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Induction

◮ Stepwise induction (for TPA, Tcons)

◮ Complete induction (for TPA, Tcons)

Theoretically equivalent in power to stepwise induction,
but sometimes produces more concise proof

◮ Well-founded induction

Generalized complete induction

◮ Structural induction

Over logical formulae
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Stepwise Induction (Peano Arithmetic TPA)

Axiom schema (induction)

F [0] ∧ . . . base case
(∀n. F [n] → F [n + 1]) . . . inductive step
→ ∀x . F [x ] . . . conclusion

for ΣPA-formulae F [x ] with one free variable x .

To prove ∀x . F [x ], the conclusion, i.e.,
F [x ] is TPA-valid for all x ∈ N,

it suffices to show

◮ base case: prove F [0] is TPA-valid.

◮ inductive step: For arbitrary n ∈ N,
assume inductive hypothesis, i.e.,

F [n] is TPA-valid,
then prove

F [n + 1] is TPA-valid.
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Example

Prove:

F [n] : 1 + 2 + · · · + n =
n(n + 1)

2
for all n ∈ N.

◮ Base case: F [0] : 0 = 0·1
2

◮ Inductive step: Assume F [n] : 1 + 2 + · · · + n = n(n+1)
2 , (IH)

show

F [n + 1] : 1 + 2 + · · · + n + (n + 1)

=
n(n + 1)

2
+ (n + 1) by (IH)

=
n(n + 1) + 2(n + 1)

2

=
(n + 1)(n + 2)

2
Therefore,

∀n ∈ N. 1 + 2 + . . . + n =
n(n + 1)
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Example:

Theory T+
PA obtained from TPA by adding the axioms:

◮ ∀x . x0 = 1 (E0)

◮ ∀x , y . xy+1 = xy · x (E1)

◮ ∀x , z . exp3(x , 0, z) = z (P0)

◮ ∀x , y , z . exp3(x , y + 1, z) = exp3(x , y , x · z) (P1)

(exp3(x , y , z) stands for xy .z)

Prove that

∀x , y . exp3(x , y , 1) = xy

is T+
PA-valid.
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First attempt:
∀y [∀x . exp3(x , y , 1) = xy

︸ ︷︷ ︸

F [y ]

]

We chose induction on y . Why?

Base case:

F [0] : ∀x . exp3(x , 0, 1) = x0

For arbitrary x ∈ N, exp3(x , 0, 1) = 1 (P0) and x0 = 1 (E0).

Inductive step: Failure.

For arbitrary n ∈ N, we cannot deduce

F [n + 1] : ∀x . exp3(x , n + 1, 1) = xn+1

from the inductive hypothesis

F [n] : ∀x . exp3(x , n, 1) = xn
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Second attempt: Strengthening

Strengthened property

∀x , y , z . exp3(x , y , z) = xy · z

Implies the desired property (choose z = 1)

∀x , y . exp3(x , y , 1) = xy

Proof of strengthened property:

Again, induction on y

∀y [∀x , z . exp3(x , y , z) = xy · z
︸ ︷︷ ︸

F [y ]

]

Base case:

F [0] : ∀x , z . exp3(x , 0, z) = x0 · z

For arbitrary x , z ∈ N, exp3(x , 0, z) = z (P0) and x0 = 1 (E0).
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Inductive step: For arbitrary n ∈ N

Assume inductive hypothesis

F [n] : ∀x , z . exp3(x , n, z) = xn · z (IH)

prove

F [n + 1] : ∀x ′, z ′. exp3(x
′, n + 1, z ′) = x ′n+1 · z ′

↑note

Consider arbitrary x ′, z ′ ∈ N:

exp3(x
′
, n + 1, z ′) = exp3(x

′
, n, x ′ · z ′) (P1)

= x ′n · (x ′ · z ′) IH F [n]; x 7→ x ′, z 7→ x ′ · z ′

= x ′n+1 · z ′ (E1)
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Stepwise Induction (Lists Tcons)

Axiom schema (induction)

(∀ atom u. F [u]) ∧ . . . base case
(∀u, v . F [v ] → F [cons(u, v)]) . . . inductive step
→ ∀x . F [x ] . . . conclusion

for Σcons-formulae F [x ] with one free variable x .
Note: ∀ atom u. F [u] stands for ∀u. (atom(u) → F [u]).

To prove ∀x . F [x ], i.e.,
F [x ] is Tcons-valid for all lists x ,

it suffices to show

◮ base case: prove F [u] is Tcons-valid for arbitrary atom u.

◮ inductive step: For arbitrary lists u, v ,
assume inductive hypothesis, i.e.,

F [v ] is Tcons-valid,
then prove

F [cons(u, v)] is Tcons-valid.
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Example: Theory T
+
cons I

Tcons with axioms

Concatenating two lists

◮ ∀ atom u. ∀v .concat(u, v) = cons(u, v) (C0)

◮ ∀u, v , x . concat(cons(u, v), x) = cons(u, concat(v , x)) (C1)
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Example: Theory T
+
cons II

Example: for atoms a, b, c , d ,

concat(cons(a, cons(b, c)), d)

= cons(a, concat(cons(b, c), d)) (C1)

= cons(a, cons(b, concat(c , d))) (C1)

= cons(a, cons(b, cons(c , d))) (C0)

concat(cons(cons(a, b), c), d)

= cons(cons(a, b), concat(c , d)) (C1)

= cons(cons(a, b), cons(c , d)) (C0)
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Example: Theory T
+
cons III

Reversing a list

◮ ∀ atom u. rvs(u) = u (R0)

◮ ∀x , y . rvs(concat(x , y)) = concat(rvs(y), rvs(x)) (R1)

Example: for atoms a, b, c ,

rvs(cons(a, cons(b, c))

= rvs(concat(a, concat(b, c))) (C0)

= concat(rvs(concat(b, c)), rvs(a)) (R1)

= concat(concat(rvs(c), rvs(b)), rvs(a)) (R1)

= concat(concat(c , b), a) (R0)

= concat(cons(c , b), a) (C0)

= cons(c , concat(b, a)) (C1)

= cons(c , cons(b, a)) (C0)
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Example: Theory T
+
cons IV

Deciding if a list is flat;

i.e., flat(x) is true iff every element of list x is an atom.

◮ ∀ atom u. flat(u) (F0)

◮ ∀u, v . flat(cons(u, v)) ↔ atom(u) ∧ flat(v) (F1)

Example: for atoms a, b, c ,

flat(cons(a, cons(b, c))) = true

flat(cons(cons(a, b), c)) = false
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Prove
∀x . flat(x) → rvs(rvs(x)) = x

︸ ︷︷ ︸

F [x]

is T+
cons-valid.

Base case: For arbitrary atom u,

F [u] : flat(u) → rvs(rvs(u)) = u

by F0 and R0.

Inductive step: For arbitrary lists u, v , assume the inductive
hypothesis

F [v ] : flat(v) → rvs(rvs(v)) = v (IH)
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and prove

F [cons(u, v)] : flat(cons(u, v)) →

rvs(rvs(cons(u, v))) = cons(u, v) (∗)

Case ¬atom(u)

flat(cons(u, v)) ⇔ atom(u) ∧ flat(v) ⇔ ⊥

by (F1). (∗) holds since its antecedent is ⊥.

Case atom(u)

flat(cons(u, v)) ⇔ atom(u) ∧ flat(v) ⇔ flat(v)

by (F1). Now, show

rvs(rvs(cons(u, v))) = · · · = cons(u, v).
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Missing steps:

rvs(rvs(cons(u, v)))

= rvs(rvs(concat(u, v))) (C0)

= rvs(concat(rvs(v), rvs(u))) (R1)

= concat(rvs(rvs(u)), rvs(rvs(v))) (R1)

= concat(u, rvs(rvs(v))) (R0)

= concat(u, v) (IH), since flat(v)

= cons(u, v) (C0)
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Complete Induction (Peano Arithmetic TPA)

Axiom schema (complete induction)

(∀n. (∀n′. n′ < n → F [n′]
︸ ︷︷ ︸

IH

) → F [n]) . . . inductive step

→ ∀x . F [x ] . . . conclusion

for ΣPA-formulae F [x ] with one free variable x .

To prove ∀x . F [x ], the conclusion i.e.,
F [x ] is TPA-valid for all x ∈ N,

it suffices to show

◮ inductive step: For arbitrary n ∈ N,
assume inductive hypothesis, i.e.,

F [n′] is TPA-valid for every n′ ∈ N such that n′ < n,
then prove

F [n] is TPA-valid.
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Is base case missing?

No. Base case is implicit in the structure of complete induction.

Note:

◮ Complete induction is theoretically equivalent in power to
stepwise induction.

◮ Complete induction sometimes yields more concise proofs.

Example: Integer division quot(5, 3) = 1 and rem(5, 3) = 2

Theory T ∗
PA obtained from TPA by adding the axioms:

◮ ∀x , y . x < y → quot(x , y) = 0 (Q0)

◮ ∀x , y . y > 0 → quot(x + y , y) = quot(x , y) + 1 (Q1)

◮ ∀x , y . x < y → rem(x , y) = x (R0)

◮ ∀x , y . y > 0 → rem(x + y , y) = rem(x , y) (R1)

Prove
(1) ∀x , y . y > 0 → rem(x , y) < y

(2) ∀x , y . y > 0 → x = y · quot(x , y) + rem(x , y)

Best proved by complete induction.
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Proof of (1)

∀x . ∀y . y > 0 → rem(x , y) < y
︸ ︷︷ ︸

F [x]

Consider an arbitrary natural number x .
Assume the inductive hypothesis
∀x ′. x ′ < x → ∀y ′

. y ′
> 0 → rem(x ′

, y ′) < y ′

︸ ︷︷ ︸

F [x ′]

(IH)

Prove F [x ] : ∀y . y > 0 → rem(x , y) < y .

Let y be an arbitrary positive integer

Case x < y :

rem(x , y) = x by (R0)
< y case
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Case ¬(x < y):

Then there is natural number n, n < x s.t. x = n + y

rem(x , y) = rem(n + y , y) x = n + y

= rem(n, y) (R1)
< y IH (x ′ 7→ n, y ′ 7→ y)

since n < x and y > 0
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Well-founded Induction I

A binary predicate ≺ over a set S is a well-founded relation iff
there does not exist an infinite decreasing sequence

s1 ≻ s2 ≻ s3 ≻ · · · where si ∈ S

Note: where s ≺ t iff t ≻ s

Examples:

◮ < is well-founded over the natural numbers.
Any sequence of natural numbers decreasing according to < is
finite:

1023 > 39 > 30 > 29 > 8 > 3 > 0.

◮ < is not well-founded over the rationals in [0, 1].

1 >
1
2 >

1
3 >

1
4 > · · ·

is an infinite decreasing sequence.
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Well-founded Induction II
◮ < is not well-founded over the integers:

7200 > . . . > 217 > . . . > 0 > . . . > −17 > . . .

◮ The strict sublist relation ≺c is well-founded over the set of all
lists.

◮ The relation

F ≺ G iff F is a strict subformula of G

is well-founded over the set of formulae.
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Well-founded Induction Principle

For theory T and well-founded relation ≺,
the axiom schema (well-founded induction)

(∀n. (∀n′. n′ ≺ n → F [n′]) → F [n]) → ∀x . F [x ]

for Σ-formulae F [x ] with one free variable x.

To prove ∀x . F [x ], i.e.,
F [x ] is T -valid for every x ,

it suffices to show

◮ inductive step: For arbitrary n,
assume inductive hypothesis, i.e.,

F [n′] is T -valid for every n′, such that n′ ≺ n

then prove
F [n] is T -valid.

Complete induction in TPA is a specific instance of well-founded
induction, where the well-founded relation ≺ is <.

Page 23 of 37



Lexicographic Relation

Given pairs (Si ,≺i ) of sets Si and well-founded relations ≺i

(S1,≺1), . . . , (Sm,≺m)

Construct
S = S1 × . . . × Sm;

i.e., the set of m-tuples (s1, . . . , sm) where each si ∈ Si .

Define lexicographic relation ≺ over S as

(s1, . . . , sm)
︸ ︷︷ ︸

s

≺ (t1, . . . , tm)
︸ ︷︷ ︸

t

⇔
m∨

i=1



si ≺i ti ∧
i−1∧

j=1

sj = tj





for si , ti ∈ Si .

• If (S1,≺1), . . . , (Sm,≺m) are well-founded, so is (S ,≺).
Example: S = {A, · · · , Z}, m = 3, CAT ≺ DOG , DOG ≺ DRY ,
DOG ≺ DOT .
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Example: For the set N
3 of triples of natural numbers with the

lexicographic relation ≺,

(5, 2, 17) ≺ (5, 4, 3)

Lexicographic well-founded induction principle

For theory T and well-founded lexicographic relation ≺,

(∀n̄. (∀n̄′. n̄′ ≺ n̄ → F [n̄′]) → F [n̄]) → ∀x̄ . F [x̄ ]

for ΣT -formula F [x̄ ] with free variables x̄ , is T -valid.

Same as regular well-founded induction, just

n ⇒ tuple n̄ = (n1, . . . , nm) x ⇒ tuple x̄ = (x1, . . . , xm)

n′ ⇒ tuple n̄′ = (n′1, . . . , n
′
m)
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Example: Puzzle

Bag of red, yellow, and blue chips
If one chip remains in the bag – remove it (empty bag – the
process terminates)
Otherwise, remove two chips at random:

1. If one of the two is red –
don’t put any chips in the bag

2. If both are yellow –
put one yellow and five blue chips

3. If one of the two is blue and the other not red –
put ten red chips

Does this process terminate?

Proof: Consider

◮ Set S : N
3 of triples of natural numbers and
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◮ Well-founded lexicographic relation <3 for such triples, e.g.

(11, 13, 3) 6<3 (11, 9, 104) (11, 9, 104) <3 (11, 13, 3)

Let y , b, r be the yellow, blue, and red chips in the bag before a
move.
Let y ′, b′, r ′ be the yellow, blue, and red chips in the bag after a
move.

Show
(y ′

, b′
, r ′) <3 (y , b, r)

for each possible case. Since <3 well-founded relation
⇒ only finite decreasing sequences ⇒ process must terminate
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1. If one of the two removed chips is red –
do not put any chips in the bag

(y − 1, b, r − 1)

(y , b − 1, r − 1)

(y , b, r − 2)







<3 (y , b, r)

2. If both are yellow –
put one yellow and five blue

(y − 1, b + 5, r) <3 (y , b, r)

3. If one is blue and the other not red –
put ten red

(y − 1, b − 1, r + 10)

(y , b − 2, r + 10)

}

<3 (y , b, r)
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Example: Ackermann function

Theory T ack
N

is the theory of Presburger arithmetic TN (for natural
numbers) augmented with

Ackermann axioms:

◮ ∀y . ack(0, y) = y + 1 (L0)

◮ ∀x . ack(x + 1, 0) = ack(x , 1) (R0)

◮ ∀x , y . ack(x + 1, y + 1) = ack(x , ack(x + 1, y)) (S)

Ackermann function grows quickly:
ack(0, 0) = 1
ack(1, 1) = 3
ack(2, 2) = 7
ack(3, 3) = 61

ack(4, 4) = 222216

− 3
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Proof of termination
Let <2 be the lexicographic extension of < to pairs of natural
numbers.

(L0) ∀y . ack(0, y) = y + 1
does not involve recursive call

(R0) ∀x . ack(x + 1, 0) = ack(x , 1)
(x + 1, 0) >2 (x , 1)

(S) ∀x , y . ack(x + 1, y + 1) = ack(x , ack(x + 1, y))
(x + 1, y + 1) >2 (x + 1, y)
(x + 1, y + 1) >2 (x , ack(x + 1, y))

No infinite recursive calls ⇒ the recursive computation of
ack(x , y) terminates for all pairs of natural numbers.
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Proof of property

Use well-founded induction over <2 to prove

∀x , y . ack(x , y) > y

is T ack
N

valid.

Consider arbitrary natural numbers x , y .
Assume the inductive hypothesis

∀x ′, y ′. (x ′, y ′) <2 (x , y) → ack(x ′
, y ′) > y ′

︸ ︷︷ ︸

F [x ′
,y ′]

(IH)

Show
F [x , y ] : ack(x , y) > y .

Case x = 0:

ack(0, y) = y + 1 > y by (L0)
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Case x > 0 ∧ y = 0:

ack(x , 0) = ack(x − 1, 1) by (R0)

Since

(x − 1
︸ ︷︷ ︸

x ′

, 1
︸︷︷︸

y ′

) <2 (x , y)

Then

ack(x − 1, 1) > 1 by (IH) (x ′ 7→ x − 1, y ′ 7→ 1)

Thus
ack(x , 0) = ack(x − 1, 1) > 1 > 0
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Case x > 0 ∧ y > 0:

ack(x , y) = ack(x − 1, ack(x , y − 1)) by (S) (1)

Since

(x − 1
︸ ︷︷ ︸

x ′

, ack(x , y − 1)
︸ ︷︷ ︸

y ′

) <2 (x , y)

Then

ack(x − 1, ack(x , y − 1)) > ack(x , y − 1) (2)

by (IH) (x ′ 7→ x − 1, y ′ 7→ ack(x , y − 1)).
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Furthermore, since

( x
︸︷︷︸

x ′

, y − 1
︸ ︷︷ ︸

y ′

) <2 (x , y)

then

ack(x , y − 1) > y − 1 (3)

By (1)–(3), we have

ack(x , y)
(1)
= ack(x − 1, ack(x , y − 1))

(2)
> ack(x , y − 1)

(3)
> y − 1

Hence
ack(x , y) > (y − 1) + 1 = y
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Structural Induction

How do we prove properties about logical formulae themselves?

Structural induction principle

To prove a desired property of formulae,

inductive step: Assume the inductive hypothesis, that for
arbitrary formula F , the desired property holds for every
strict subformula G of F .
Then prove that F has the property.

Since atoms do not have strict subformulae, they are treated as
base cases.

Note: “strict subformula relation” is well-founded
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Example: Prove that

Every propositional formula F is equivalent to a propositional
formula F ′ constructed with only ⊤, ∨, ¬ (and propositional
variables)

Base cases:

F : ⊤ ⇒ F ′ : ⊤

F : ⊥ ⇒ F ′ : ¬⊤

F : P ⇒ F ′ : P for propositional variable P
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Inductive step:
Assume as the inductive hypothesis that G , G1, G2 are equivalent
to G ′, G ′

1, G ′
2 constructed only from ⊤, ∨, ¬ (and propositional

variables).

F : ¬G ⇒ F ′ : ¬G ′

F : G1 ∨ G2 ⇒ F ′ : G ′
1 ∨ G ′

2

F : G1 ∧ G2 ⇒ F ′ : ¬(¬G ′
1 ∨ ¬G ′

2)
F : G1 → G2 ⇒ F ′ : ¬G ′

1 ∨ G ′
2

F : G1 ↔ G2 ⇒ (G ′
1 → G ′

2) ∧ (G ′
2 → G ′

1) ⇒ F ′ : . . .

Each F ′ is equivalent to F and is constructed only by ⊤, ∨, ¬ by
the inductive hypothesis.
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