CS156: The Calculus of Computation

Zohar Manna Winter 2010

Chapter 3: First-Order Theories

First-Order Theories I

First-order theory T consists of

- Signature Σ_T set of constant, function, and predicate symbols
- Set of <u>axioms</u> A_T set of <u>closed</u> (no free variables) Σ_T -formulae

A Σ_T -formula is a formula constructed of constants, functions, and predicate symbols from Σ_T , and variables, logical connectives, and quantifiers.

The symbols of Σ_T are just symbols without prior meaning — the axioms of T provide their meaning.

First-Order Theories II

A Σ_T -formula F is <u>valid</u> in theory T (T-valid, also $T \models F$), iff every interpretation I that satisfies the axioms of T, i.e. $I \models A$ for every $A \in A_T$ (T-interpretation) also satisfies F, i.e. $I \models F$

A Σ_T -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation (i.e. satisfies all the axioms of \overline{T}) that satisfies F

Two formulae F_1 and F_2 are equivalent in T (T-equivalent), iff $T \models F_1 \leftrightarrow F_2$, i.e. if for every T-interpretation I, $I \models F_1$ iff $I \models F_2$

Note:

- ▶ $I \models F$ stands for "F true under interpretation I"
- $ightharpoonup T \models F$ stands for "F is valid in theory T"

Fragments of Theories

A fragment of theory ${\cal T}$ is a syntactically-restricted subset of formulae of the theory.

Example: a quantifier-free fragment of theory T is the set of quantifier-free formulae in T.

A theory T is <u>decidable</u> if $T \models F$ (T-validity) is decidable for every Σ_T -formula F;

i.e., there is an algorithm that always terminate with "yes", if F is T-valid, and "no", if F is T-invalid.

A fragment of T is <u>decidable</u> if $T \models F$ is decidable for every Σ_T -formula F obeying the syntactic restriction.

Theory of Equality T_F I

Signature:

$$\Sigma_{=}$$
: $\{=, a, b, c, \cdots, f, g, h, \cdots, p, q, r, \cdots\}$

consists of

- =, a binary predicate, interpreted with meaning provided by axioms
- all constant, function, and predicate symbols

Axioms of T_F

- 1. $\forall x. \ x = x$
- (reflexivity) (symmetry) 2. $\forall x, y, x = y \rightarrow y = x$

Page 5 of 31

- (transitivity) 3. $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$
- 4. for each positive integer n and n-ary function symbol f,

$$\forall x_1, \dots, x_n, y_1, \dots, y_n. \ \bigwedge_i x_i = y_i$$

$$\rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n) \qquad \text{(function congruence)}$$

Theory of Equality T_E II

5. for each positive integer n and n-ary predicate symbol p,

$$\forall x_1, \dots, x_n, y_1, \dots, y_n. \ \bigwedge_i x_i = y_i$$

$$\rightarrow (p(x_1, \dots, x_n) \leftrightarrow p(y_1, \dots, y_n)) \text{ (predicate congruence)}$$

(function) and (predicate) are <u>axiom schemata</u>.

Example:

(function) for binary function f for n = 2:

$$\forall x_1, x_2, y_1, y_2. \ x_1 = y_1 \land x_2 = y_2 \rightarrow f(x_1, x_2) = f(y_1, y_2)$$

(predicate) for unary predicate p for n = 1:

$$\forall x, y. \ x = y \rightarrow (p(x) \leftrightarrow p(y))$$

Note: we omit "congruence" for brevity.

Decidability of T_E I

 T_E is undecidable.

The quantifier-free fragment of T_E is decidable. Very efficient algorithm.

Semantic argument method can be used for T_E

Example: Prove

$$F: a = b \wedge b = c \rightarrow g(f(a), b) = g(f(c), a)$$

is T_E -valid.

Decidability of T_E II

Suppose not; then there exists a T_{E} -interpretation I such that $I \not\models F$. Then,

assumption 2. $I \models a = b \land b = c$ $1. \rightarrow$ 3. $I \not\models g(f(a), b) = g(f(c), a)$ 4. $I \models a = b$ $2, \wedge$ 5. $I \models b = c$ 2, \(\) 6. $I \models a = c$ 4, 5, (transitivity) 7. $I \models f(a) = f(c)$ 6, (function) 8. $I \models b = a$ 4, (symmetry) 9. $I \models g(f(a), b) = g(f(c), a)$ 7, 8, (function) 10. $I \models \bot$ 3, 9 contradictory

F is T_{E} -valid.

Natural Numbers and Integers

```
\begin{array}{ll} \text{Natural numbers} & \mathbb{N} = \{0,1,2,\cdots\} \\ \text{Integers} & \mathbb{Z} = \{\cdots,-2,-1,0,1,2,\cdots\} \end{array}
```

Three variations:

- Peano arithmetic T_{PA} : natural numbers with addition, multiplication, =
- lacktriangle Presburger arithmetic $T_{\mathbb{N}}$: natural numbers with addition, =
- ► Theory of integers $T_{\mathbb{Z}}$: integers with +, -, >, =, multiplication by constants

1. Peano Arithmetic T_{PA} (first-order arithmetic)

$$\Sigma_{PA}: \{0, 1, +, \cdot, =\}$$

Equality Axioms: (reflexivity), (symmetry), (transitivity), (function) for +, (function) for \cdot .

And the axioms:

1.
$$\forall x. \ \neg(x+1=0)$$
 (zero)

2.
$$\forall x, y. \ x+1=y+1 \rightarrow x=y$$
 (successor)

3.
$$F[0] \land (\forall x. F[x] \rightarrow F[x+1]) \rightarrow \forall x. F[x]$$
 (induction)

4.
$$\forall x. \ x + 0 = x$$
 (plus zero)

5.
$$\forall x, y. \ x + (y+1) = (x+y) + 1$$
 (plus successor)

6.
$$\forall x. \ x \cdot 0 = 0$$
 (times zero)

7.
$$\forall x, y. \ x \cdot (y+1) = x \cdot y + x$$
 (times successor)

Line 3 is an axiom schema.

Example: 3x + 5 = 2y can be written using Σ_{PA} as

$$x + x + x + 1 + 1 + 1 + 1 + 1 = y + y$$

Note: we have > and \ge since

$$3x + 5 > 2y$$
 write as $\exists z. \ z \neq 0 \land 3x + 5 = 2y + z$
 $3x + 5 \geq 2y$ write as $\exists z. \ 3x + 5 = 2y + z$

Example:

Existence of pythagorean triples (F is T_{PA} -valid):

$$F: \exists x, y, z. \ x \neq 0 \land y \neq 0 \land z \neq 0 \land x \cdot x + y \cdot y = z \cdot z$$

Decidability of Peano Arithmetic

 $T_{\rm PA}$ is undecidable. (Gödel, Turing, Post, Church) The quantifier-free fragment of $T_{\rm PA}$ is undecidable. (Matiyasevich, 1970)

Remark: Gödel's first incompleteness theorem

Peano arithmetic T_{PA} does not capture true arithmetic:

There exist closed Σ_{PA} -formulae representing valid propositions of number theory that are not T_{PA} -valid.

The reason: T_{PA} actually admits nonstandard interpretations.

For decidability: no multiplication

2. Presburger Arithmetic $T_{\mathbb{N}}$

Signature
$$\Sigma_{\mathbb{N}}:~\{0,~1,~+,~=\}$$
 no multiplication!

Axioms of $T_{\mathbb{N}}$ (equality axioms, with 1-5):

1.
$$\forall x. \ \neg(x+1=0)$$
 (zero)

2.
$$\forall x, y. \ x+1=y+1 \rightarrow x=y$$
 (successor)

3.
$$F[0] \wedge (\forall x. F[x] \rightarrow F[x+1]) \rightarrow \forall x. F[x]$$
 (induction)

4.
$$\forall x. \ x + 0 = x$$
 (plus zero)

5.
$$\forall x, y. \ x + (y+1) = (x+y) + 1$$
 (plus successor)

Line 3 is an axiom schema.

 $T_{\mathbb{N}}$ -satisfiability (and thus $T_{\mathbb{N}}$ -validity) is decidable (Presburger, 1929)

3. Theory of Integers $T_{\mathbb{Z}}$

Signature:

$$\Sigma_{\mathbb{Z}}:\, \{\ldots, -2, -1, 0,\, 1,\, 2,\, \ldots, -3\cdot, -2\cdot,\, 2\cdot,\, 3\cdot,\, \ldots,\, +,\, -,\, >,\, =\}$$

where

- ..., -2, -1, 0, 1, 2, ... are constants
- ▶ ..., -3·, -2·, 2·, 3·, ... are unary functions (intended meaning: $2 \cdot x$ is x + x, $-3 \cdot x$ is -x x x)
- \blacktriangleright +, -, >, = have the usual meanings.

Relation between $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$:

 $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$ have the same expressiveness:

- ▶ For every $\Sigma_{\mathbb{Z}}$ -formula there is an equisatisfiable $\Sigma_{\mathbb{N}}$ -formula.
- ▶ For every $\Sigma_{\mathbb{N}}$ -formula there is an equisatisfiable $\Sigma_{\mathbb{Z}}$ -formula.

 $\Sigma_{\mathbb{Z}}$ -formula F and $\Sigma_{\mathbb{N}}$ -formula G are equisatisfiable iff:

F is $T_{\mathbb{Z}}$ -satisfiable iff G is $T_{\mathbb{N}}$ -satisfiable

$\Sigma_{\mathbb{Z}}$ -formula to $\Sigma_{\mathbb{N}}$ -formula I

Example: consider the $\Sigma_{\mathbb{Z}}$ -formula

$$F_0: \ \forall w, x. \ \exists y, z. \ x + 2y - z - 7 > -3w + 4.$$

Introduce two variables, v_p and v_n (range over the nonnegative integers) for each variable v (range over the integers) of F_0 :

$$F_1: \frac{\forall w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, z_n.}{(x_p - x_n) + 2(y_p - y_n) - (z_p - z_n) - 7} > -3(w_p - w_n) + 4$$

Eliminate - by moving to the other side of >:

$$F_2: \begin{array}{c} \forall w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, z_n. \\ x_p + 2y_p + z_n + 3w_p > x_n + 2y_n + z_p + 7 + 3w_n + 4 \end{array}$$

$\Sigma_{\mathbb{Z}}$ -formula to $\Sigma_{\mathbb{N}}$ -formula II

Eliminate > and numbers:

which is a $\Sigma_{\mathbb{N}}$ -formula equisatisfiable to F_0 .

To decide $T_{\mathbb{Z}}$ -validity for a $\Sigma_{\mathbb{Z}}$ -formula F:

- lacktriangle transform eg F to an equisatisfiable $\Sigma_{\mathbb{N}}$ -formula eg G,
- ▶ decide $T_{\mathbb{N}}$ -validity of G.

$\Sigma_{\mathbb{Z}}$ -formula to $\Sigma_{\mathbb{N}}$ -formula III

Example: The $\Sigma_{\mathbb{N}}$ -formula

$$\forall x. \ \exists y. \ x = y + 1$$

is equisatisfiable to the $\Sigma_{\mathbb{Z}}$ -formula:

$$\forall x. \ x > -1 \rightarrow \exists y. \ y > -1 \land x = y + 1.$$

Rationals and Reals

Signatures:

$$\begin{array}{lcl} \Sigma_{\mathbb{Q}} & = & \{0, \ 1, \ +, \ -, \ =, \ \geq\} \\ \Sigma_{\mathbb{R}} & = & \Sigma_{\mathbb{Q}} \cup \{\cdot\} \end{array}$$

▶ Theory of Reals $T_{\mathbb{R}}$ (with multiplication)

$$x \cdot x = 2$$
 \Rightarrow $x = \pm \sqrt{2}$

▶ Theory of Rationals $T_{\mathbb{Q}}$ (no multiplication)

$$2x = 7 \Rightarrow x = \frac{7}{2}$$

Note: strict inequality okay; simply rewrite

$$x + y > z$$

as follows:

$$\neg(x+y=z) \ \land \ x+y \geq \underline{z} \ , \quad \exists \ \land \ \exists \ \land \ \exists \ \land \ \land \ \land \ }$$

1. Theory of Reals $T_{\mathbb{R}}$

Signature:

$$\Sigma_{\mathbb{R}}:\ \{0,\ 1,\ +,\ -,\ \cdot,\ =,\ \geq\}$$

with multiplication. Axioms in text.

Example:

$$\forall a, b, c. \ b^2 - 4ac \ge 0 \ \leftrightarrow \ \exists x. \ ax^2 + bx + c = 0$$

is $T_{\mathbb{R}}$ -valid.

 $T_{\mathbb{R}}$ is decidable (Tarski, 1930) High time complexity

2. Theory of Rationals $T_{\mathbb{Q}}$

Signature:

$$\Sigma_{\mathbb{Q}}:\ \{0,\ 1,\ +,\ -,\ =,\ \geq\}$$

without multiplication. Axioms in text.

Rational coefficients are simple to express in $\mathcal{T}_{\mathbb{Q}}$.

Example: Rewrite

$$\frac{1}{2}x + \frac{2}{3}y \ge 4$$

as the $\Sigma_{\mathbb{O}}$ -formula

$$3x + 4y \ge 24$$

 $T_{\mathbb{Q}}$ is decidable

Quantifier-free fragment of $T_{\mathbb{Q}}$ is efficiently decidable

Recursive Data Structures (RDS) I

Tuples of variables where the elements can be instances of the same structure: e.g., linked lists or trees.

1. Theory T_{cons} (LISP-like lists)

Signature:

$$\Sigma_{cons}$$
: {cons, car, cdr, atom, =}

where

```
cons(a, b)— list constructed by concatenating a and b car(x)— left projector of x: car(cons(a, b)) = a cdr(x)— right projector of x: cdr(cons(a, b)) = b atom(x)— true iff x is a single-element list
```

<u>Note</u>: an atom is simply something that is not a cons. In this formulation, there is no NIL value.

Recursive Data Structures (RDS) II

Axioms:

- 1. The axioms of reflexivity, symmetry, and transitivity of =
- 2. Function Congruence axioms

$$\forall x_1, x_2, y_1, y_2. \ x_1 = x_2 \land y_1 = y_2 \rightarrow \cos(x_1, y_1) = \cos(x_2, y_2)$$

 $\forall x, y. \ x = y \rightarrow \cos(x) = \cos(y)$
 $\forall x, y. \ x = y \rightarrow \gcd(x) = \gcd(y)$

3. Predicate Congruence axiom

$$\forall x, y. \ x = y \rightarrow (atom(x) \leftrightarrow atom(y))$$

- 4. $\forall x, y. \operatorname{car}(\operatorname{cons}(x, y)) = x$ (left projection)
- 5. $\forall x, y. \operatorname{cdr}(\operatorname{cons}(x, y)) = y$ (right projection)
- 6. $\forall x. \neg atom(x) \rightarrow cons(car(x), cdr(x)) = x$ (construction)
- 7. $\forall x, y. \neg atom(cons(x, y))$ (atom)

Note: the behavior of car and cons on atoms is not specified.

 $T_{\rm cons}$ is undecidable

Quantifier-free fragment of T_{cons} is efficiently decidable

Lists with equality

2. Theory T_{cons}^{E} (lists with equality theory)

$$T_{\text{cons}}^{E} = T_{\text{E}} \cup T_{\text{cons}}$$

Signature:

$$\Sigma_{\mathsf{E}} \cup \Sigma_{\mathsf{cons}}$$

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of T_E and T_{cons}

$$T_{\text{cons}}^E$$
 is undecidable Quantifier-free fragment of T_{cons}^E is efficiently decidable

Example: The Σ_{cons}^{E} -formula

$$F: \begin{array}{c} \operatorname{car}(x) = \operatorname{car}(y) \wedge \operatorname{cdr}(x) = \operatorname{cdr}(y) \wedge \neg \operatorname{atom}(x) \wedge \neg \operatorname{atom}(y) \\ \to f(x) = f(y) \end{array}$$

is T_{cons}^E -valid.

Suppose not; then there exists a T_{cons}^{E} -interpretation I such that $I \not\models F$. Then,

$$I \not\models F$$
 assumption

2.
$$I \models \operatorname{car}(x) = \operatorname{car}(y)$$
 1, \rightarrow , \land

3.
$$I \models \operatorname{cdr}(x) = \operatorname{cdr}(y)$$
 1, \rightarrow , \land

6.
$$I \not\models f(x) = f(y)$$

10. $I \models x = y$

6.
$$I \not\models t(x) = t(y)$$
 1, \rightarrow
7. $I \models \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) = \operatorname{cons}(\operatorname{car}(y), \operatorname{cdr}(y))$

$$= t(y)$$
ar (x) .

$$(x)$$
, $\operatorname{cdr}(x)$

$$r(x)$$
, $cdr(x)$

$$r(x)$$
, $cdr(x)$

8.
$$I \models cons(car(x), cdr(x)) = x$$
 4, (construction)

$$, \operatorname{cdr}(x)$$

$$x)) = x$$

 $1. \rightarrow$

9.
$$I \models cons(car(y), cdr(y)) = y$$
 5, (construction)

2, 3, (function)

11.
$$I \models f(x) = f(y)$$

Lines 6 and 11 are contradic

Lines 6 and 11 are contradictory, so our assumption that $I \not\models F$ must be wrong. Therefore, F is T_{cons}^{E} -valid. Page 25 of 31

Theory of Arrays T_A

Signature:

$$\Sigma_A:\ \{\cdot[\cdot],\ \cdot\langle\cdot\,\triangleleft\cdot\rangle,\ =\}$$

where

- ▶ a[i] binary function read array a at index i ("read(a,i)")
- ▶ $a\langle i \triangleleft v \rangle$ ternary function write value v to index i of array a ("write(a,i,v)")

Axioms

- 1. the axioms of (reflexivity), (symmetry), and (transitivity) of $T_{\rm E}$
- 2. $\forall a, i, j. \ i = j \rightarrow a[i] = a[j]$ (array congruence)
- 3. $\forall a, v, i, j. \ i = j \rightarrow a \langle i \triangleleft v \rangle [j] = v$ (read-over-write 1)
- 4. $\forall a, v, i, j. \ i \neq j \rightarrow a \langle i \triangleleft v \rangle [j] = a[j]$ (read-over-write 2)

 $\underline{\text{Note}}$: = is only defined for array elements

$$F: a[i] = e \rightarrow a\langle i \triangleleft e \rangle = a$$

not T_A -valid, but

$$F': a[i] = e \rightarrow \forall j. \ a \langle i \triangleleft e \rangle [j] = a[j] \ ,$$

is T_A -valid.

Also

$$a = b \rightarrow a[i] = b[i]$$

is not T_A -valid: We have only axiomatized a restricted congruence.

 T_A is undecidable Quantifier-free fragment of T_A is decidable

2. Theory of Arrays $T_A^=$ (with extensionality)

Signature and axioms of $\mathcal{T}_{A}^{=}$ are the same as \mathcal{T}_{A} , with one additional axiom

Example:

$$F: a[i] = e \rightarrow a\langle i \triangleleft e \rangle = a$$

is $T_{\Delta}^{=}$ -valid.

 $\overline{T_A^-}$ is undecidable Quantifier-free fragment of T_A^- is decidable

First-Order Theories

		Quantifiers	QFF
	Theory	Decidable	Decidable
T_E	Equality	_	√
T_{PA}	Peano Arithmetic	_	_
$\mathcal{T}_{\mathbb{N}}$	Presburger Arithmetic	✓	✓
$\mathcal{T}_{\mathbb{Z}}$	Linear Integer Arithmetic	✓	✓
$\mathcal{T}_{\mathbb{R}}$	Real Arithmetic	✓	✓
$T_{\mathbb{Q}}$	Linear Rationals	✓	✓
T_{cons}	Lists	_	✓
T_{cons}^{E}	Lists with Equality	_	✓

Combination of Theories

How do we show that

$$1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$$

is $(T_{\mathsf{E}} \cup T_{\mathbb{Z}})$ -satisfiable?

Or how do we prove properties about an array of integers, or a list of reals . . . ?

Given theories T_1 and T_2 such that

$$\Sigma_1 \ \cap \ \Sigma_2 \quad = \quad \{=\}$$

The combined theory $T_1 \cup T_2$ has

- ▶ signature $\Sigma_1 \cup \Sigma_2$
- ▶ axioms $A_1 \cup A_2$

Nelson & Oppen showed that, if

- ▶ satisfiability of the quantifier-free fragment (qff) of T₁ is decidable,
- \triangleright satisfiability of qff of T_2 is decidable, and
- ▶ certain technical simple requirements are met, then satisfiability of qff of $T_1 \cup T_2$ is decidable.