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Induction

» Stepwise induction (for Tpa, Tcons)

» Complete induction (for Tpa, Tcons)

Theoretically equivalent in power to stepwise induction,
but sometimes produces more concise proof

» Well-founded induction

Generalized complete induction

» Structural induction

Over logical formulae
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Stepwise Induction (Peano Arithmetic Tpa)

Axiom schema (induction)

F[0] A ... base case
(Vn. F[n] — F[n+1]) ... inductive step
— ¥x. F[x] ... conclusion

for Xpa-formulae F[x] with one free variable x.

To prove Vx. F[x], the conclusion, i.e.,
F[x] is Tpa-valid for all x € N,
it suffices to show

> base case: prove F[0] is Tpa-valid.

» inductive step: For arbitrary n € N,
assume inductive hypothesis, i.e.,
F[n] is Tpa-valid,
then prove
F[n + 1] is Tpa-valid.
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Example

Prove: 1
Fln] : 1+2—|—--'+n:n(”2+)
for all n € N.
> Base case: F[0]:0=21

» Inductive step: Assume F[n]:14+2+---+n= w (IH)
show
Fln+1] : 1424---4+n+(n+1)
1
- ”("2H+(n+1) by (IH)
_n(n+1)+2(n+1)
n 2
 (n+1)(n+2)
N 2
Therefore,
n(n+1)

VneN.1+2+...4+n=
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Example:

Theory TPJFA obtained from Tpp by adding the axioms:

> vx. x? =1 (E0)
> Vx,y. Tl =xY - x (E1)
> Vx,z. exp3(x,0,z) =z (PO)
> Vx,y,z. expz(x,y + 1,z) = exp3(x, y, x - z) (P1)

(exps(x,y, z) stands for x”.z)

Prove that

’VX,y. exps(x,y,1) = x¥ ‘

is Tpp-valid.
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First attempt:
Vy [VX eXp3(X)y7 1) = Xy]

Fly]

We chose induction on y. Why?

Base case:
F[0] : Vx. exp3(x,0,1) = x°
For arbitrary x € N, exp3(x,0,1) = 1 (P0) and x° = 1 (EO).

Inductive step: Failure.
For arbitrary n € N, we cannot deduce
Fln+1] : ¥x. exps(x,n+1,1) = x"+1
from the inductive hypothesis
F[n] : ¥x. exp3(x,n, 1) = x"
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Second attempt: Strengthening

Strengthened property

‘Vx,y, z. exps(x,y,z) = x¥ - z‘

Implies the desired property (choose z = 1)

Vx,y. expz(x,y,1) = x¥

Proof of strengthened property:

Again, induction on y

Vy [VX,Z. exp3(x,y,z) =xV- Z]

Fly]
Base case:

F[0] : Vx,z. exp3(x,0,2) =x° - z

For arbitrary x,z € N, exp3(x,0,z) = z (P0) and x° = 1 (EO).

Page 7 of 37



Inductive step: For arbitrary n € N
Assume inductive hypothesis

Fln] : Vx,z. exp3(x,n,z) =x" -z (IH)
prove
Fln+1]:Vx, 2. exp3(x',n+1,2") = x'"1. 2
Tnote

Consider arbitrary x’, z/ € N:

exps(x',n+1,2") = exp3(x', n,x" - 2') (P1)
=x"(x'-2) IH Fln];x — x',z— x"- 2/
= X" (E1)
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Stepwise Induction (Lists Teons)

Axiom schema (induction)

(V atom u. Flu]) A ... base case
(VYu,v. Flv] — Flcons(u,v)]) ... inductive step
— ¥x. F[x] ... conclusion

for Xcons-formulae F[x] with one free variable x.
Note: V atom w. F[u] stands for Vu. (atom(u) — F[u]).

To prove Vx. F[x], i.e.,
F[x] is Teons-valid for all lists x,
it suffices to show
> base case: prove F[u] is Tcons-valid for arbitrary atom w.
» inductive step: For arbitrary lists u, v,
assume inductive hypothesis, i.e.,
F[v] is Teons-valid,
then prove
Flcons(u, v)] is Teons-valid.
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Example: Theory T |

cons

Tcons With axioms

Concatenating two lists

» Y atom u. Vv.concat(u,v) = cons(u, v) (CO)

> Yu, v, x. concat(cons(u, v), x) = cons(u, concat(v,x)) (Cl1)
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Example: Theory T |l

cons

Example: for atoms a, b, c, d,

concat(cons(a, cons(b, c)), d)
cons(a, concat(cons(b, ¢), d))
cons(a, cons(b, concat(c, d)))

cons(a, cons(b, cons(c, d)))

concat(cons(cons(a, b), c), d)
cons(cons(a, b), concat(c, d))

cons(cons(a, b), cons(c, d))
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Example: Theory T Il

cons
Reversing a list

> Y atom u. rvs(u) = u (RO)
> Vx,y. rvs(concat(x,y)) = concat(rvs(y), rvs(x)) (R1)

Example: for atoms a, b, c,

rvs(cons(a, cons(b, c))

= rvs(concat(a, concat(b, c))) (Co)
= concat(rvs(concat(b, c)), rvs(a)) (R1)
= concat(concat(rvs(c), rvs(b)), rvs(a)) (R1)
= concat(concat(c, b), a) (RO)
= concat(cons(c, b), a) (C0)
= cons(c, concat(b, a)) (C1)
= cons(c,cons(b, a)) (C0)
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Example: Theory T IV

cons
Deciding if a list is flat;

i.e., flat(x) is true iff every element of list x is an atom.
> V atom u. flat(u) (FO)
> Yu,v. flat(cons(u,v)) < atom(u) A flat(v) (F1)

Example: for atoms a, b, c,

flat(cons(a, cons(b,c))) = true
flat(cons(cons(a, b),c)) = false
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Prove

Vx. flat(x) — rvs(rvs(x)) = x

Flx]

is T

eons-valid.

Base case: For arbitrary atom u,
Flu] : flat(u) — rvs(rvs(u)) = u
by FO and RO.

Inductive step: For arbitrary lists u, v, assume the inductive
hypothesis

Flv]: flat(v) — rvs(rvs(v)) =v (IH)
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and prove

Fleons(u,v)] : flat(cons(u,v)) —

rvs(rvs(cons(u, v))) = cons(u, v) (%)
Case —atom(u)
flat(cons(u,v)) < atom(u) A flat(v) & L
by (F1). (x) holds since its antecedent is L.
Case atom(u)

flat(cons(u,v)) < atom(u) A flat(v) < flat(v)

by (F1). Now, show

rvs(rvs(cons(u, v))) = -+ = cons(u, v).
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Missing steps:

rvs(rvs(cons(u, v)))
rvs(rvs(concat(u, v)))
rvs(concat(rvs(v), rvs(u)))
concat(rvs(rvs(u)), rvs(rvs(v)))
concat(u, rvs(rvs(v)))
concat(u, v)

cons(u, v)

(IH), since flat(v

(CO
(R1
(R1
(RO

~— ~— — ~— ~— —

(Co
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Complete Induction (Peano Arithmetic Tpa)

Axiom schema (complete induction)

(Vn. (Vn'. i <n — F[n']) — FIn]) ... inductive step

IH
— Vx. F[x] ... conclusion

for pa-formulae F[x] with one free variable x.

To prove Vx. F[x], the conclusion i.e.,
F[x] is Tpa-valid for all x € N,
it suffices to show

» inductive step: For arbitrary n € N,
assume inductive hypothesis, i.e.,
F[n'] is Tpa-valid for every n’ € N such that n’ < n,
then prove
F[n] is Tpa-valid.
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Is base case missing?
No. Base case is implicit in the structure of complete induction.
Note:

» Complete induction is theoretically equivalent in power to
stepwise induction.

» Complete induction sometimes yields more concise proofs.

Example: Integer division quot(5,3) =1 and rem(5,3) =2
Theory Tp, obtained from Tpa by adding the axioms:

> Vx,y. x <y — quot(x,y)=0 (QO)
» Vx,y.y >0 — quot(x+y,y) = quot(x,y)+1 (Q1)
> Vx,y. x <y — rem(x,y) = x (RO)
> Vx,y.y >0 — rem(x+y,y) = rem(x,y) (R1)
Prove

(1) ¥x,y.y >0 — rem(x,y) <y
(2) Vx,y.y >0 — x =y -quot(x,y)+ rem(x,y)
Best proved by complete induction.
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Proof of (1)
Vx. Vy.y >0 — rem(x,y) <y
Flx]
Consider an arbitrary natural number x.
Assume the inductive hypothesis
VX' X <x = W.y >0 — rem(x,y') <y (IH)
F[x']

Prove F[x]:Vy.y >0 — rem(x,y) <y.
Let y be an arbitrary positive integer
Case x < y:

by (RO)

rem(x,y) = x
< y  case
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Case =(x < y):
Then there is natural number n, n < xs.t. x=n+y

rem(x,y) = rem(n+y,y) x=n+y
= rem(n,y) (R1)
<y IH (x" — n,y" —y)

since n < xandy >0
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Well-founded Induction |

A binary predicate < over a set S is a well-founded relation iff
there does not exist an infinite decreasing sequence
S1>=S =53~ --- wheres; €S

Note: where s < tiff t = s

Examples:
» < is well-founded over the natural numbers.
Any sequence of natural numbers decreasing according to < is
finite:
1023 >39>30>29>8>3>0.
» < is not well-founded over the rationals in [0, 1].
1.1 1
1>5>3>3>

is an infinite decreasing sequence.
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Well-founded Induction |l

» < is not well-founded over the integers:
7200 > ...>217>...>0>...> =17 > ...

» The strict sublist relation < is well-founded over the set of all
lists.

» The relation
F < G iff F is a strict subformula of G

is well-founded over the set of formulae.
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Well-founded Induction Principle

For theory T and well-founded relation <,
the axiom schema (well-founded induction)

(Vn. (Vr'. " <n — F[n']) — F[n]) — Vx. F[x]
for X-formulae F[x] with one free variable x.

To prove Vx. F[x], i.e.,
F[x] is T-valid for every x,
it suffices to show
» inductive step: For arbitrary n,
assume inductive hypothesis, i.e.,
F[n'] is T-valid for every n’, such that n’ < n
then prove
F[n] is T-valid.

Complete induction in Tpp is a specific instance of well-founded
induction, where the well-founded relation < is <.
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Lexicographic Relation

Given pairs (S;, <;) of sets S; and well-founded relations <;

(51> '<1)) ceey (Sma '<m)

Construct

S=85 x...x Sy

i.e., the set of m-tuples (s1,...,Sm) where each s; € S;.

Define lexicographic relation < over S as

m i—1
(st s5m) < (t, o tm) & \/ [si<itin Nsi=1¢
M Y i=1 j=1
for s;, t; € 5;.

o If (51,<1),...,(5m, <m) are well-founded, so is (S, <).
Example: S={A,---,Z}, m=3, CAT < DOG, DOG < DRY,
DOG < DOT.
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Example: For the set N3 of triples of natural numbers with the
lexicographic relation <,

(5,2,17) < (5,4,3)

Lexicographic well-founded induction principle

For theory T and well-founded lexicographic relation <,
(va. (vi'. i <n — F[A']) — F[n]) — Vx. F[X]

for X r-formula F[x] with free variables X, is T-valid.

Same as regular well-founded induction, just

n = tuple n=(n1,...,nm) x = tuple x = (x1,...,%Xm)

n' = tuple i = (nl,...,n},)
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Example: Puzzle

Bag of red, yellow, and blue chips

If one chip remains in the bag — remove it (empty bag — the
process terminates)

Otherwise, remove two chips at random:

1. If one of the two is red —
don’t put any chips in the bag

2. If both are yellow —
put one yellow and five blue chips

3. If one of the two is blue and the other not red —
put ten red chips

Does this process terminate?

Proof: Consider

» Set S : N3 of triples of natural numbers and
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» Well-founded lexicographic relation <3 for such triples, e.g.

(11,13,3) #3 (11,9,104)  (11,9,104) <3 (11,13,3)

Let y, b, r be the yellow, blue, and red chips in the bag before a
move.
Let y', b/, r’ be the yellow, blue, and red chips in the bag after a
move.

Show
(y/7b/7r/) <3 (Y7b7r)

for each possible case. Since <3 well-founded relation
= only finite decreasing sequences =- process must terminate
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1. If one of the two removed chips is red —
do not put any chips in the bag

(yilabaril)
(y,b—l,f—l) <3(y7bar)
(y,b,r—2)

2. If both are yellow —
put one yellow and five blue

(y_17b+57r) <3(y7b7r)

3. If one is blue and the other not red —
put ten red

(y —1,b—1,r +10)

< 7b7
(v,b—2,r+10) } 2 (r:b.1)
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Example: Ackermann function

Theory T§C" is the theory of Presburger arithmetic Ty (for natural
numbers) augmented with

Ackermann axioms:

> Vy. ack(0,y) =y +1 (LO)
> Vx. ack(x +1,0) = ack(x, 1) (RO)
> Vx,y. ack(x + 1,y + 1) = ack(x, ack(x + 1,y)) (S)

Ackermann function grows quickly:

ack(0,0) =1

ack(1,1) =3 C
ack(2,2) = 7 ack(4,4) =2 3
ack(3,3) =61
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Proof of termination

Let <, be the lexicographic extension of < to pairs of natural

numbers.

(LO) Vy. ack(0,y)=y+1

does not involve recursive call

(RO) Vx. ack(x +1,0) = ack(x,1)

(x+1,0) > (x,1)
(S) Vx,y. ack(x+ 1,y + 1) = ack(x, ack(x + 1, y))

(x+1y+1)>(x+1,y)
(x+1,y+1) > (x,ack(x +1,y))

No infinite recursive calls = the recursive computation of
ack(x,y) terminates for all pairs of natural numbers.
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Proof of property

Use well-founded induction over <, to prove
Vx,y. ack(x,y) >y
is T2 valid.

Consider arbitrary natural numbers x, y.
Assume the inductive hypothesis

VX' y' (X y) <2 (x,y) — ack(X,y’) >y
~————

Flx".y']
Show
Flx,y] : ack(x,y) > y.

Case x = 0:
ack(0,y)=y+1>y by (LO)

(1H)

Page 31 of 37



Case x >0Ay=0:

ack(x,0) = ack(x —1,1) by (RO)
Since

(X_ 1a\ 1 ,) <2 (Xay)

x/ y

Then

ack(x—1,1) > 1 by (IH) (x' — x—1,y' — 1)
Thus

ack(x,0) = ack(x —1,1) >1>0
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Case x >0Ay > 0:

ack(x,y) = ack(x — 1,ack(x,y — 1)) by (S) (1)
Since
(\X U 1,’ aCk(Xay - 1)) <2 (va)
i y'
Then
ack(x —1,ack(x,y — 1)) > ack(x,y — 1) (2)
by (IH) (x' — x — 1,y — ack(x,y — 1)).
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Furthermore, since

(v <2(xy)

Xl

y/
then
ack(x,y —1)>y—1 (3)
By (1)—(3), we have

(1) (2) (3)
ack(x,y) = ack(x —1,ack(x,y — 1)) > ack(x,y —1) > y—1

Hence
ack(x,y)>(y—-1)+1=y
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Structural Induction

How do we prove properties about logical formulae themselves?

Structural induction principle

To prove a desired property of formulae,

inductive step: Assume the inductive hypothesis, that for
arbitrary formula F, the desired property holds for every
strict subformula G of F.

Then prove that F has the property.

Since atoms do not have strict subformulae, they are treated as
base cases.

Note: “strict subformula relation” is well-founded
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Example: Prove that

Every propositional formula F is equivalent to a propositional
formula F’ constructed with only T, V, = (and propositional

variables)
Base cases:
F:T = F: T
F:1L = F:=T
F:P = F':P for propositional variable P
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Inductive step:

Assume as the inductive hypothesis that G, Gi, G, are equivalent
to G’, GJ, G} constructed only from T, V, = (and propositional
variables).

F:=G = F' =G’

F:G VG = FIZG{\/Gé

F:GAG = F': =(=G{ VvV —G))

F:G. — G = F :=G/VG

F:G < G = (G — G)N(G — Gj) = F':...

Each F’ is equivalent to F and is constructed only by T, V, = by
the inductive hypothesis.
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