CS156: The Calculus of Computation Zohar Manna Winter 2010	$\label{eq:First-Order Theories I} \\ \hline First-order theory \mathcal{T} consists of $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
	The symbols of $\Sigma_{\mathcal{T}}$ are just symbols without prior meaning — the axioms of $\mathcal T$ provide their meaning.
Chapter 3: First-Order Theories	
ده، ده، دې، دې، دې، دې، دې، دې، دې، دې، دې، دې	Page 2 of 31
First-Order Theories II A Σ_T -formula F is valid in theory T (T -valid, also $T \models F$), iff every interpretation I that satisfies the axioms of T , i.e. $I \models A$ for every $A \in A_T$ (T -interpretation) also satisfies F , i.e. $I \models F$ A Σ_T -formula F is satisfiable in T (T -satisfiable), if there is a T-interpretation (i.e. satisfies all the axioms of T) that satisfies $FTwo formulae F_1 and F_2 are equivalent in T (T-equivalent),iff T \models F_1 \leftrightarrow F_2,i.e. if for every T-interpretation I, I \models F_1 iff I \models F_2Note:• I \models F stands for "F true under interpretation I"• T \models F stands for "F is valid in theory T"$	Fragments of TheoriesA fragment of theory T is a syntactically-restricted subset of formulae of the theory.Example: a quantifier-free fragment quantifier-free formulae in T.A theory T is decidable if $T \models F$ (T-validity) is decidable for every Σ_T -formula F;i.e., there is an algorithm that always terminate with "yes", if F is T-valid, and "no", if F is T-invalid.A fragment of T is decidable if $T \models F$ is decidable for every Σ_T -formula F obeying the syntactic restriction.
েচন কোনে হৈ জন হয় ত্রু ত্রুক Pape 3 of 31	্ল>্ক>্≳্≥্≥ Pare 4 of 31

Theory of Equality T_E I

Signature:

$$\Sigma_{=}: \{=, a, b, c, \cdots, f, g, h, \cdots, p, q, r, \cdots\}$$

consists of

- =, a binary predicate, <u>interpreted</u> with meaning provided by axioms
- all constant, function, and predicate symbols

Axioms of T_E

1. $\forall x. x = x$	(reflexivity)	
2. $\forall x, y. \ x = y \rightarrow y = x$	(symmetry)	
3. $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$	(transitivity)	
4. for each positive integer n and n-ary	function symbol f,	
$\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i$		
$\rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$	(function congruence)	
	Page 5 of 31	٩٣

Decidability of T_E I

 T_E is undecidable.

The quantifier-free fragment of T_E is decidable. Very efficient algorithm.

Semantic argument method can be used for T_E

Example: Prove

$$\overline{f}: a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a)$$

is T_E-valid.

Theory of Equality T_E II

5. for each positive integer n and n-ary predicate symbol p, $\forall x_1, \dots, x_n, y_1, \dots, y_n, \bigwedge_i x_i = y_i$ $\rightarrow (p(x_1, \dots, x_n) \leftrightarrow p(y_1, \dots, y_n))$ (predicate congruence) (function) and (predicate) are <u>axiom schemata</u>. <u>Example:</u> (function) for binary function f for n = 2:

 $\forall x_1, x_2, y_1, y_2, x_1 = y_1 \land x_2 = y_2 \rightarrow f(x_1, x_2) = f(y_1, y_2)$

(predicate) for unary predicate p for n = 1:

$$\forall x, y. \ x = y \ \rightarrow \ (p(x) \ \leftrightarrow \ p(y))$$

Note: we omit "congruence" for brevity.

Page 6 of 31

Decidability of TE II

Suppose not; then there exists a $T_{\rm E}\text{-interpretation }I$ such that $I \ \not\models \ F.$ Then,

		1.	1	⊭	F	assumption
· T _F		2.	1	=	$a = b \land b = c$	1, →
· E		3.	1	¥	g(f(a), b) = g(f(c), a)	1, \rightarrow
		4.	1	Þ	a = b	2, ∧
= g(f(c), a)		5.	1	i=	b = c	2, ^
f = g(f(c), a)		6.	1	i=	a = c	4, 5, (transitivity)
		7.	1	Þ	f(a) = f(c)	6, (function)
		8.	1	Þ	b = a	4, (symmetry)
		9.	1	Þ	g(f(a), b) = g(f(c), a)	7, 8, (function)
				=		3, 9 contradictory
	F	is T _F	-vali	id.		
		-				(D) (B) (2) (2) 2 0
Page 7 of 31						Page 8 of 31

Natural Numbers and Integers Margin numbers	1. <u>Peano Arithmetic T_{PA} (first-order arithmetic)</u> $\Gamma_{PA}: \{0, 1, +, \cdot\}$ Equality Axioms: (reflexivity), (symmetry), (transitivity), (function) for . And the axioms 1. $(x - (x + 1 = 0))$ (zero) 2. $(x + (x + 1 = p) + 1)$ (successor) 3. $(y + (x + 1 = p) + 1)$ (uduction) 4. $(x + x + 0 = x)$ (plus zero) 5. $(x + x + 0 = x)$ (plus zero) 5. $(x + x + 0 = x)$ (trans zero) 6. $(x + x + 0 = x)$ (trans zero) 6. $(x + x + 0 = x)$ (trans zero) 7. $(x + x + 0 + x)$ (trans successor) 1. Eina 3 is an axiom schema.
Page 9 of 31 Example: $3x + 5 = 2y$ can be written using Σ_{PA} as x + x + x + 1 + 1 + 1 + 1 + 1 = y + y Note: we have $>$ and \ge since $3x + 5 > 2y$ write as $\exists z. \ z \neq 0 \land 3x + 5 = 2y + z$ $3x + 5 \ge 2y$ write as $\exists z. \ 3x + 5 = 2y + z$ Example: Existence of pythagorean triples (<i>F</i> is T_{PA} -valid): $F : \exists x, y, z. \ x \neq 0 \land y \neq 0 \land z \neq 0 \land x \cdot x + y \cdot y = z \cdot z$ Page 11 of 31	Page 10 of 31 Decidability of Peano Arithmetic TPA is undecidable. (Gödel, Turing, Post, Church) The quantifier-free fragment of TPA is undecidable. (Matiyasevich, 1970) Remark: Gödel's first incompleteness theorem Peano arithmetic TPA does not capture true arithmetic: There exist closed ΣPAF formulae representing valid propositions of number theory that are not TPA+valid. The reason: TPA actually admits nonstandard interpretations. For decidability: no multiplication

2. Presburger Arithmetic $T_{\mathbb{N}}$ Signature $\Sigma_{\mathbb{N}} : \{0, 1, +, =\}$ no multiplication! Axioms of $T_{\mathbb{N}}$ (equality axioms, with 1-5): 1. $\forall x. \neg (x + 1 = 0)$ (zero) 2. $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ (successor) 3. $F[0] \land (\forall x. F[x] \rightarrow F[x + 1]) \rightarrow \forall x. F[x]$ (induction) 4. $\forall x. x + 0 = x$ (plus zero) 5. $\forall x, y. x + (y + 1) = (x + y) + 1$ (plus successor) Line 3 is an axiom schema. $\boxed{T_{\mathbb{N}}\text{-satisfiability (and thus } T_{\mathbb{N}}\text{-validity) is decidable}}_{Page 13 \text{ of } 31}$ $\underbrace{\Sigma_{\mathbb{Z}}\text{-formula to } \Sigma_{\mathbb{N}}\text{-formula } I}_{F_0: \forall w, x. \exists y, z. x + 2y - z - 7 > -3w + 4.}$ Introduce two variables, v_p and v_p (range over the nonnegative integraps) for E_Y :	3. Theory of Integers $T_{\mathbb{Z}}$ Signature: $\Sigma_{\mathbb{Z}}: \{, -2, -1, 0, 1, 2,, -3, -2, 2, 3,, +, -, >, =\}$ where \bullet , $-2, -1, 0, 1, 2,$ are constants \bullet , $-3, -2, 2, 3,$ are unary functions (intended meaning: $2 \cdot x$ is $x + x, -3 \cdot x$ is $-x - x - x$) \bullet +, $-, >, =$ have the usual meanings. Relation between $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$: $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$ have the same expressiveness: \bullet For every Σ_2 -formula there is an equisatisfiable $\Sigma_{\mathbb{N}}$ -formula. \bullet For every Σ_2 -formula there is an equisatisfiable Σ_2 -formula. $\Sigma_{\mathbb{Z}}$ -formula F and $\Sigma_{\mathbb{N}}$ -formula G are equivatisfiable iff: F is $T_{\mathbb{Z}}$ -satisfiable iff G is $T_{\mathbb{N}}$ -satisfiable $T_{\mathbb{N}} = 0$ for \mathbb{N} -formula II Eliminate > and numbers: $\forall w_p, w_n, x_p, x_n, \exists y_p, y_n, z_p, z_n, \exists u.$ F_3 : $-(u = 0) \land x_p + y_p + y_p + z_n + w_p + w_p + w_p + w_p + y_n + w_n + w_n + u$
$F_{0}: \forall w, x. \exists y, z. x + 2y - z - 7 > -3w + 4.$ Introduce two variables, v_{p} and v_{n} (range over the nonnegative integers) for each variable v (range over the integers) of F_{0} : $F_{1}: \forall w_{p}, w_{n}, x_{p}, x_{n}. \exists y_{p}, y_{n}, z_{p}, z_{n}.$ $(x_{p} - x_{n}) + 2(y_{p} - y_{n}) - (z_{p} - z_{n}) - 7 > -3(w_{p} - w_{n}) + 4$ Eliminate – by moving to the other side of >: $F_{2}: \forall w_{p}, w_{n}, x_{p}, x_{n}. \exists y_{p}, y_{n}, z_{p}, z_{n}.$ $x_{p} + 2y_{p} + z_{n} + 3w_{p} > x_{n} + 2y_{n} + z_{p} + 7 + 3w_{n} + 4$	$ \begin{array}{l} \forall w_{\rho}, w_{n}, x_{\rho}, x_{n}. \ \exists y_{\rho}, y_{n}, z_{\rho}, z_{n}. \ \exists u. \\ \neg (u=0) \land x_{\rho} + y_{\rho} + y_{\rho} + z_{n} + w_{\rho} + w_{\rho} + w_{\rho} \end{array} $
(D) (B) (2) (2) 2 000	

$\begin{split} & \Sigma_{\mathbb{Z}}\text{-formula to } \Sigma_{\mathbb{N}}\text{-formula III} \\ & \underline{\text{Example}}\text{: The } \Sigma_{\mathbb{N}}\text{-formula} \\ & \forall x. \ \exists y. \ x = y+1 \\ & \text{is equisatisfiable to the } \Sigma_{\mathbb{Z}}\text{-formula:} \\ & \forall x. \ x > -1 \ \rightarrow \ \exists y. \ y > -1 \land x = y+1. \end{split}$	Rationals and Reals Signatures: $\begin{split} \Sigma_{\mathbb{Q}} &= \{0, 1, +, -, =, \geq\} \\ \Sigma_{\mathbb{R}} &= \Sigma_{\mathbb{Q}} \cup \{\cdot\} \end{split}$ $\bullet \text{ Theory of Reals } \mathcal{T}_{\mathbb{R}} \text{ (with multiplication)} \\ &\qquad x \cdot x = 2 \Rightarrow x = \pm \sqrt{2} \end{split}$ $\bullet \text{ Theory of Rationals } \mathcal{T}_{\mathbb{Q}} \text{ (no multiplication)} \\ &\qquad \underbrace{2x = 7 \Rightarrow x = \frac{7}{2}} \end{split}$
్జం. లింపం సిం Page 17 of 31	Note: strict inequality okay; simply rewrite x + y > z as follows: $\neg(x + y = z) \land x + y \ge z$. σ . τ τ σ τ τ σ τ τ σ τ τ τ σ τ τ τ τ σ τ τ τ τ τ τ σ τ
1. Theory of Reals $T_{\mathbb{R}}$ Signature: $\Sigma_{\mathbb{R}}: \{0, 1, +, -, \cdot, =, \ge\}$ with multiplication. Axioms in text. <u>Example:</u> $\forall a, b, c. \ b^2 - 4ac \ge 0 \ \leftrightarrow \ \exists x. \ ax^2 + bx + c = 0$ is $T_{\mathbb{R}}$ -valid. $\overline{T_{\mathbb{R}}}$ is decidable (Tarski, 1930) High time complexity	2. Theory of Rationals T_Q Signature: $\Sigma_Q : \{0, 1, +, -, =, \ge\}$ without multiplication. Axioms in text. Rational coefficients are simple to express in T_Q . <u>Example</u> : Rewrite $\frac{1}{2}x + \frac{2}{3}y \ge 4$ as the Σ_Q -formula $3x + 4y \ge 24$ $\overline{T_Q}$ is decidable Quantifier-free fragment of T_Q is efficiently decidable
েন বেল বিজ হয় বিজ Page 19 of 31	ন ন ব ন ব ন ব ন ব ন ব ন ব ন ব ন ব ন ব ন

$\begin{array}{l} \label{eq:response} \mbox{Recursive Data Structures (RDS) I} \\ \mbox{Tuples of variables where the elements can be instances of the same structure: e.g., linked lists or trees.} \\ \hline \mbox{I. Theory T_{cons} (LISP-like lists)} \\ \mbox{Signature:} \\ \hline \mbox{Σ_{cons} : {cons, car, cdr, atom, =} } \\ \mbox{where} \\ \mbox{cons}(a, b) - list constructed by concatenating a and b \\ \mbox{car}(x) & - left projector of x: car(cons(a, b)) = a \\ \mbox{cdr}(x) & - right projector of x: car(cons(a, b)) = b \\ \mbox{atom}(x) & - true iff x is a single-element list \\ \hline \mbox{Note: an atom is simply something that is not a cons. In this formulation, there is no NIL value.} \\ \end{array}$	Recursive Data Structures (RDS) II <u>Axioms</u> : 1. The axioms of <u>reflexivity</u> , <u>symmetry</u> , and <u>transitivity</u> of = 2. <u>Function Congruence</u> axioms $\forall x_1, x_2, y_1, y_2. x_1 = x_2 \land y_1 = y_2 \rightarrow cons(x_1, y_1) = cons(x_2, y_2)$ $\forall x, y. x = y \rightarrow car(x) = car(y)$ $\forall x, y. x = y \rightarrow cdr(x) = cdr(y)$	
ে। (টা বিজ	নান কেন্দ্র হার জনজন Page 22 of 31	
 3. <u>Predicate Congruence axiom</u> \$\(\x\), \$\(\x\), \$\(\x	Lists with equality 2. Theory T_{cons}^{E} (lists with equality theory) $T_{cons}^{E} = T_{E} \cup T_{cons}$ Signature: $\Sigma_{E} \cup \Sigma_{cons}$ (this includes uninterpreted constants, functions, and predicates) Axioms: union of the axioms of T_{E} and T_{cons} $\overline{T_{cons}^{E}}$ is undecidable Quantifier-free fragment of T_{cons}^{E} is efficiently decidable $\overline{L_{cons}^{E}}$ is undecidable $\overline{L_{cons}^{E}}$ is undecidable $\overline{L_{cons}^{E}}$ is efficiently decidable $\overline{L_{cons}^{E}}$ is T_{cons}^{E} -formula $F: \begin{array}{c} car(x) = car(y) \wedge cdr(x) = cdr(y) \wedge \neg atom(x) \wedge \neg atom(y) \\ \rightarrow f(x) = f(y) \end{array}$	

Suppose not; then there exists a T_{cons}^E -interpretation I such that $I \nvDash F$. Then,	Theory of Arrays T_A
I. $I \not\models F$ assumption2. $I \not\models car(x) = car(y)$ $1, \rightarrow, \land$ 3. $I \not\models cdr(x) = cdr(y)$ $1, \rightarrow, \land$	Signature: $\Sigma_A: \ \{\cdot[\cdot], \ \cdot \langle \cdot \triangleleft \cdot \rangle, \ = \}$ where $\blacktriangleright \ a[i] \ binary function -$
4. $I \models \neg \operatorname{atom}(x)$ 1, \rightarrow , \land 5. $I \models \neg \operatorname{atom}(y)$ 1, \rightarrow , \land 6. $I \nvDash f(x) = f(y)$ 1, \rightarrow 7. $I \models \operatorname{cons(car(x), cdr(x))} = \operatorname{cons(car(y), cdr(y))}$ 2. 3, (function) 8. $I \models \operatorname{cons(car(x), cdr(x))} = x$ 4, (construction) 9. $I \models \operatorname{cons(car(y), cdr(y))} = y$ 5, (construction) 10. $I \models x = y$ 7, 8, 9, (transitivity) 11. $I \models f(x) = f(y)$ 10, (function) Lines 6 and 11 are contradictory, so our assumption that $I \nvDash F$	read array a at index i ("read(a,i)") • $a(i < v)$ ternary function – write value v to index i of array a ("write(a,i,v)") Axioms 1. the axioms of (reflexivity), (symmetry), and (transitivity) of T_E 2. $\forall a, i, j. i = j \rightarrow a[i] = a[j]$ (array congruence) 3. $\forall a, v, i, j. i = j \rightarrow a(i < v)[j] = v$ (read-over-write 1) 4. $\forall a, v, i, j. i \neq j \rightarrow a(i < v)[j] = a[j]$ (read-over-write 2)
must be wrong. Therefore, F is T_{cons}^{E} -valid.	Page 26 of 31
<u>Note</u> : = is only defined for array elements $F: a[i] = e \rightarrow a \langle i \triangleleft e \rangle = a$ not T_A -valid, but $F': a[i] = e \rightarrow \forall j. \ a \langle i \triangleleft e \rangle [j] = a[j],$ is T_A -valid. Also $a = b \rightarrow a[i] = b[i]$ is not T_A -valid: We have only axiomatized a restricted congruence. $\overline{T_A} \text{ is undecidable}$ Quantifier-free fragment of T_A is decidable	2. Theory of Arrays $T_A^=$ (with extensionality) Signature and axioms of $T_A^=$ are the same as T_A , with one additional axiom $\forall a, b. (\forall i. a[i] = b[i]) \leftrightarrow a = b$ (extensionality) <u>Example:</u> $F : a[i] = e \rightarrow a \langle i \triangleleft e \rangle = a$ is $T_A^=$ -valid. $\boxed{T_A^= \text{ is undecidable}}$ Quantifier-free fragment of $T_A^=$ is decidable
Page 27 of 31	Page 28 of 31

First-Order Theories			Combination of Theories
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	-	QFF Decidable - - - - - - - - - - - - - - - - - - -	How do we show that $1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$ is $(T_E \cup T_Z)$ -satisfiable? Or how do we prove properties about an array of integers, or a list of reals? Given theories T_1 and T_2 such that $\Sigma_1 \cap \Sigma_2 = \{=\}$ The <u>combined theory</u> $T_1 \cup T_2$ has \blacktriangleright signature $\Sigma_1 \cup \Sigma_2$ \blacktriangleright axioms $A_1 \cup A_2$
	()	Page 29 of 31	· · · · · · · · · · · · · · · · · · ·
 Nelson & Oppen showed that, if satisfiability of the quantifier decidable, satisfiability of qff of T₂ is de certain technical simple required the satisfiability of qff of T₁ ∪ 	ccidable, and rements are me T_2 is decidable.	et,	