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Induction
> Stepwise induction (for Tea, Teons)

> Complete induction (for Tpa, Teons)

Theoretically equivalent in power to stepwise induction,
but sometimes produces more concise proof

> Well-founded induction

Generalized complete induction

» Structural induction
Over logical formulae

Stepwise Induction (Peano Arithmetic Tpa)

Axiom schema (induction)
F[O] A ... base case
(¥n. F[n] — F[n+1]) inductive step
— Vx. Flx] . conclusion

for pa-formulae F[x] with one free variable x.

To prove Vx. F[x], the conclusion, i.e.,
F[x] is Tpa-valid for all x € N,
it suffices to show
> base case: prove F[0] is Tpa-valid.
» inductive step: For arbitrary n € N,
assume inductive hypothesis, i.e.,
Fln] is Tpa-valid,
then prove
Fln+1] is Tpa-valid.

Page 3 of 37

Page 2 of 37
Example
Prove: 1
Fln]:14+24---+n= n(n2+ )
for all n € N.

> Base case: F[0]:0= 071
> Inductive step: Assume Fln] : 142+ -+ n= 222 (1)

show
Fln+1] @ 142+--+n+(n+1)
1
S ) by (IH)
_n(n+1)+2(n+1)
B 2
_ (n+1)(n+2)
B 2
Therefore,

n(n+1)

VneN.1+2+...+n=
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Example:

Theory T, obtained from Tpa by adding the axioms:

> Vx. x0 =

> Vx,y. XYt =xY - x

> Vx, z. exp3(x,0,z) =z

> Vx,y,z. exp3(x,y + 1,2) = exp3(x,y,x - z)

(exps(x, y, z) stands for x.z)
Prove that
Vx, y. exps(x,

is Tpa-valid.
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First attempt:
Wy [¥x. expy(x.y,1) = 2]
—
Fly]

We chose induction on y. Why?

Base case:
F[0] : Vx. exps(x,0,1) = x°
For arbitrary x € N, exps(x,0,1) =1 (P0) and x° = 1 (E0).

Inductive step: Failure.
For arbitrary n € N, we cannot deduce
Fln+1] : Vx. exps(x,n+1,1) = x"1
from the inductive hypothesis
F[n] : Vx. exps(x,n, 1) = x"
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Second attempt: Strengthening

Strengthened property

v,z opa.y.z

Implies the desired property (choose z = 1)
Vx,y. exp3(x,y,1) = x¥

Proof of strengthened property:

Again, induction on y
vy [Vx. 2. exps(x,
Fixl

Base case:
F[0] : V¥x,z. exps(x,0,2) =x -z
For arbitrary x,z € N, exp3(x,0,z) = z (P0) and x° =1 (E0).
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Inductive step: For arbitrary n € N
Assume inductive hypothesis

Fln] : Vx,z. exp3(x,n,z) = x" -z (IH)
prove
Fln+1]: VX, 2. exps(x',n+1,2') = x'"1 . 2/
Tnote

Consider arbitrary x, 2/ € N:

exp3(x'.n+1,2') = exp3(x'.n,x" - 2') (P1)
=X (X-Z) HFllx e Xz X2
L (E1)
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Stepwise Induction (Lists Tcons)

Axiom schema (induction)
(¥ atom u. Flu]) A ... base case
(Yu,v. F[v] — F[cons(u, v)]) ... inductive step
— Vx. Flx] ... conclusion
for cons-formulae F[x] with one free variable x.

Note: V atom u. F[u] stands for Vu. (atom(u) — F[u]).

To prove Vx. F[x], i.e.,
F[x] is Tcons-valid for all lists x,
it suffices to show
> base case: prove F[u] is Tcons-valid for arbitrary atom u.
» inductive step: For arbitrary lists u, v,
assume inductive hypothesis, i.e.,
F[v] is Tcons-valid,
then prove
Flcons(u, v)] is Tcons-valid.
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Example: Theory T2 . |

ons

Teons With axioms

Concatenating two lists
» VV atom u. Vv.concat(u,v) = cons(u, v)

> VYu,v, x. concat(cons(u, v), x) = cons(u, concat(v, x))
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Example: Theory T2 . Il

Example: for atoms a, b, ¢, d,

concat(cons(a, cons(b, c)), d)
cons(a, concat(cons(b, c), d))
cons(a, cons(b, concat(c, d)))
cons(a, cons(b, cons(c, d)))

concat(cons(cons(a, b), c), d)
cons(cons(a, b), concat(c, d))
cons(cons(a, b), cons(c, d))
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Example: Theory T2 . Il
Reversing a list
>V atom u. rvs(u) = u

> Vx,y. rvs(concat(x, y)) = concat(rvs(y). rvs(x))

Example: for atoms a, b, c,

rvs(cons(a, cons(b, ¢))

rvs(concat(a, concat(b, c))) (Co)
concat(rvs(concat(b, c)), rvs(a)) (R1)
concat(concat(rvs(c), rvs(b)), rvs(a)) (R1)
concat(concat(c, b), a) (RO)
concat(cons(c, b), a) (Co)
cons(c, concat(b, a)) (C1)
cons(c, cons(b, a)) (Co)
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Example: Theory T2 . IV
Deciding if a list is flat;
i.e., flat(x) is true iff every element of list x is an atom.
>V atom u. flat(u)

> Yu,v. flat(cons(u,v)) < atom(u) A flat(v)

Example: for atoms a, b, c,

flat(cons(a, cons(b, c)))
flat(cons(cons(a, b), c))
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Vx. flat(x) — rvs(rvs(x)) = x
_—

Flx]

is Tchos-valid.
Base case: For arbitrary atom u,

Flu] : flat(u) — rvs(rvs(u)) =u
by FO and RO.

Inductive step: For arbitrary lists u, v, assume the inductive
hypothesis

F[v]: flat(v) — rvs(rvs(v)) = v (IH)
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and prove
Flcons(u,v)] : flat(cons(u,v)) —
rvs(rvs(cons(u, v))) = cons(u, v) (%)
Case —atom(u)
flat(cons(u, v)) < atom(u) A flat(v) < L
by (F1). (x) holds since its antecedent is L.
Case atom(u)
flat(cons(u, v)) < atom(u) A flat(v) < flat(v)
by (F1). Now, show

rvs(rvs(cons(u, v))) = - -+ = cons(u, v).
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Missing steps:

rvs(rvs(cons(u, v)))
rvs(rvs(concat(u, v)))
rvs(concat(rvs(v), rvs(u)))
concat(rvs(rvs(u)), rvs(rvs(v)))
concat(u, rvs(rvs(v)))
concat(u, v)

cons(u, v)
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Complete Induction (Peano Arithmetic Tpa)

Axiom schema (complete induction)

(Vn. (vn'.n' <n — F[n']) — F[n]) ... inductive step
_—

IH
— Vx. Flx] ... conclusion

for Zpa-formulae F[x] with one free variable x.

To prove Vx. F[x], the conclusion i.e.,
F[x] is Tpa-valid for all x € N,
it suffices to show
> inductive step: For arbitrary n € N,
assume inductive hypothesis, i.e.,
F[n'] is Tpa-valid for every n’ € N such that n’ < n,
then prove
F[n] is Tpa-valid.
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Is base case missing?
No. Base case is implicit in the structure of complete induction.
Note:
» Complete induction is theoretically equivalent in power to
stepwise induction.
» Complete induction sometimes yields more concise proofs.

Example: Integer division quot(5,3) =1 and rem(5,3) =2

Theory T, obtained from Tpa by adding the axioms:
> Vx,y.x <y — quot(x,y) =0
> Vx,y.y >0 — quot(x +y,y) = quot(x,y) +1
> Vx,y. x <y — rem(x,y)=x
> Vx,y.y >0 — rem(x +y,y) = rem(x,y)
Prove

(1) Vx,y.y >0 — rem(x,y) <y

(2) Vx,y. y >0 — x=y-quot(x,y) + rem(x,y)
Best proved by complete induction.
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Proof of (1)
Vx. Vy.y >0 — rem(x,y) <y
Flxl
Consider an arbitrary natural number x.
Assume the inductive hypothesis
VX X <x = Wy .y >0 = rem(x,y) <y (IH)
~—

FIx]

Prove Flx]:Vy.y >0 — rem(x,y) <y.
Let y be an arbitrary positive integer
Case x < y:
rem(x,y) = x by (RO)
<y case
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Case —(x < y):
Then there is natural number n, n < xst. x=n+y
rem(x,y) = rem(n+y,y) xX=n+y
= rem(n,y) (R1)
<y IH (X' n,y —y)
since n < xand y >0

Page 20 of 37



Well-founded Induction |

A binary predicate < over a set S is a well-founded relation iff
there does not exist an infinite decreasing sequence

Ss1>-S =53 --- wheres; € S
Note: where s < tiff t > s

Examples:

» < is well-founded over the natural numbers.
Any sequence of natural numbers decreasing according to < is
finite:
1023 >39>30>29>8>3>0.
> < is not well-founded over the rationals in [0,1].
1>3>1>1>.

is an infinite decreasing sequence.
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Well-founded Induction Il

» < is not well-founded over the integers:
7200 > ...>217>...>0>...> 17> ...

» The strict sublist relation <. is well-founded over the set of all
lists.

» The relation
F < G iff F is a strict subformula of G

is well-founded over the set of formulae.
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Well-founded Induction Principle

For theory T and well-founded relation <,
the axiom schema (well-founded induction)

(Vn. (vn'. n" < n — F[n']) — F[n]) — ¥x. F[x]
for X-formulae F[x] with one free variable x.

To prove Vx. F[x], i.e.,
F[x] is T-valid for every x,
it suffices to show
» inductive step: For arbitrary n,
assume inductive hypothesis, i.e.,
F[n'] is T-valid for every n’, such that n’ < n
then prove
F[n] is T-valid.

Complete induction in Tpa is a specific instance of well-founded
induction, where the well-founded relation < is <.
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Lexicographic Relation
Given pairs (S;, <;) of sets S; and well-founded relations <;

Construct
S=51%x...x S

i.e., the set of m-tuples (s1,...,Sn) where each s; € ;.

Define lexicographic relation < over S as

m i—1
(51....,5,,1)<(t1,....t,,,)4:>\/ 5;<ft;/\/\5]:t/-
S pm m e

=1 j=1

for s;, t; € S;.

o If (S1.<1),-,(Sm, <m) are well-founded, so is (S, <).
Example: S ={A,---,Z}, m=3, CAT < DOG, DOG < DRY,
DOG < DOT.
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Example: For the set N3 of triples of natural numbers with the
lexicographic relation <,

(5,2,17) < (5,4,3)

Lexicographic well-founded induction principle

For theory T and well-founded lexicographic relation <,
(vA. (YA. W <A — F[R]) — F[A]) — Vx. F[x]

for £r-formula F[X] with free variables X, is T-valid.

Same as regular well-founded induction, just

n = tuple i = (m x = tuple X = (X1,...,Xm)

n' = tuple i’ = (n}
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Example: Puzzle

Bag of red, yellow, and blue chips

If one chip remains in the bag — remove it (empty bag — the
process terminates)

Otherwise, remove two chips at random:

. If one of the two is red —

don’t put any chips in the bag

If both are yellow —
put one yellow and five blue chips

. If one of the two is blue and the other not red —

put ten red chips

Does this process terminate?

Proof: Consider

> Set S : N3 of triples of natural numbers and
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» Well-founded lexicographic relation <3 for such triples, e.g.

(11,13,3) #3 (11,9,104)  (11,9,104) <3 (11,13,3)

Let y, b, r be the yellow, blue, and red chips in the bag before a
move.
Let y’, b/, r' be the yellow, blue, and red chips in the bag after a
move.

Show
(.6 r') <3 (v, b,r)
for each possible case. Since <3 well-founded relation
= only finite decreasing sequences = process must terminate
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. If one of the two removed chips is red —

do not put any chips in the bag

(y—1,br—1)
(y.b—=1,r—1) » <s3(y,b,r)
(v.b,r=2)
If both are yellow —

put one yellow and five blue

(y—=1,b+5,r) <3 (y,b,r)

. If one is blue and the other not red —

put ten red

(y—1,b—1,r+10)
(y,b—2,r+10)

}<3(,V~b=’)
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Example: Ackermann function
Theory T‘g‘:k is the theory of Presburger arithmetic Ty (for natural
numbers) augmented with
Ackermann axioms:
> Vy. ack(0,y)=y+1 (Lo)
> Vx. ack(x +1,0) = ack(x,1) (RO)
> Vx,y. ack(x + 1,y + 1) = ack(x, ack(x + 1, y)) (S)

Ackermann function grows quickly:
ack(0,0) =1
216
ack(4,4) =22 -3
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Proof of termination
Let <5 be the lexicographic extension of < to pairs of natural
numbers.
(LO) Vy. ack(0,y) =y +1
does not involve recursive call
(RO) Vx. ack(x +1,0) = ack(x,1)
(x+1,0) >2 (x,1)
(S) Vx,y. ack(x + 1,y + 1) = ack(x, ack(x +1,y))
(x+1Ly+1)>(x+1,y)
(x+1,y+1) >3 (x,ack(x + 1,y))

No infinite recursive calls = the recursive computation of
ack(x, y) terminates for all pairs of natural numbers.

Page 30 of 37

Proof of property

Use well-founded induction over < to prove
Vx,y. ack(x,y) >y

is T3 valid.

Consider arbitrary natural numbers x, y.

Assume the inductive hypothesis
VX y' (XL y') <2 (x,y) — ack(x,y') >y

Fix'y']

7

Show
Flx,y] : ack(x,y) > y.

Case x =0:
ack(0,y)=y+1>y by (LO)
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Case x >0Ay =0:
ack(x,0) = ack(x — 1,1) by (RO)
Since

()

(x—-1,.1 )<z
x! v

Then

ack(x —1,1) > 1
Thus

ack(x,0) = ack(x —1,1) >1>0

by (IH) (X = x — 1,y 1)
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Case x >0Ay >0:
ack(x,y) = ack(x — 1, ack(x,y — 1)) by (S)
Since

(x — 1, ack
<~

(x,y — 1)) <2 (x,y)
=rr—-
M M

Then

ack(x —1,ack(x,y — 1)) > ack(x,y — 1)
by (IH) (' o x — 1,y s ack(x, y — 1)).
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Furthermore, since

(X ) <2 (x,y)

y—1
x" ¥
then

ack(x,y—1)>y—1

By (1)—(3), we have

o @ ®
ack(x,y) = ack(x — 1,ack(x,y — 1)) > ack(x,y —1) > y -1

Hence
ack(x,y)>(y—-1)+1=y
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Structural Induction

How do we prove properties about logical formulae themselves?

Structural induction principle

To prove a desired property of formulae,
inductive step: Assume the inductive hypothesis, that for
arbitrary formula F, the desired property holds for every
strict subformula G of F.
Then prove that F has the property.

Since atoms do not have strict subformulae, they are treated as
base cases.

Note: “strict subformula relation” is well-founded
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Example: Prove that

Every propositional formula F is equivalent to a propositional
formula F’ constructed with only T, V, = (and propositional
variables)

Base cases:
F:T = F:T
F:l = F:=T
F:P = F':P for propositional variable P
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Inductive step:

Assume as the inductive hypothesis that G, G, G, are equivalent
to G', G{, Gy constructed only from T, V, = (and propositional
variables).

F:-G = F': =G

F:GVG = F:GVG

F:GAG = F:=(=G V-G

F:G. — G = F :-G/ VG

F:G < G = (G — GIA(G — G) = F:...

Each F’ is equivalent to F and is constructed only by T, V, = by
the inductive hypothesis.
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