exists y \cdot y=\operatorname{Succ}(x)) \Leftrightarrow\left(\exists y^{\prime} \cdot y^{\prime}=\operatorname{Succ}(x)\right)
$$

Then under safe substitution

$$
F^{\prime}[y]: \exists y^{\prime} \cdot y^{\prime}=\operatorname{Succ}(y)
$$

## Safe Substitution II

Example: Consider the following formula and substitution:

$$
\begin{array}{rcr}
F:(\forall x . p(x, y)) & \rightarrow & q(f(y), \quad x) \\
\uparrow \text { free } & \uparrow \text { free } \uparrow
\end{array}
$$

Note that the only bound variable in $F$ is the $x$ in $p(x, y)$. The variables $x$ and $y$ are free everywhere else.

$$
\sigma:\{y \mapsto f(x), f(y) \mapsto h(x, y), x \mapsto g(x)\}
$$

What is $F \sigma$ ? Use safe substitution!

1. Rename the bound $x$ with a fresh name $x^{\prime}$ :

$$
F^{\prime}:\left(\forall x^{\prime} \cdot p\left(x^{\prime}, y\right)\right) \rightarrow q(f(y), x)
$$

2. $F \sigma:\left(\forall x^{\prime} \cdot p\left(x^{\prime}, f(x)\right)\right) \rightarrow q(h(x, y), g(x))$

## Safe Substitution III

Proposition (Substitution of Equivalent Formulae)

$$
\sigma:\left\{F_{1} \mapsto G_{1}, \cdots, F_{n} \mapsto G_{n}\right\}
$$

s.t. for each $i, F_{i} \Leftrightarrow G_{i}$

If $F \sigma$ is a safe substitution, then $F \Leftrightarrow F \sigma$.

## Semantic Tableaux (with Substitution)

We assume that there are infinitely many constant symbols.
The following rules are used for quantifiers:

$$
\begin{gathered}
\frac{I \models \forall x . F[x]}{I \models F[t]} \text { for any term } t \\
\frac{I \not \models \forall x . F[x]}{I \not \models F[a]} \text { for a fresh constant a } \\
\frac{I \models \exists x . F[x]}{I \models F[a]} \text { for a fresh constant } a \\
\frac{I \not \models \exists x . F[x]}{I \not \models F[t]} \text { for any term } t
\end{gathered}
$$

The contradiction rule is similar to that of propositional logic:
$I \models p\left(t_{1}, \ldots, t_{n}\right)$
$I \not \models p\left(t_{1}, \ldots, t_{n}\right)$
$I \models \perp$

Example: Show that
$F:(\exists x . \forall y \cdot p(x, y)) \rightarrow(\forall x . \exists y \cdot p(y, x))$ is valid.
Rename to $F^{\prime}:(\exists x . \forall y . p(x, y)) \rightarrow\left(\forall x^{\prime} . \exists y^{\prime} \cdot p\left(y^{\prime}, x^{\prime}\right)\right)$.
Assume otherwise.

$$
\begin{aligned}
& \text { 1. I } \neq F^{\prime} \\
& \text { 2. I } \models \exists x . \forall y . p(x, y) \\
& 1 \text { and } \rightarrow \\
& \text { 3. I } \neq \forall x^{\prime} . \exists y^{\prime} \cdot p\left(y^{\prime}, x^{\prime}\right) \\
& 1 \text { and } \rightarrow \\
& \text { 4. } I \models \forall y . p(a, y) \\
& \text { 2, } \exists \text { ( } a \text { fresh }) \\
& \text { 5. I } \neq \exists y^{\prime} \cdot p\left(y^{\prime}, b\right) \\
& \text { 6. } I \vDash p(a, b) \\
& \text { 7. } I \neq p(a, b) \\
& \text { 8. I } \models \perp \\
& \text { 3, } \forall \text { ( } b \text { fresh) } \\
& \text { 4, } \forall(t:=b) \\
& \text { 5, } \exists(t:=a) \\
& \text { 6, } 7 \text { contradictory }
\end{aligned}
$$

Thus, the formula is valid.

Example: Is $F: \exists x, y \cdot(p(x, y) \rightarrow(p(y, x) \rightarrow \forall z \cdot p(z, z)))$ valid?

Assume I falsifies $F$ and apply semantic argument:

$$
\text { 1. I } \forall=\quad \exists x, y \cdot(p(x, y) \rightarrow(p(y, x) \rightarrow \forall z \cdot p(z, z)))
$$

2. I $\neq\left(p\left(t_{1}, t_{2}\right) \rightarrow\left(p\left(t_{2}, t_{1}\right) \rightarrow \forall z . p(z, z)\right)\right)$ $1, \exists$, temporary $x \mapsto t_{1}, y \mapsto t_{2}$
3. $I \models p\left(t_{1}, t_{2}\right)$

2 and $\rightarrow$
4. I $\neq p\left(t_{2}, t_{1}\right) \rightarrow \forall z . p(z, z) \quad 2$ and $\rightarrow$
5. $I \vDash p\left(t_{2}, t_{1}\right)$
$4, \rightarrow$
6. I $\mid=\forall z . p(z, z)$
7. $I \notin p(a, a)$
$4, \rightarrow$
8. $\quad I \vDash p(a, a)$

6, $\forall$, fresh $z \mapsto a$
9. $I \vDash \perp$

5, $t_{1} \mapsto a, t_{2} \mapsto a$
7, 8, contradiction
Page 24 of 37

Contradiction. So, $F$ is valid

Example: Is $F:(\forall x, y \cdot p(x, y) \rightarrow p(y, x)) \rightarrow \forall z \cdot p(z, z)$ valid?

Assume I falsifies $F^{\prime}$ and apply semantic argument:

$$
\begin{aligned}
& \text { 1. I } \neq(\forall x, y \cdot p(x, y) \rightarrow p(y, x)) \rightarrow \forall z \cdot p(z, z) \\
& \text { assumption } \\
& \text { 2. I } \vDash \forall x, y \cdot p(x, y) \rightarrow p(y, x) \\
& 1, \rightarrow \\
& \text { 3. I } \neq \forall z . p(z, z) \\
& 1, \rightarrow \\
& \text { 4. I } \neq p(a, a) \\
& \text { 3, } \forall \text {, fresh } z \mapsto a \\
& \text { 5. } I \models p(a, a) \rightarrow p(a, a) \\
& 2, \forall \text {, any } x \mapsto a, y \mapsto a
\end{aligned}
$$

We branch on 5 ...

$$
\begin{array}{rlll}
\text { 6a. } & l & =p(a, a) & \\
\text { 7a. } & I & =\perp & \\
\hline
\end{array}
$$

6b. I $\neq p(a, a) \quad 5, \rightarrow$
7b. No contradiction for this branch

Falsifying interpretation: Domain: $D=\{0,1\}$ and $P_{l}(0,0)=P_{l}(0,1)=P_{l}(1,0)=P_{l}(1,1)=$ false. Since $P_{l}(0,0)$ and $P_{l}(1,1)$ are false, $\forall z . p(z, z)$ is false, $\forall x, y \cdot p(x, y) \rightarrow p(y, x)$ is true.
F is invalid

## Formula Schemata

Formula

$$
(\forall x . p(x)) \leftrightarrow(\neg \exists x . \neg p(x))
$$

Formula Schema

$$
H_{1}:(\forall x . F) \leftrightarrow(\neg \exists x . \neg F)
$$

Formula Schema (with side condition)

$$
H_{2}:(\forall x . F) \leftrightarrow F \quad \text { provided } x \notin \operatorname{free}(F)
$$

Valid Formula Schema
$H$ is valid iff it is valid for any FOL formula $F_{i}$ obeying the side conditions.

Example: $H_{1}$ and $H_{2}$ are valid.

## Substitution $\sigma$ of $H$

$$
\sigma:\left\{F_{1} \mapsto G_{1}, \ldots, F_{n} \mapsto G_{n}\right\}
$$

mapping place holders $F_{i}$ of $H$ to FOL formulae $G_{i}$, obeying the side conditions of $H$

Proposition (Formula Schema)
If $H$ is a valid formula schema, and
$\sigma$ is a substitution obeying $H$ 's side conditions, then $H \sigma$ is also valid.

Example:
$H:(\forall x . F) \leftrightarrow F \quad$ provided $x \notin \operatorname{free}(F) \quad$ is valid.
$\sigma:\{F \mapsto p(y)\} \quad$ obeys the side condition.
Therefore $H \sigma: \forall x . p(y) \leftrightarrow p(y) \quad$ is valid.

## Proving Validity of Formula Schemata I

Example: Prove validity of

$$
H:(\forall x . F) \leftrightarrow F \quad \text { provided } x \notin \operatorname{free}(F)
$$

Proof by contradiction. Consider the two directions of $\leftrightarrow$.

- First case

| 1. | $I$ | $\models$ | $\forall x . F$ |  |
| :--- | :--- | :--- | :--- | :--- |
| 2. assumption |  |  |  |  |
| 3. | $I$ | $\prime$ | $\models$ |  |
| assumption |  |  |  |  |
| 4. | $I$ | $\models$ | $\perp$ | $1, \forall$, since $x \notin \operatorname{free}(F)$ |

## Proving Validity of Formula Schemata II

- Second Case

| 1. | $I$ | $\neq \forall x . F$ |  |
| :--- | :--- | :--- | :--- |
| 2. | $I$ | $=F$ |  |
| 3. | $I$ | $\models \exists x . \neg F$ |  |
| assumption |  |  |  |
| 4. | $I$ | $\models \neg F$ |  |
| 5. |  | $3, \exists$, since $x \notin \operatorname{free}(F)$ |  |
| 5. | $I$ | $\models \perp$ | 2,4 |

Hence, $H$ is a valid formula schema.

## Normal Forms

1. Negation Normal Forms (NNF)

Apply the additional equivalences (left-to-right)

$$
\begin{aligned}
& \neg \forall x . F[x] \Leftrightarrow \exists x . \neg F[x] \\
& \neg \exists x . F[x] \Leftrightarrow \forall x . \neg F[x]
\end{aligned}
$$

when converting PL formulae into NNF.
Example: $\quad G: \forall x .(\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists w \cdot p(x, w)$.

1. $\forall x \cdot(\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists w \cdot p(x, w)$
2. $\forall x . \neg(\exists y . p(x, y) \wedge p(x, z)) \vee \exists w \cdot p(x, w)$

$$
F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \vee F_{2}
$$

3. $\forall x \cdot(\forall y . \neg(p(x, y) \wedge p(x, z))) \vee \exists w . p(x, w)$

$$
\neg \exists x . F[x] \Leftrightarrow \forall x . \neg F[x]
$$

4. $G^{\prime}: \forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists w . p(x, w)$
$G^{\prime}$ in NNF and $G^{\prime} \Leftrightarrow G$.

## 2. Prenex Normal Form (PNF)

All quantifiers appear at the beginning of the formula

$$
Q_{1} x_{1} \cdots Q_{n} x_{n} . F\left[x_{1}, \cdots, x_{n}\right]
$$

where $Q_{i} \in\{\forall, \exists\}$ and $F$ is quantifier-free.
Every FOL formula $F$ can be transformed to formula $F^{\prime}$ in PNF s.t. $F^{\prime} \Leftrightarrow F$ :

- Write $F$ in NNF,
- rename quantified variables to fresh names, and
- move all quantifiers to the front. Be careful!

Example: Find equivalent PNF of

$$
\begin{aligned}
F: \forall x . & \neg(\exists y \cdot p(x, y) \wedge p(x, z)) \vee \exists y \cdot p(x, y) \\
& \uparrow \text { to the end of the formula }
\end{aligned}
$$

1. Write $F$ in NNF

$$
F_{1}: \forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists y . p(x, y)
$$

2. Rename quantified variables to fresh names

$$
F_{2}: \forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists w . p(x, w)
$$

${ }^{\uparrow}$ Both are in the scope of $\forall x^{\uparrow}$
3. Remove all quantifiers to produce quantifier-free formula

$$
F_{3}: \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

4. Add the quantifiers before $F_{3}$

$$
F_{4}: \forall x . \forall y . \exists w . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Alternately,

$$
F_{4}^{\prime}: \forall x . \exists w . \forall y . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Note: In $F_{2}, \forall y$ is in the scope of $\forall x$, therefore the order of quantifiers must be $\cdots \forall x \cdots \forall y \cdots$.
Also, $\exists w$ is in the scope of $\forall x$, therefore the order of the quantifiers must be $\cdots \forall x \cdots \exists w \cdots$

$$
F_{4} \Leftrightarrow F \text { and } F_{4}^{\prime} \Leftrightarrow F
$$

Note: However, possibly, $G \nLeftarrow F$ and $G^{\prime} \nLeftarrow F$, for

$$
\begin{gathered}
G: \forall y . \exists w . \forall x . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w) \\
G^{\prime}: \exists w \cdot \forall x . \forall y . \cdots .
\end{gathered}
$$

## Decidability of FOL

- FOL is undecidable (Turing \& Church)

There does not exist an algorithm for deciding if a FOL formula $F$ is $\{$ valid, satisfiable\}; i.e., that always halts and says "yes" if $F$ is \{valid, satisfiable\} or "no" if $F$ is \{invalid, unsatisfiable\}.

- FOL is semi-decidable

There is a procedure that always halts and says "yes" if $F$ is \{valid, unsatisfiable\}, but may not halt if $F$ is \{invalid, satisfiable\}.

On the other hand,

- PL is decidable

There does exist an algorithm for deciding if a PL formula $F$ is $\{$ valid, satisfiable\}; e.g., the truth-table procedure.

## Semantic Argument Method

To show FOL formula $F$ is valid, assume $I \not \vDash F$ and derive a contradiction $/ \models \perp$ in all branches

- Method is sound

If every branch of a semantic argument proof reaches $/ \models \perp$, then $F$ is valid

- Method is complete

Each valid formula $F$ has a semantic argument proof in which every branch reaches $I \models \perp$

