
CS156: The Calculus of
Computation

Zohar Manna
Winter 2008

Chapter 8: Quantifier-free Linear Arithmetic

Page 1 of 125

Decision Procedures for Quantifier-free Fragments

For theory T with signature Σ and axioms A, decide if

F [x1, . . . , xn] or ∃x1, . . . , xn. F [x1, . . . , xn] is T -satisfiable[
Decide if

F [x1, . . . , xn] or ∀x1, . . . , xn. F [x1, . . . , xn] is T -valid

]
where F is quantifier-free and free(F) = {x1, . . . , xn}
Note: no quantifier alternations

Page 2 of 125

Conjunctive Quantifier-free Fragment

We consider only conjunctive quantifier-free Σ-formulae, i.e.,
conjunctions of Σ-literals (Σ-atoms or negations of Σ-atoms).

For given arbitrary quantifier-free Σ-formula F , convert it into
DNF Σ-formula

F1 ∨ . . . ∨ Fk

where each Fi conjunctive.

F is T -satisfiable iff at least one Fi is T -satisfiable.

Page 3 of 125

Preliminary Concepts

Vector
variable n-vector n-vector a ∈ Qn transpose

x =


x1

...

xn

 a =


a1

...

an

 aT =
[

a1 · · · an

]

Matrix
m × n-matrix
A ∈ Qm×n transpose column

A =


a11 · · ·a1n

...
. . .

...

am1· · ·amn

 AT =


a11· · ·am1

...
. . .

...

a1n· · ·amn


row



a1j

...

ai1· · · aij · · · ain

...

amj


Page 4 of 125

Multiplication I

vector-vector

aTb = [a1 · · · an]


b1

...

bn

 =
n∑

i=1

aibi

matrix-vector

Ax =


a11 · · · a1n

...
. . .

...

am1 · · · amn




x1

...

xn

 =


∑n

i=1 a1ixi

...∑n
i=1 amixi



Page 5 of 125

Multiplication II
matrix-matrix

...

· · · aik · · ·
...




...

· · · bkj · · ·
...

=


...

· · · pij · · ·
...


A B P

where

pij = aibj =
[

ai1 · · · ain

] 
b1j

...

bnj

 =
n∑

k=1

aikbkj

Page 6 of 125

Special Vectors and Matrices

0 - vector (column) of 0s
1 - vector of 1s

Thus 1
T
x =

n∑
i=1

xi

I =


1 0

. . .

0 1

 identity matrix (n × n)

Thus IA = AI = A, for n × n matrix A.

unit vector ei =



0

...

1

...

0


ith (Note: matrix indices start at 1)

Page 7 of 125

Vector Space - set S of vectors closed under addition and scaling
of vectors. That is,

if v1, . . . , vk ∈ S then λ1v1 + · · ·+ λkvk ∈ S
for λ1, . . . , λn ∈ Q

Linear Equation

F : Ax = b

m × n-matrix variable n-vector m-vector

represents the ΣQ-formula

F : (a11x1 + · · ·+ a1nxn = b1) ∧ · · · ∧ (am1x1 + · · ·+ amnxn = bm)

Gaussian Elimination

Find x s.t. Ax = b by elementary row operations
◮ Swap two rows
◮ Multiply a row by a nonzero scalar
◮ Add one row to another

Page 8 of 125

Example 4 I

Solve  3 1 2

1 0 1

2 2 1


 x1

x2

x3

 =

 6

1

2


Construct the augmented matrix 3 1 2 6

1 0 1 1

2 2 1 2


Apply the row operations as follows:

Page 9 of 125

Example 4 II
1. Add −2a1 + 4a2 to a3 3 1 2 6

1 0 1 1

0 0 1 −6


2. Add −a1 + 2a2 to a2 3 1 2 6

0 −1 1 −3

0 0 1 −6


This augmented matrix is in triangular form.

Page 10 of 125

Example 4 III
Solving

x3 = −6

−x2 + x3 = −3 ⇒ x2 = −3

3x1 + x2 + 2x3 = 6 ⇒ x1 = 7

The solution is x =
[

7 −3 −6
]T

Page 11 of 125

Inverse Matrix

A−1 is the inverse matrix of square matrix A if

AA−1 = A−1A = I

Square matrix A is nonsingular (invertible) if its inverse A−1 exists.

How to compute A−1 of A?

[A | I] [I | A−1]
elementary

row operations

How to compute kth column of A−1?
Solve Ay = ek , i.e.

0
...

A 1
...
0


solve triangular matrix

y = . . .

(kth column of A−1)solve using
elementary

row operations
Page 12 of 125

Linear Inequalities I

Polyhedral Space

For m × n-matrix A, variable n-vector x , and m-vector b̄, the
ΣQ-formula

G : Ax ≤ b̄, i.e., G :
m∧

i=1

ai1x1 + · · ·+ ainxn ≤ bi

describes a subset (space) of Qn, called a polyhedron.

Page 13 of 125

Linear Inequalities II
Convex Space

An n-dimensional space S ⊆ Rn is convex if for all pairs of points
v̄1, v̄2 ∈ S ,

λv̄1 + (1− λ)v̄2 ∈ S for λ ∈ [0, 1] .

Ax ≤ b̄ defines a convex space. For suppose Av̄1 ≤ b̄ and
Av̄2 ≤ b̄; then also

A(λv̄1 + (1− λ)v̄2) ≤ b̄ .

Page 14 of 125

Linear Inequalities III
Vertex

Consider m × n-matrix A where m ≥ n.

An n-vector v̄ is a vertex of Ax ≤ b̄ if there is

◮ a nonsingular n × n-submatrix A0 of A and

◮ corresponding n-subvector b̄0 of b̄

such that
A0v̄ = b̄0 .

The rows a0i in A0 and corresponding values b0i of b̄0 are the set
of defining constraints of the vertex v̄ .

Two vertices are adjacent if they have defining constraint sets
that differ in only one constraint.

Page 15 of 125

Example I

Consider the linear inequality

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1 1 0 0

1 0 −1 0

0 1 0 −1


︸ ︷︷ ︸

A


x

y

z1

z2


︸ ︷︷ ︸

x

≤



0

0

0

0

3

2

2


︸ ︷︷ ︸

b

A is a 7× 4-matrix, b is a 7-vector, and
x is a variable 4-vector representing the four variables {x , y , z1, z2}.

Page 16 of 125

Example II
v = [2 1 0 0]T is a vertex of the constraints. For the nonsingular
submatrix A0 (rows 3, 4, 5, 6 of A: defining constraints of v),

0 0 −1 0

0 0 0 −1

1 1 0 0

1 0 −1 0


︸ ︷︷ ︸

A0


2

1

0

0


︸ ︷︷ ︸

v

=


0

0

3

2


︸ ︷︷ ︸

b0

Page 17 of 125

Example III

Another vertex: v0 =
[
0 0 0 0

]T
, since

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


︸ ︷︷ ︸

A0


0

0

0

0


︸ ︷︷ ︸

v0

=


0

0

0

0


︸ ︷︷ ︸

b0

(rows 1,2,3,4 of A: defining constraints of v0)
Note: v and v0 are not adjacent; they are different in 2 defining
constraints.

Page 18 of 125

Linear Programming I

Optimization Problem

max cTx . . . objective function

subject to

Ax ≤ b . . . constraints

Maximize
n∑

i=1

cixi

subject to


a11 · · · a1n

...
. . .

...

am1 · · · amn




x1

...

xn

 ≤


b1

...

bm



Page 19 of 125

Linear Programming II
Solution:

Find vertex v∗ satisfying Ax ≤ b and maximizing cTx .
That is,

Av∗ ≤ b and
cTv∗ is maximal: cTv∗ ≥ cTu for all u satisfying Au ≤ b

◮ If Ax ≤ b is unsatisfiable,
then maximum is −∞

◮ It’s possible that the maximum is unbounded,
then maximum is ∞

Page 20 of 125

Example: Consider optimization problem:

max
[

1 1 −1 −1
]︸ ︷︷ ︸

cT


x

y

z1

z2


︸ ︷︷ ︸

x

subject to

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1 1 0 0

1 0 −1 0

0 1 0 −1


︸ ︷︷ ︸

A


x

y

z1

z2


︸ ︷︷ ︸

x

≤



0

0

0

0

3

2

2


︸ ︷︷ ︸

b

Page 21 of 125

Example (cont):

The objective function is

(x − z1) + (y − z2) .

The constraints are equivalent to the ΣQ-formula

x ≥ 0 ∧ y ≥ 0 ∧ z1 ≥ 0 ∧ z2 ≥ 0

∧ x + y ≤ 3 ∧ x − z1 ≤ 2 ∧ y − z2 ≤ 2

Page 22 of 125

Example: Linear Programming I

A company is producing two different products using three
machines A, B, and C.

◮ Product 1 needs A for one, and B for one hour.

◮ Product 2 needs A for two, B for one, and C for three hours.

◮ Product 1 can be sold for $300; Product 2 for $500.

◮ Monthly availability of machines:
A: 170 hours, B: 150 hours, C 180 hours.

Page 23 of 125

Example: Linear Programming II
Let x1 and x2 denote the amount of product 1 and product 2, resp.
We want to optimize 300x1 + 500x2 subject to:

1x1 + 2x2 ≤ 170 Machine (A)

1x1 + 1x2 ≤ 150 Machine (B)

0x1 + 3x2 ≤ 180 Machine (C)

x1 ≥ 0 ∧ x2 ≥ 0

Page 24 of 125

Example: Linear Programming III

x1

x2

x1 + x2 ≤ 150

x1 + 2x2 ≤ 170

3x2 ≤ 180

Page 25 of 125

Example: Linear Programming IV
Optimize 300x1 + 500x2:

x1

x2

$49000

$45000

$30000

v∗

Page 26 of 125

Duality Theorem

For m × n-matrix A, m-vector b and n-vector c :

max{cTx | Ax ≤ b ∧ x ≥ 0} = min{bT
y | ATy ≥ c ∧ y ≥ 0}

if the constraints are satisfiable.

That is,

maximizing the function cTx over Ax ≤ b, x ≥ 0
(the primal form of the optimization problem)

is equivalent to

minimizing the function b
T
y over ATy ≥ c , y ≥ 0

(the dual form of the optimization problem)

By convention: when Ax ≤ b ∧ x ≥ 0 unsatisfiable, the max is
−∞ and the min is ∞.

Page 27 of 125

•

Ax ≤ b cTx ≤ δ

δ−

δ+

Figure: Visualization of the duality theorem

The region labeled Ax ≤ b satisfies the inequality. The objective
function cTx is represented by the dashed line. Its value increases
in the direction of the arrow labeled δ+ and decreases in the
direction of the arrow labeled δ−. Page 28 of 125

Example: A Dual Problem

What is the value of a machine hour?
Let yA, yB , yC be the values of machine A, B, and C.
The value of the machine hours to produce something ≥ the value
of the product (> if that product should not be produced).

yA ≥ 0 ∧ yB ≥ 0 ∧ yC ≥ 0

1yA + 1yB + 0yC ≥ 300

2yA + 1yB + 3yC ≥ 500

We minimize the value 170yA + 150yB + 180yC to get the value of
a machine hour:

yA = 200 ∧ yB = 100 ∧ yC = 0

170yA + 150yB + 180yC = 49000

This is the dual problem. It has the same optimal value.

Page 29 of 125

The Simplex Method

Consider linear program

M : max c̄Tx̄

subject to G : Ax̄ ≤ b̄

The simplex method solves the linear program in two main steps:

1. Obtain an initial vertex v̄1 of Ax̄ ≤ b̄.

2. Iteratively traverse the vertices of Ax̄ ≤ b̄, beginning at v̄1, in
search of the vertex that maximizes c̄Tx̄ . On each iteration
determine if c̄Tv̄i > c̄Tv̄ ′i for the vertices v̄ ′i adjacent to v̄i :

◮ If not, move to one of the adjacent vertices v̄ ′
i with a greater

objective value.
◮ If so, halt and report v̄i as the optimum point with value c̄Tv̄i .

The final vertex v̄i is a local optimum since its adjacent vertices
have lesser objective values. But because the space defined by
Ax̄ ≤ b̄ is convex, v̄i is also the global optimum: it is the highest
value attained by any point that satisfies the constraints.

Page 30 of 125

Example

x1

x2

0

Page 31 of 125

Example

x1

x2

0

30000

Page 32 of 125

Example

x1

x2

30000 45000

Page 33 of 125

Example

x1

x2

45000

49000

Page 34 of 125

Example

x1

x2

49000

Page 35 of 125

How do we use optimization to determine satisfiability?

We are not interested in an optimal solution x such that

F : Ax ≤ b ;

we want some solution. However, this hard to find.

Idea: Transform F into an optimization problem with an initial
(not-optimal) vertex v1 and a desired optimum vF .

Apply the Simplex Method until an optimal vertex v∗ is obtained.

The optimum value for v∗ is vF iff F : Ax ≤ b is satisfiable.

The solution can be computed from the optimal solution x of the
optimization problem.

Page 36 of 125

Outline of the Algorithm I

Determine if ΣQ-formula

F :
m∧

i=1

ai1x1 + . . . + ainxn ≤ bi

∧
ℓ∧

i=1

αi1x1 + . . . + αinxn < βi

is satisfiable.

Note: Equations
ai1x1 + . . . + ainxn = bi

are allowed; break them into two inequalities:

ai1x1 + . . . + ainxn ≤ bi

−ai1x1 + . . . +−ainxn ≤ −bi

Page 37 of 125

Outline of the Algorithm II
F is TQ-equivalent to the ΣQ-formula

F ′ :
m∧

i=1

ai1x1 + . . . + ainxn ≤ bi

∧
ℓ∧

i=1

αi1x1 + . . . + αinxn + z ≤ βi

∧ z > 0

Page 38 of 125

Outline of the Algorithm III
To decide the TQ-satisfiability of F ′, solve the linear program

max z
subject to

m∧
i=1

ai1x1 + . . . + ainxn ≤ bi

ℓ∧
i=1

αi1x1 + . . . + αinxn + z ≤ βi

F ′ is TQ-satisfiable iff the optimum is positive.

Page 39 of 125

Outline of the Algorithm IV
When F does not contain any strict inequality literals, the
corresponding linear program

max 1
subject to

m∧
i=1

ai1x1 + . . . + ainxn ≤ bi

has optimum −∞ iff the constraints are TQ-unsatisfiable,
1 iff the constraints are TQ-satisfiable.

Page 40 of 125

Outline of the Algorithm V
To determine the satisfiability of F : Ax ≤ b,

M → M0

reformulate the satisfiability of F as an optimization problem:

M0 : max{c̄Tx̄ ′ | A′x̄ ′ ≤ b̄′}

such that F is TQ-satisfiable iff the optimal value of M0 is a
particular value vF (derived from the structure of F).

Simplex Method

vertex traversal until termination

Page 41 of 125

Outline of the Algorithm VI

The simplex method traverses the vertices of A′x ′ ≤ b
′
searching

for the maximum of the objective function cTx ′.

If v1, v2, . . . are the traversed vertices in the iteration, then

cTv1 < cTv2 < · · · .

The simplex method terminates at some vertex v i∗ where cTv i∗ is
the global optimum

Final step: Compare the discovered optimal value cTv i∗ to the
desired value vF .

◮ if equal, then F is TQ-satisfiable

◮ otherwise, F is TQ-unsatisfiable

Page 42 of 125

Step 0: From Satisfiability to Optimization

Given ΣQ-formula

F : Ax ≤ b (8.1)

reformulate to new constraint system (new A, x , b)

F ′ : x ≥ 0, Ax ≤ b

such that F ′ is TQ-equisatisfiable to F

The trick: replace each variable x in F by x1 − x2 and add x̄ ≥ 0

Page 43 of 125

Step 0: From Satisfiability to Optimization
Making the bi positive

Collect the lines where bi is negative:

Ax =

[
D1

−D2

]
x ≤

[
g1

−g2

]
= b

where

g1 ≥ 0

g2 > 0

Multiply the bottom rows with −1:

D1x ≤ g1

D2x ≥ g2

Page 44 of 125

Example 1: x + y ≥ 1 ∧ x − y ≥ −1

ΣQ-formula
F : x + y ≥ 1 ∧ x − y ≥ −1 .

To convert it to the form x ≥ 0 ∧ Ax ≤ b, introduce nonnegative
x1, x2 for x and y1, y2 for y :

F ′ :
(x1 − x2) + (y1 − y2) ≥ 1 ∧ (x1 − x2)− (y1 − y2) ≥ −1

∧ x1, x2, y1, y2 ≥ 0

F is TQ-equisatisfiable to F ′. In matrix form (with x ≥ 0),

F ′ :

[
−1 1 −1 1

−1 1 1 −1

]
︸ ︷︷ ︸

A


x1

x2

y1

y2

 ≤
[
−1

1

]
︸ ︷︷ ︸

b

Page 45 of 125

Example 1: x + y ≥ 1 ∧ x − y ≥ −1

F ′ :
(x1 − x2) + (y1 − y2) ≥ 1 ∧ (x1 − x2)− (y1 − y2) ≥ −1

∧ x1, x2, y1, y2 ≥ 0

Since b1 < 0 and b2 > 0, separating constraints yields

[−1 1 1 −1
]︸ ︷︷ ︸

D1


x1

x2

y1

y2

 ≤ [1]︸︷︷︸
g1

[
1 −1 1 −1

]︸ ︷︷ ︸
D2


x1

x2

y1

y2

 ≥ [1]︸︷︷︸
g2

Page 46 of 125

Step 0: From Satisfiability to Optimization

D1x ≤ g1 g1 ≥ 0

D2x ≥ g2 g2 > 0

Generate the optimization problem:
M0 : max 1

T
(D2x − z)

subject to

x , z ≥ 0 (1)

D1x ≤ g1 (2)

D2x − z ≤ g2 (3)

(8.2)

length of variable vector z = # of rows of D2

◮ The point x = 0, z = 0 satisfies constraints (1) – (3). It’s a
vertex.

◮ The optimum vF equals 1
T
g2 (the equality in (3) holds) iff F

is TQ-satisfiable. (proof on p. 220)

The x part of the optimal solution v∗ satisfies F .
Page 47 of 125

Step 0: From Satisfiability to Optimization
MF can be written in standard form as

MF :
max 1

T [
D2 −I

]︸ ︷︷ ︸
cT

[
x

z

]
︸ ︷︷ ︸

y

subject to
−I

−I

D1

D2 −I


︸ ︷︷ ︸

A

[
x

z

]
︸ ︷︷ ︸

y

≤


0

0

g1

g2


︸ ︷︷ ︸

b

(8.3)

Page 48 of 125

Example 1: x + y ≥ 1 ∧ x − y ≥ −1

[−1 1 1 −1]︸ ︷︷ ︸
D1


x1

x2

y1

y2

 ≤ [1]︸︷︷︸
g1

and [1 −1 1 −1]︸ ︷︷ ︸
D2


x1

x2

y1

y2

 ≥ [1]︸︷︷︸
g2

D2 has only one row, so z = [z].

Pose the following optimization problem:

max [1 −1 1 −1]


x1

x2

y1

y2

− [z]

subject to
. . .

Page 49 of 125

Example 1: x + y ≥ 1 ∧ x − y ≥ −1

x1, x2, y1, y2, z ≥ 0

[−1 1 1 −1
]


x1

x2

y1

y2

 ≤ [1]

[
1 −1 1 −1

]


x1

x2

y1

y2

− [z] ≤ [1]

F is TQ-satisfiable iff the optimum is 1
T
g2 = 1.

[x1 x2 y1 y2 z] = [0 0 0 0 0] is a vertex.

Page 50 of 125

Example 1: x + y ≥ 1 ∧ x − y ≥ −1
Rewriting the optimization problem

max
[

1 −1 1 −1 −1
]︸ ︷︷ ︸

cT


x1

x2

y1

y2

z


subject to

A︷ ︸︸ ︷

−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1

−1 1 1 −1 0

1 −1 1 −1 −1




x1

x2

y1

y2

z

 ≤

b︷ ︸︸ ︷

0

0

0

0

0

1

1


Page 51 of 125

From < to ≤ (reminder)

If we have some strict inequalities:

x ≥ 0

A0x ≤ b0

A1x < b1

introduce a new variable z ≥ 0 and maximize z , such that

x ≥ 0 ∧ z ≥ 0

A0x ≤ b0

A1x + z · 1 ≤ b1

The maximum is greater than 0 iff the original constraint is
satisfiable.
Note: In this case, one can stop the simplex algorithm after the
first time z increases. Why?

Page 52 of 125

Example 1A: x + y > 1 ∧ x − y > −1

Normal form:

x1, x2, y1, y2 ≥ 0

−x1 + x2 + y1 − y2 < 1

−x1 + x2 − y1 + y2 < −1

Introduce z1 for the strictness: Maximize z1 subject to

x1, x2, y1, y2, z1 ≥ 0

−x1 + x2 + y1 − y2 + z1 ≤ 1

−x1 + x2 − y1 + y2 + z1 ≤ −1

Introduce z2 to get rid of negative bound:

Page 53 of 125

Example 1A: x + y > 1 ∧ x − y > −1
Maximize x1 − x2 + y1 − y2 − z1 − z2 subject to

x1, x2, y1, y2, z1 ≥ 0

−x1 + x2 + y1 − y2 + z1 ≤ 1

x1 − x2 + y1 − y2 − z1 − z2 ≤ 1

Page 54 of 125

Example 1A: x + y > 1 ∧ x − y > −1
In matrix form:

max [1 −1 1 −1 −1 −1]x
subject to

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

−1 1 1 −1 1 0

1 −1 1 −1 −1 −1


x ≤



0

0

0

0

0

0

1

1



Page 55 of 125

From Satisfiability to Optimization: Summary

1. Adding the constraints x ≥ 0
Replace each variable x by x1 − x2, then add x ≥ 0.

2. Getting rid of strict inequality <
Add variable z ≥ 0, replace Ax < b with Ax + z ≤ b,
optimize z .
Strict inequality satisfiable iff optimum > 0.

3. Making the bi positive

Page 56 of 125

Vertex Traversal: Find a Better Vertex

Optimization problem of form

max cTx (8.3)

subject to

Ax ≤ b

we are given satisfying vertex v i .

◮ The simplex method traverses vertices of the space defined by
Ax ≤ b to find the vertex v∗ that maximizes cTx .

◮ One iteration seeks vertex v i+1 “adjacent” (n − 1 shared
defining constraints) to v i s.t. cTv i+1 > cTv i

◮ For i = 1, the initial vertex v1 of M0 is x = 0, z = 0

Example (cont):

v1 = [x1 x2 y1 y2 z]T = [0 0 0 0 0]T

Page 57 of 125

Vertex Traversal

Find u

Construct vector u s.t.

uTA = cT (8.4)

If u ≥ 0̄ then by the Duality Theorem v i is optimal.

◮ Given v i

◮ Construct n × n nonsingular submatrix Ai with corresponding
rows bi s.t.

Aiv i = bi

◮ Let R = rows of A in Ai

◮ Solve

Ai
Tui = c (8.5)

◮ Let u be ui for indices in R and
0’s for indices not in R (ui suffices!)

Page 58 of 125

Example 1: x + y ≥ 1 ∧ x − y ≥ −1

Choose the first five rows of A and b (R = [1; 2; 3; 4; 5]) since
−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1


︸ ︷︷ ︸

A1


0

0

0

0

0


︸ ︷︷ ︸

v1

=


0

0

0

0

0


︸ ︷︷ ︸

b1

i.e. −I v1 = b1. Solving (by Gaussian elimination):
−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1


︸ ︷︷ ︸

A1
T

u1 =


1

−1

1

−1

−1


︸ ︷︷ ︸

c

Page 59 of 125

Example 1: x + y ≥ 1 ∧ x − y ≥ −1
(i.e. −I u1 = c, and thus u1 = −c) yields

u1
T =

[−1 1 −1 1 1
]

.

Then
u =

[−1 1 −1 1 1 0 0
]T

Page 60 of 125

Vertex Traversal

Case 1: u ≥ 0

In this case, v i is actually the optimal point with optimal value cTv i .
(proof on p. 226)

Case 2: u 6≥ 0, i.e. there exists some uk < 0

In this case, v i is not the optimal point. We need to move along
an edge to an adjacent vertex to increase the value of the objective
function.

◮ Let k be the lowest index of u s.t. uk < 0 (must be k ∈ R)

◮ Let k ′ be the index of the corresponding row of ui and Ai

and the corresponding column of −A−1
i

Page 61 of 125

Vertex Traversal
Find y

◮ Let y be the k ′th column of −A−1
i . Solve

Aiy = −ek ′ (8.8)

That is,

aℓy = 0 for every row aℓ of Ai , ℓ 6= k ′

ak ′y = −1 for the k ′th row ak ′ of Ai

The vector y provides the direction along which to move to
the next vertex.

Page 62 of 125

Example 1: x + y ≥ 1 ∧ x − y ≥ −1

We found so far

u1 =
[−1 1 −1 1 1

]T
and u =

[−1 1 −1 1 1 0 0
]T

k = 1 since the first row of u is −1. k ′ = 1 since it is also the first
row of ui .
Thus, solve 

−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1


︸ ︷︷ ︸

A1

y =


−1

0

0

0

0


︸ ︷︷ ︸
−e1

i.e. −I y = −e1, yielding y =
[

1 0 0 0 0
]T

.

Page 63 of 125

Vertex Traversal

Find λ and vi+1

We move along edge y to better vertex v i+1.

◮ Let S = indices ℓ s.t. aℓy > 0

◮ Find greatest λi ≥ 0 such that

A(v i + λiy) ≤ b

Choose λi > 0 such that

aℓ(v i + λiy) = bℓ for some ℓ ∈ S

am(v i + λiy) ≤ bm for m ∈ S − {ℓ}

Page 64 of 125

Vertex Traversal
◮ Set v i+1 = v i + λiy (8.12)

Vertex v i+1 is discovered by moving along ray y as far as
possible without violating the constraints. Moreover,

cTv i+1 > cTv i .

◮ Construct Ai+1 from Ai for next iteration by substituting row
aℓ of A for row ak ′ of Ai

Since there are only finite number of vertices to examine, Case 1
eventually occurs.

Page 65 of 125

Vertex Traversal

y

•
v i

•v i+1

Ax ≤ b cTx
y

•
v i

Ax ≤ b cTx

(a) bounded (b) unbounded

(a) depicts the discovery of vertex v i+1 by moving along ray y as
far as possible without violating the constraints.

(b) illustrates what happens when all points along the ray
laybeled y satisfy the constraints: moving along the ray
increases cTx without bound.

Page 66 of 125

Example 1: x + y ≥ 1 ∧ x − y ≥ −1

We found in Step 1

y =
[

1 0 0 0 0
]T

where 

−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1


︸ ︷︷ ︸

A1


1

0

0

0

0


︸ ︷︷ ︸

y

=


−1

0

0

0

0


︸ ︷︷ ︸
−e1

Page 67 of 125

Example 1: x + y ≥ 1 ∧ x − y ≥ −1
Compute Ay

−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1

−1 1 1 −1 0

1 −1 1 −1 −1


︸ ︷︷ ︸

A


1

0

0

0

0


︸ ︷︷ ︸

y

=



−1

0

0

0

0

−1

1



Page 68 of 125

Example 1: x + y ≥ 1 ∧ x − y ≥ −1
S = [7] since a7y = 1 > 0. Examining the 7th row of the
constraints, choose the greatest λ1 such that (8.7b)[

1 −1 1 −1 −1
]︸ ︷︷ ︸

a7

(v1 + λ1y) =

[
1 −1 1 −1 −1

]



0

0

0

0

0

 + λ1


1

0

0

0

0



 = 1︸︷︷︸
b7

that is, choose λ1 = 1. Therefore, (8.7c)

v2 = v1 + λ1y =
[

1 0 0 0 0
]T

Page 69 of 125

Example 1: x + y ≥ 1 ∧ x − y ≥ −1
Form A2 from A1 replacing the 1st row (k ′ = 1) of A1 by the 7th
row (ℓ = 7) of A.

A2 =



1 −1 1 −1 −1

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1

 b2 =


1

0

0

0

0


Thus, A2v2 = b2. This move to vertex v2 makes progress:

[
1 −1 1 −1 −1

]︸ ︷︷ ︸
cT


0

0

0

0

0


︸ ︷︷ ︸

v1

= 0 <
[

1 −1 1 −1 −1
]︸ ︷︷ ︸

cT


1

0

0

0

0


︸ ︷︷ ︸

v2

= 1 .

Page 70 of 125

Example 1: x + y ≥ 1 ∧ x − y ≥ −1
Now R = [7; 2; 3; 4; 5] (rows of A in A2).

Solve 
1 0 0 0 0

−1 −1 0 0 0
1 0 −1 0 0

−1 0 0 −1 0
−1 0 0 0 −1


︸ ︷︷ ︸

A2
T

u2 =


1

−1
1

−1
−1


︸ ︷︷ ︸

c

for u2 yielding u2 = [1 0 0 0 0]T. Since u2 ≥ 0, we are in Case 1:
we have found an optimum point, v2, with optimal value 1.

Since we have that vF = 1
T
g2 = 1, the equality of the optimial

point and vF implies that

Page 71 of 125

Example 1: x + y ≥ 1 ∧ x − y ≥ −1

F : x + y ≥ 1 ∧ x − y ≥ −1

is TQ-satisfiable. In particular, extract from
x1

x2

y1

y2

z

 = v2 =


1
0
0
0
0


the assignment

x = x1 − x2 = 1− 0 = 1 and y = y1 − y2 = 0− 0 = 0 ,

which indeed satisfies F .

Page 72 of 125

Example 2

Consider optimization problem of the form (8.3)
max

[−1 1
]︸ ︷︷ ︸

cT

x

subject to −1 0

0 −1

2 1


︸ ︷︷ ︸

A

x ≤

0

0

2


︸︷︷︸

b

v1 =
[
0 0

]T
is a vertex.

The first two constraints are the defining constraints of v1, so
choose R = [1; 2]:

A1 =

[
−1 0

0 −1

]
b1 =

[
0

0

]
.

Thus A1v1 = b1. Page 73 of 125

cTx

•
v1

x1

x2

The solid lines represent the constraints. The dashed line indicates
cTx ; the arrow points in the direction of increasing value.

Page 74 of 125

Example 2

First Iteration
From (8.5), solving[

−1 0

0 −1

]
︸ ︷︷ ︸

AT
1

u1 =

[
−1

1

]
︸ ︷︷ ︸

c

i.e., − I u1 = c

for u1 yields

u1 = −c =
[
1 −1

]T
.

Adding 0s for rows not in R produces

u =
[
1 −1 0

]T
.

This u satisfies uTA = cT of (8.6).

Page 75 of 125

Example 2
Since the 2nd row of u is -1, we are in Case 2 (u ¤ 0)
with k = 2 of u, corresponding to row k ′ = 2 of u1.

Let y be the 2nd column of −A−1
1 , and solve (8.8)[

−1 0

0 −1

]
︸ ︷︷ ︸

A1

y =

[
0

−1

]
︸ ︷︷ ︸
−e2

for y , yielding

y =
[
0 1

]T
.

Page 76 of 125

cTx

y

•
v1

•v2

x1

x2

The y is visualized by the dark solid arrow that points up from v1.
The vertical and horizontal lines are the defining constraints of v1;
in moving in the direction y , we keep the vertical constraint for the
next vertex v2 but drop the horizontal constraint. The diagonal
constraint will become the second of v2’s defining constraints.

Page 77 of 125

Example 2

Choose λ1 such that

−1 0

0 −1

2 1


︸ ︷︷ ︸

A


[
0

0

]
︸︷︷︸
v1

+λ1

[
0

1

]
︸︷︷︸

y

 ≤

0

0

2


︸︷︷︸

b

.

Page 78 of 125

Example 2
We have

[−1 0
]︸ ︷︷ ︸

(A)1

[
0

1

]
︸︷︷︸

y

= 0

[
0 −1

]︸ ︷︷ ︸
(A)2

[
0

1

]
︸︷︷︸

y

< 0

[
2 1

]︸ ︷︷ ︸
(A)3

[
0

1

]
︸︷︷︸

y

> 0 ⇒ [
2 1

]([
0

0

]
+ λ1

[
0

1

])
= 2

⇒ λ1 = 2

Thus λ1 = 2, ℓ = 3.

Page 79 of 125

Example 2
From (8.12),

v2 = v1 + λ1y =

[
0

0

]
+ 2

[
0

1

]
=

[
0

2

]
.

Choosing R = [1; 3] and replacing the 2nd row of A1 and b1

(k ′ = 2) with the 3rd row (ℓ3 = 3) of Ax ≤ b yields

A2 =

[
−1 0

2 1

]
and b2 =

[
0

2

]
; i.e., A2v2 = b2

The vertical and diagonal constraints are the defining constraints
of v2.

Page 80 of 125

Example 2
Next Iteration
In the next iteration, solving[

−1 2

0 1

]
︸ ︷︷ ︸

AT
2

u2 =

[
−1

1

]
︸ ︷︷ ︸

c

yields u2 =
[
3 1

]T
. Adding 0s for rows not in R produces

u =
[
3 0 1

]T
.

Since u ≥ 0̄, we are in Case 1. The max is

cTv2 =
[−1 1

] [
0

2

]
= 2

at vertex vT
2 =

[
0 2

]
.

Page 81 of 125

Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3

ΣQ-formula (8.1)

F : x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3 ,

or, in matrix form,

F :


−1 0

0 −1

−1 0

0 −1

1 1


[

x

y

]
≤


0

0

−2

−2

3


Is F TQ-satisfiable?

Page 82 of 125

Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Step 0

Because x and y are already constrained to be nonnegative, we do
not need to introduce new x1, x2, y1, y2. Rewrite:

[1 1]︸︷︷︸
D1

[
x

y

]
≤ [3]︸︷︷︸

g1

and

[
1 0

0 1

]
︸ ︷︷ ︸

D2

[
x

y

]
≥

[
2

2

]
︸ ︷︷ ︸

g2

so that g1 ≥ 0 and g2 > 0.

Then (8.2):

max 1
T
(D2x − z)

subject to

x , z ≥ 0

D1x ≤ g1

D2x − z ≤ g2

Page 83 of 125

Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Expanding, we have

cTx = 1
T [

D2 −I
]


x

y

z1

z2



= [1 1]

[
1 0 −1 0

0 1 0 −1

] 
x

y

z1

z2



=
[

1 1 −1 −1
]︸ ︷︷ ︸

cT


x

y

z1

z2

 .

Page 84 of 125

Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
obtaining the optimization problem (8.3)

max [1 1 − 1 − 1]︸ ︷︷ ︸
cT


x

y

z1

z2


subject to

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1 1 0 0

1 0 −1 0

0 1 0 −1


︸ ︷︷ ︸

A


x

y

z1

z2

 ≤



0

0

0

0

3

2

2


︸ ︷︷ ︸

b

Page 85 of 125

Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Use the initial vertex

v1 =


x

y

z1

z2

 =


0

0

0

0


in Step 1.

F is satisfiable iff the optimal value vF is equal to

1
T
g2 = [1 1]

[
2

2

]
= 4 .

We use the simplex algorithm to find the optimum.

Page 86 of 125

Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Step 1

Choose rows R = [1; 2; 3; 4] of A and b, giving
−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


︸ ︷︷ ︸

A1


0

0

0

0


︸ ︷︷ ︸

v1

=


0

0

0

0


︸ ︷︷ ︸

b1

Solving 
−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


︸ ︷︷ ︸

A1
T

u1 =


1

1

−1

−1


︸ ︷︷ ︸

c

Page 87 of 125

Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
yields u1 = [−1 − 1 1 1]T. Adding 0s for the rows not in R
produces u:

u =
[−1 −1 1 1 0 0 0

]T
.

Since u1, u2 < 0, we are in Case 2 with k = k ′ = 1. Let y be the
first column of −A−1

1 : solve
−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


︸ ︷︷ ︸

A1

y =


−1

0

0

0


︸ ︷︷ ︸
−ē1

to yield y =
[

1 0 0 0
]T

. Then S = [5; 6]; i.e., the 5th and
6th rows a of A are such that ay > 0. Choose the largest λ1 such
that A(v1 + λ1y) ≤ b.

Page 88 of 125

Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Focusing on the 5th and 6th rows of A (since S ′ = [5; 6]), choose
the largest λ1 such that

[
1 1 0 0

1 0 −1 0

]
︸ ︷︷ ︸

rows 5,6 of A




0

0

0

0


︸ ︷︷ ︸

v1

+λ1


1

0

0

0


︸ ︷︷ ︸

y


≤

[
3

2

]
︸ ︷︷ ︸

rows 5,6 of b

Namely, choose λ1 = 2 (and ℓ = 6). Then

v2 = v1 + λ1y =


0

0

0

0

 + 2


1

0

0

0

 =


2

0

0

0


Page 89 of 125

Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Replace the 1st row of A1 (since k ′ = 1) by the 6th row of A
(since ℓ = 6) to produce

A2 =


1 0 −1 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 and b2 =


2

0

0

0


Have we made progress? Yes, for

cTv1 = 0 < 2 = cTv2 .

The objective function has increased from 0 to 2.

Page 90 of 125

Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Step 2

Now R = [6; 2; 3; 4] (the indices of rows of A in A2). Solve
1 0 0 0

0 −1 0 0

−1 0 −1 0

0 0 0 −1


︸ ︷︷ ︸

A2
T

u2 =


1

1

−1

−1


︸ ︷︷ ︸

c

to yield
u2 = [1 −1 0 1]T

6 2 3 4
.

Page 91 of 125

Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Then filling in 0s for the other rows of A produces:

u = [0 −1 0 1 0 1 0]T

2 3 4 6

u2 < 0, so k = 2, which corresponds to row k ′ = 2 of u2.

According to Case 2, let y be the 2nd column of −A−1
2 : solve

A2y = −e2 to yield y = [0 1 0 0]T. Then the 5th and 7th rows a
of A are such that ay > 0 so that S = [5; 7].

Focusing on the 5th and 7th rows of A, choose the largest λ2 such
that

[
1 1 0 0

0 1 0 −1

]
︸ ︷︷ ︸

rows 5,7 of A




2

0

0

0


︸ ︷︷ ︸

v2

+λ2


0

1

0

0


︸ ︷︷ ︸

y


≤

[
3

2

]
︸ ︷︷ ︸

rows 5,7 of b

Page 92 of 125

Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Choose λ2 = 1 (and ℓ = 5). Then

v3 = v2 + λ2y =


2

0

0

0

 + 1


0

1

0

0

 =


2

1

0

0


Replace the 2nd row of A2 (since k ′ = 2) by the 5th row of A
(since ℓ = 5) to produce

A3 =


1 0 −1 0

1 1 0 0

0 0 −1 0

0 0 0 −1

 and b3 =


2

3

0

0



Page 93 of 125

Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Have we made progress? Yes, for

cTv1 = 0

< cTv2 = 2

< cTv3 = 3 .

The objective function has increased from 2 to 3.

Page 94 of 125

Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Step 3

Now R = [6; 5; 3; 4]. Solve A3
Tu3 = c , yielding u3 = [0 1 1 1]T.

Now u3 ≥ 0, so we are in Case 1: v3 is the optimum with objective
value

[1 1 − 1 − 1]︸ ︷︷ ︸
cT


2

1

0

0


︸ ︷︷ ︸

v3

= 3 .

Final Step: Satisfiability

The optimal value of the constructed optimization problem is 3,
which is less than the required vF = 4 of Step 0. Hence, F is
TQ-unsatisfiable.

Page 95 of 125

Linear Programming (Dantzig 1940s)

A linear programming problem involves the optimization of a linear
objective function, subject to linear inequality constraints.

max cTx (objective function)

subject to Ax ≤ b (constraints)

x denotes a vector:

max
n∑

i=1

cixi

subject to


a11 · · · a1n

...
...

am1 · · · amn




x1

...

xn

 ≤


b1

...

bm



Page 96 of 125

Example: Linear Programming

A company is producing two different products using three
machines A, B, and C.

◮ Product 1 needs A for one, and B for one hour.

◮ Product 2 needs A for two, B for one, and C for three hours.

◮ Product 1 can be sold for $300; Product 2 for $500.

◮ Monthly availability of machines:
A: 170 hours, B: 150 hours, C 180 hours.

Let x1 and x2 denote the projected monthly sale of product 1 and
product 2, respectively.
We want to optimize 300x1 + 500x2 subject to:

1x1 + 2x2 ≤ 170 Machine (A)

1x1 + 1x2 ≤ 150 Machine (B)

0x1 + 3x2 ≤ 180 Machine (C)

x1 ≥ 0 ∧ x2 ≥ 0

Page 97 of 125

The Simplex Algorithm

To find the optimal solution proceed as follows:

◮ start at some vertex of the solution space,

◮ proceed along adjacent edge to reach a vertex with better
cost,

◮ continue until local optimum is found.

The solution space forms a convex polyhedron.
Therefore local optimum is global optimum.

Page 98 of 125

A Problem with a Simple Vertex

If the problem is of the following shape:

x1 ≥ 0

...

xn ≥ 0

Ax ≤ b, where b ≥ 0

or (in matrix form)

−1 0

. . .

0 −1

A


x ≤



0

...

0

b1

. . .

bm


, where b1, . . . , bm ≥ 0,

then a simple (initial) vertex of solution space is x = 0.
Page 99 of 125

Vertex of Ax ≤ b and its dual

An n-vector v is a vertex of Ax ≤ b if there is nonsingular
n × n-submatrix A0 and corresponding n-subvector b0 s.t.

A0v = b0 and Av ≤ b

Move the rows corresponding to A0 in A and b0 in b upwards:

A =

[
A0

∗

]
and b =

[
b0

∗

]

Construct solution u of the dual problem ATy ≥ c as follows:
Since A0 is invertible, we can solve

A0
Tu0 = c

to get u0. Set u :=

[
u0

0

]
, then:

ATu =
[

A0
T ∗] [

u0

0

]
= A0

Tu0 + 0 = c .

Page 100 of 125

Case u ≥ 0

If u ≥ 0, then v is optimal:
We have

cTv = (ATu)
T
v

= uTAv

= uT

[
A0

∗

]
v

=
[
u0

T 0
] [

b0

∗

]
= uTb

Let x be an arbitrary vector that satisfies Ax ≤ b, then:

cTx = (ATu)Tx = uTAx ≤
u≥0

uTb = cTv .

Hence, cTv is maximal.
Page 101 of 125

Case u 6≥ 0

If u 6≥ 0, there is some coordinate k s.t. uk < 0.
This corresponds to some row of matrix A0.

Find y

Solve for y in equation

A0y = −ēk .

This is the direction in which we move.
Set v ′ = v + λy , where λ ≥ 0 . Then

A0v
′ = A0(v + λy)

= b0 − λēk

≤ b0

and equality holds for all but the kth row.

Page 102 of 125

Case u 6≥ 0
Moreover, v ′ is better than v :

cTy = u0
TA0y

= u0
T(−ēk)

= −uk

> 0 .

Hence,
cTv ′ = cTv + λ cTy︸︷︷︸

>0

≥ cTv

Page 103 of 125

How to find λ

Find λ
Now choose λ such that still A(v + λy) ≤ b and equality
holds for some constraint (A)ℓ(v + λy) = bℓ, ℓ > n.
This gives a better vertex.

For each row ℓ > n with (A)ℓy > 0, solve λℓ in the equation

(A)ℓ(v + λℓy) = bℓ

From (A)ℓv ≤ bℓ:

0 ≤ bℓ − (A)ℓv = λℓ(A)ℓy

Since (A)ℓy > 0, we have λℓ ≥ 0.

Choose as λ the smallest λℓ.

Page 104 of 125

The cases for λ

Since A0y = −ēk ,

A(v + λy) ≤ b + λAy = b + λ



−ēk

(A)n+1y

...

(A)my


Case 1
There is no ℓ > n with (A)ℓy > 0. Then A(v + λy) ≤ b holds for
all λ ≥ 0 and the maximum value of cTx is unbounded:

lim
λ→∞

cT(v + λy) = lim
λ→∞

cTv + λ cTy︸︷︷︸
>0

 = ∞ .

Page 105 of 125

The cases for λ
Case 2
If λ is the smallest λℓ with (A)ℓy > 0, then

(A)ℓ(v + λy) = bℓ and A(v + λy) ≤ b

Thus v + λy is a better vertex.

Page 106 of 125

Example 4: Linear Programming
max[

300 500
]︸ ︷︷ ︸

c

x

subject to
−1 0

0 −1

1 2

1 1

0 3


︸ ︷︷ ︸

A

x ≤


0

0

170

150

180


︸ ︷︷ ︸

b

Page 107 of 125

Example 4: Linear Programming

x1

x2

0

y

Page 108 of 125

Example 4: Linear Programming

v =
[
0 0

]T

[
−1 0

0 −1

]
︸ ︷︷ ︸

A0

[
0

0

]
︸︷︷︸

v

=

[
0

0

]
︸︷︷︸

b0[
−1 0

0 −1

]
︸ ︷︷ ︸

AT
0

u0 =

[
300

500

]
︸ ︷︷ ︸

c

⇒ u =
[−300 −500 0 0 0

]T

u2 = −500 < 0 ⇒ choose k = 2

[
−1 0

0 −1

]
︸ ︷︷ ︸

A0

y =

[
0

−1

]
︸ ︷︷ ︸
−ē2

⇒ y =
[
0 1

]T

Page 109 of 125

Example 4: Linear Programming

[
1 2

]︸ ︷︷ ︸
(A)3

[
0

1

]
︸︷︷︸

y

> 0 ⇒ [
1 2

]([
0

0

]
+ λ3

[
0

1

])
= 170

⇒ λ3 = 85[
1 1

]︸ ︷︷ ︸
(A)4

[
0

1

]
︸︷︷︸

y

> 0 ⇒ [
1 1

]([
0

0

]
+ λ4

[
0

1

])
= 150

⇒ λ4 = 150[
0 3

]︸ ︷︷ ︸
(A)5

[
0

1

]
︸︷︷︸

y

> 0 ⇒ [
0 3

]([
0

0

]
+ λ5

[
0

1

])
= 180

⇒ λ5 = 60

Page 110 of 125

Example 4: Linear Programming
Thus λ = λ5 = 60, ℓ = 5, and

v ′ =

[
0

0

]
︸︷︷︸

v

+ 60︸︷︷︸
λ

[
0

1

]
︸︷︷︸

y

=

[
0

60

]
.

Page 111 of 125

Example 4: Linear Programming
max[

300 500
]
x

subject to
−1 0

0 3

0 −1

1 2

1 1

 x ≤


0

180

0

170

150


ℓ = 5 ⇒ k = 2
(not swap, but okay)

Page 112 of 125

Example 4: Linear Programming

x1

x2

30000

y

Page 113 of 125

Example 4: Linear Programming

v =
[
0 60

]T

[
−1 0

0 3

]
︸ ︷︷ ︸

A0

[
0

60

]
︸ ︷︷ ︸

v

=

[
0

180

]
︸ ︷︷ ︸

b0[
−1 0

0 3

]
︸ ︷︷ ︸

AT
0

u0 =

[
300

500

]
︸ ︷︷ ︸

c

⇒ u =
[−300 1662

3 0 0 0
]T

u1 = −300 < 0 ⇒ choose k = 1

[
−1 0

0 3

]
︸ ︷︷ ︸

A0

y =

[
−1

0

]
︸ ︷︷ ︸
−ē1

⇒ y =
[
1 0

]T

Page 114 of 125

Example 4: Linear Programming

[
0 −1

]︸ ︷︷ ︸
(A)3

[
1

0

]
︸︷︷︸

y

= 0

[
1 2

]︸ ︷︷ ︸
(A)4

[
1

0

]
︸︷︷︸

y

> 0 ⇒ [
1 2

]([
0

60

]
+ λ4

[
1

0

])
= 170

⇒ λ4 = 50[
1 1

]︸ ︷︷ ︸
(A)5

[
1

0

]
︸︷︷︸

y

> 0 ⇒ [
1 1

]([
0

60

]
+ λ5

[
1

0

])
= 150

⇒ λ5 = 90

Page 115 of 125

Example 4: Linear Programming
Since (A)3y = 0, λ4 = 50, and λ5 = 90,
we have λ = 50 and ℓ = 4, so

v ′ =

[
0

60

]
︸ ︷︷ ︸

v

+ 50︸︷︷︸
λ

[
1

0

]
︸︷︷︸

y

=

[
50

60

]
.

Page 116 of 125

Example 4: Linear Programming
max[

300 500
]
x

subject to
1 2

0 3

−1 0

0 −1

1 1

 x ≤


170

180

0

0

150


ℓ = 4 ⇔ k = 1 (swap)

Page 117 of 125

Example 4: Linear Programming

x1

x2

45000

y

Page 118 of 125

Example 4: Linear Programming

v =
[
50 60

]T

[
1 2

0 3

]
︸ ︷︷ ︸

A0

[
50

60

]
︸ ︷︷ ︸

v

=

[
170

180

]
︸ ︷︷ ︸

b0[
1 0

2 3

]
︸ ︷︷ ︸

AT
0

u0 =

[
300

500

]
︸ ︷︷ ︸

c

⇒ u =
[
300 −331

3 0 0 0
]T

u2 = −33
1

3
< 0 ⇒ choose k = 2

[
1 2

0 3

]
︸ ︷︷ ︸

A0

y =

[
0

−1

]
︸ ︷︷ ︸
−ē2

⇒ y =
[

2
3 −1

3

]T

Page 119 of 125

Example 4: Linear Programming

[−1 0
]︸ ︷︷ ︸

(A)3

[
2
3

−1
3

]
︸ ︷︷ ︸

y

< 0

[
0 −1

]︸ ︷︷ ︸
(A)4

[
2
3

−1
3

]
︸ ︷︷ ︸

y

> 0 ⇒ [
0 −1

]︸ ︷︷ ︸
(A)4


[
50

60

]
︸ ︷︷ ︸

v

+λ4

[
2
3

−1
3

]
︸ ︷︷ ︸

y

 = 0︸︷︷︸
b4

⇒ λ4 = 180

[
1 1

]︸ ︷︷ ︸
(A)5

[
2
3

−1
3

]
︸ ︷︷ ︸

y

> 0 ⇒ [
1 1

]︸ ︷︷ ︸
(A)5


[
50

60

]
︸ ︷︷ ︸

v

+λ5

[
2
3

−1
3

]
︸ ︷︷ ︸

y

 = 150︸︷︷︸
b5

⇒ λ5 = 120
Page 120 of 125

Example 4: Linear Programming

Since (A)3y < 0, λ4 = 180, and λ5 = 120,
we have λ = 120 and ℓ = 5, so

v ′ =

[
50

60

]
︸ ︷︷ ︸

v

+ 120︸︷︷︸
λ

[
2
3

−1
3

]
︸ ︷︷ ︸

y

=

[
130

20

]
.

Page 121 of 125

Example 4: Linear Programming
max[

300 500
]
x

subject to
1 2

1 1

−1 0

0 −1

0 3

 x ≤


170

150

0

0

180


ℓ = 5 ⇔ k = 2 (swap)

Page 122 of 125

Example 4: Linear Programming

x1

x2

49000

Page 123 of 125

Example 4: Linear Programming

v =
[
130 20

]T[
1 2

1 1

]
︸ ︷︷ ︸

A0

[
130

20

]
︸ ︷︷ ︸

v

=

[
170

150

]
︸ ︷︷ ︸

b0

[
1 1

2 1

]
︸ ︷︷ ︸

AT
0

u0 =

[
300

500

]
︸ ︷︷ ︸

c

⇒ u =
[
200 100 0 0 0

]T

Since u ≥ 0, we have reached the maximum, with

x =

[
130

20

]
.

Page 124 of 125

Example 4: Linear Programming
Finally, therefore,

max =
[
300 500

]︸ ︷︷ ︸
cT

[
130

20

]
︸ ︷︷ ︸

x

= 49000 .

Page 125 of 125

