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Decision Procedures for Quantifier-free Fragments

For theory T with signature Σ and axioms A, decide if

F [x1, . . . , xn] or ∃x1, . . . , xn. F [x1, . . . , xn] is T -satisfiable[
Decide if

F [x1, . . . , xn] or ∀x1, . . . , xn. F [x1, . . . , xn] is T -valid

]
where F is quantifier-free and free(F ) = {x1, . . . , xn}
Note: no quantifier alternations
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Conjunctive Quantifier-free Fragment

We consider only conjunctive quantifier-free Σ-formulae, i.e.,
conjunctions of Σ-literals (Σ-atoms or negations of Σ-atoms).

For given arbitrary quantifier-free Σ-formula F , convert it into
DNF Σ-formula

F1 ∨ . . . ∨ Fk

where each Fi conjunctive.

F is T -satisfiable iff at least one Fi is T -satisfiable.
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Preliminary Concepts

Vector
variable n-vector n-vector a ∈ Qn transpose

x =


x1

...

xn

 a =


a1

...

an

 aT =
[

a1 · · · an

]

Matrix
m × n-matrix
A ∈ Qm×n transpose column

A =


a11 · · ·a1n

...
. . .

...

am1· · ·amn

 AT =


a11· · ·am1

...
. . .

...

a1n· · ·amn


row



a1j

...

ai1· · · aij · · · ain

...

amj


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Multiplication I

vector-vector

aTb = [a1 · · · an]


b1

...

bn

 =
n∑

i=1

aibi

matrix-vector

Ax =


a11 · · · a1n

...
. . .

...

am1 · · · amn




x1

...

xn

 =


∑n

i=1 a1ixi

...∑n
i=1 amixi


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Multiplication II
matrix-matrix

...

· · · aik · · ·
...




...

· · · bkj · · ·
...

=


...

· · · pij · · ·
...


A B P

where

pij = aibj =
[

ai1 · · · ain

] 
b1j

...

bnj

 =
n∑

k=1

aikbkj
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Special Vectors and Matrices

0 - vector (column) of 0s
1 - vector of 1s

Thus 1
T
x =

n∑
i=1

xi

I =


1 0

. . .

0 1

 identity matrix (n × n)

Thus IA = AI = A, for n × n matrix A.

unit vector ei =



0

...

1

...

0


ith (Note: matrix indices start at 1)
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Vector Space - set S of vectors closed under addition and scaling
of vectors. That is,

if v1, . . . , vk ∈ S then λ1v1 + · · ·+ λkvk ∈ S
for λ1, . . . , λn ∈ Q

Linear Equation

F : Ax = b

m × n-matrix variable n-vector m-vector

represents the ΣQ-formula

F : (a11x1 + · · ·+ a1nxn = b1) ∧ · · · ∧ (am1x1 + · · ·+ amnxn = bm)

Gaussian Elimination

Find x s.t. Ax = b by elementary row operations
◮ Swap two rows
◮ Multiply a row by a nonzero scalar
◮ Add one row to another
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Example 4 I

Solve  3 1 2

1 0 1

2 2 1


 x1

x2

x3

 =

 6

1

2


Construct the augmented matrix 3 1 2 6

1 0 1 1

2 2 1 2


Apply the row operations as follows:
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Example 4 II
1. Add −2a1 + 4a2 to a3 3 1 2 6

1 0 1 1

0 0 1 −6


2. Add −a1 + 2a2 to a2 3 1 2 6

0 −1 1 −3

0 0 1 −6


This augmented matrix is in triangular form.
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Example 4 III
Solving

x3 = −6

−x2 + x3 = −3 ⇒ x2 = −3

3x1 + x2 + 2x3 = 6 ⇒ x1 = 7

The solution is x =
[

7 −3 −6
]T
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Inverse Matrix

A−1 is the inverse matrix of square matrix A if

AA−1 = A−1A = I

Square matrix A is nonsingular (invertible) if its inverse A−1 exists.

How to compute A−1 of A?

[A | I ] [I | A−1]
elementary

row operations

How to compute kth column of A−1?
Solve Ay = ek , i.e.

0
...

A 1
...
0


solve triangular matrix

y = . . .

(kth column of A−1)solve using
elementary

row operations
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Linear Inequalities I

Polyhedral Space

For m × n-matrix A, variable n-vector x , and m-vector b̄, the
ΣQ-formula

G : Ax ≤ b̄, i.e., G :
m∧

i=1

ai1x1 + · · ·+ ainxn ≤ bi

describes a subset (space) of Qn, called a polyhedron.

Page 13 of 125

Linear Inequalities II
Convex Space

An n-dimensional space S ⊆ Rn is convex if for all pairs of points
v̄1, v̄2 ∈ S ,

λv̄1 + (1− λ)v̄2 ∈ S for λ ∈ [0, 1] .

Ax ≤ b̄ defines a convex space. For suppose Av̄1 ≤ b̄ and
Av̄2 ≤ b̄; then also

A(λv̄1 + (1− λ)v̄2) ≤ b̄ .
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Linear Inequalities III
Vertex

Consider m × n-matrix A where m ≥ n.

An n-vector v̄ is a vertex of Ax ≤ b̄ if there is

◮ a nonsingular n × n-submatrix A0 of A and

◮ corresponding n-subvector b̄0 of b̄

such that
A0v̄ = b̄0 .

The rows a0i in A0 and corresponding values b0i of b̄0 are the set
of defining constraints of the vertex v̄ .

Two vertices are adjacent if they have defining constraint sets
that differ in only one constraint.
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Example I

Consider the linear inequality

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1 1 0 0

1 0 −1 0

0 1 0 −1


︸ ︷︷ ︸

A


x

y

z1

z2


︸ ︷︷ ︸

x

≤



0

0

0

0

3

2

2


︸ ︷︷ ︸

b

A is a 7× 4-matrix, b is a 7-vector, and
x is a variable 4-vector representing the four variables {x , y , z1, z2}.
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Example II
v = [2 1 0 0]T is a vertex of the constraints. For the nonsingular
submatrix A0 (rows 3, 4, 5, 6 of A: defining constraints of v),

0 0 −1 0

0 0 0 −1

1 1 0 0

1 0 −1 0


︸ ︷︷ ︸

A0


2

1

0

0


︸ ︷︷ ︸

v

=


0

0

3

2


︸ ︷︷ ︸

b0
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Example III

Another vertex: v0 =
[
0 0 0 0

]T
, since

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


︸ ︷︷ ︸

A0


0

0

0

0


︸ ︷︷ ︸

v0

=


0

0

0

0


︸ ︷︷ ︸

b0

(rows 1,2,3,4 of A: defining constraints of v0)
Note: v and v0 are not adjacent; they are different in 2 defining
constraints.
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Linear Programming I

Optimization Problem

max cTx . . . objective function

subject to

Ax ≤ b . . . constraints

Maximize
n∑

i=1

cixi

subject to


a11 · · · a1n

...
. . .

...

am1 · · · amn




x1

...

xn

 ≤


b1

...

bm


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Linear Programming II
Solution:

Find vertex v∗ satisfying Ax ≤ b and maximizing cTx .
That is,

Av∗ ≤ b and
cTv∗ is maximal: cTv∗ ≥ cTu for all u satisfying Au ≤ b

◮ If Ax ≤ b is unsatisfiable,
then maximum is −∞

◮ It’s possible that the maximum is unbounded,
then maximum is ∞
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Example: Consider optimization problem:

max
[

1 1 −1 −1
]︸ ︷︷ ︸

cT


x

y

z1

z2


︸ ︷︷ ︸

x

subject to

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1 1 0 0

1 0 −1 0

0 1 0 −1


︸ ︷︷ ︸

A


x

y

z1

z2


︸ ︷︷ ︸

x

≤



0

0

0

0

3

2

2


︸ ︷︷ ︸

b
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Example (cont):

The objective function is

(x − z1) + (y − z2) .

The constraints are equivalent to the ΣQ-formula

x ≥ 0 ∧ y ≥ 0 ∧ z1 ≥ 0 ∧ z2 ≥ 0

∧ x + y ≤ 3 ∧ x − z1 ≤ 2 ∧ y − z2 ≤ 2
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Example: Linear Programming I

A company is producing two different products using three
machines A, B, and C.

◮ Product 1 needs A for one, and B for one hour.

◮ Product 2 needs A for two, B for one, and C for three hours.

◮ Product 1 can be sold for $300; Product 2 for $500.

◮ Monthly availability of machines:
A: 170 hours, B: 150 hours, C 180 hours.
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Example: Linear Programming II
Let x1 and x2 denote the amount of product 1 and product 2, resp.
We want to optimize 300x1 + 500x2 subject to:

1x1 + 2x2 ≤ 170 Machine (A)

1x1 + 1x2 ≤ 150 Machine (B)

0x1 + 3x2 ≤ 180 Machine (C)

x1 ≥ 0 ∧ x2 ≥ 0
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Example: Linear Programming III

x1

x2

x1 + x2 ≤ 150

x1 + 2x2 ≤ 170

3x2 ≤ 180
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Example: Linear Programming IV
Optimize 300x1 + 500x2:

x1

x2

$49000

$45000

$30000

v∗
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Duality Theorem

For m × n-matrix A, m-vector b and n-vector c :

max{cTx | Ax ≤ b ∧ x ≥ 0} = min{bT
y | ATy ≥ c ∧ y ≥ 0}

if the constraints are satisfiable.

That is,

maximizing the function cTx over Ax ≤ b, x ≥ 0
(the primal form of the optimization problem)

is equivalent to

minimizing the function b
T
y over ATy ≥ c , y ≥ 0

(the dual form of the optimization problem)

By convention: when Ax ≤ b ∧ x ≥ 0 unsatisfiable, the max is
−∞ and the min is ∞.
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•

Ax ≤ b cTx ≤ δ

δ−

δ+

Figure: Visualization of the duality theorem

The region labeled Ax ≤ b satisfies the inequality. The objective
function cTx is represented by the dashed line. Its value increases
in the direction of the arrow labeled δ+ and decreases in the
direction of the arrow labeled δ−. Page 28 of 125



Example: A Dual Problem

What is the value of a machine hour?
Let yA, yB , yC be the values of machine A, B, and C.
The value of the machine hours to produce something ≥ the value
of the product (> if that product should not be produced).

yA ≥ 0 ∧ yB ≥ 0 ∧ yC ≥ 0

1yA + 1yB + 0yC ≥ 300

2yA + 1yB + 3yC ≥ 500

We minimize the value 170yA + 150yB + 180yC to get the value of
a machine hour:

yA = 200 ∧ yB = 100 ∧ yC = 0

170yA + 150yB + 180yC = 49000

This is the dual problem. It has the same optimal value.
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The Simplex Method

Consider linear program

M : max c̄Tx̄

subject to G : Ax̄ ≤ b̄

The simplex method solves the linear program in two main steps:

1. Obtain an initial vertex v̄1 of Ax̄ ≤ b̄.

2. Iteratively traverse the vertices of Ax̄ ≤ b̄, beginning at v̄1, in
search of the vertex that maximizes c̄Tx̄ . On each iteration
determine if c̄Tv̄i > c̄Tv̄ ′i for the vertices v̄ ′i adjacent to v̄i :

◮ If not, move to one of the adjacent vertices v̄ ′
i with a greater

objective value.
◮ If so, halt and report v̄i as the optimum point with value c̄Tv̄i .

The final vertex v̄i is a local optimum since its adjacent vertices
have lesser objective values. But because the space defined by
Ax̄ ≤ b̄ is convex, v̄i is also the global optimum: it is the highest
value attained by any point that satisfies the constraints.
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Example

x1

x2

0
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Example

x1

x2

0

30000
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Example

x1

x2

30000 45000
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Example

x1

x2

45000

49000
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Example

x1

x2

49000
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How do we use optimization to determine satisfiability?

We are not interested in an optimal solution x such that

F : Ax ≤ b ;

we want some solution. However, this hard to find.

Idea: Transform F into an optimization problem with an initial
(not-optimal) vertex v1 and a desired optimum vF .

Apply the Simplex Method until an optimal vertex v∗ is obtained.

The optimum value for v∗ is vF iff F : Ax ≤ b is satisfiable.

The solution can be computed from the optimal solution x of the
optimization problem.
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Outline of the Algorithm I

Determine if ΣQ-formula

F :
m∧

i=1

ai1x1 + . . . + ainxn ≤ bi

∧
ℓ∧

i=1

αi1x1 + . . . + αinxn < βi

is satisfiable.

Note: Equations
ai1x1 + . . . + ainxn = bi

are allowed; break them into two inequalities:

ai1x1 + . . . + ainxn ≤ bi

−ai1x1 + . . . +−ainxn ≤ −bi
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Outline of the Algorithm II
F is TQ-equivalent to the ΣQ-formula

F ′ :
m∧

i=1

ai1x1 + . . . + ainxn ≤ bi

∧
ℓ∧

i=1

αi1x1 + . . . + αinxn + z ≤ βi

∧ z > 0
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Outline of the Algorithm III
To decide the TQ-satisfiability of F ′, solve the linear program

max z
subject to

m∧
i=1

ai1x1 + . . . + ainxn ≤ bi

ℓ∧
i=1

αi1x1 + . . . + αinxn + z ≤ βi

F ′ is TQ-satisfiable iff the optimum is positive.
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Outline of the Algorithm IV
When F does not contain any strict inequality literals, the
corresponding linear program

max 1
subject to

m∧
i=1

ai1x1 + . . . + ainxn ≤ bi

has optimum −∞ iff the constraints are TQ-unsatisfiable,
1 iff the constraints are TQ-satisfiable.
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Outline of the Algorithm V
To determine the satisfiability of F : Ax ≤ b,

M → M0

reformulate the satisfiability of F as an optimization problem:

M0 : max{c̄Tx̄ ′ | A′x̄ ′ ≤ b̄′}

such that F is TQ-satisfiable iff the optimal value of M0 is a
particular value vF (derived from the structure of F ).

Simplex Method

vertex traversal until termination
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Outline of the Algorithm VI

The simplex method traverses the vertices of A′x ′ ≤ b
′
searching

for the maximum of the objective function cTx ′.

If v1, v2, . . . are the traversed vertices in the iteration, then

cTv1 < cTv2 < · · · .

The simplex method terminates at some vertex v i∗ where cTv i∗ is
the global optimum

Final step: Compare the discovered optimal value cTv i∗ to the
desired value vF .

◮ if equal, then F is TQ-satisfiable

◮ otherwise, F is TQ-unsatisfiable
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Step 0: From Satisfiability to Optimization

Given ΣQ-formula

F : Ax ≤ b (8.1)

reformulate to new constraint system (new A, x , b)

F ′ : x ≥ 0, Ax ≤ b

such that F ′ is TQ-equisatisfiable to F

The trick: replace each variable x in F by x1 − x2 and add x̄ ≥ 0
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Step 0: From Satisfiability to Optimization
Making the bi positive

Collect the lines where bi is negative:

Ax =

[
D1

−D2

]
x ≤

[
g1

−g2

]
= b

where

g1 ≥ 0

g2 > 0

Multiply the bottom rows with −1:

D1x ≤ g1

D2x ≥ g2
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Example 1: x + y ≥ 1 ∧ x − y ≥ −1

ΣQ-formula
F : x + y ≥ 1 ∧ x − y ≥ −1 .

To convert it to the form x ≥ 0 ∧ Ax ≤ b, introduce nonnegative
x1, x2 for x and y1, y2 for y :

F ′ :
(x1 − x2) + (y1 − y2) ≥ 1 ∧ (x1 − x2)− (y1 − y2) ≥ −1

∧ x1, x2, y1, y2 ≥ 0

F is TQ-equisatisfiable to F ′. In matrix form (with x ≥ 0),

F ′ :

[
−1 1 −1 1

−1 1 1 −1

]
︸ ︷︷ ︸

A


x1

x2

y1

y2

 ≤
[
−1

1

]
︸ ︷︷ ︸

b
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Example 1: x + y ≥ 1 ∧ x − y ≥ −1

F ′ :
(x1 − x2) + (y1 − y2) ≥ 1 ∧ (x1 − x2)− (y1 − y2) ≥ −1

∧ x1, x2, y1, y2 ≥ 0

Since b1 < 0 and b2 > 0, separating constraints yields

[ −1 1 1 −1
]︸ ︷︷ ︸

D1


x1

x2

y1

y2

 ≤ [1]︸︷︷︸
g1

[
1 −1 1 −1

]︸ ︷︷ ︸
D2


x1

x2

y1

y2

 ≥ [1]︸︷︷︸
g2
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Step 0: From Satisfiability to Optimization

D1x ≤ g1 g1 ≥ 0

D2x ≥ g2 g2 > 0

Generate the optimization problem:
M0 : max 1

T
(D2x − z)

subject to

x , z ≥ 0 (1)

D1x ≤ g1 (2)

D2x − z ≤ g2 (3)

(8.2)

length of variable vector z = # of rows of D2

◮ The point x = 0, z = 0 satisfies constraints (1) – (3). It’s a
vertex.

◮ The optimum vF equals 1
T
g2 (the equality in (3) holds) iff F

is TQ-satisfiable. (proof on p. 220)

The x part of the optimal solution v∗ satisfies F .
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Step 0: From Satisfiability to Optimization
MF can be written in standard form as

MF :
max 1

T [
D2 −I

]︸ ︷︷ ︸
cT

[
x

z

]
︸ ︷︷ ︸

y

subject to
−I

−I

D1

D2 −I


︸ ︷︷ ︸

A

[
x

z

]
︸ ︷︷ ︸

y

≤


0

0

g1

g2


︸ ︷︷ ︸

b

(8.3)

Page 48 of 125



Example 1: x + y ≥ 1 ∧ x − y ≥ −1

[ −1 1 1 −1 ]︸ ︷︷ ︸
D1


x1

x2

y1

y2

 ≤ [1]︸︷︷︸
g1

and [ 1 −1 1 −1 ]︸ ︷︷ ︸
D2


x1

x2

y1

y2

 ≥ [1]︸︷︷︸
g2

D2 has only one row, so z = [z ].

Pose the following optimization problem:

max [ 1 −1 1 −1 ]


x1

x2

y1

y2

− [z ]

subject to
. . .

Page 49 of 125

Example 1: x + y ≥ 1 ∧ x − y ≥ −1

x1, x2, y1, y2, z ≥ 0

[ −1 1 1 −1
]


x1

x2

y1

y2

 ≤ [1]

[
1 −1 1 −1

]


x1

x2

y1

y2

− [z ] ≤ [1]

F is TQ-satisfiable iff the optimum is 1
T
g2 = 1.

[x1 x2 y1 y2 z ] = [0 0 0 0 0] is a vertex.
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Example 1: x + y ≥ 1 ∧ x − y ≥ −1
Rewriting the optimization problem

max
[

1 −1 1 −1 −1
]︸ ︷︷ ︸

cT


x1

x2

y1

y2

z


subject to

A︷ ︸︸ ︷

−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1

−1 1 1 −1 0

1 −1 1 −1 −1




x1

x2

y1

y2

z

 ≤

b︷ ︸︸ ︷

0

0

0

0

0

1

1


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From < to ≤ (reminder)

If we have some strict inequalities:

x ≥ 0

A0x ≤ b0

A1x < b1

introduce a new variable z ≥ 0 and maximize z , such that

x ≥ 0 ∧ z ≥ 0

A0x ≤ b0

A1x + z · 1 ≤ b1

The maximum is greater than 0 iff the original constraint is
satisfiable.
Note: In this case, one can stop the simplex algorithm after the
first time z increases. Why?
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Example 1A: x + y > 1 ∧ x − y > −1

Normal form:

x1, x2, y1, y2 ≥ 0

−x1 + x2 + y1 − y2 < 1

−x1 + x2 − y1 + y2 < −1

Introduce z1 for the strictness: Maximize z1 subject to

x1, x2, y1, y2, z1 ≥ 0

−x1 + x2 + y1 − y2 + z1 ≤ 1

−x1 + x2 − y1 + y2 + z1 ≤ −1

Introduce z2 to get rid of negative bound:
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Example 1A: x + y > 1 ∧ x − y > −1
Maximize x1 − x2 + y1 − y2 − z1 − z2 subject to

x1, x2, y1, y2, z1 ≥ 0

−x1 + x2 + y1 − y2 + z1 ≤ 1

x1 − x2 + y1 − y2 − z1 − z2 ≤ 1
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Example 1A: x + y > 1 ∧ x − y > −1
In matrix form:

max [1 −1 1 −1 −1 −1]x
subject to

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

−1 1 1 −1 1 0

1 −1 1 −1 −1 −1


x ≤



0

0

0

0

0

0

1

1



Page 55 of 125

From Satisfiability to Optimization: Summary

1. Adding the constraints x ≥ 0
Replace each variable x by x1 − x2, then add x ≥ 0.

2. Getting rid of strict inequality <
Add variable z ≥ 0, replace Ax < b with Ax + z ≤ b,
optimize z .
Strict inequality satisfiable iff optimum > 0.

3. Making the bi positive
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Vertex Traversal: Find a Better Vertex

Optimization problem of form

max cTx (8.3)

subject to

Ax ≤ b

we are given satisfying vertex v i .

◮ The simplex method traverses vertices of the space defined by
Ax ≤ b to find the vertex v∗ that maximizes cTx .

◮ One iteration seeks vertex v i+1 “adjacent” (n − 1 shared
defining constraints) to v i s.t. cTv i+1 > cTv i

◮ For i = 1, the initial vertex v1 of M0 is x = 0, z = 0

Example (cont):

v1 = [x1 x2 y1 y2 z ]T = [0 0 0 0 0]T
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Vertex Traversal

Find u

Construct vector u s.t.

uTA = cT (8.4)

If u ≥ 0̄ then by the Duality Theorem v i is optimal.

◮ Given v i

◮ Construct n × n nonsingular submatrix Ai with corresponding
rows bi s.t.

Aiv i = bi

◮ Let R = rows of A in Ai

◮ Solve

Ai
Tui = c (8.5)

◮ Let u be ui for indices in R and
0’s for indices not in R (ui suffices!)
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Example 1: x + y ≥ 1 ∧ x − y ≥ −1

Choose the first five rows of A and b (R = [1; 2; 3; 4; 5]) since
−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1


︸ ︷︷ ︸

A1


0

0

0

0

0


︸ ︷︷ ︸

v1

=


0

0

0

0

0


︸ ︷︷ ︸

b1

i.e. −I v1 = b1. Solving (by Gaussian elimination):
−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1


︸ ︷︷ ︸

A1
T

u1 =


1

−1

1

−1

−1


︸ ︷︷ ︸

c
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Example 1: x + y ≥ 1 ∧ x − y ≥ −1
(i.e. −I u1 = c, and thus u1 = −c) yields

u1
T =

[ −1 1 −1 1 1
]

.

Then
u =

[ −1 1 −1 1 1 0 0
]T
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Vertex Traversal

Case 1: u ≥ 0

In this case, v i is actually the optimal point with optimal value cTv i .
(proof on p. 226)

Case 2: u 6≥ 0, i.e. there exists some uk < 0

In this case, v i is not the optimal point. We need to move along
an edge to an adjacent vertex to increase the value of the objective
function.

◮ Let k be the lowest index of u s.t. uk < 0 (must be k ∈ R)

◮ Let k ′ be the index of the corresponding row of ui and Ai

and the corresponding column of −A−1
i
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Vertex Traversal
Find y

◮ Let y be the k ′th column of −A−1
i . Solve

Aiy = −ek ′ (8.8)

That is,

aℓy = 0 for every row aℓ of Ai , ℓ 6= k ′

ak ′y = −1 for the k ′th row ak ′ of Ai

The vector y provides the direction along which to move to
the next vertex.
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Example 1: x + y ≥ 1 ∧ x − y ≥ −1

We found so far

u1 =
[ −1 1 −1 1 1

]T
and u =

[ −1 1 −1 1 1 0 0
]T

k = 1 since the first row of u is −1. k ′ = 1 since it is also the first
row of ui .
Thus, solve 

−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1


︸ ︷︷ ︸

A1

y =


−1

0

0

0

0


︸ ︷︷ ︸
−e1

i.e. −I y = −e1, yielding y =
[

1 0 0 0 0
]T

.
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Vertex Traversal

Find λ and vi+1

We move along edge y to better vertex v i+1.

◮ Let S = indices ℓ s.t. aℓy > 0

◮ Find greatest λi ≥ 0 such that

A(v i + λiy) ≤ b

Choose λi > 0 such that

aℓ(v i + λiy) = bℓ for some ℓ ∈ S

am(v i + λiy) ≤ bm for m ∈ S − {ℓ}

Page 64 of 125



Vertex Traversal
◮ Set v i+1 = v i + λiy (8.12)

Vertex v i+1 is discovered by moving along ray y as far as
possible without violating the constraints. Moreover,

cTv i+1 > cTv i .

◮ Construct Ai+1 from Ai for next iteration by substituting row
aℓ of A for row ak ′ of Ai

Since there are only finite number of vertices to examine, Case 1
eventually occurs.

Page 65 of 125

Vertex Traversal

y

•
v i

•v i+1

Ax ≤ b cTx
y

•
v i

Ax ≤ b cTx

(a) bounded (b) unbounded

(a) depicts the discovery of vertex v i+1 by moving along ray y as
far as possible without violating the constraints.

(b) illustrates what happens when all points along the ray
laybeled y satisfy the constraints: moving along the ray
increases cTx without bound.
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Example 1: x + y ≥ 1 ∧ x − y ≥ −1

We found in Step 1

y =
[

1 0 0 0 0
]T

where 

−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1


︸ ︷︷ ︸

A1


1

0

0

0

0


︸ ︷︷ ︸

y

=


−1

0

0

0

0


︸ ︷︷ ︸
−e1
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Example 1: x + y ≥ 1 ∧ x − y ≥ −1
Compute Ay

−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1

−1 1 1 −1 0

1 −1 1 −1 −1


︸ ︷︷ ︸

A


1

0

0

0

0


︸ ︷︷ ︸

y

=



−1

0

0

0

0

−1

1



Page 68 of 125



Example 1: x + y ≥ 1 ∧ x − y ≥ −1
S = [7] since a7y = 1 > 0. Examining the 7th row of the
constraints, choose the greatest λ1 such that (8.7b)[

1 −1 1 −1 −1
]︸ ︷︷ ︸

a7

(v1 + λ1y) =

[
1 −1 1 −1 −1

]



0

0

0

0

0

 + λ1


1

0

0

0

0



 = 1︸︷︷︸
b7

that is, choose λ1 = 1. Therefore, (8.7c)

v2 = v1 + λ1y =
[

1 0 0 0 0
]T
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Example 1: x + y ≥ 1 ∧ x − y ≥ −1
Form A2 from A1 replacing the 1st row (k ′ = 1) of A1 by the 7th
row (ℓ = 7) of A.

A2 =



1 −1 1 −1 −1

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1

 b2 =


1

0

0

0

0


Thus, A2v2 = b2. This move to vertex v2 makes progress:

[
1 −1 1 −1 −1

]︸ ︷︷ ︸
cT


0

0

0

0

0


︸ ︷︷ ︸

v1

= 0 <
[

1 −1 1 −1 −1
]︸ ︷︷ ︸

cT


1

0

0

0

0


︸ ︷︷ ︸

v2

= 1 .
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Example 1: x + y ≥ 1 ∧ x − y ≥ −1
Now R = [7; 2; 3; 4; 5] (rows of A in A2).

Solve 
1 0 0 0 0

−1 −1 0 0 0
1 0 −1 0 0

−1 0 0 −1 0
−1 0 0 0 −1


︸ ︷︷ ︸

A2
T

u2 =


1

−1
1

−1
−1


︸ ︷︷ ︸

c

for u2 yielding u2 = [1 0 0 0 0]T. Since u2 ≥ 0, we are in Case 1:
we have found an optimum point, v2, with optimal value 1.

Since we have that vF = 1
T
g2 = 1, the equality of the optimial

point and vF implies that
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Example 1: x + y ≥ 1 ∧ x − y ≥ −1

F : x + y ≥ 1 ∧ x − y ≥ −1

is TQ-satisfiable. In particular, extract from
x1

x2

y1

y2

z

 = v2 =


1
0
0
0
0


the assignment

x = x1 − x2 = 1− 0 = 1 and y = y1 − y2 = 0− 0 = 0 ,

which indeed satisfies F .
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Example 2

Consider optimization problem of the form (8.3)
max

[−1 1
]︸ ︷︷ ︸

cT

x

subject to −1 0

0 −1

2 1


︸ ︷︷ ︸

A

x ≤

0

0

2


︸︷︷︸

b

v1 =
[
0 0

]T
is a vertex.

The first two constraints are the defining constraints of v1, so
choose R = [1; 2]:

A1 =

[
−1 0

0 −1

]
b1 =

[
0

0

]
.

Thus A1v1 = b1. Page 73 of 125

cTx

•
v1

x1

x2

The solid lines represent the constraints. The dashed line indicates
cTx ; the arrow points in the direction of increasing value.
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Example 2

First Iteration
From (8.5), solving[

−1 0

0 −1

]
︸ ︷︷ ︸

AT
1

u1 =

[
−1

1

]
︸ ︷︷ ︸

c

i.e., − I u1 = c

for u1 yields

u1 = −c =
[
1 −1

]T
.

Adding 0s for rows not in R produces

u =
[
1 −1 0

]T
.

This u satisfies uTA = cT of (8.6).
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Example 2
Since the 2nd row of u is -1, we are in Case 2 (u ¤ 0)
with k = 2 of u, corresponding to row k ′ = 2 of u1.

Let y be the 2nd column of −A−1
1 , and solve (8.8)[

−1 0

0 −1

]
︸ ︷︷ ︸

A1

y =

[
0

−1

]
︸ ︷︷ ︸
−e2

for y , yielding

y =
[
0 1

]T
.
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cTx

y

•
v1

•v2

x1

x2

The y is visualized by the dark solid arrow that points up from v1.
The vertical and horizontal lines are the defining constraints of v1;
in moving in the direction y , we keep the vertical constraint for the
next vertex v2 but drop the horizontal constraint. The diagonal
constraint will become the second of v2’s defining constraints.

Page 77 of 125

Example 2

Choose λ1 such that

−1 0

0 −1

2 1


︸ ︷︷ ︸

A


[
0

0

]
︸︷︷︸
v1

+λ1

[
0

1

]
︸︷︷︸

y

 ≤

0

0

2


︸︷︷︸

b

.

Page 78 of 125

Example 2
We have

[−1 0
]︸ ︷︷ ︸

(A)1

[
0

1

]
︸︷︷︸

y

= 0

[
0 −1

]︸ ︷︷ ︸
(A)2

[
0

1

]
︸︷︷︸

y

< 0

[
2 1

]︸ ︷︷ ︸
(A)3

[
0

1

]
︸︷︷︸

y

> 0 ⇒ [
2 1

]([
0

0

]
+ λ1

[
0

1

])
= 2

⇒ λ1 = 2

Thus λ1 = 2, ℓ = 3.
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Example 2
From (8.12),

v2 = v1 + λ1y =

[
0

0

]
+ 2

[
0

1

]
=

[
0

2

]
.

Choosing R = [1; 3] and replacing the 2nd row of A1 and b1

(k ′ = 2) with the 3rd row (ℓ3 = 3) of Ax ≤ b yields

A2 =

[
−1 0

2 1

]
and b2 =

[
0

2

]
; i.e., A2v2 = b2

The vertical and diagonal constraints are the defining constraints
of v2.
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Example 2
Next Iteration
In the next iteration, solving[

−1 2

0 1

]
︸ ︷︷ ︸

AT
2

u2 =

[
−1

1

]
︸ ︷︷ ︸

c

yields u2 =
[
3 1

]T
. Adding 0s for rows not in R produces

u =
[
3 0 1

]T
.

Since u ≥ 0̄, we are in Case 1. The max is

cTv2 =
[−1 1

] [
0

2

]
= 2

at vertex vT
2 =

[
0 2

]
.
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Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3

ΣQ-formula (8.1)

F : x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3 ,

or, in matrix form,

F :


−1 0

0 −1

−1 0

0 −1

1 1


[

x

y

]
≤


0

0

−2

−2

3


Is F TQ-satisfiable?
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Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Step 0

Because x and y are already constrained to be nonnegative, we do
not need to introduce new x1, x2, y1, y2. Rewrite:

[1 1]︸︷︷︸
D1

[
x

y

]
≤ [3]︸︷︷︸

g1

and

[
1 0

0 1

]
︸ ︷︷ ︸

D2

[
x

y

]
≥

[
2

2

]
︸ ︷︷ ︸

g2

so that g1 ≥ 0 and g2 > 0.

Then (8.2):

max 1
T
(D2x − z)

subject to

x , z ≥ 0

D1x ≤ g1

D2x − z ≤ g2
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Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Expanding, we have

cTx = 1
T [

D2 −I
]


x

y

z1

z2



= [1 1]

[
1 0 −1 0

0 1 0 −1

] 
x

y

z1

z2



=
[

1 1 −1 −1
]︸ ︷︷ ︸

cT


x

y

z1

z2

 .

Page 84 of 125



Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
obtaining the optimization problem (8.3)

max [1 1 − 1 − 1]︸ ︷︷ ︸
cT


x

y

z1

z2


subject to

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1 1 0 0

1 0 −1 0

0 1 0 −1


︸ ︷︷ ︸

A


x

y

z1

z2

 ≤



0

0

0

0

3

2

2


︸ ︷︷ ︸

b

Page 85 of 125

Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Use the initial vertex

v1 =


x

y

z1

z2

 =


0

0

0

0


in Step 1.

F is satisfiable iff the optimal value vF is equal to

1
T
g2 = [1 1]

[
2

2

]
= 4 .

We use the simplex algorithm to find the optimum.
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Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Step 1

Choose rows R = [1; 2; 3; 4] of A and b, giving
−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


︸ ︷︷ ︸

A1


0

0

0

0


︸ ︷︷ ︸

v1

=


0

0

0

0


︸ ︷︷ ︸

b1

Solving 
−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


︸ ︷︷ ︸

A1
T

u1 =


1

1

−1

−1


︸ ︷︷ ︸

c
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Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
yields u1 = [−1 − 1 1 1]T. Adding 0s for the rows not in R
produces u:

u =
[ −1 −1 1 1 0 0 0

]T
.

Since u1, u2 < 0, we are in Case 2 with k = k ′ = 1. Let y be the
first column of −A−1

1 : solve
−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


︸ ︷︷ ︸

A1

y =


−1

0

0

0


︸ ︷︷ ︸
−ē1

to yield y =
[

1 0 0 0
]T

. Then S = [5; 6]; i.e., the 5th and
6th rows a of A are such that ay > 0. Choose the largest λ1 such
that A(v1 + λ1y) ≤ b.
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Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Focusing on the 5th and 6th rows of A (since S ′ = [5; 6]), choose
the largest λ1 such that

[
1 1 0 0

1 0 −1 0

]
︸ ︷︷ ︸

rows 5,6 of A




0

0

0

0


︸ ︷︷ ︸

v1

+λ1


1

0

0

0


︸ ︷︷ ︸

y


≤

[
3

2

]
︸ ︷︷ ︸

rows 5,6 of b

Namely, choose λ1 = 2 (and ℓ = 6). Then

v2 = v1 + λ1y =


0

0

0

0

 + 2


1

0

0

0

 =


2

0

0

0


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Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Replace the 1st row of A1 (since k ′ = 1) by the 6th row of A
(since ℓ = 6) to produce

A2 =


1 0 −1 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 and b2 =


2

0

0

0


Have we made progress? Yes, for

cTv1 = 0 < 2 = cTv2 .

The objective function has increased from 0 to 2.
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Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Step 2

Now R = [6; 2; 3; 4] (the indices of rows of A in A2). Solve
1 0 0 0

0 −1 0 0

−1 0 −1 0

0 0 0 −1


︸ ︷︷ ︸

A2
T

u2 =


1

1

−1

−1


︸ ︷︷ ︸

c

to yield
u2 = [ 1 −1 0 1 ]T

6 2 3 4
.
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Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Then filling in 0s for the other rows of A produces:

u = [0 −1 0 1 0 1 0]T

2 3 4 6

u2 < 0, so k = 2, which corresponds to row k ′ = 2 of u2.

According to Case 2, let y be the 2nd column of −A−1
2 : solve

A2y = −e2 to yield y = [0 1 0 0]T. Then the 5th and 7th rows a
of A are such that ay > 0 so that S = [5; 7].

Focusing on the 5th and 7th rows of A, choose the largest λ2 such
that

[
1 1 0 0

0 1 0 −1

]
︸ ︷︷ ︸

rows 5,7 of A




2

0

0

0


︸ ︷︷ ︸

v2

+λ2


0

1

0

0


︸ ︷︷ ︸

y


≤

[
3

2

]
︸ ︷︷ ︸

rows 5,7 of b
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Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Choose λ2 = 1 (and ℓ = 5). Then

v3 = v2 + λ2y =


2

0

0

0

 + 1


0

1

0

0

 =


2

1

0

0


Replace the 2nd row of A2 (since k ′ = 2) by the 5th row of A
(since ℓ = 5) to produce

A3 =


1 0 −1 0

1 1 0 0

0 0 −1 0

0 0 0 −1

 and b3 =


2

3

0

0


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Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Have we made progress? Yes, for

cTv1 = 0

< cTv2 = 2

< cTv3 = 3 .

The objective function has increased from 2 to 3.
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Example 3: x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3
Step 3

Now R = [6; 5; 3; 4]. Solve A3
Tu3 = c , yielding u3 = [0 1 1 1]T.

Now u3 ≥ 0, so we are in Case 1: v3 is the optimum with objective
value

[1 1 − 1 − 1]︸ ︷︷ ︸
cT


2

1

0

0


︸ ︷︷ ︸

v3

= 3 .

Final Step: Satisfiability

The optimal value of the constructed optimization problem is 3,
which is less than the required vF = 4 of Step 0. Hence, F is
TQ-unsatisfiable.
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Linear Programming (Dantzig 1940s)

A linear programming problem involves the optimization of a linear
objective function, subject to linear inequality constraints.

max cTx (objective function)

subject to Ax ≤ b (constraints)

x denotes a vector:

max
n∑

i=1

cixi

subject to


a11 · · · a1n

...
...

am1 · · · amn




x1

...

xn

 ≤


b1

...

bm


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Example: Linear Programming

A company is producing two different products using three
machines A, B, and C.

◮ Product 1 needs A for one, and B for one hour.

◮ Product 2 needs A for two, B for one, and C for three hours.

◮ Product 1 can be sold for $300; Product 2 for $500.

◮ Monthly availability of machines:
A: 170 hours, B: 150 hours, C 180 hours.

Let x1 and x2 denote the projected monthly sale of product 1 and
product 2, respectively.
We want to optimize 300x1 + 500x2 subject to:

1x1 + 2x2 ≤ 170 Machine (A)

1x1 + 1x2 ≤ 150 Machine (B)

0x1 + 3x2 ≤ 180 Machine (C)

x1 ≥ 0 ∧ x2 ≥ 0
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The Simplex Algorithm

To find the optimal solution proceed as follows:

◮ start at some vertex of the solution space,

◮ proceed along adjacent edge to reach a vertex with better
cost,

◮ continue until local optimum is found.

The solution space forms a convex polyhedron.
Therefore local optimum is global optimum.
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A Problem with a Simple Vertex

If the problem is of the following shape:

x1 ≥ 0

...

xn ≥ 0

Ax ≤ b, where b ≥ 0

or (in matrix form)

−1 0

. . .

0 −1

A


x ≤



0

...

0

b1

. . .

bm


, where b1, . . . , bm ≥ 0,

then a simple (initial) vertex of solution space is x = 0.
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Vertex of Ax ≤ b and its dual

An n-vector v is a vertex of Ax ≤ b if there is nonsingular
n × n-submatrix A0 and corresponding n-subvector b0 s.t.

A0v = b0 and Av ≤ b

Move the rows corresponding to A0 in A and b0 in b upwards:

A =

[
A0

∗

]
and b =

[
b0

∗

]

Construct solution u of the dual problem ATy ≥ c as follows:
Since A0 is invertible, we can solve

A0
Tu0 = c

to get u0. Set u :=

[
u0

0

]
, then:

ATu =
[

A0
T ∗ ] [

u0

0

]
= A0

Tu0 + 0 = c .
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Case u ≥ 0

If u ≥ 0, then v is optimal:
We have

cTv = (ATu)
T
v

= uTAv

= uT

[
A0

∗

]
v

=
[
u0

T 0
] [

b0

∗

]
= uTb

Let x be an arbitrary vector that satisfies Ax ≤ b, then:

cTx = (ATu)Tx = uTAx ≤
u≥0

uTb = cTv .

Hence, cTv is maximal.
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Case u 6≥ 0

If u 6≥ 0, there is some coordinate k s.t. uk < 0.
This corresponds to some row of matrix A0.

Find y

Solve for y in equation

A0y = −ēk .

This is the direction in which we move.
Set v ′ = v + λy , where λ ≥ 0 . Then

A0v
′ = A0(v + λy)

= b0 − λēk

≤ b0

and equality holds for all but the kth row.
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Case u 6≥ 0
Moreover, v ′ is better than v :

cTy = u0
TA0y

= u0
T(−ēk)

= −uk

> 0 .

Hence,
cTv ′ = cTv + λ cTy︸︷︷︸

>0

≥ cTv
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How to find λ

Find λ
Now choose λ such that still A(v + λy) ≤ b and equality
holds for some constraint (A)ℓ(v + λy) = bℓ, ℓ > n.
This gives a better vertex.

For each row ℓ > n with (A)ℓy > 0, solve λℓ in the equation

(A)ℓ(v + λℓy) = bℓ

From (A)ℓv ≤ bℓ:

0 ≤ bℓ − (A)ℓv = λℓ(A)ℓy

Since (A)ℓy > 0, we have λℓ ≥ 0.

Choose as λ the smallest λℓ.
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The cases for λ

Since A0y = −ēk ,

A(v + λy) ≤ b + λAy = b + λ



−ēk

(A)n+1y

...

(A)my


Case 1
There is no ℓ > n with (A)ℓy > 0. Then A(v + λy) ≤ b holds for
all λ ≥ 0 and the maximum value of cTx is unbounded:

lim
λ→∞

cT(v + λy) = lim
λ→∞

cTv + λ cTy︸︷︷︸
>0

 = ∞ .
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The cases for λ
Case 2
If λ is the smallest λℓ with (A)ℓy > 0, then

(A)ℓ(v + λy) = bℓ and A(v + λy) ≤ b

Thus v + λy is a better vertex.
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Example 4: Linear Programming
max[

300 500
]︸ ︷︷ ︸

c

x

subject to
−1 0

0 −1

1 2

1 1

0 3


︸ ︷︷ ︸

A

x ≤


0

0

170

150

180


︸ ︷︷ ︸

b
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Example 4: Linear Programming

x1

x2

0

y

Page 108 of 125



Example 4: Linear Programming

v =
[
0 0

]T

[
−1 0

0 −1

]
︸ ︷︷ ︸

A0

[
0

0

]
︸︷︷︸

v

=

[
0

0

]
︸︷︷︸

b0[
−1 0

0 −1

]
︸ ︷︷ ︸

AT
0

u0 =

[
300

500

]
︸ ︷︷ ︸

c

⇒ u =
[−300 −500 0 0 0

]T

u2 = −500 < 0 ⇒ choose k = 2

[
−1 0

0 −1

]
︸ ︷︷ ︸

A0

y =

[
0

−1

]
︸ ︷︷ ︸
−ē2

⇒ y =
[
0 1

]T
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Example 4: Linear Programming

[
1 2

]︸ ︷︷ ︸
(A)3

[
0

1

]
︸︷︷︸

y

> 0 ⇒ [
1 2

]([
0

0

]
+ λ3

[
0

1

])
= 170

⇒ λ3 = 85[
1 1

]︸ ︷︷ ︸
(A)4

[
0

1

]
︸︷︷︸

y

> 0 ⇒ [
1 1

]([
0

0

]
+ λ4

[
0

1

])
= 150

⇒ λ4 = 150[
0 3

]︸ ︷︷ ︸
(A)5

[
0

1

]
︸︷︷︸

y

> 0 ⇒ [
0 3

]([
0

0

]
+ λ5

[
0

1

])
= 180

⇒ λ5 = 60
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Example 4: Linear Programming
Thus λ = λ5 = 60, ℓ = 5, and

v ′ =

[
0

0

]
︸︷︷︸

v

+ 60︸︷︷︸
λ

[
0

1

]
︸︷︷︸

y

=

[
0

60

]
.
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Example 4: Linear Programming
max[

300 500
]
x

subject to
−1 0

0 3

0 −1

1 2

1 1

 x ≤


0

180

0

170

150


ℓ = 5 ⇒ k = 2
(not swap, but okay)
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Example 4: Linear Programming

x1

x2

30000

y
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Example 4: Linear Programming

v =
[
0 60

]T

[
−1 0

0 3

]
︸ ︷︷ ︸

A0

[
0

60

]
︸ ︷︷ ︸

v

=

[
0

180

]
︸ ︷︷ ︸

b0[
−1 0

0 3

]
︸ ︷︷ ︸

AT
0

u0 =

[
300

500

]
︸ ︷︷ ︸

c

⇒ u =
[−300 1662

3 0 0 0
]T

u1 = −300 < 0 ⇒ choose k = 1

[
−1 0

0 3

]
︸ ︷︷ ︸

A0

y =

[
−1

0

]
︸ ︷︷ ︸
−ē1

⇒ y =
[
1 0

]T
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Example 4: Linear Programming

[
0 −1

]︸ ︷︷ ︸
(A)3

[
1

0

]
︸︷︷︸

y

= 0

[
1 2

]︸ ︷︷ ︸
(A)4

[
1

0

]
︸︷︷︸

y

> 0 ⇒ [
1 2

]([
0

60

]
+ λ4

[
1

0

])
= 170

⇒ λ4 = 50[
1 1

]︸ ︷︷ ︸
(A)5

[
1

0

]
︸︷︷︸

y

> 0 ⇒ [
1 1

]([
0

60

]
+ λ5

[
1

0

])
= 150

⇒ λ5 = 90
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Example 4: Linear Programming
Since (A)3y = 0, λ4 = 50, and λ5 = 90,
we have λ = 50 and ℓ = 4, so

v ′ =

[
0

60

]
︸ ︷︷ ︸

v

+ 50︸︷︷︸
λ

[
1

0

]
︸︷︷︸

y

=

[
50

60

]
.

Page 116 of 125



Example 4: Linear Programming
max[

300 500
]
x

subject to
1 2

0 3

−1 0

0 −1

1 1

 x ≤


170

180

0

0

150


ℓ = 4 ⇔ k = 1 (swap)
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Example 4: Linear Programming

x1

x2

45000

y
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Example 4: Linear Programming

v =
[
50 60

]T

[
1 2

0 3

]
︸ ︷︷ ︸

A0

[
50

60

]
︸ ︷︷ ︸

v

=

[
170

180

]
︸ ︷︷ ︸

b0[
1 0

2 3

]
︸ ︷︷ ︸

AT
0

u0 =

[
300

500

]
︸ ︷︷ ︸

c

⇒ u =
[
300 −331

3 0 0 0
]T

u2 = −33
1

3
< 0 ⇒ choose k = 2

[
1 2

0 3

]
︸ ︷︷ ︸

A0

y =

[
0

−1

]
︸ ︷︷ ︸
−ē2

⇒ y =
[

2
3 −1

3

]T
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Example 4: Linear Programming

[−1 0
]︸ ︷︷ ︸

(A)3

[
2
3

−1
3

]
︸ ︷︷ ︸

y

< 0

[
0 −1

]︸ ︷︷ ︸
(A)4

[
2
3

−1
3

]
︸ ︷︷ ︸

y

> 0 ⇒ [
0 −1

]︸ ︷︷ ︸
(A)4


[
50

60

]
︸ ︷︷ ︸

v

+λ4

[
2
3

−1
3

]
︸ ︷︷ ︸

y

 = 0︸︷︷︸
b4

⇒ λ4 = 180

[
1 1

]︸ ︷︷ ︸
(A)5

[
2
3

−1
3

]
︸ ︷︷ ︸

y

> 0 ⇒ [
1 1

]︸ ︷︷ ︸
(A)5


[
50

60

]
︸ ︷︷ ︸

v

+λ5

[
2
3

−1
3

]
︸ ︷︷ ︸

y

 = 150︸︷︷︸
b5

⇒ λ5 = 120
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Example 4: Linear Programming

Since (A)3y < 0, λ4 = 180, and λ5 = 120,
we have λ = 120 and ℓ = 5, so

v ′ =

[
50

60

]
︸ ︷︷ ︸

v

+ 120︸︷︷︸
λ

[
2
3

−1
3

]
︸ ︷︷ ︸

y

=

[
130

20

]
.
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max[

300 500
]
x

subject to
1 2

1 1

−1 0

0 −1

0 3

 x ≤


170

150

0

0

180


ℓ = 5 ⇔ k = 2 (swap)
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x1

x2

49000
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v =
[
130 20

]T[
1 2

1 1

]
︸ ︷︷ ︸

A0

[
130

20

]
︸ ︷︷ ︸

v

=

[
170

150

]
︸ ︷︷ ︸

b0

[
1 1

2 1

]
︸ ︷︷ ︸

AT
0

u0 =

[
300

500

]
︸ ︷︷ ︸

c

⇒ u =
[
200 100 0 0 0

]T

Since u ≥ 0, we have reached the maximum, with

x =

[
130

20

]
.
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Finally, therefore,

max =
[
300 500

]︸ ︷︷ ︸
cT

[
130

20

]
︸ ︷︷ ︸

x

= 49000 .
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