CS156: The Calculus of Computation Zohar Manna

Winter 2008

Decision Procedures for Quantifier-free Fragments

For theory T with signature Σ and axioms A, decide if

 $F[x_1, \ldots, x_n]$ or $\exists x_1, \ldots, x_n$. $F[x_1, \ldots, x_n]$ is T-satisfiable

 $\begin{bmatrix} \text{Decide if} & \\ F[x_1, \dots, x_n] & \text{or } \forall x_1, \dots, x_n, F[x_1, \dots, x_n] & \text{is } T\text{-valid} \end{bmatrix}$ where F is quantifier-free and free $(F) = \{x_1, \dots, x_n\}$ <u>Note</u>: no quantifier alternations

> < 2 > < 2 > 2 + 0 A O

Page 2 of 125

Chapter 8: Quantifier-free Linear Arithmetic

Page 1 of 125

Conjunctive Quantifier-free Fragment

We consider only conjunctive quantifier-free Σ -formulae, i.e., conjunctions of $\overline{\Sigma}$ -literals ($\overline{\Sigma}$ -atoms or negations of Σ -atoms).

For given arbitrary quantifier-free $\Sigma\text{-}\mathsf{formula}\ F,$ convert it into DNF $\Sigma\text{-}\mathsf{formula}$

$$F_1 \vee \ldots \vee F_k$$

where each Fi conjunctive.

F is T-satisfiable iff at least one F_i is T-satisfiable.

Preliminary Concepts

Matrix

Page 3 of 125

Multiplication I

vector-vector

$$\overline{a}^{\mathsf{T}}\overline{b} = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = \sum_{i=1}^n a_i b_i$$

matrix-vector

$$A\overline{\mathbf{x}} = \begin{bmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{a}_{m1} & \cdots & \mathbf{a}_{mn} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n \mathbf{a}_{1i} \mathbf{x}_i \\ \vdots \\ \sum_{i=1}^n \mathbf{a}_{mi} \mathbf{x}_i \end{bmatrix}$$

Multiplication II

matrix-matrix

where

$$p_{ij} = \overline{a}_i \overline{b}_j = \begin{bmatrix} a_{i1} & \cdots & a_{in} \end{bmatrix} \begin{bmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{bmatrix} = \sum_{k=1}^n a_{ik} b_{kj}$$

1 2 040

Special Vectors and Matrices

$$\overline{0} - \text{vector (column) of 0s}$$

$$\overline{I} - \text{vector of 1s}$$

$$Thus \overline{I}^T \overline{x} = \sum_{i=1}^n x_i$$

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \underbrace{\text{identity matrix } (n \times n)}_{\text{Thus } IA = AI = A, \text{ for } n \times n \text{ matrix } A.$$

$$\underbrace{\text{unit vector } e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}}_{\text{Thus index matrix indices start at 1}$$

$$\underbrace{\text{Page 7 of 125}}_{\text{Page 7 of 125}}$$

Page 6 of 125

 $\frac{\text{Vector Space}}{\text{of vectors. That is,}}$

 $\begin{array}{ll} \text{if } \overline{v}_1, \dots, \overline{v}_k \in S \quad \text{then} \quad \lambda_1 \overline{v}_1 + \dots + \lambda_k \overline{v}_k \in S \\ \quad \text{for } \lambda_1, \dots, \lambda_n \in \mathbb{Q} \end{array}$

represents the $\Sigma_{\mathbb{O}}$ -formula

$$F: (a_{11}x_1 + \cdots + a_{1n}x_n = b_1) \wedge \cdots \wedge (a_{m1}x_1 + \cdots + a_{mn}x_n = b_m)$$

Gaussian Elimination

Find \overline{x} s.t. $A\overline{x} = \overline{b}$ by elementary row operations

- Swap two rows
- Multiply a row by a nonzero scalar
- Add one row to another

Page 8 of 125

Example 4 I

Solve

3	1	2]	[x ₁]		6
1	0	1	<i>x</i> ₂	=	1
2	2	1	[X3]		2

Construct the augmented matrix

$$\begin{bmatrix} 3 & 1 & 2 & 6 \\ 1 & 0 & 1 & 1 \\ 2 & 2 & 1 & 2 \end{bmatrix}$$

Apply the row operations as follows:

Example 4 II

1. Add $-2\overline{a}_1 + 4\overline{a}_2$ to \overline{a}_3

2. Add $-\overline{a}_1 + 2\overline{a}_2$ to \overline{a}_2

$$\begin{bmatrix} 3 & 1 & 2 & 6 \\ 0 & -1 & 1 & -3 \\ 0 & 0 & 1 & -6 \end{bmatrix}$$

This augmented matrix is in triangular form.

Example 4 III

Inverse Matrix

A⁻¹ is the inverse matrix of square matrix A if

$$AA^{-1} = A^{-1}A = I$$
Square matrix A is nonsingular (invertible) if its inverse A⁻¹ exists.
How to compute A⁻¹ of A?

$$\begin{bmatrix} A & I \\ 0 \\ 1 \\ 0 \end{bmatrix} \xrightarrow{\text{elementary}} \begin{bmatrix} I & I & A^{-1} \end{bmatrix}$$
row operations
How to compute kth column of A⁻¹?
Solve Aÿ = e_k, i.e.

$$\begin{bmatrix} A & \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \xrightarrow{\text{solve using}} \text{solve triangular matrix} \\ (kth column of A^{-1}) \\ (kth column of A^{-1}) \\ \text{row operations} \end{bmatrix}$$

Page 9 of 125

101100102102102

Page 11 of 125

Solving

$$\begin{array}{rrrr} & x_3=-6\\ & -x_2+x_3=-3 & \Rightarrow & x_2=-3\\ & 3x_1+x_2+2x_3=6 & \Rightarrow & x_1=7\\ \end{array}$$
 The solution is $\overline{x}=\left[\begin{array}{rrrr} 7 & -3 & -6\end{array}\right]^{\mathsf{T}}$

Linear Inequalities I

Polyhedral Space

For $m\times$ n-matrix A, variable n-vector $\overline{x},$ and m-vector $\overline{b},$ the $\Sigma_{\mathbb{Q}}\text{-formula}$

$$G: A\overline{x} \leq \overline{b}, \quad \text{i.e.}, \quad G: \bigwedge_{i=1}^{m} a_{i1}x_1 + \cdots + a_{in}x_n \leq b_i$$

describes a subset (space) of \mathbb{Q}^n , called a **polyhedron**.

Linear Inequalities II

Convex Space

An n-dimensional space $S\subseteq \mathbb{R}^n$ is **convex** if for all pairs of points $\bar{v}_1, \bar{v}_2\in S,$

$$\lambda \overline{v}_1 + (1 - \lambda) \overline{v}_2 \in S$$
 for $\lambda \in [0, 1]$

 $A\overline{x}\leq \bar{b}$ defines a **convex space**. For suppose $A\overline{v}_1\leq \bar{b}$ and $A\overline{v}_2\leq \bar{b};$ then also

 $A(\lambda \bar{v}_1 + (1 - \lambda)\bar{v}_2) \leq \bar{b}$.

Page 13 of 125

Linear Inequalities III

Vertex

Consider $m \times n$ -matrix A where $m \ge n$.

An *n*-vector \overline{v} is a **vertex** of $A\overline{x} \leq \overline{b}$ if there is

- a nonsingular n × n-submatrix A₀ of A and
- ▶ corresponding *n*-subvector \bar{b}_0 of \bar{b}

such that

$$A_0 \bar{v} = \bar{b}_0$$

The rows a_{0_i} in A_0 and corresponding values b_{0_i} of \overline{b}_0 are the set of **defining constraints** of the vertex \overline{v} .

Two vertices are **adjacent** if they have defining constraint sets that differ in only one constraint.

Example I

Consider the linear inequality

A is a 7 × 4-matrix, \overline{b} is a 7-vector, and \overline{x} is a variable 4-vector representing the four variables {x, y, z₁, z₂}.

Page 14 of 125

Page 15 of 125

Example II

 $\overline{v} = \begin{bmatrix} 2 \ 1 \ 0 \ 0 \end{bmatrix}^T$ is a vertex of the constraints. For the nonsingular submatrix A_0 (rows 3, 4, 5, 6 of A; defining constraints of \overline{v}).

0	0	-1	0		[2]		0 -	1
0	0	0	-1		1		0	
1	1	0	0		0	=	3	
1	0	- 1	0		0		2	
		A ₀		\sim	\overline{v}		b0	

Example III

Another vertex: $\overline{v}_0 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$, since

$$\underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}}_{A_0} \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}}_{\overline{v}_0} = \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ b_0 \end{bmatrix}}_{b_0}$$

(rows 1,2,3,4 of A: defining constraints of \overline{v}_0) Note: \overline{v} and \overline{v}_0 are not adjacent; they are different in 2 defining constraints.

Linear Programming I

Optimization Problem

max ਟ [⊤] ⊼	objective function
subject to	
$A\overline{\mathbf{x}} < \overline{\mathbf{b}}$	constraints

$$\begin{array}{l} \text{Maximize } \sum_{i=1}^{n} c_i x_i \\ \text{subject to} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \leq \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

Linear Programming II

Solution:

Find vertex \overline{v}^* satisfying $A\overline{x} \leq \overline{b}$ and maximizing $\overline{c}^T \overline{x}$. That is.

 $A\overline{v}^* \leq \overline{b}$ and $\overline{c}^{\mathsf{T}}\overline{v}^*$ is maximal: $\overline{c}^{\mathsf{T}}\overline{v}^* > \overline{c}^{\mathsf{T}}\overline{u}$ for all \overline{u} satisfying $A\overline{u} < \overline{b}$

- If Ax̄ < b̄ is unsatisfiable.</p> then maximum is $-\infty$
- It's possible that the maximum is unbounded, then maximum is ∞

Example: Consider optimization problem:

Example: Linear Programming I

A company is producing two different products using three machines A, B, and C.

- Product 1 needs A for one, and B for one hour.
- Product 2 needs A for two, B for one, and C for three hours.
- Product 1 can be sold for \$300; Product 2 for \$500.
- Monthly availability of machines:
 A: 170 hours, B: 150 hours, C 180 hours.

Example (cont):

The objective function is

 $(x - z_1) + (y - z_2)$.

The constraints are equivalent to the Σ_Q -formula

$$x \ge 0 \land y \ge 0 \land z_1 \ge 0 \land z_2 \ge 0$$

$$\land x + y \le 3 \land x - z_1 \le 2 \land y - z_2 \le 2$$

Page 22 of 125

Example: Linear Programming II

Let x_1 and x_2 denote the amount of product 1 and product 2, resp. We want to optimize $300x_1 + 500x_2$ subject to:

$1x_1 + 2x_2 \le 170$	Machine (A)
$1x_1 + 1x_2 \le 150$	Machine (B)
$0x_1 + 3x_2 \le 180$	Machine (C)
$x_1 \ge 0 \land x_2 \ge 0$	

For $m \times n$ -matrix A, m-vector \overline{b} and n-vector \overline{c} :

$$\mathsf{max}\{\overline{c}^\mathsf{T}\overline{x} \mid A\overline{x} \leq \overline{b} \ \land \ \overline{x} \geq \overline{0}\} = \mathsf{min}\{\overline{b}^\mathsf{T}\overline{y} \mid A^\mathsf{T}\overline{y} \geq \overline{c} \ \land \ \overline{y} \geq \overline{0}\}$$

if the constraints are satisfiable.

That is.

maximizing the function $c^T \overline{x}$ over $A \overline{x} < \overline{b}, \overline{x} > \overline{0}$ (the primal form of the optimization problem)

is equivalent to

minimizing the function $\overline{b}^{\mathsf{T}}\overline{y}$ over $A^{\mathsf{T}}\overline{y} \geq \overline{c}, \ \overline{y} \geq \overline{0}$ (the dual form of the optimization problem)

By convention: when $A\overline{x} \le b \land \overline{x} \ge 0$ unsatisfiable, the max is $-\infty$ and the min is ∞ .

> Page 27 of 125

Figure: Visualization of the duality theorem

The region labeled $A\overline{x} \leq \overline{b}$ satisfies the inequality. The objective function $\overline{c}^T \overline{x}$ is represented by the dashed line. Its value increases in the direction of the arrow labeled δ^+ and decreases in the direction of the arrow labeled δ^- . Page 28 of 125

Example: A Dual Problem

What is the value of a machine hour?

Let y_A , y_B , y_C be the values of machine A, B, and C. The value of the machine hours to produce something \geq the value of the product (> if that product should not be produced).

$$y_A \ge 0 \land y_B \ge 0 \land y_C \ge 0$$

 $1y_A + 1y_B + 0y_C \ge 300$
 $2y_A + 1y_B + 3y_C \ge 500$

We minimize the value $170y_A + 150y_B + 180y_C$ to get the value of a machine hour:

$$y_A = 200 \land y_B = 100 \land y_C = 0$$

 $170y_A + 150y_B + 180y_C = 49000$

This is the dual problem. It has the same optimal value.

The Simplex Method

Consider linear program

M : max $\bar{c}^T \bar{x}$

subject to $G : A\bar{x} \leq \bar{b}$

The simplex method solves the linear program in two main steps:

- 1. Obtain an initial vertex \bar{v}_1 of $A\bar{x} \leq \bar{b}$.
- Iteratively traverse the vertices of Ax̄ ≤ b̄, beginning at v̄₁, in search of the vertex that maximizes c̄^Tx̄. On each iteration determine if c̄^Tv̄_i > c̄^Tv̄_i' for the vertices v̄_i' adjacent to v̄_i:

 - If so, halt and report v
 i as the optimum point with value c
 Tvi.

The final vertex \bar{v}_i is a **local optimum** since its adjacent vertices have lesser objective values. But because the space defined by $A\bar{x} \leq \bar{b}$ is convex, \bar{v}_i is also the **global optimum**: it is the highest value attained by any point that satisfies the constraints. Page 30 of 125

Page 31 of 125

Page 33 of 125

Example

920 5 (5) (5) (5) (0) Page 34 of 125

Example

How do we use optimization to determine satisfiability?

We are not interested in an *optimal* solution \overline{x} such that

$$F: A\overline{x} \leq \overline{b}$$
;

we want some solution. However, this hard to find,

Idea: Transform F into an optimization problem with an initial (not-optimal) vertex \overline{v}_1 and a desired optimum v_F .

Apply the Simplex Method until an optimal vertex \overline{v}^* is obtained.

The optimum value for \overline{v}^* is v_F iff $F : Ax \leq b$ is satisfiable.

The solution can be computed from the optimal solution \overline{x} of the optimization problem.

Outline of the Algorithm I

Determine if $\Sigma_{\mathbb{O}}$ -formula

$$F: \qquad \bigwedge_{i=1}^{m} a_{i1}x_1 + \ldots + a_{in}x_n \le b_i$$
$$\land \quad \bigwedge_{i=1}^{\ell} \alpha_{i1}x_1 + \ldots + \alpha_{in}x_n < \beta_i$$

is satisfiable.

Note: Equations

$$a_{i1}x_1 + \ldots + a_{in}x_n = b_i$$

are allowed; break them into two inequalities:

Outline of the Algorithm III

To decide the T_{Ω} -satisfiability of F', solve the linear program

max z subject to

$$\bigwedge_{i=1}^{m} a_{i1}x_1 + \ldots + a_{in}x_n \leq b_i$$
$$\bigwedge_{i=1}^{\ell} \alpha_{i1}x_1 + \ldots + \alpha_{in}x_n + z \leq \beta_i$$

F' is $T_{\mathbb{O}}$ -satisfiable iff the optimum is positive.

Outline of the Algorithm II

F is $T_{\mathbb{Q}}$ -equivalent to the $\Sigma_{\mathbb{Q}}$ -formula

$$F': \qquad \bigwedge_{i=1}^{m} a_{i1}x_1 + \ldots + a_{in}x_n \le b_i$$
$$\land \qquad \bigwedge_{i=1}^{\ell} \alpha_{i1}x_1 + \ldots + \alpha_{in}x_n + z \le \beta_i$$
$$\land \qquad z > 0$$

Page 38 of 125

Outline of the Algorithm IV

When F does not contain any strict inequality literals, the corresponding linear program

max 1 subject to

$$\bigwedge_{i=1}^{m} a_{i1}x_1 + \ldots + a_{in}x_n \leq b_i$$

has optimum $-\infty$ iff the constraints are $T_{\mathbb{Q}}$ -unsatisfiable, 1 iff the constraints are $T_{\mathbb{Q}}$ -satisfiable.

Outline of the Algorithm V

To determine the satisfiability of $F : A\overline{x} \leq \overline{b}$,

$M \rightarrow M_0$

reformulate the satisfiability of F as an optimization problem:

 $M_0: \max\{\bar{c}^{\mathsf{T}}\bar{x}' \mid A'\bar{x}' \leq \bar{b}'\}$

such that F is $T_{\mathbb{Q}}$ -satisfiable iff the optimal value of M_0 is a particular value v_F (derived from the structure of F).

Simplex Method vertex traversal until termination

Outline of the Algorithm VI

The simplex method traverses the vertices of $A'\overline{x}' \leq \overline{b}'$ searching for the maximum of the objective function $\overline{c}^T\overline{x}'$.

If $\overline{v}_1, \overline{v}_2, \ldots$ are the traversed vertices in the iteration, then

 $\overline{c}^{\mathsf{T}}\overline{v}_1 < \overline{c}^{\mathsf{T}}\overline{v}_2 < \cdots \; .$

The simplex method terminates at some vertex \overline{v}_{i^*} where $\overline{c}^T\overline{v}_{i^*}$ is the global optimum

Final step: Compare the discovered optimal value $\overline{c}^T \overline{v}_{i^*}$ to the desired value v_F .

- ▶ if equal, then F is T₀-satisfiable
- ▶ otherwise, F is T₀-unsatisfiable

Page 42 of 125

Page 41 of 125

Step 0: From Satisfiability to Optimization

Given $\Sigma_{\mathbb{Q}}$ -formula $F : A_{\overline{X}} \leq \overline{b}$ (8.1) reformulate to new constraint system (new $A, \overline{x}, \overline{b}$)

 $F': \overline{x} \ge 0, \ A\overline{x} \le \overline{b}$

such that F' is $T_{\mathbb{O}}$ -equisatisfiable to F

<u>The trick</u>: replace each variable x in F by $x_1 - x_2$ and add $\bar{x} \ge 0$

Step 0: From Satisfiability to Optimization

Making the b_i positive

Collect the lines where b_i is negative:

$$A\overline{\mathbf{x}} = \left[\begin{array}{c} D_1 \\ -D_2 \end{array} \right] \overline{\mathbf{x}} \leq \left[\begin{array}{c} \overline{g}_1 \\ -\overline{g}_2 \end{array} \right] = \overline{b}$$

where

 $\overline{g}_1 \ge 0$ $\overline{g}_2 > 0$

Multiply the bottom rows with -1:

 $D_1 \overline{x} \leq \overline{g}_1$ $D_2 \overline{x} > \overline{g}_2$

Page 44 of 125

Example 1: $x + y \ge 1 \land x - y \ge -1$

 $\Sigma_{\mathbb{O}}$ -formula

$$F: x + y \ge 1 \land x - y \ge -1$$
.

To convert it to the form $\overline{x} \geq \overline{0} \land A\overline{x} \leq \overline{b}$, introduce nonnegative x_1, x_2 for x and y_1, y_2 for y:

$$F': \begin{array}{c} (x_1-x_2)+(y_1-y_2) \geq 1 \ \land \ (x_1-x_2)-(y_1-y_2) \geq -1 \\ \land \ x_1,x_2,y_1,y_2 \geq 0 \end{array}$$

F is $T_{\mathbb{O}}$ -equisatisfiable to F'. In matrix form (with $\overline{x} \ge 0$),

$$F': \underbrace{\begin{bmatrix} -1 & 1 & -1 & 1 \\ -1 & 1 & 1 & -1 \end{bmatrix}}_{A} \begin{bmatrix} x_1 \\ x_2 \\ y_1 \\ y_2 \end{bmatrix} \le \underbrace{\begin{bmatrix} -1 \\ 1 \\ \vdots \\ b \end{bmatrix}}_{\overline{b}}$$

Page 45 of 125

Step 0: From Satisfiability to Optimization

$D_1 \overline{x} \leq \overline{g}_1$	$\overline{g}_1 \ge 0$
$D_2 \overline{x} \ge \overline{g}_2$	$\overline{g}_2 > 0$

Generate the optimization problem:

 $M_0: \max \overline{1}^T (D_2 \overline{x} - \overline{z})$ (8.2)

subject to

$\overline{x}, \overline{z}$	\geq	ō	(1)
$D_1\overline{x}$	\leq	\overline{g}_1	(2)
$D_2\overline{x}-\overline{z}$	\leq	\overline{g}_2	(3)

length of variable vector $\overline{z} = \#$ of rows of D_2

- The point x̄ = 0, z̄ = 0 satisfies constraints (1) − (3). It's a vertex.
- The optimum v_F equals 1^T g₂ (the equality in (3) holds) iff F is T_Q-satisfiable. (proof on p. 220)

The \overline{x} part of the optimal solution \overline{v}^* satisfies $F_{\overline{v}}$, $\sigma_{\overline{v}}$, $\sigma_{\overline{v}}$, $\sigma_{\overline{v}}$

Example 1: $x + y \ge 1 \land x - y \ge -1$

$$F': \begin{array}{c} (x_1-x_2)+(y_1-y_2) \geq 1 \ \land \ (x_1-x_2)-(y_1-y_2) \geq -1 \\ \land \ x_1, x_2, y_1, y_2 \geq 0 \end{array}$$

Since $b_1 < 0$ and $b_2 > 0$, separating constraints yields

Page 46 of 125

Step 0: From Satisfiability to Optimization

 M_F can be written in standard form as

$$M_{F}: \max_{\overline{z}^{T}} \underbrace{\overline{1}^{T} \left[D_{2} - I \right]}_{\overline{z}^{T}} \underbrace{\left[\overline{z} \right]}_{\overline{y}}$$
(8.3)

subject to

$$\underbrace{\begin{bmatrix} -I \\ -I \\ D_1 \\ D_2 - I \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} \overline{x} \\ \overline{z} \end{bmatrix}}_{\overline{y}} \leq \underbrace{\begin{bmatrix} \overline{0} \\ \overline{0} \\ \overline{g}_1 \\ \overline{g}_2 \end{bmatrix}}_{\overline{b}}$$

Page 48 of 125

Example 1: $x + y \ge 1 \land x - y \ge -1$

$$\underbrace{\left[\begin{array}{cc} -1 & 1 & 1 & -1 \end{array}\right]}_{D_1} \begin{bmatrix} x_1 \\ x_2 \\ y_1 \\ y_2 \end{bmatrix} \leq \underbrace{\left[1\right]}_{\overline{g}_1} \text{ and } \underbrace{\left[\begin{array}{cc} 1 - 1 & 1 & -1 \end{array}\right]}_{D_2} \begin{bmatrix} x_1 \\ x_2 \\ y_1 \\ y_2 \end{bmatrix} \geq \underbrace{\left[1\right]}_{\overline{g}_2}$$

 D_2 has only one row, so $\overline{z} = [z]$.

Pose the following optimization problem:

max
$$\begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ y_1 \\ y_2 \end{bmatrix} - \begin{bmatrix} z \end{bmatrix}$$

subject to

Page 49 of 125

Example 1:
$$x + y \ge 1 \land x - y \ge -1$$

Rewriting the optimization problem
max $\begin{bmatrix} 1 & -1 & 1 & -1 \\ y_1 \\ y_2 \end{bmatrix} \begin{bmatrix} x_1 \\ y_2 \\ y_1 \\ y_2 \end{bmatrix}$

subject to

*y*2 *z* Example 1: $x + y \ge 1 \land x - y \ge -1$

$$\begin{array}{cccc} & x_1, x_2, y_1, y_2, z &\geq & 0 \\ & \begin{bmatrix} -1 & 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ y_1 \\ y_2 \end{bmatrix} &\leq & \begin{bmatrix} 1 \end{bmatrix} \\ \begin{bmatrix} & 1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ y_1 \\ y_2 \end{bmatrix} - \begin{bmatrix} z \end{bmatrix} &\leq & \begin{bmatrix} 1 \end{bmatrix} \end{array}$$

F is $T_{\mathbb{Q}}$ -satisfiable iff the optimum is $\overline{1}^T \overline{g}_2 = 1$. $[x_1 \ x_2 \ y_1 \ y_2 \ z] = [0 \ 0 \ 0 \ 0 \ 0]$ is a vertex.

Page 50 of 125

From < to \leq (reminder)

If we have some strict inequalities:

$$\overline{x} \ge 0$$

 $A_0 \overline{x} \le \overline{b}_0$
 $A_1 \overline{x} < \overline{b}_1$

introduce a new variable $z \ge 0$ and maximize z, such that

$$\overline{x} \ge 0 \land z \ge 0$$
$$A_0 \overline{x} \le \overline{b}_0$$
$$A_1 \overline{x} + z \cdot \overline{1} \le \overline{b}_1$$

The maximum is greater than 0 iff the original constraint is satisfiable.

<u>Note</u>: In this case, one can stop the simplex algorithm after the first time z increases. Why?

Page 52 of 125

Example 1A:
$$x + y > 1 \land x - y > -1$$

Normal form:

$$\begin{array}{c} x_1, x_2, y_1, y_2 \geq 0 \\ -x_1 + x_2 + y_1 - y_2 < 1 \\ -x_1 + x_2 - y_1 + y_2 < -1 \end{array}$$

Introduce z1 for the strictness: Maximize z1 subject to

$$\begin{split} x_1, x_2, y_1, y_2, z_1 &\geq 0 \\ -x_1 + x_2 + y_1 - y_2 + z_1 &\leq 1 \\ -x_1 + x_2 - y_1 + y_2 + z_1 &\leq -1 \end{split}$$

Introduce z₂ to get rid of negative bound:

Example 1A: $x + y > 1 \land x - y > -1$ Maximize $x_1 - x_2 + y_1 - y_2 - z_1 - z_2$ subject to

$$-x_1 + x_2 + y_1 - y_2 + z_1 \le 0$$

$$-x_1 + x_2 + y_1 - y_2 - z_1 - z_2 \le 1$$

Page 53 of 125

Example 1A: $x + y > 1 \land x - y > -1$

In matrix form:

 $\begin{array}{l} \max \; [1 \; -1 \; 1 \; -1 \; -1 \; -1] \overline{x} \\ \text{subject to} \end{array}$

$$\begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ -1 & 1 & 1 & -1 & 1 & 0 \\ 1 & -1 & 1 & -1 & -1 & -1 \end{bmatrix}_{\overline{X}} \in \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Page 54 of 125

From Satisfiability to Optimization: Summary

- Adding the constraints x̄ ≥ 0 Replace each variable x by x₁ − x₂, then add x̄ ≥ 0.
- Getting rid of strict inequality <
 Add variable z ≥ 0, replace Ax < b
 with Ax + z ≤ b
 optimize z.
 Strict inequality satisfiable iff optimum > 0.
- 3. Making the b_i positive

Vertex Traversal: Find a Better Vertex

Optimization problem of form

$$\begin{array}{ll} \max \quad \overline{c}^{\mathsf{T}} \overline{x} & (8.3) \\ \text{subject to} & \\ A \overline{x} & < \ \overline{b} \end{array}$$

we are given satisfying vertex \overline{v}_i .

- The simplex method traverses vertices of the space defined by $A\overline{x} \leq \overline{b}$ to find the vertex \overline{v}^* that maximizes $\overline{c}^T \overline{x}$.
- ▶ One iteration seeks vertex vertex vi+1 "adjacent" (n − 1 shared defining constraints) to \overline{v}_i s.t. $\overline{c}^T \overline{v}_{i+1} > \overline{c}^T \overline{v}_i$
- For i = 1, the initial vertex v

 1 of M
 1 is x

 = 0, z

 = 0

Example (cont):

$$\overline{v}_1 = [x_1 \ x_2 \ y_1 \ y_2 \ z]^{\mathsf{T}} = [0 \ 0 \ 0 \ 0 \ 0]^{\mathsf{T}}$$

Page 57 of 125

Example 1: $x + y \ge 1 \land x - y \ge -1$

Choose the first five rows of A and \overline{b} (R = [1; 2; 3; 4; 5]) since

$$\underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}}_{\mathcal{V}_1} \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \mathcal{V}_1 \end{bmatrix}}_{\mathcal{V}_1} = \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \mathcal{V}_1 \\ \mathcal{V}_1 \end{bmatrix}}_{\mathcal{V}_1}$$

i.e. $-I\overline{v}_1 = \overline{b}_1$. Solving (by Gaussian elimination):

$$\underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}}_{A_1^{\mathsf{T}}} \overline{u}_1 = \underbrace{\begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \\ -1 \end{bmatrix}}_{\operatorname{Pare 50 of 125}}$$

Vertex Traversal

Find U

Construct vector \overline{u} s.t.

$$\overline{u}^{\mathsf{T}} A = \overline{c}^{\mathsf{T}} \qquad (8.4)$$

If $\overline{u} \ge \overline{0}$ then by the Duality Theorem \overline{v}_i is optimal.

- ► Given V:
- Construct n × n nonsingular submatrix A_i with corresponding rows b: s.t.

$$A_i \overline{v}_i = \overline{b}_i$$

- \blacktriangleright Let R = rows of A in A:
- Solve

$$\mathbf{A}_i^{\mathsf{T}}\overline{u}_i = \overline{\mathbf{c}}$$
 (8.5)

Let u be u; for indices in R and 0's for indices not in $R(\overline{u}_i \text{ suffices!})_{\mathcal{B}}$ Page 58 of 125

Example 1:
$$x + y \ge 1 \land x - y \ge -1$$

(i.e. $-I\overline{u}_1 = \overline{c}$, and thus $\overline{u}_1 = -\overline{c}$) yields

$$\overline{u}_1^{\mathsf{T}} = \begin{bmatrix} -1 & 1 & -1 & 1 & 1 \end{bmatrix}$$
.

Then

$$\overline{u} = \begin{bmatrix} -1 & 1 & -1 & 1 & 1 & 0 & 0 \end{bmatrix}^\mathsf{T}$$

101 (B) (2) (2) (2) 2 (0) Page 60 of 125

Vertex Traversal

Case 1: $\overline{u} \ge \overline{0}$

In this case, \overline{v}_i is actually the optimal point with optimal value $\overline{c}^T \overline{v}_i$. (proof on p. 226)

Case 2: $\overline{u} \not\geq \overline{0}$, i.e. there exists some $u_k < 0$

In this case, $\overline{\nu}_i$ is not the optimal point. We need to move along an edge to an adjacent vertex to increase the value of the objective function.

- Let k be the lowest index of u
 s.t. u_k < 0 (must be k ∈ R)</p>
- ▶ Let k' be the index of the corresponding row of u
 _i and A_i and the corresponding column of −A_i⁻¹

Vertex Traversal

Find \overline{y}

▶ Let ȳ be the k'th column of −A_i⁻¹. Solve

$$\frac{A_i \overline{y} = -e_{k'}}{\text{That is}}$$
(8.8)

That is

 $\overline{a}_\ell \overline{y} = 0$ for every row \overline{a}_ℓ of $A_i, \ \ell \neq k'$

 $\overline{a}_{k'}\overline{y} = -1$ for the k'th row $\overline{a}_{k'}$ of A_i

The vector $\overline{\mathbf{y}}$ provides the direction along which to move to the next vertex.

Page 61 of 125

Example 1: $x + y \ge 1 \land x - y \ge -1$

We found so far

k=1 since the first row of \overline{u} is $-1.\ k'=1$ since it is also the first row of $\overline{u}_i.$

Thus, solve

$$\underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}}_{A_1} \overline{y} = \underbrace{\begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}}_{-e_1}$$

i.e.
$$-I\overline{y} = -e_1$$
, yielding $\overline{y} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}_0^T$
Page 63 of 125

Page 62 of 125

Vertex Traversal

Find λ and v_{i+1}

We move along edge \overline{y} to better vertex \overline{v}_{i+1} .

- ▶ Let $S = \text{indices } \ell \text{ s.t. } \overline{a}_{\ell} \overline{y} > 0$
- ▶ Find greatest \u03c6_i ≥ 0 such that

$$A(\overline{v}_i + \lambda_i \overline{y}) \leq \overline{b}$$

Choose $\lambda_i > 0$ such that

$$\overline{a}_{\ell}(\overline{v}_{i} + \lambda_{i}\overline{y}) = b_{\ell} \quad \text{for some } \ell \in S$$
$$\overline{a}_{m}(\overline{v}_{i} + \lambda_{i}\overline{y}) \leq b_{m} \quad \text{for } m \in S - \{\ell\}$$

Page 64 of 125

Vertex Traversal

Set
$$\overline{\nabla_{i+1}} = \overline{\nabla_i} + \lambda_i \overline{\nabla}$$
 (8.12)

Vertex \overline{v}_{i+1} is discovered by moving along ray \overline{y} as far as possible without violating the constraints. Moreover,

$$\overline{c}^{\mathsf{T}}\overline{v}_{i+1} > \overline{c}^{\mathsf{T}}\overline{v}_i$$

► Construct A_{i+1} from A_i for next iteration by substituting row \overline{a}_{ℓ} of A for row $\overline{a}_{k'}$ of A_i

Since there are only finite number of vertices to examine, $\underline{\text{Case 1}}$ eventually occurs.

Example 1:
$$x + y \ge 1 \land x - y \ge -1$$

We found in Step 1

$$\overline{y} = \left[\begin{array}{rrrr} 1 & 0 & 0 & 0 \end{array} \right]^\mathsf{T}$$

where

- (a) depicts the discovery of vertex \overline{v}_{i+1} by moving along ray \overline{y} as far as possible without violating the constraints.
- (b) illustrates what happens when all points along the ray laybeled
 y
 satisfy the constraints: moving along the ray increases
 c^T
 x
 without bound.

Page 66 of 125

Example 1: $x + y \ge 1 \land x - y \ge -1$

Compute Ay

Page 68 of 125

Example 1: $x + y \ge 1 \land x - y \ge -1$

S = [7] since $\overline{a}_7 \overline{y} = 1 > 0$. Examining the 7th row of the constraints, choose the greatest λ_1 such that (8.7b)

$$\underbrace{ \begin{bmatrix} 1 - 1 & 1 - 1 & -1 \\ \overline{y}_{r} \end{bmatrix} }_{\overline{y}_{r}} (\overline{y}_{1} + \lambda_{1} \overline{y}) = \\ \begin{bmatrix} 1 - 1 & 1 - 1 & -1 \end{bmatrix} \left(\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \lambda_{1} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right) = \underbrace{1}_{b_{r}} \underbrace{1}_{b_{r}}$$

that is, choose $\lambda_1 = 1$. Therefore, (8.7c)

$$\overline{\boldsymbol{\nu}}_2 = \overline{\boldsymbol{\nu}}_1 + \lambda_1 \overline{\boldsymbol{y}} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^\mathsf{T}$$

Example 1: $x + y \ge 1 \land x - y \ge -1$

Form A_2 from A_1 replacing the 1st row (k' = 1) of A_1 by the 7th row $(\ell = 7)$ of A.

$$A_2 = \begin{bmatrix} 1 & -1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix} \qquad \overline{b}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Thus, $A_2\overline{v}_2 = \overline{b}_2$. This move to vertex \overline{v}_2 makes progress:

Page 69 of 125

Example 1: $x + y \ge 1 \land x - y \ge -1$

Now R = [7; 2; 3; 4; 5] (rows of A in A_2).

Solve

for \overline{u}_2 yielding $\overline{u}_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T$. Since $\overline{u}_2 \ge 0$, we are in <u>Case 1</u>: we have found an optimum point, \overline{v}_2 , with optimal value 1.

Since we have that $v_F=\overline{1}^T\overline{g}_2=1,$ the equality of the optimial point and v_F implies that

Example 1: $x + y \ge 1 \land x - y \ge -1$

$$F: x+y \ge 1 \land x-y \ge -1$$

is $T_{\mathbb{O}}$ -satisfiable. In particular, extract from

$$\begin{bmatrix} x_1\\ x_2\\ y_1\\ y_2\\ z \end{bmatrix} = \overline{v}_2 = \begin{bmatrix} 1\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}$$

the assignment

$$x = x_1 - x_2 = 1 - 0 = 1$$
 and $y = y_1 - y_2 = 0 - 0 = 0$

which indeed satisfies F.

Example 2

 $\begin{array}{c} \text{Consider optimization problem of the form (8.3)} \\ & \max \underbrace{\left[-1 \quad 1\right]} \overline{x} \end{array}$

$$\underbrace{\begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 2 & 1 \end{bmatrix}}_{A} \overline{x} \leq \underbrace{\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}}_{\overline{b}}$$

 $\overline{v}_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}^\mathsf{T}$ is a vertex.

The first two constraints are the defining constraints of \overline{v}_1 , so choose R = [1; 2]:

$$A_1 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \overline{b}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Thus $A_1 \overline{v}_1 = \overline{b}_1.$

Example 2

First Iteration From (8.5), solving

$$\underbrace{\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}}_{A_1^T} \overline{u}_1 = \underbrace{\begin{bmatrix} -1 \\ 1 \\ \frac{1}{\overline{c}} \end{bmatrix}}_{\overline{c}} \qquad \text{i.e., } -I\overline{u}_1 = \overline{c}$$

for \overline{u}_1 yields

$$\overline{u}_1 = -\overline{c} = \begin{bmatrix} 1 & -1 \end{bmatrix}^\mathsf{T}$$
.

Adding 0s for rows not in R produces

$$\overline{u} = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}^\mathsf{T}$$

This \overline{u} satisfies $\overline{u}^{\mathsf{T}} A = \overline{c}^{\mathsf{T}}$ of (8.6).

Page 75 of 125

The solid lines represent the constraints. The dashed line indicates $\overline{c}^T \overline{x}$; the arrow points in the direction of increasing value.

Page 74 of 125

Example 2

Since the 2nd row of \overline{u} is -1, we are in <u>Case 2</u> ($\overline{u} \not\ge 0$) with k = 2 of \overline{u} , corresponding to row k' = 2 of \overline{u}_1 .

Let
$$\overline{y}$$
 be the 2nd column of $-A_1^{-1}$, and solve (8.8)

$$\underbrace{\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}}_{A_1} \overline{y} = \underbrace{\begin{bmatrix} 0 \\ -1 \end{bmatrix}}_{-e_2}$$

for \overline{y} , yielding

 $\overline{y} = \begin{bmatrix} 0 & 1 \end{bmatrix}^{\mathsf{T}}$.

Page 76 of 125

The \overline{y} is visualized by the dark solid arrow that points up from \overline{v}_1 . The vertical and horizontal lines are the defining constraints of \overline{v}_1 ; in moving in the direction \overline{y} , we keep the vertical constraint for the next vertex \overline{v}_2 but drop the horizontal constraint. The diagonal constraint will become the second of \overline{v}_2 's defining constraints.

Example 2

We have

$$\begin{split} \underbrace{\begin{bmatrix} -1 & 0 \\ (A)_1 & \begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{\overline{y}} = 0 \\ \underbrace{\begin{bmatrix} 0 & -1 \\ (A)_2 \end{bmatrix}}_{\overline{y}} \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{\overline{y}} < 0 \\ \underbrace{\begin{bmatrix} 2 & 1 \\ (A)_3 \end{bmatrix}}_{\overline{y}} \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{\overline{y}} > 0 \quad \Rightarrow \quad \begin{bmatrix} 2 & 1 \end{bmatrix} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix} + \lambda_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = 2 \\ \Rightarrow \quad \lambda_1 = 2 \end{split}$$

Thus $\lambda_1 = 2$, $\ell = 3$.

Example 2

Choose λ_1 such that

$$\underbrace{\begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 2 & 1 \end{bmatrix}}_{A} \left(\underbrace{\begin{bmatrix} 0 \\ 0 \end{bmatrix}}_{\overline{v_1}} + \lambda_1 \underbrace{\begin{bmatrix} 0 \\ 1 \\ y \end{bmatrix}}_{\overline{y}} \right) \leq \underbrace{\begin{bmatrix} 0 \\ 0 \\ 2 \\ \overline{5}} \\ \overline{5} \end{bmatrix}.$$

Page 78 of 125

Example 2

From (8.12),

$$\overline{v}_2 = \overline{v}_1 + \lambda_1 \overline{y} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

Choosing R = [1; 3] and replacing the 2nd row of A_1 and \overline{b}_1 (k' = 2) with the 3rd row $(\ell_3 = 3)$ of $A\overline{x} \leq \overline{b}$ yields

 $A_2 = \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix}$ and $\overline{b}_2 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$; i.e., $A_2 \overline{v}_2 = \overline{b}_2$

The vertical and diagonal constraints are the defining constraints of $\overline{\nu}_2.$

Example 2

Next Iteration In the next iteration, solving

$$\underbrace{\begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}}_{A_2^{\mathsf{T}}} \overline{u}_2 = \underbrace{\begin{bmatrix} -1 \\ 1 \end{bmatrix}}_{\overline{c}}$$

yields $\overline{u}_2 = \begin{bmatrix} 3 & 1 \end{bmatrix}^{\mathsf{T}}$. Adding 0s for rows not in R produces

$$\overline{u} = \begin{bmatrix} 3 & 0 & 1 \end{bmatrix}^{\mathsf{T}}$$
 .

Since $\overline{u}\geq\overline{0},$ we are in <u>Case 1</u>. The max is

 $\overline{c}^{\mathsf{T}}\overline{v}_2 = \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 2$

at vertex $\overline{v}_2^\mathsf{T} = \begin{bmatrix} 0 & 2 \end{bmatrix}.$

Page 81 of 125

Example 3: $x \ge 0 \land y \ge 0 \land x \ge 2 \land y \ge 2 \land x + y \le 3$

Step 0

Because x and y are already constrained to be nonnegative, we do not need to introduce new x_1, x_2, y_1, y_2 . Rewrite:

$$\underbrace{[1\ 1]}_{D_1}\left[\begin{array}{c} x\\ y\end{array}\right] \leq \underbrace{[3]}_{\overline{g}_1} \quad \text{and} \quad \underbrace{\left[\begin{array}{c} 1& 0\\ 0& 1\end{array}\right]}_{D_2}\left[\begin{array}{c} x\\ y\end{array}\right] \geq \underbrace{\left[\begin{array}{c} 2\\ 2\\ \overline{g}_2\end{array}\right]}_{\overline{g}_2}$$

so that $\overline{g}_1 \ge 0$ and $\overline{g}_2 > 0$.

Then (8.2):

$$\begin{array}{ll} \max & \overline{1}^T (D_2 \overline{x} - \overline{z}) \\ \text{subject to} \\ & \overline{x}, \overline{z} &\geq \overline{0} \\ & D_1 \overline{x} &\leq \overline{g}_1 \\ & D_2 \overline{x} - \overline{z} &\leq \overline{g}_2 \\ & & & & \\ & & & \\ &$$

$$\begin{split} \text{Example 3: } & x \geq 0 \land y \geq 0 \land x \geq 2 \land y \geq 2 \land x + y \leq 3 \\ & \Sigma_{\mathbb{Q}}\text{-formula (8.1)} \end{split}$$

$$F: \ x \geq 0 \quad \land \quad y \geq 0 \quad \land \quad x \geq 2 \quad \land \quad y \geq 2 \quad \land \quad x + y \leq 3 \ ,$$

or, in matrix form,

$$F: \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ -1 & 0 \\ 0 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \le \begin{bmatrix} 0 \\ 0 \\ -2 \\ -2 \\ 3 \end{bmatrix}$$

Page 82 of 125

Example 3: $x \ge 0 \land y \ge 0 \land x \ge 2 \land y \ge 2 \land x + y \le 3$

Expanding, we have

$$\overline{c}^{T}\overline{x} = \overline{1}^{T} \begin{bmatrix} D_{2} & -I \end{bmatrix} \begin{bmatrix} x \\ y \\ z_{1} \\ z_{2} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z_{1} \\ z_{2} \end{bmatrix}$$
$$= \underbrace{\begin{bmatrix} 1 & 1 & -1 & -1 \\ z^{T} \end{bmatrix} \begin{bmatrix} x \\ z_{1} \\ z_{2} \end{bmatrix}.$$
Page 64 of 125

Example 3: $x \ge 0 \land y \ge 0 \land x \ge 2 \land y \ge 2 \land x + y \le 3$

obtaining the optimization problem (8.3)

$$\max \quad \underbrace{[1 \ 1 \ -1 \ -1]}_{\overline{z}^{\mathsf{T}}} \begin{bmatrix} x \\ y \\ z_1 \\ z_2 \end{bmatrix}$$

subject to

Example 3: $x \ge 0 \land y \ge 0 \land x \ge 2 \land y \ge 2 \land x + y \le 3$

Step 1

Choose rows R = [1; 2; 3; 4] of A and \overline{b} , giving

$$\underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}}_{\mathcal{A}_1} \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}}_{\overline{v}_1} = \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \overline{b}_1 \end{bmatrix}}_{\overline{b}_1}$$

Solving

Example 3: $x \ge 0 \land y \ge 0 \land x \ge 2 \land y \ge 2 \land x + y \le 3$

Use the initial vertex

$$\overline{v}_1 = \begin{bmatrix} x \\ y \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

in Step 1.

F is satisfiable iff the optimal value v_F is equal to

$$\overline{1}^{\mathsf{T}}\overline{g}_2 = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 4$$
.

We use the simplex algorithm to find the optimum.

Page 86 of 125

Example 3: $x \ge 0 \land y \ge 0 \land x \ge 2 \land y \ge 2 \land x + y \le 3$

yields $\overline{u}_1 = \begin{bmatrix} -1 & -1 & 1 & 1 \end{bmatrix}^T$. Adding 0s for the rows not in R produces \overline{u} :

$$\overline{u} = \begin{bmatrix} -1 & -1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}^\mathsf{T}.$$

Since $u_1, u_2 < 0$, we are in Case 2 with k = k' = 1. Let \overline{y} be the first column of $-A_1^{-1}$: solve

$$\underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}}_{A_1} \overline{y} = \underbrace{\begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \\ -\overline{e}_1 \end{bmatrix}}_{-\overline{e}_1}$$

to yield $\overline{y} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T$. Then S = [5;6]; *i.e.*, the 5th and 6th rows \overline{a} of A are such that $\overline{ay} > 0$. Choose the largest λ_1 such that $A(\overline{v}_1 + \lambda_1 \overline{y}) \leq \overline{b}$.

Page 88 of 125

Example 3: $x \ge 0 \land y \ge 0 \land x \ge 2 \land y \ge 2 \land x + y \le 3$

Focusing on the 5th and 6th rows of A (since S' = [5; 6]), choose the largest λ_1 such that

$$\underbrace{\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{bmatrix}}_{\text{rows 5,6 of }A} \left(\underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \overline{v_1} \end{bmatrix}}_{\overline{v_1}} + \lambda_1 \underbrace{\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \overline{y} \end{bmatrix}}_{\overline{y}} \right) \leq \underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \text{rows 5,6 of }\overline{b}}$$

Namely, choose $\lambda_1 = 2$ (and $\ell = 6$). Then

$$\overline{v}_2 = \overline{v}_1 + \lambda_1 \overline{y} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} + 2 \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} 2\\0\\0\\0 \end{bmatrix}$$
Page 89 of 125

Example 3: $x \ge 0 \land y \ge 0 \land x \ge 2 \land y \ge 2 \land x + y \le 3$

Step 2

Now R = [6; 2; 3; 4] (the indices of rows of A in A_2). Solve

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}}_{A_2^{\mathsf{T}}} \overline{u}_2 = \underbrace{\begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \\ \overline{\mathfrak{c}} \end{bmatrix}}_{\overline{\mathfrak{c}}}$$

to yield

$$\overline{u}_2 = \begin{bmatrix} 1 & -1 & 0 & 1 \end{bmatrix}^T$$

 $6 & 2 & 3 & 4$

Example 3: $x \ge 0 \land y \ge 0 \land x \ge 2 \land y \ge 2 \land x + y \le 3$

Replace the 1st row of A_1 (since k'=1) by the 6th row of A (since $\ell=6$) to produce

$$A_2 = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \text{ and } \overline{b}_2 = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Have we made progress? Yes, for

$$\overline{c}^T \overline{v}_1 = 0 \ < \ 2 = \overline{c}^T \overline{v}_2$$

The objective function has increased from 0 to 2.

Page 90 of 125

Example 3: $x \ge 0 \land y \ge 0 \land x \ge 2 \land y \ge 2 \land x + y \le 3$

Then filling in 0s for the other rows of A produces:

$$\overline{u} = \begin{bmatrix} 0 & -1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}^{\mathsf{T}} \\ 2 & 3 & 4 & 6 \end{bmatrix}$$

 $u_2 < 0$, so k = 2, which corresponds to row k' = 2 of \overline{v}_2 . According to Case 2, let \overline{y} be the 2nd column of $-A_2^{-1}$: solve $A_2\overline{y} = -e_2$ to yield $\overline{y} = [0 \ 10 \ 0]^T$. Then the 5th and 7th rows \overline{a} of A are such that $\overline{ay} > 0$ so that S = [5, 7].

Focusing on the 5th and 7th rows of A, choose the largest λ_2 such that

$$\underbrace{\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ \hline rows 5.7 \text{ of } A \end{bmatrix}}_{\text{rows 5.7 of } A} \left(\underbrace{\begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{\psi_2} + \lambda_2 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ \hline y \end{bmatrix} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_2 \end{bmatrix}}_{y} \right)_{y} \left(\underbrace{\begin{bmatrix} 3 \\ 2 \\ 0 \\ \hline \psi_$$

Page 91 of 125

Example 3: $x \ge 0 \land y \ge 0 \land x \ge 2 \land y \ge 2 \land x + y \le 3$ Choose $\lambda_2 = 1$ (and $\ell = 5$). Then

$$\overline{\nu}_3 = \overline{\nu}_2 + \lambda_2 \overline{y} = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Replace the 2nd row of A_2 (since k' = 2) by the 5th row of A (since $\ell = 5$) to produce

$$A_3 = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \text{ and } \overline{b}_3 = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix}$$

Page 93 of 125

Example 3: $x \ge 0 \land y \ge 0 \land x \ge 2 \land y \ge 2 \land x + y \le 3$

Step 3

Now R = [6;5;3;4]. Solve $A_3^T \overline{u}_3 = \overline{c}$, yielding $\overline{u}_3 = [0\ 1\ 1\ 1]^T$. Now $\overline{u}_3 \ge \overline{0}$, so we are in Case 1: \overline{v}_3 is the optimum with objective value

$$\underbrace{\begin{bmatrix} 1 \ 1 \ -1 \ -1 \end{bmatrix}}_{\overline{c}^{\mathsf{T}}} \underbrace{\begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}}_{\overline{v}_3} = 3 \; .$$

Final Step: Satisfiability

The optimal value of the constructed optimization problem is 3, which is less than the required $v_F = 4$ of <u>Step 0</u>. Hence, *F* is T_0 -unsatisfiable.

Example 3: $x \ge 0 \land y \ge 0 \land x \ge 2 \land y \ge 2 \land x + y \le 3$

Have we made progress? Yes, for

$$\begin{array}{l} \overline{c}^{\mathsf{T}}\overline{\nu}_1 = 0 \\ < \quad \overline{c}^{\mathsf{T}}\overline{\nu}_2 = 2 \\ < \quad \overline{c}^{\mathsf{T}}\overline{\nu}_3 = 3 \end{array}$$

The objective function has increased from 2 to 3.

Page 94 of 125

Linear Programming (Dantzig 1940s)

A linear programming problem involves the optimization of a linear objective function, subject to linear inequality constraints.

 $\begin{array}{ll} \max \ \overline{c}^{\mathsf{T}} \overline{x} & (\text{objective function}) \\ \text{subject to } A \overline{x} \leq \overline{b} & (\text{constraints}) \end{array}$

$$\begin{array}{l} \overline{x} \text{ denotes a vector:} \\ \max & \sum_{i=1}^{n} c_i x_i \\ \text{subject to} & \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \leq \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

Page 95 of 125

Example: Linear Programming

A company is producing two different products using three machines A. B. and C.

- Product 1 needs A for one, and B for one hour.
- Product 2 needs A for two. B for one, and C for three hours.
- Product 1 can be sold for \$300: Product 2 for \$500.
- Monthly availability of machines: A: 170 hours, B: 150 hours, C 180 hours.

Let x1 and x2 denote the projected monthly sale of product 1 and product 2, respectively.

We want to optimize $300x_1 + 500x_2$ subject to:

$1x_1 + 2x_2 \le 170$	Machine (A
$1x_1 + 1x_2 \le 150$	Machine (B
$0x_1 + 3x_2 \le 180$	Machine (C
$x_1 > 0 \land x_2 > 0$	

The Simplex Algorithm

To find the optimal solution proceed as follows:

- start at some vertex of the solution space.
- proceed along adjacent edge to reach a vertex with better cost.
- continue until local optimum is found.

The solution space forms a convex polyhedron. Therefore local optimum is global optimum.

> 920 S. (S) (S) (S) (B) Page 98 of 125

101 (B) (2) (2) (2) 2 000 Page 97 of 125

A Problem with a Simple Vertex

If the problem is of the following shape:

$$x_{1} \ge 0$$

$$\vdots$$

$$x_{n} \ge 0$$

$$A\overline{x} \le \overline{b}, \text{where } \overline{b} \ge \overline{0}$$

or (in matrix form)

$$\begin{bmatrix} -1 & 0 \\ & \ddots & \\ 0 & -1 \\ & A \end{bmatrix} \overline{\mathbf{x}} \leq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ b_1 \\ \cdots \\ b_m \end{bmatrix}, \text{ where } b_1, \cdots, b_m \geq 0,$$

then a simple (initial) vertex of solution space is $\overline{x} = 0$. Page 99 of 125

Vertex of $A\overline{x} < \overline{b}$ and its dual

An *n*-vector \overline{v} is a vertex of $A\overline{x} < \overline{b}$ if there is nonsingular $n \times n$ -submatrix A_0 and corresponding *n*-subvector \overline{b}_0 s.t. $A_0\overline{v} = \overline{b}_0$ and $A\overline{v} \leq \overline{b}$

Move the rows corresponding to A_0 in A and \overline{b}_0 in \overline{b} upwards:

$$A = \left[\begin{array}{c} A_0 \\ * \end{array} \right] \text{ and } \overline{b} = \left[\begin{array}{c} \overline{b}_0 \\ * \end{array} \right]$$

Construct solution \overline{u} of the dual problem $A^T\overline{v} > \overline{c}$ as follows: Since An is invertible, we can solve

$$\begin{bmatrix} A_0^{\mathsf{T}}\overline{u}_0 = \overline{c} \\ \\ \overline{u}_0 \end{bmatrix}$$
to get \overline{u}_0 . Set $\overline{u} := \begin{bmatrix} \overline{u}_0 \\ \overline{0} \end{bmatrix}$, then:
$$A^{\mathsf{T}}\overline{u} = \begin{bmatrix} A_0^{\mathsf{T}} & * \end{bmatrix} \begin{bmatrix} \overline{u}_0 \\ \overline{0} \end{bmatrix} = A_0^{\mathsf{T}}\overline{u}_0 + \overline{0} = \overline{c}, \dots, \dots = 0$$
Page 100 of 125

Case $\overline{u} \geq \overline{0}$

If $\overline{u} \geq \overline{0}$, then \overline{v} is optimal: We have

$$\begin{aligned} \overline{c}^{\mathsf{T}} \overline{v} &= \left(A^{\mathsf{T}} \overline{v}\right)^{\mathsf{T}} \overline{v} \\ &= \overline{v}^{\mathsf{T}} A \overline{v} \\ &= \overline{v}^{\mathsf{T}} \left[\begin{matrix} A_0 \\ * \end{matrix} \right] \overline{v} \\ &= \left[\overline{u}_0^{\mathsf{T}} \quad \overline{0} \right] \left[\begin{matrix} \overline{b}_0 \\ * \end{matrix} \right] \\ &= \overline{v}^{\mathsf{T}} \overline{b} \end{aligned}$$

Let \overline{x} be an arbitrary vector that satisfies $A\overline{x} \leq b$, then:

 $\overline{c}^{\mathsf{T}}\overline{x} = (A^{\mathsf{T}}\overline{u})^{\mathsf{T}}\overline{x} = \overline{u}^{\mathsf{T}}A\overline{x} \leq \overline{u}^{\mathsf{T}}\overline{b} = \overline{c}^{\mathsf{T}}\overline{v} .$

Hence, $\overline{c}^T \overline{v}$ is maximal.

Page 101 of 125

Case $\overline{u} \not\geq \overline{0}$

Moreover, \overline{v}' is better than \overline{v} :

$$\overline{c}^{\mathsf{T}} \overline{y} = \overline{u}_0^{\mathsf{T}} A_0 \overline{y}$$

$$= \overline{u}_0^{\mathsf{T}} (-\overline{e}_k$$

$$= -u_k$$

$$> 0.$$

Hence,

$$\overline{c}^{\mathsf{T}}\overline{v}' = \overline{c}^{\mathsf{T}}\overline{v} + \lambda \underbrace{\overline{c}^{\mathsf{T}}\overline{y}}_{>0} \geq \overline{c}^{\mathsf{T}}\overline{v}$$

Case $\overline{u} \not\geq \overline{0}$

If $\overline{u} \geq \overline{0}$, there is some coordinate k s.t. $u_k < 0$. This corresponds to some row of matrix A_0 .

 $\frac{\text{Find } \overline{y}}{\text{Solve for } \overline{y} \text{ in equation}}$

 $A_0\overline{y} = -\overline{e}_k$.

This is the direction in which we move. Set $\overline{v}' = \overline{v} + \lambda \overline{y}$, where $\lambda \ge 0$. Then

$$\begin{array}{rcl} A_0 \overline{v}' &=& A_0 (\overline{v} + \lambda \overline{v}) \\ &=& \overline{b}_0 - \lambda \overline{e}_k \\ &\leq & \overline{b}_0 \end{array}$$

and equality holds for all but the kth row.

Page 102 of 125

How to find λ

Find λ

Now choose λ such that still $A(\overline{v} + \lambda \overline{y}) \leq b$ and equality holds for some constraint $(A)_\ell(\overline{v} + \lambda \overline{y}) = b_\ell, \ \ell > n.$ This gives a better vertex.

For each row $\ell > n$ with $(A)_{\ell}\overline{y} > 0$, solve λ_{ℓ} in the equation

$$(A)_{\ell}(\overline{v} + \lambda_{\ell}\overline{y}) = b_{\ell}$$

From $(A)_{\ell}\overline{v} \leq b_{\ell}$:

$$0 \leq b_{\ell} - (A)_{\ell}\overline{v} = \lambda_{\ell}(A)_{\ell}\overline{y}$$

Since $(A)_{\ell}\overline{y} > 0$, we have $\lambda_{\ell} \ge 0$.

Choose as λ the smallest λ_{ℓ} .

The cases for λ

Since $A_0\overline{y} = -\overline{e}_k$,

$$A(\overline{v} + \lambda \overline{y}) \leq \overline{b} + \lambda A \overline{y} = \overline{b} + \lambda \begin{bmatrix} -\overline{e}_k \\ (A)_{n+1} \overline{y} \\ \vdots \\ (A)_{m\overline{y}} \end{bmatrix}$$

Case 1

There is no $\ell > n$ with $(A)_{\ell}\overline{y} > 0$. Then $A(\overline{v} + \lambda \overline{y}) \leq b$ holds for all $\lambda \geq 0$ and the maximum value of $\overline{c}^{\mathsf{T}}x$ is unbounded:

$$\lim_{\lambda \to \infty} \overline{c}^{\mathsf{T}} (\overline{v} + \lambda \overline{y}) = \lim_{\lambda \to \infty} \left(\overline{c}^{\mathsf{T}} \overline{v} + \lambda \overline{c}^{\mathsf{T}} \overline{y} \right)_{\geq 0} = \infty .$$
Page 105 of 125
Page 105 of 125

Example 4: Linear Programming

max

subject to

The cases for λ

 $\frac{\underline{\mathsf{Case}}\ 2}{\mathrm{If}\ \lambda \ \mathrm{is \ the \ smallest}\ \lambda_\ell \ \mathrm{with}\ (A)_\ell \overline{y} > \mathsf{0}, \ \mathrm{then}}$

$$(A)_{\ell}(\overline{v} + \lambda \overline{y}) = b_{\ell} \text{ and } A(\overline{v} + \lambda \overline{y}) \leq \overline{b}$$

Thus $\overline{v} + \lambda \overline{y}$ is a better vertex.

Example 4: Linear Programming

Example 4: Linear Programming

$$\overline{\mathbf{v}} = \begin{bmatrix} 0 & 0 \end{bmatrix}^{\mathsf{T}} \qquad \underbrace{\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}}_{A_0} \underbrace{\begin{bmatrix} 0 \\ 0 \end{bmatrix}}_{\overline{\mathbf{v}}} = \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}}_{\overline{b_0}}^{\mathsf{T}}$$
$$\underbrace{\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}}_{A_0^{\mathsf{T}}} \overline{u}_0 = \underbrace{\begin{bmatrix} 300 \\ 500 \\ \varepsilon \end{bmatrix}}_{\overline{\mathbf{v}}} \Rightarrow \quad \overline{u} = \begin{bmatrix} -300 & -500 & 0 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$$
$$u_2 = -500 < 0 \Rightarrow \text{ choose } k = 2$$
$$\underbrace{\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}}_{A_0^{\mathsf{T}}} \overline{\mathbf{y}} = \underbrace{\begin{bmatrix} 0 \\ -1 \\ -\overline{\mathbf{v}}_2 \end{bmatrix}}_{\overline{\mathbf{v}}} \Rightarrow \quad \overline{\mathbf{y}} = \begin{bmatrix} 0 & 1 \end{bmatrix}^{\mathsf{T}}$$

Example 4: Linear Programming

$$\begin{split} \underbrace{\begin{bmatrix} 1 & 2 \\ 1 \\ (A)_3 \end{bmatrix}}_{\mathbf{y}} \begin{bmatrix} 0 \\ 1 \\ \mathbf{y} \end{bmatrix} > \mathbf{0} & \Rightarrow & \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \lambda_3 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{pmatrix} = 170 \\ & \Rightarrow & \lambda_3 = 85 \\ \underbrace{\begin{bmatrix} 1 & 1 \\ A \end{bmatrix}}_{\mathbf{y}} \begin{bmatrix} 0 \\ 1 \\ \mathbf{y} \end{bmatrix} > \mathbf{0} & \Rightarrow & \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \lambda_4 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{pmatrix} = 150 \\ & \Rightarrow & \lambda_4 = 150 \\ \underbrace{\begin{bmatrix} 0 & 3 \\ A \end{bmatrix}}_{\mathbf{x}} \begin{bmatrix} 0 \\ 1 \\ \mathbf{y} \end{bmatrix} > \mathbf{0} & \Rightarrow & \begin{bmatrix} 0 & 3 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \lambda_5 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{pmatrix} = 180 \\ & \Rightarrow & \lambda_5 = 60 \end{split}$$

Page 110 of 125

Page 109 of 125

Example 4: Linear Programming

Thus $\lambda = \lambda_5 = 60$, $\ell = 5$, and

$$\overline{v}' = \underbrace{\begin{bmatrix} 0 \\ 0 \\ \overline{v} \end{bmatrix}}_{\overline{v}} + \underbrace{\underbrace{60}}_{\lambda} \underbrace{\begin{bmatrix} 0 \\ 1 \\ \overline{y} \end{bmatrix}}_{\overline{y}} = \begin{bmatrix} 0 \\ 60 \end{bmatrix}$$

Example 4: Linear Programming max

[300 500] ₹

subject to

$$\begin{bmatrix} -1 & 0 \\ 0 & 3 \\ 0 & -1 \\ 1 & 2 \\ 1 & 1 \end{bmatrix} \overline{x} \le \begin{bmatrix} 0 \\ 180 \\ 0 \\ 170 \\ 150 \end{bmatrix}$$

$$\ell = 5 \Rightarrow k = 2$$

(not swap, but okay)

Page 111 of 125

Page 112 of 125

Example 4: Linear Programming

Page 113 of 125

Example 4: Linear Programming

$$\begin{split} \underbrace{\underbrace{\left[0 \quad -1\right]}_{(A)_{3}} \quad \underbrace{\left[1 \quad 0\right]}_{\overline{y}} = 0 \\ \underbrace{\left[1 \quad 2\right]}_{(A)_{4}} \quad \underbrace{\left[1 \quad 0\right]}_{\overline{y}} > 0 \quad \Rightarrow \quad \begin{bmatrix}1 \quad 2\right] \left(\begin{bmatrix}0 \\ 60\end{bmatrix} + \lambda_{4} \begin{bmatrix}1 \\ 0\end{bmatrix}\right) = 170 \\ \Rightarrow \quad \lambda_{4} = 50 \\ \underbrace{\left[1 \quad 1\right]}_{(A)_{5}} \quad \underbrace{\left[1 \quad 0\right]}_{\overline{y}} > 0 \quad \Rightarrow \quad \begin{bmatrix}1 \quad 1\right] \left(\begin{bmatrix}0 \\ 60\end{bmatrix} + \lambda_{5} \begin{bmatrix}1 \\ 0\end{bmatrix}\right) = 150 \\ \Rightarrow \quad \lambda_{5} = 90 \end{split}$$

Example 4: Linear Programming

$$\overline{v} = \begin{bmatrix} 0 & 60 \end{bmatrix}^{\mathsf{T}} \qquad \underbrace{\begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix}}_{A_0} \underbrace{\begin{bmatrix} 0 \\ 60 \end{bmatrix}}_{\overline{v}} = \underbrace{\begin{bmatrix} 0 \\ 180 \end{bmatrix}}_{\overline{b}_0}$$
$$\underbrace{\begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix}}_{A_0^{\mathsf{T}}} \overline{u}_0 = \underbrace{\begin{bmatrix} 300 \\ 500 \end{bmatrix}}_{\overline{z}} \Rightarrow \quad \overline{u} = \begin{bmatrix} -300 & 166\frac{2}{3} & 0 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$$
$$u_1 = -300 < 0 \Rightarrow \text{ choose } k = 1$$
$$\begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix} \overline{y} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \Rightarrow \quad \overline{y} = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\mathsf{T}}$$

Page 114 of 125

Example 4: Linear Programming

Since $(A)_3\overline{y} = 0$, $\lambda_4 = 50$, and $\lambda_5 = 90$, we have $\lambda = 50$ and $\ell = 4$, so

$$\overline{\nu}' = \underbrace{\begin{bmatrix} 0\\ 60 \end{bmatrix}}_{\overline{\nu}} + \underbrace{50}_{\lambda} \underbrace{\begin{bmatrix} 1\\ 0 \end{bmatrix}}_{\overline{y}} = \begin{bmatrix} 50\\ 60 \end{bmatrix} \ .$$

101 (B) (2) (2) 2 000 Page 115 of 125

Page 116 of 125

Example 4: Linear Programming max

[300 500] x

subject to

Example 4: Linear Programming

Example 4: Linear Programming

 $\overline{\mathbf{v}} = \begin{bmatrix} 50 & 60 \end{bmatrix}^{\mathsf{T}} \qquad \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 50 \\ 60 \end{bmatrix} =$ 180 $\underbrace{\begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}}_{A_0^{\mathsf{T}}} \overline{u}_0 = \mathbf{1}$ $\begin{bmatrix} 300\\ 500 \end{bmatrix} \quad \Rightarrow \quad \overline{u} = \begin{bmatrix} 300 & -33\frac{1}{3} & 0 & 0 & 0 \end{bmatrix}^\mathsf{T}$ $u_2 = -33\frac{1}{3} < 0 \Rightarrow \text{ choose } k = 2$ $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \overline{y} =$ $\Rightarrow \overline{y} = \begin{bmatrix} 2\\ 3 \end{bmatrix}^{\mathsf{T}}$

101 (B) (2) (2) 2 000 Page 119 of 125

Example 4: Linear Programming

Since $(A)_3\overline{y} < 0$, $\lambda_4 = 180$, and $\lambda_5 = 120$, we have $\lambda = 120$ and $\ell = 5$, so

$$\overline{v}' = \underbrace{\begin{bmatrix} 50\\60 \end{bmatrix}}_{\overline{v}} + \underbrace{\frac{120}{\lambda}}_{\overline{\lambda}} \underbrace{\begin{bmatrix} \frac{2}{3}\\-\frac{1}{3} \end{bmatrix}}_{\overline{y}} = \begin{bmatrix} 130\\20 \end{bmatrix}$$

Example 4: Linear Programming

[300 500] x

subject to

$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \\ -1 & 0 \\ 0 & -1 \\ 0 & 3 \end{bmatrix} \overline{x} \le \begin{bmatrix} 170 \\ 150 \\ 0 \\ 0 \\ 180 \end{bmatrix}$$
$$\ell = 5 \Leftrightarrow k = 2 \text{ (swap)}$$

Page 121 of 125

Page 122 of 125

Example 4: Linear Programming

$$\overline{\mathbf{v}} = \begin{bmatrix} 130 & 20 \end{bmatrix}^{\mathsf{T}}$$
$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 130 \\ 20 \end{bmatrix} = \begin{bmatrix} 170 \\ 150 \end{bmatrix}$$
$$\overline{b_0}$$

$$\underbrace{\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ \hline A_{n}^{T} \end{bmatrix}}_{A_{n}^{T}} \overline{u}_{0} = \underbrace{\begin{bmatrix} 300 \\ 500 \\ \hline z \end{bmatrix}}_{\overline{z}} \Rightarrow \overline{u} = \begin{bmatrix} 200 & 100 & 0 & 0 \end{bmatrix}^{T}$$

Since $\overline{u} \ge 0$, we have reached the maximum, with

$$\overline{x} = \begin{bmatrix} 130\\ 20 \end{bmatrix}.$$
Page 124 of 125

Example 4: Linear Programming

Finally, therefore,

$$\mathbf{max} = \underbrace{\begin{bmatrix} 300 & 500 \end{bmatrix}}_{\mathbf{\overline{z}}^{\mathsf{T}}} \underbrace{\begin{bmatrix} 130 \\ 20 \end{bmatrix}}_{\overline{\mathbf{x}}} = 49000 \ .$$

Page 125 of 125