CS156: The Calculus of

 ComputationZohar Manna
Winter 2010

Chapter 3: First-Order Theories

First-Order Theories I

First-order theory T consists of

- Signature Σ_{T} - set of constant, function, and predicate symbols
- Set of axioms A_{T} - set of closed (no free variables) Σ_{T}-formulae

A Σ_{T}-formula is a formula constructed of constants, functions, and predicate symbols from Σ_{T}, and variables, logical connectives, and quantifiers.

The symbols of Σ_{T} are just symbols without prior meaning - the axioms of T provide their meaning.

First-Order Theories II

A $\Sigma_{T \text {-formula }} F$ is valid in theory T (T-valid, also $T \models F$), iff every interpretation I that satisfies the axioms of T,
i.e. $l \models A$ for every $A \in A_{T}$ (T-interpretation) also satisfies F,
i.e. $l \models F$

A Σ_{T}-formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation (i.e. satisfies all the axioms of T) that satisfies F

Two formulae F_{1} and F_{2} are equivalent in T (T-equivalent), iff $T \models F_{1} \leftrightarrow F_{2}$,
i.e. if for every T-interpretation $I, I \models F_{1}$ iff $I \models F_{2}$

Note:

- $I \models F$ stands for " F true under interpretation I"
- $T \models F$ stands for " F is valid in theory T "

Fragments of Theories

A fragment of theory T is a syntactically-restricted subset of formulae of the theory.

Example: a quantifier-free fragment of theory T is the set of quantifier-free formulae in T.

A theory T is decidable if $T \models F$ (T-validity) is decidable for every Σ_{T}-formula F;
i.e., there is an algorithm that always terminate with "yes", if F is T-valid, and "no", if F is T-invalid.
A fragment of T is decidable if $T \models F$ is decidable for every Σ_{T}-formula F obeying the syntactic restriction.

Theory of Equality T_{E} I

Signature:

$$
\Sigma_{=}:\{=, a, b, c, \cdots, f, g, h, \cdots, p, q, r, \cdots\}
$$

consists of

- =, a binary predicate, interpreted with meaning provided by axioms
- all constant, function, and predicate symbols

Axioms of T_{E}

1. $\forall x \cdot x=x$ (reflexivity)
2. $\forall x, y \cdot x=y \rightarrow y=x$ (symmetry)
3. $\forall x, y, z . x=y \wedge y=z \rightarrow x=z$
(transitivity)
4. for each positive integer n and n-ary function symbol f, $\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \bigwedge_{i} x_{i}=y_{i}$
$\rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$

Theory of Equality T_{E} II

5. for each positive integer n and n-ary predicate symbol p,

$$
\begin{aligned}
& \forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \cdot \bigwedge_{i} x_{i}=y_{i} \\
& \quad \rightarrow\left(p\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots, y_{n}\right)\right) \text { (predicate congruence) }
\end{aligned}
$$

(function) and (predicate) are axiom schemata.
Example:
(function) for binary function f for $n=2$:

$$
\forall x_{1}, x_{2}, y_{1}, y_{2} . x_{1}=y_{1} \wedge x_{2}=y_{2} \rightarrow f\left(x_{1}, x_{2}\right)=f\left(y_{1}, y_{2}\right)
$$

(predicate) for unary predicate p for $n=1$:

$$
\forall x, y . x=y \rightarrow(p(x) \leftrightarrow p(y))
$$

Note: we omit "congruence" for brevity.

Decidability of T_{E} I

T_{E} is undecidable.
The quantifier-free fragment of T_{E} is decidable. Very efficient algorithm.

Semantic argument method can be used for T_{E}
Example: Prove

$$
F: a=b \wedge b=c \rightarrow g(f(a), b)=g(f(c), a)
$$

is $T_{E \text {-valid. }}$

Decidability of T_{E} II

Suppose not; then there exists a $T_{\mathrm{E} \text {-interpretation } / \text { such that }}$ $l \not \vDash F$. Then,

1.	I	$\neq F$	assumption
2.	I	$\models a=b \wedge b=c$	$1, \rightarrow$
3.	I	$\neq g(f(a), b)=g(f(c), a)$	$1, \rightarrow$
4.	I	$=a=b$	$2, \wedge$
5.	I	$=b=c$	$2, \wedge$
6.	I	$=a=c$	4,5, (transitivity)
7.	I	$=f(a)=f(c)$	6, (function)
8.	I	$=b=a$	4, (symmetry)
9.	I	$=g(f(a), b)=g(f(c), a)$	7,8, (function)
10.	I	$=\perp$	3,9 contradictory

F is T_{E}-valid.

Natural Numbers and Integers

Natural numbers $\mathbb{N}=\{0,1,2, \cdots\}$
Integers $\quad \mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\}$
Three variations:

- Peano arithmetic T_{PA} : natural numbers with addition, multiplication, $=$
- Presburger arithmetic $T_{\mathbb{N}}$: natural numbers with addition, $=$
- Theory of integers $T_{\mathbb{Z}}$: integers with,,$+->,=$, multiplication by constants

1. Peano Arithmetic $T_{P A}$ (first-order arithmetic)

$$
\Sigma_{\mathrm{PA}}:\{0,1,+, \cdot,=\}
$$

Equality Axioms: (reflexivity), (symmetry), (transitivity),
(function) for + , (function) for • .
And the axioms:

$$
\begin{array}{lr}
\text { 1. } \forall x \cdot \neg(x+1=0) & \text { (zero) } \\
\text { 2. } \forall x, y \cdot x+1=y+1 \rightarrow x=y & \text { (successor) } \\
\text { 3. } F[0] \wedge(\forall x \cdot F[x] \rightarrow F[x+1]) \rightarrow \forall x . F[x] & \text { (induction) } \\
\text { 4. } \forall x \cdot x+0=x & \text { (plus zero) } \\
\text { 5. } \forall x, y \cdot x+(y+1)=(x+y)+1 & \text { (plus successor) } \\
\text { 6. } \forall x \cdot x \cdot 0=0 & \text { (times zero) } \\
\text { 7. } \forall x, y \cdot x \cdot(y+1)=x \cdot y+x & \text { (times successor) }
\end{array}
$$

Line 3 is an axiom schema.

Example: $3 x+5=2 y$ can be written using $\Sigma_{\text {PA }}$ as

$$
x+x+x+1+1+1+1+1=y+y
$$

Note: we have $>$ and \geq since

$$
\begin{array}{lll}
3 x+5>2 y & \text { write as } & \exists z . z \neq 0 \wedge 3 x+5=2 y+z \\
3 x+5 \geq 2 y & \text { write as } & \exists z .3 x+5=2 y+z
\end{array}
$$

Example:
Existence of pythagorean triples (F is T_{PA}-valid):

$$
F: \exists x, y, z \cdot x \neq 0 \wedge y \neq 0 \wedge z \neq 0 \wedge x \cdot x+y \cdot y=z \cdot z
$$

Decidability of Peano Arithmetic

$T_{\text {PA }}$ is undecidable. (Gödel, Turing, Post, Church) The quantifier-free fragment of $T_{P A}$ is undecidable.
(Matiyasevich, 1970)
Remark: Gödel's first incompleteness theorem
Peano arithmetic $T_{P A}$ does not capture true arithmetic:
There exist closed $\Sigma_{P A}$-formulae representing valid propositions of number theory that are not $T_{P A}$-valid.
The reason: $T_{P A}$ actually admits nonstandard interpretations.

For decidability: no multiplication

2. Presburger Arithmetic $T_{\mathbb{N}}$

Signature $\Sigma_{\mathbb{N}}:\{0,1,+,=\} \quad$ no multiplication!
Axioms of $T_{\mathbb{N}}$ (equality axioms, with 1-5):

$$
\begin{aligned}
& \text { 1. } \forall x \cdot \neg(x+1=0) \\
& \text { 2. } \forall x, y \cdot x+1=y+1 \rightarrow x=y \\
& \text { 3. } F[0] \wedge(\forall x \cdot F[x] \rightarrow F[x+1]) \rightarrow \forall x . F[x] \\
& \text { 4. } \forall x \cdot x+0=x \\
& \text { 5. } \forall x, y \cdot x+(y+1)=(x+y)+1
\end{aligned}
$$

(zero)
(successor)

Line 3 is an axiom schema.
$T_{\mathbb{N}}$-satisfiability (and thus $T_{\mathbb{N}}$-validity) is decidable (Presburger, 1929)

3. Theory of Integers $T_{\mathbb{Z}}$

Signature:
$\Sigma_{\mathbb{Z}}:\{\ldots,-2,-1,0,1,2, \ldots,-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots,+,-,>,=\}$ where

- $\ldots,-2,-1,0,1,2, \ldots$ are constants
- $\ldots,-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots$ are unary functions
(intended meaning: $2 \cdot x$ is $x+x,-3 \cdot x$ is $-x-x-x$)
,,$-+->,=$ have the usual meanings.
Relation between $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$:
$T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$ have the same expressiveness:
- For every $\Sigma_{\mathbb{Z}}$-formula there is an equisatisfiable $\Sigma_{\mathbb{N}}$-formula.
- For every $\Sigma_{\mathbb{N}}$-formula there is an equisatisfiable $\Sigma_{\mathbb{Z}}$-formula.
$\Sigma_{\mathbb{Z}}$-formula F and $\Sigma_{\mathbb{N}^{-}}$formula G are equisatisfiable iff:
F is $T_{\mathbb{Z}}$-satisfiable iff $\quad G$ is $T_{\mathbb{N}}$-satisfiable

$\Sigma_{\mathbb{Z}}$-formula to $\Sigma_{\mathbb{N}}$-formula I

Example: consider the $\Sigma_{\mathbb{Z}}$-formula

$$
F_{0}: \forall w, x . \exists y, z . x+2 y-z-7>-3 w+4
$$

Introduce two variables, v_{p} and v_{n} (range over the nonnegative integers) for each variable v (range over the integers) of F_{0} :
$F_{1}: \quad \forall w_{p}, w_{n}, x_{p}, x_{n} . \exists y_{p}, y_{n}, z_{p}, z_{n}$.

$$
\left(x_{p}-x_{n}\right)+2\left(y_{p}-y_{n}\right)-\left(z_{p}-z_{n}\right)-7>-3\left(w_{p}-w_{n}\right)+4
$$

Eliminate - by moving to the other side of $>$:

$$
F_{2}: \quad \forall w_{p}, w_{n}, x_{p}, x_{n} \cdot \exists y_{p}, y_{n}, z_{p}, z_{n} .
$$

$\Sigma_{\mathbb{Z}}$-formula to $\Sigma_{\mathbb{N}}$-formula II

Eliminate $>$ and numbers:

$$
\begin{aligned}
& \forall w_{p}, w_{n}, x_{p}, x_{n} . \exists y_{p}, y_{n}, z_{p}, z_{n} \cdot \exists u . \\
& \qquad \begin{aligned}
\neg(u=0) \wedge & x_{p}+y_{p}+y_{p}+z_{n}+w_{p}+w_{p}+w_{p} \\
= & x_{n}+y_{n}+y_{n}+z_{p}+w_{n}+w_{n}+w_{n}+u \\
& +1+1+1+1+1+1+1+1+1+1+1
\end{aligned}
\end{aligned}
$$

which is a $\Sigma_{\mathbb{N}}$-formula equisatisfiable to F_{0}.
To decide $T_{\mathbb{Z}}$-validity for a $\Sigma_{\mathbb{Z}}$-formula F :

- transform $\neg F$ to an equisatisfiable $\Sigma_{\mathbb{N}}$-formula $\neg G$,
- decide $T_{\mathbb{N}}$-validity of G.

$\Sigma_{\mathbb{Z}}$ formula to $\Sigma_{\mathbb{N}}$-formula III

Example: The $\Sigma_{\mathbb{N}}$-formula

$$
\forall x . \exists y . x=y+1
$$

is equisatisfiable to the $\Sigma_{\mathbb{Z}}$-formula:

$$
\forall x . x>-1 \rightarrow \exists y . y>-1 \wedge x=y+1
$$

Rationals and Reals

Signatures:

$$
\begin{aligned}
\Sigma_{\mathbb{Q}} & =\{0,1,+,-,=, \geq\} \\
\Sigma_{\mathbb{R}} & =\Sigma_{\mathbb{Q}} \cup\{\cdot\}
\end{aligned}
$$

- Theory of Reals $T_{\mathbb{R}}$ (with multiplication)

$$
x \cdot x=2 \quad \Rightarrow \quad x= \pm \sqrt{2}
$$

- Theory of Rationals $T_{\mathbb{Q}}$ (no multiplication)

$$
\underbrace{2 x}_{x+x}=7 \quad \Rightarrow \quad x=\frac{7}{2}
$$

Note: strict inequality okay; simply rewrite

$$
x+y>z
$$

as follows:

$$
\neg(x+y=z) \wedge x+y \geq z
$$

1. Theory of Reals $T_{\mathbb{R}}$

Signature:

$$
\Sigma_{\mathbb{R}}:\{0,1,+,-, \cdot,=, \geq\}
$$

with multiplication. Axioms in text.

Example:

$$
\forall a, b, c . b^{2}-4 a c \geq 0 \leftrightarrow \exists x \cdot a x^{2}+b x+c=0
$$

is $T_{\mathbb{R}}$-valid.
$T_{\mathbb{R}}$ is decidable (Tarski, 1930) High time complexity

2. Theory of Rationals $T_{\mathbb{Q}}$

Signature:

$$
\Sigma_{\mathbb{Q}}:\{0,1,+,-,=, \geq\}
$$

without multiplication. Axioms in text.

Rational coefficients are simple to express in $T_{\mathbb{Q}}$.
Example: Rewrite

$$
\frac{1}{2} x+\frac{2}{3} y \geq 4
$$

as the $\Sigma_{\mathbb{Q}}$-formula

$$
3 x+4 y \geq 24
$$

$T_{\mathbb{Q}}$ is decidable
Quantifier-free fragment of $T_{\mathbb{Q}}$ is efficiently decidable

Recursive Data Structures (RDS) I

Tuples of variables where the elements can be instances of the same structure: e.g., linked lists or trees.

1. Theory $T_{\text {cons }}$ (LISP-like lists)

Signature:

$$
\Sigma_{\text {cons }}:\{\text { cons, car, cdr, atom },=\}
$$

where
cons (a, b) - list constructed by concatenating a and b
$\operatorname{car}(x)$ - left projector of $x: \operatorname{car}(\operatorname{cons}(a, b))=a$
$\operatorname{cdr}(x)$ - right projector of $x: \operatorname{cdr}(\operatorname{cons}(a, b))=b$ atom (x) - true iff x is a single-element list

Note: an atom is simply something that is not a cons. In this formulation, there is no NIL value.

Recursive Data Structures (RDS) II

Axioms:

1. The axioms of reflexivity, symmetry, and transitivity of $=$
2. Function Congruence axioms

$$
\begin{aligned}
& \forall x_{1}, x_{2}, y_{1}, y_{2} \cdot x_{1}=x_{2} \wedge y_{1}=y_{2} \rightarrow \operatorname{cons}\left(x_{1}, y_{1}\right)=\operatorname{cons}\left(x_{2}, y_{2}\right) \\
& \forall x, y \cdot x=y \rightarrow \operatorname{car}(x)=\operatorname{car}(y) \\
& \forall x, y \cdot x=y \rightarrow \operatorname{cdr}(x)=\operatorname{cdr}(y)
\end{aligned}
$$

3. Predicate Congruence axiom

$$
\forall x, y . x=y \rightarrow(\operatorname{atom}(x) \leftrightarrow \operatorname{atom}(y))
$$

4. $\forall x, y \cdot \operatorname{car}(\operatorname{cons}(x, y))=x$
5. $\forall x, y \cdot \operatorname{cdr}(\operatorname{cons}(x, y))=y$
6. $\forall x \cdot \neg \operatorname{atom}(x) \rightarrow \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x))=x$
7. $\forall x, y$. \neg atom $(\operatorname{cons}(x, y))$
(left projection)
(right projection)
(construction)
(atom)

Note: the behavior of car and cons on atoms is not specified.
$T_{\text {cons }}$ is undecidable
Quantifier-free fragment of $T_{\text {cons }}$ is efficiently decidable

Lists with equality

2. Theory $T_{\text {cons }}^{E}$ (lists with equality theory)

$$
T_{\text {cons }}^{E}=T_{\mathrm{E}} \cup T_{\text {cons }}
$$

Signature:

$$
\Sigma_{\mathrm{E}} \cup \Sigma_{\text {cons }}
$$

(this includes uninterpreted constants, functions, and predicates)
Axioms: union of the axioms of T_{E} and $T_{\text {cons }}$
$T_{\text {cons }}^{E}$ is undecidable
Quantifier-free fragment of $T_{\text {cons }}^{E}$ is efficiently decidable
Example: The $\Sigma_{\text {cons }}^{E}$-formula

$$
\begin{aligned}
F: \quad \operatorname{car}(x)=\operatorname{car}(y) \wedge \operatorname{cdr}(x)=\operatorname{cdr}(y) \wedge \neg \operatorname{atom}(x) \wedge \neg \operatorname{atom}(y) \\
\quad \rightarrow f(x)=f(y)
\end{aligned}
$$

is $T_{\text {cons }}^{E}$-valid.

Suppose not; then there exists a $T_{\text {cons }}^{E}$-interpretation $/$ such that $l \not \vDash F$. Then,

1.	\neq	F	assumption
2.	\ldots	$\operatorname{car}(x)=\operatorname{car}(y)$	$1, \rightarrow, \wedge$
3.	\ldots	$\operatorname{cdr}(x)=\operatorname{cdr}(y)$	$1, \rightarrow, \wedge$
4.	\ldots	$\neg \operatorname{atom}(x)$	$1, \rightarrow, \wedge$
5.	\vDash	$\neg \operatorname{atom}(y)$	$1, \rightarrow, \wedge$
6.	\neq	$f(x)=f(y)$	$1, \rightarrow$
7.	\vDash	$\operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x))=\operatorname{cons}(\operatorname{car}(y), \operatorname{cdr}(y))$	
			2, 3, (function)
8.	\vDash	$\operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x))=x$	4, (construction)
9.	\vDash	$\operatorname{cons}(\operatorname{car}(y), \operatorname{cdr}(y))=y$	5, (construction)
10.	$1 \vDash$	$x=y$	7, 8, 9, (transitivity)
11.	$1 \vDash$	$f(x)=f(y)$	10, (function)

Lines 6 and 11 are contradictory, so our assumption that $I \not \vDash F$ must be wrong. Therefore, F is $T_{\text {cons }}^{E}$-valid.

Theory of Arrays T_{A}

Signature:

$$
\Sigma_{\mathrm{A}}:\{\cdot[\cdot], \cdot\langle\cdot \triangleleft \cdot\rangle,=\}
$$

where

- $a[i]$ binary function read array a at index $i($ "read (a, i) ")
- $a\langle i \triangleleft v\rangle$ ternary function write value v to index i of array a("write (a, i, v) ")

Axioms

1. the axioms of (reflexivity), (symmetry), and (transitivity) of T_{E}
2. $\forall a, i, j . i=j \rightarrow a[i]=a[j]$ (array congruence)
3. $\forall a, v, i, j . i=j \rightarrow a\langle i \triangleleft v\rangle[j]=v$ (read-over-write 1)
4. $\forall a, v, i, j . i \neq j \rightarrow a\langle i \triangleleft v\rangle[j]=a[j]$
(read-over-write 2)

Note: $=$ is only defined for array elements

$$
F: a[i]=e \rightarrow a\langle i \triangleleft e\rangle=a
$$

not T_{A}-valid, but

$$
F^{\prime}: a[i]=e \rightarrow \forall j . a\langle i \triangleleft e\rangle[j]=a[j],
$$

is T_{A}-valid.
Also

$$
a=b \rightarrow a[i]=b[i]
$$

is not T_{A}-valid: We have only axiomatized a restricted congruence.
T_{A} is undecidable
Quantifier-free fragment of T_{A} is decidable

2. Theory of Arrays $T_{\mathrm{A}}^{=}$(with extensionality)

Signature and axioms of $T_{\mathrm{A}}^{=}$are the same as T_{A}, with one additional axiom

$$
\forall a, b .(\forall i . a[i]=b[i]) \leftrightarrow a=b \quad \text { (extensionality) }
$$

Example:

$$
F: a[i]=e \rightarrow a\langle i \triangleleft e\rangle=a
$$

is $T_{\mathrm{A}}^{\overline{=}}$-valid.
$T_{\mathrm{A}}^{=}$is undecidable
Quantifier-free fragment of $T_{\mathrm{A}}^{=}$is decidable

First-Order Theories

	Theory	Quantifiers Decidable	QFF Decidable
T_{E}	Equality	-	\checkmark
$T_{\text {PA }}$	Peano Arithmetic	-	-
$T_{\mathbb{N}}$	Presburger Arithmetic	\checkmark	\checkmark
$T_{\mathbb{Z}}$	Linear Integer Arithmetic	\checkmark	\checkmark
$T_{\mathbb{R}}$	Real Arithmetic	\checkmark	\checkmark
$T_{\mathbb{Q}}$	Linear Rationals	\checkmark	\checkmark
$T_{\text {cons }}$	Lists	-	\checkmark
$T_{\text {cons }}^{E}$	Lists with Equality	-	\checkmark

Combination of Theories

How do we show that

$$
1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

is ($T_{\mathrm{E}} \cup T_{\mathbb{Z}}$)-satisfiable?
Or how do we prove properties about an array of integers, or a list of reals ... ?

Given theories T_{1} and T_{2} such that

$$
\Sigma_{1} \cap \Sigma_{2}=\{=\}
$$

The combined theory $T_{1} \cup T_{2}$ has

- signature $\Sigma_{1} \cup \Sigma_{2}$
- axioms $A_{1} \cup A_{2}$

Nelson \& Oppen showed that, if

- satisfiability of the quantifier-free fragment (qff) of T_{1} is decidable,
- satisfiability of qff of T_{2} is decidable, and
- certain technical simple requirements are met, then satisfiability of qff of $T_{1} \cup T_{2}$ is decidable.

