CS156: The Calculus of

Computation

/Zohar Manna
Winter 2010

Chapter 7: Quantified Linear Arithmetic

Page 1 of 40



Quantifier Elimination (QE)

Algorithm for elimination of all quantifiers of formula F until
quantifier-free formula (gff) G that is equivalent to F remains

Note: Could be enough if F is equisatisfiable to G, that is F is
satisfiable iff G is satisfiable

A theory T admits quantifier elimination iff

there is an algorithm that given ¥-formula F returns

a quantifier-free X-formula G that is T-equivalent to F.
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Example: dx. 2x =y

For > g-formula

F: dx.2x =y,
quantifier-free Tg-equivalent Y g-formula is
G: T

For ¥ z-formula

F: dx.2x=y
there is no quantifier-free Tz-equivalent Xz-formula.

Let Tz be Ty, with divisibility predicates |.
For ¥ 7-formula

F: 3x.2x=y,
a quantifier-free TZ-equwaIent ZZ-formuIa is
G: 2|y.
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About QE Algorithm

In developing a QE algorithm for theory T, we need only consider
formulae of the form

dx. F
for quantifier-free F.

Example: For X-formula
G1 : Ix.Vy. Jz. A[x,y, 7]
—— ——
Falx,y]
Gy : 3Ix.Vy. Rx,y]
Gz : 3Ix. - Jy. ~FRlx,y]
~————
F3[x]
Gy : 3Ix. -F3x]
—_——
Fa
G5 . F4

Gs is quantifier-free and T-equivalent to Gy
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Quantifier Elimination for T,
Yo {,=2,-1,0,1,2, ..., —3,-2.2 3, ..., + —, = <}

Lemma:
Given quantifier-free Xz-formula Fly] s.t. free(F[y]) = {y}.
S represents the set of integers

S: {neZ : F[n]is Tz-valid} .

Either SNZ*T or ZT \ S is finite.
Note: Z™ is the set of positive integers.

Example: Xz-formula  Fly]: Ix. 2x =y
S: even integers
SNZT: positive even integers — infinite
Z*\ S: positive odd integers — infinite
Therefore, by the lemma, there is no quantifier-free Tz-formula
that is Tz-equivalent to Fly].

Thus, Ty does not admit QE.
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Augmented theory 7‘2

fZ: Y 7 with countable number of unary divisibility predicates
k|- forkeZ"

Intended interpretations:

k | x holds iff k divides x without any remainder

Example:
x>1ANy>1A2|x+y

is satisfiable (choose x =2,y = 2).
(2 x) A4 x

is not satisfiable.

Axioms of Tyz: axioms of Ty with additional countable set of

axioms
Vx. k| x < dy.x=ky forkeZ"
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T, admits QE (Cooper’'s method)

Algorithm: Given fz—formula
Ix. Fx],

where F is quantifier-free, construct quantifier-free i\z—formula
that is equivalent to Ix. F[x].
1. Put F[x] into Negation Normal Form (NNF).
Normalize literals: s < t, k|t, or =(k|t).
Put x in s < t on one side: hx <t or s < hx.
Replace hx with x” without a factor.
Replace F[x'] by \/ F[J] for finitely many J.

AR
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Cooper’'s Method: Step 1
Put F[x] in Negation Normal Form (NNF) F[x], so that 3x. Fi[x]

> has negations only in literals (only A, V)

> is T-equivalent to Ix. Fx]

Example:
Ix. a(x—6<z—x AN4|5x+1 — 3x<y)
is equivalent to

Ix.x—6<z—x A4|5x+1 A -(3x<y)

~(AANB = C) < (AABA-C)
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Cooper’'s Method: Step 2
Replace (left to right)

s=t & s<t+lAt<s+1
(s=t) & s<tVit<s
(s<t) & t<s+1

The output Ix. F2[x] contains only literals of form
s<t, klt, or —=(k]|t),

where s, t are ﬁ—terms and k € Z+.

Example:

“(x<y) A a(x=y+3)
4
y<x+1A(x<y+3Vy+3<x)
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Cooper’'s Method: Step 3

Collect terms containing x so that literals have the form
hx <t, t<hx, k|hx+t, or —=(k|hx+t),

where t is a term (does not contain x) and h, k € Z*. The output
is the formula 3x. F3[x], which is Tz-equivalent to 3x. F[x].

Example:
X+x+y<z+3z+2y—4x 5| —Tx+t
J \’
b6x <4z+y 5|7x — t

Page 10 of 40



Cooper’'s Method: Step 4 |

Let

§ =lem{h :

h is a coefficient of x in F3[x]} ,

where lcm is the least common multiple. Multiply atoms in F3[x]
by constants so that ¢’ is the coefficient of x everywhere:

hx <t

t < hx

k| hx+t
(k| hx +t)

toe o

Ox < H't
ht < d'x

Wk |d&x+ ht
—(hk | d'x+ h't)

where
where
where

where

Wh=4¢
Wh=7¢
hWh=2d
Wh=4¢

The result 3x. F{[x], in which all occurrences of x in F}[x] are in

terms §’x.

Replace §'x terms in F; with a fresh variable x” to form

"o
o

F3{0'x — x'}
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Cooper’'s Method: Step 4 Il
Finally, construct
I FYX] A& X
—_—
Fa[x"]

dx’.F4[x'] is equivalent to Ix. F[x] and each literal of F4[x'] has
one of the forms:

(A) X' <t
(B) t <X
(C) k| x'+t
(D) ~(k | X'+ 1)

where t is a term that does not contain x’, and k € Z™.
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Cooper’'s Method: Step 4 Il

Example: @—formula

Ix. 3x+1>y A2x—6<z A4|5x+1

~~

Flx]

After step 3:

Ix. 2x<z+6 AN y—1<3x A 4|5x+1

F3[x]
Collecting coefficients of x (step 4):
§ =lem(2,3,5) = 30

Multiply when necessary:

dx. 30x < 152 +90 A 10y —10 <30x A 24 |30x+6
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Cooper's Method: Step 4 IV

Multiply when necessary:
dx. 30x < 15z +90 A 10y —10 < 30x A 24 | 30x +6
Replacing 30x with fresh x” and adding divisibility conjunct:

Ix'. X' < 152490 A 10y —10<x" A 24| x +6 A 30| X

F4‘[:<’]

Ix". F4[x'] is equivalent to Ix. F[x].
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Cooper’'s Method: Step 5

Construct left infinite projection F_[x'] of F4[x] by
(A) replacing literals x’ < t by T
(B) replacing literals t < x’ by L

Idea: very small numbers satisfy (A) literals but not (B) literals

Let

k of (C) literals k | X'+t
0 =lem )
k of (D) literals —(k | x' + t)

and B be the set of terms t appearing in (B) literals of F4[x'].

Construct

0 1
Fs: \/ Fooll v \/ V Ralt +].

j=1 j=1teB
Fs is quantifier-free and T,-equivalent to Jx. Fx].

Page 15 of 40



Intuition of Step 5 |

Property (Periodicity)
ifm|d
then m | niff m| n+ Xé forall A € Z
That is, m |- cannot distinguish between m | n.and m | n+ AJ.

By the choice of § (Icm of the k's) — no | literal in F5 can
distinguish between n and n+ A\, for any A € Z.

§ 0
Fs: \/ Fooolil vV \/ V/ Falt +]

j=1 j=1teB
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Intuition of Step 5 Il
> left disjunct \/;-S:l F_oolf] :

Contains only | literals
Asserts: no least n € Z s.t. Fa[n].

For if there exists n satisfying F_ o,
then every n — A6, for A\ € Z*, also satisfies F_.,

> right disjunct \/3-5:1 Vieg Falt +J] :
Asserts: There is least n € Z s.t. Fa[n].

For let t* = {largest t | t < x’ in (B)}.
If n € Zis s.t. F4[n], then

F(1<j<o). t"+j<n A FRft*+]]
In other words,

if there is a solution,
then one must appear in § interval to the right of t*
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Example of Step 5 |

Ix. 3x+1>y AN2x—6<z A 4|5x+1

Fix]
I
Ix'. x' < 152490 A 10y —10<x" A 24| x' +6 A 30| X

F4[X/]
By step 5,
FoolX]: TA L A2 |X+6A30]|X,

which simplifies to L.

Page 18 of 40



Example of Step 5 Il

Compute
§ =lcm{24,30} =120 and B = {10y — 10} .
Then replacing x” by 10y — 10 + j in F4[x] produces

. 1\2/0 10y — 104, < 152490 A 10y — 10 < 10y — 10+
> A 24|10y —10+j+6 A 30|10y — 10+

j=1
which simplifies to

120

F5:\/

Jj=1

10y 4+ < 152+ 100 A 0<7
A 24|10y +j—4 A 30|10y — 10+

Fs is quantifier-free and Tz-equivalent to Jx. Flx].
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Cooper’'s Method: Example |

Ix. (Bx+1<10VIx—6>7) A 2|x

Fx]

Isolate x terms
Ix. (3x <9 VvV 13<7x) A 2| x,

so
§ =lem{3,7,1} =21.

After multiplying coefficients by proper constants,
dx. (21x <63 VvV 39 < 21x) A 42| 21x,
we replace 21x by x':

Ix'. (X <63 VvV 39<x)A 42| x A21]X .

Fa[x"]
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Cooper’'s Method: Example Il

Then
Fooo[X]: (T V L) A42|x A21|X,
or, simplifying,
Fooo[x]: 42| x A 21| X .
Finally,
0 =1lecm{21,42} =42 and B ={39},
so Fs:

42

\V@2[jn21lj) v
j=1
42

V(394 <63V 390 <39+)) A 4239+ A 21]39+)).
j=1
Since 42 | 42 and 21 | 42, the left main disjunct simplifies to T, so

that Fs is Tz-equivalent to T. Thus, 3x. F[x] is Tz-valid.
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Cooper’'s Method: Example |

dx. 2x =y
N——
Flx]
Rewriting
Ix. 2x<y+1 A y—-1<2x
F3[x]
Then
§ =lem{2,2} =2,
so by Step 4

I X <y+1Ay—1<x AN2|X

F4‘[:<’]

F_~ produces L.
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Cooper’'s Method: Example Il

However,
d=Ilecm{2} =2 and B={y—-1},

SO

2
Fs: \/(y—14j<y+1Ay—-1<y—14jA2]y—1+))

j=1
Simplifying,
2
Fs: \/(<2A0<jA2|y—1+))
j=1
and then

F5: 2’.)/7

which is quantifier-free and Tz-equivalent to Ix. Fx].
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Improvement: Symmetric Elimination

In step 5, if there are fewer
(A) literals x’ < t
than

(B) literals t < x’,

construct the right infinite projection Fio[x'] from F4[x’] by
replacing
(A) literal X’ < t by L

than
(B) literal t < x" by T

Then right elimination.

5

5
Fs: \/ Frool=il v \/ '\ Falt =] .
j=1

j=1teA
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Improvement: Eliminating Blocks of Quantifiers |

Given
Ixg. o Ixg. Flxa, ..., Xa)

where F quantifier-free.
Eliminating x, (left elimination) produces

1)
Gir: Ixqg. - Ixp—1. \/ F—oo[Xlw-‘an—l:j] \
j=1

)

\/ \/ F4[X1,.. -y Xp—1, t—l-j]

j=1teB
which is equivalent to

4
G2 . \/Ele. "‘E'Xn_l- F—oo[X17~--7Xn—17j] \
j=1

8
\/ \/ dxy. - Ixpq. F4[X1, ce, Xp—1, t +j]
j=1teB
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Improvement: Eliminating Blocks of Quantifiers Il
Treat j as a free variable and examine only 1 + |B| formulae
> 3Ixq. - Ixpo1e Foco[X1, - oy Xn—1,J]
> Ix1. -+ 3Ixp_1. Fa[x1,...,xp—1,t +j] for each t € B
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Example |

F: dy.Ix. x<-2AN1-by<x Al+y<13x
Since ¢’ = lem{1,13} = 13

Jy. 3x. 13x < —26 A 13— 65y < 13x A 14y < 13x
Then
Jy. I X' < =26 A 13—-65y <x' A 1+y<x A 13| X

There is one (A) literal X’ < ... and two (B) literals ... < x’, we
use right elimination.

Froo=1 6={13}=13 A={-26}
—26—j < —26 A 13— 65y < —26 — |

1
F' - 3Jy.
vV ANlby<-26—j A13] —26—j

3
Jj=1
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Example Il
Commute

13
GUl: \/3y.j>0 A39+/<65y Ay<-27T—j A13| —26—

o HIj

Treating j as free variable (and removing j > 0), apply QE to
H[jl: 3y.39+j <65y A y<-27—j A 13| —26—j

Simplify. ..

65
Hl: \/ (k< —1794 - 66 A 13| —26—j A 65|39+ + k)
k=1

Replace H[j] with H'[j] in G[j]
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Example Il

13 65
F" . \/ \/(k< —1794 — 66j A13 | —26 —j A 65 | 39+ j + k)
j=1k=1
T T
j=13 k=13
simplified to

13 < -1794 - 6613

1

This gff formula is E-equivalent to F.
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Quantifier Elimination over Rationals

ZQ: {07 17 +7 —y T/ >}

Recall: we use > instead of >, as
X>y & x>y Vx=y x>y & x>y AN o(x=y).
Ferrante & Rackoff’'s Method

Given a Xg-formula 3x. F[x], where F[x] is quantifier-free,
generate quantifier-free formula F4 (four steps) s.t.

F4 is Xg-equivalent to 3x. F|[x]

by
1. putting F[x] in NNF,
2. replacing negated literals,
3. solving literals such that x appears isolated on one side, and
4. taking finite disjunction \/, F[t].
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Ferrante & Rackoff's Method: Steps 1 and 2
Step 1: Put F[x] in NNF. The result is Ix. F1[x].

Step 2: Replace literals (left to right)

(s<t) & t<sVit=s
(s=t) & t<sVit>s

The result Ix. F,[x] does not contain negations.
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Ferrante & Rackoff's Method: Step 3

Solve for x in each atom of F,[x], e.g.,

t1 —t
th <cx+ b =

where ¢ € Z — {0}.

All atoms in the result 3x. F3[x]| have form
(A) x<t
(B) t<x
(C) x=t

where t is a term that does not contain x.

<X
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Ferrante & Rackoff's Method: Step 4 |

Construct from F3[x]

» left infinite projection F_, by replacing
(A) atoms x < t by T
(B) atoms t < x by L
(C) atoms x =t by L

> right infinite projection F., by replacing
(A) atoms x < t by L
(B) atoms t < x by T
(C) atoms x =t by L

Let S be the set of t terms from (A), (B), (C) atoms.
Construct the final

s+t
Fa: Fooo V Fioo V \/Fg[ > ]
s,teS

which is Tg-equivalent to 3x. F[x].
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Ferrante & Rackoff's Method: Step 4 Il

» F_ captures the case when small x € Q satisfy F3[x]
> Fio captures the case when large x € Q satisfy F3[x]

» last disjunct: for s,t € S
if s = t, check whether s € S satisfies F3[s]
if s Z t, in any Tg-interpretation,

» |S| — 1 pairs s, t € S are adjacent. For each such pair, (s, t) is

an interval in which no other s’ € S lies.

» Since =t represents the whole interval (s, t),

simply check F3[=tt] .
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Ferrante & Rackoff's Method: Intuition

Step 4 says that four cases are possible:
1. There is a left open interval s.t. all elements satisfy F(x).

—)

2. There is a right open interval s.t. all elements satisfy F(x).

—

3. Some term t satisfies F(x).

t

4. There is an open interval between two s, t terms such that
every element satisfies F(x).

(—))
s Tt
+

s+t

2
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Correctness of Step 4 |

Theorem
Let

S+t
Fi: Fooo V Fioo V \/Fg[ > ]
s,tesS

be the formula constructed from 3x. F3[x] as in Step 4. Then
Ix. R3[x] & Fa.

Proof:

< If F4 is true, then F_o,, Fs or Fg[%] is true.
If F3[<5E] is true, then obviously 3x. F3[x] is true.
If F_ is true, choose some small x,x < t for all t € 5.
Then F3[x] is true.
If Fioo is true, choose some big x,x > t for all t € S.
Then F3[x] is true.
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Correctness of Step 4 |l
= If | = 3x. F3[x] then there is value v such that

I = F3[v).

If v<oqft] forall t €S, then | = F_.
If v>qt] forall t €S, then | = Fi .
If v=oylt] for some t € S, then | |= F[51].

Otherwise choose largest s € S with o[s] < v and smallest
t €S with o[t] > v.

Since no atom of F3 can distinguish between values in interval

(s, t),

I e RN 1= F [S;t] .

Hence, I |= F[55E]. In all cases | |= Fy.
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Ferrante & Rackoff’s Method: Example |

> g-formula

dx. 3x+1<10 A 7x—6>7

Flx]

Solving for x

1
Elx.x<3/\x>73

F3[x]

Stepd: x>Lin(B) = Fo=1
x<3in(A) = Fieo=1

2 2

t t
Fy: \/<S+ <3/\S+ >

5,tES

13
7

)
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Ferrante & Rackoff's Method: Example Il
S={3% =

13 13
>+
F3{3J2r3]:¢ Fs | 75| =L
13 13 13
+3 +3 +3 13
F3 72 72 3 A 72 =T

Fo: Lv---vV1IVT=T
Thus, F4 : T is Tg-equivalent to 3x. F[x],

so dx. F[x] is Tg-valid.
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Example

dx. 2x >y A 3x<z

Flx]

Solving for x
y z
dx. x > 5 A x < 3
F3[x]

Step4: Fooo =1, Fioo =1L, F3[%] =1 and F3[%] =1

X_|_£ y X_|_£ z
F - 23 Y 273 _2Z%2
L R 2 3
which simplifies to:
Fq: 2z >3y

F4 is Tg-equivalent to Ix. F[x].
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