CS156: The Calculus of

Computation

Zohar Manna Winter 2008

Chapter 8: Quantifier-free Linear Arithmetic

Decision Procedures for Quantifier-free Fragments

For theory T with signature Σ and axioms \mathcal{A}, decide if
$F\left[x_{1}, \ldots, x_{n}\right]$ or $\exists x_{1}, \ldots, x_{n} . F\left[x_{1}, \ldots, x_{n}\right]$ is T-satisfiable
[Decide if

$$
\left.F\left[x_{1}, \ldots, x_{n}\right] \text { or } \forall x_{1}, \ldots, x_{n} . F\left[x_{1}, \ldots, x_{n}\right] \text { is } T \text {-valid }\right]
$$

where F is quantifier-free and free $(F)=\left\{x_{1}, \ldots, x_{n}\right\}$
Note: no quantifier alternations

Conjunctive Quantifier-free Fragment

We consider only conjunctive quantifier-free Σ-formulae, i.e., conjunctions of Σ-literals (Σ-atoms or negations of Σ-atoms).

For given arbitrary quantifier-free Σ-formula F, convert it into DNF \sum-formula

$$
F_{1} \vee \ldots \vee F_{k}
$$

where each F_{i} conjunctive.
F is T-satisfiable iff at least one F_{i} is T-satisfiable.

Preliminary Concepts

Vector

variable n-vector n-vector $\bar{a} \in \mathbb{Q}^{n} \quad$ transpose

$$
\bar{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \quad \bar{a}=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right] \quad \bar{a}^{\top}=\left[\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right]
$$

Matrix

$$
\begin{aligned}
& m \times n \text {-matrix } \\
& A \in \mathbb{Q}^{m \times n} \\
& A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right] \\
& \text { transpose } \\
& A^{\top}=\left[\begin{array}{ccc}
a_{11} \cdots a_{m 1} \\
\vdots & \ddots & \vdots \\
a_{1 n} \cdots & a_{m n}
\end{array}\right] \\
& \overbrace{\text { row }}^{\text {column }} \underbrace{a_{1 j}}_{a_{i 1}} \begin{array}{c}
\\
\vdots \\
\vdots \\
a_{m j}
\end{array}]
\end{aligned}
$$

Page 4 of 125

Multiplication I

vector-vector

$$
\bar{a}^{\top} \bar{b}=\left[\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=\sum_{i=1}^{n} a_{i} b_{i}
$$

matrix-vector

$$
A \bar{x}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{n} a_{1 i} x_{i} \\
\vdots \\
\sum_{i=1}^{n} a_{m i} x_{i}
\end{array}\right]
$$

Multiplication II

 matrix-matrixwhere

$$
p_{i j}=\bar{a}_{i} \bar{b}_{j}=\left[\begin{array}{lll}
a_{i 1} & \cdots & a_{i n}
\end{array}\right]\left[\begin{array}{c}
b_{1 j} \\
\vdots \\
b_{n j}
\end{array}\right]=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Special Vectors and Matrices

$\overline{0}$ - vector (column) of 0 s
$\overline{1}$ - vector of 1 s
Thus $\overline{1}^{\top} \bar{x}=\sum_{i=1}^{n} x_{i}$
$I=\left[\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right] \underline{\text { identity matrix }(n \times n)}$
Thus $I A=A I=A$, for $n \times n$ matrix A.
$\underline{\text { unit vector }} e_{i}=\left[\begin{array}{c}0 \\ \vdots \\ 1 \\ \vdots \\ 0\end{array}\right] \quad i$ th (Note: matrix indices start at 1)
Page 7 of 125

Vector Space - set S of vectors closed under addition and scaling of vectors. That is,

$$
\text { if } \bar{v}_{1}, \ldots, \bar{v}_{k} \in S \text { then } \begin{array}{ll}
& \lambda_{1} \bar{v}_{1}+\cdots+\lambda_{k} \bar{v}_{k} \in S \\
& \text { for } \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{Q}
\end{array}
$$

Linear Equation

represents the $\Sigma_{\mathbb{Q}}$-formula
$F:\left(a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1}\right) \wedge \cdots \wedge\left(a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=b_{m}\right)$
Gaussian Elimination
Find \bar{x} s.t. $A \bar{x}=\bar{b}$ by elementary row operations

- Swap two rows
- Multiply a row by a nonzero scalar
- Add one row to another

Example 4 I

Solve

$$
\left[\begin{array}{lll}
3 & 1 & 2 \\
1 & 0 & 1 \\
2 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
6 \\
1 \\
2
\end{array}\right]
$$

Construct the augmented matrix

$$
\left[\begin{array}{lll|l}
3 & 1 & 2 & 6 \\
1 & 0 & 1 & 1 \\
2 & 2 & 1 & 2
\end{array}\right]
$$

Apply the row operations as follows:

Example 4 II

1. Add $-2 \bar{a}_{1}+4 \bar{a}_{2}$ to \bar{a}_{3}

$$
\left[\begin{array}{ccc|c}
3 & 1 & 2 & 6 \\
1 & 0 & 1 & 1 \\
0 & 0 & 1 & -6
\end{array}\right]
$$

2. Add $-\bar{a}_{1}+2 \bar{a}_{2}$ to \bar{a}_{2}

$$
\left[\begin{array}{ccc|c}
3 & 1 & 2 & 6 \\
0 & -1 & 1 & -3 \\
0 & 0 & 1 & -6
\end{array}\right]
$$

This augmented matrix is in triangular form.

Example 4 III

Solving

$$
\begin{array}{rll}
& x_{3}=-6 \\
-x_{2}+x_{3}=-3 & \Rightarrow & x_{2}=-3 \\
3 x_{1}+x_{2}+2 x_{3}=6 & \Rightarrow & x_{1}=7
\end{array}
$$

The solution is $\bar{x}=\left[\begin{array}{lll}7 & -3 & -6\end{array}\right]^{\top}$

Inverse Matrix

A^{-1} is the inverse matrix of square matrix A if

$$
A A^{-1}=A^{-1} A=I
$$

Square matrix A is nonsingular (invertible) if its inverse A^{-1} exists.
How to compute A^{-1} of A ?

$$
[A \mid I] \xrightarrow[\substack{\text { elementary } \\ \text { row operations }}]{ }\left[I \mid A^{-1}\right]
$$

How to compute k th column of A^{-1} ?
Solve $A \bar{y}=e_{k}$, i.e.

solve triangular matrix

$$
\bar{y}=\ldots
$$

(k th column of A^{-1})

Linear Inequalities I

Polyhedral Space
For $m \times n$-matrix A, variable n-vector \bar{x}, and m-vector \bar{b}, the $\Sigma_{\mathbb{Q}}$-formula

$$
G: A \bar{x} \leq \bar{b}, \quad \text { i.e., } \quad G: \bigwedge_{i=1}^{m} a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \leq b_{i}
$$

describes a subset (space) of \mathbb{Q}^{n}, called a polyhedron.

Linear Inequalities II

Convex Space
An n-dimensional space $S \subseteq \mathbb{R}^{n}$ is convex if for all pairs of points $\bar{v}_{1}, \bar{v}_{2} \in S$,

$$
\lambda \bar{v}_{1}+(1-\lambda) \bar{v}_{2} \in S \quad \text { for } \lambda \in[0,1] .
$$

$A \bar{x} \leq \bar{b}$ defines a convex space. For suppose $A \bar{v}_{1} \leq \bar{b}$ and $A \bar{v}_{2} \leq \bar{b}$; then also

$$
A\left(\lambda \bar{v}_{1}+(1-\lambda) \bar{v}_{2}\right) \leq \bar{b} .
$$

Linear Inequalities III

Vertex
Consider $m \times n$-matrix A where $m \geq n$.
An n-vector \bar{v} is a vertex of $A \bar{x} \leq \bar{b}$ if there is

- a nonsingular $n \times n$-submatrix A_{0} of A and
- corresponding n-subvector \bar{b}_{0} of \bar{b}
such that

$$
A_{0} \bar{v}=\bar{b}_{0}
$$

The rows a_{0} in A_{0} and corresponding values $b_{0 i}$ of \bar{b}_{0} are the set of defining constraints of the vertex \bar{v}.

Two vertices are adjacent if they have defining constraint sets that differ in only one constraint.

Example I

Consider the linear inequality

$$
\underbrace{\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
\mathbf{0} & \mathbf{0} & -\mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & -\mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{1} & \mathbf{0} & -\mathbf{1} & \mathbf{0} \\
0 & 1 & 0 & -1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
x \\
y \\
z_{1} \\
z_{2}
\end{array}\right]}_{\bar{x}} \leq \underbrace{\left[\begin{array}{c}
0 \\
0 \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{3} \\
\mathbf{2} \\
2
\end{array}\right]}_{\bar{b}}
$$

A is a 7×4-matrix, \bar{b} is a 7 -vector, and \bar{x} is a variable 4 -vector representing the four variables $\left\{x, y, z_{1}, z_{2}\right\}$.

Example II

$\bar{v}=\left[\begin{array}{llll}2 & 1 & 0 & 0\end{array}\right]^{\top}$ is a vertex of the constraints. For the nonsingular submatrix A_{0} (rows $3,4,5,6$ of A : defining constraints of \bar{v}),

$$
\underbrace{\left[\begin{array}{rrrr}
0 & \mathbf{0} & -\mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & -\mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{1} & \mathbf{0} & -\mathbf{1} & \mathbf{0}
\end{array}\right]}_{A_{0}} \underbrace{\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]}_{\bar{v}}=\underbrace{\left[\begin{array}{l}
0 \\
0 \\
3 \\
2
\end{array}\right]}_{b_{0}}
$$

Example III

Another vertex: $\bar{v}_{0}=\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]^{\top}$, since

$$
\underbrace{\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]}_{A_{0}} \underbrace{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}_{\bar{v}_{0}}=\underbrace{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}_{b_{0}}
$$

(rows $1,2,3,4$ of A : defining constraints of \bar{v}_{0})
Note: \bar{v} and \bar{v}_{0} are not adjacent; they are different in 2 defining constraints.

Linear Programming I

Optimization Problem
$\max \quad \bar{c}^{\top} \bar{X} \quad \ldots$ objective function
subject to
$A \bar{x} \leq \bar{b} \quad \ldots$ constraints
$\begin{array}{ll}\text { Maximize } & \sum_{i=1}^{n} c_{i} x_{i} \\ \text { subject to } & {\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right] \leq\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right]}\end{array}$

Linear Programming II

Solution:

Find vertex \bar{v}^{*} satisfying $A \bar{x} \leq \bar{b}$ and maximizing $\bar{c}^{\top} \bar{x}$.
That is,
$A \bar{v}^{*} \leq \bar{b}$ and
$\bar{c}^{\top} \bar{v}^{*}$ is maximal: $\bar{c}^{\top} \bar{v}^{*} \geq \bar{c}^{\top} \bar{u}$ for all \bar{u} satisfying $A \bar{u} \leq \bar{b}$

- If $A \bar{x} \leq \bar{b}$ is unsatisfiable, then maximum is $-\infty$
- It's possible that the maximum is unbounded, then maximum is ∞

Example: Consider optimization problem:

subject to

$$
\underbrace{\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
x \\
y \\
z_{1} \\
z_{2}
\end{array}\right]}_{\bar{x}} \leq \underbrace{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
2 \\
2 \\
2
\end{array}\right]}_{\bar{b}}
$$

Page 21 of 125

Example (cont):

The objective function is

$$
\left(x-z_{1}\right)+\left(y-z_{2}\right) .
$$

The constraints are equivalent to the $\Sigma_{\mathbb{Q}}$-formula

$$
\begin{aligned}
& x \geq 0 \wedge y \geq 0 \wedge z_{1} \geq 0 \wedge z_{2} \geq 0 \\
& \wedge x+y \leq 3 \wedge x-z_{1} \leq 2 \wedge y-z_{2} \leq 2
\end{aligned}
$$

Example: Linear Programming I

A company is producing two different products using three machines A, B, and C .

- Product 1 needs A for one, and B for one hour.
- Product 2 needs A for two, B for one, and C for three hours.
- Product 1 can be sold for $\$ 300$; Product 2 for $\$ 500$.
- Monthly availability of machines:

A: 170 hours, B: 150 hours, C 180 hours.

Example: Linear Programming II

Let x_{1} and x_{2} denote the amount of product 1 and product 2 , resp. We want to optimize $300 x_{1}+500 x_{2}$ subject to:

$$
\begin{aligned}
& 1 x_{1}+2 x_{2} \leq 170 \\
& 1 x_{1}+1 x_{2} \leq 150 \\
& 0 x_{1}+3 x_{2} \leq 180 \\
& x_{1} \geq 0 \wedge x_{2} \geq 0
\end{aligned}
$$

Machine (A)
Machine (B)
Machine (C)

Example: Linear Programming III

Page 25 of 125

Example: Linear Programming IV

Optimize $300 x_{1}+500 x_{2}$:

Page 26 of 125

Duality Theorem

For $m \times n$-matrix A, m-vector \bar{b} and n-vector \bar{c} :

$$
\max \left\{\bar{c}^{\top} \bar{x} \mid A \bar{x} \leq \bar{b} \wedge \bar{x} \geq \overline{0}\right\}=\min \left\{\bar{b}^{\top} \bar{y} \mid A^{\top} \bar{y} \geq \bar{c} \wedge \bar{y} \geq \overline{0}\right\}
$$

if the constraints are satisfiable.
That is,
maximizing the function $c^{\top} \bar{x}$ over $A \bar{x} \leq \bar{b}, \bar{x} \geq \overline{0}$
(the primal form of the optimization problem)
is equivalent to
minimizing the function $\bar{b}^{\top} \bar{y}$ over $A^{\top} \bar{y} \geq \bar{c}, \bar{y} \geq \overline{0}$
(the dual form of the optimization problem)
By convention: when $A \bar{x} \leq b \wedge \bar{x} \geq 0$ unsatisfiable, the max is $-\infty$ and the \min is ∞.

Figure: Visualization of the duality theorem
The region labeled $A \bar{x} \leq \bar{b}$ satisfies the inequality. The objective function $\bar{c}^{\top} \bar{x}$ is represented by the dashed line. Its value increases in the direction of the arrow labeled δ^{+}and decreases in the direction of the arrow labeled δ^{-}.

Example: A Dual Problem

What is the value of a machine hour?
Let y_{A}, y_{B}, y_{C} be the values of machine A, B, and C.
The value of the machine hours to produce something \geq the value of the product ($>$ if that product should not be produced).

$$
\begin{aligned}
& y_{A} \geq 0 \wedge y_{B} \geq 0 \wedge y_{C} \geq 0 \\
& 1 y_{A}+1 y_{B}+0 y_{C} \geq 300 \\
& 2 y_{A}+1 y_{B}+3 y_{C} \geq 500
\end{aligned}
$$

We minimize the value $170 y_{A}+150 y_{B}+180 y_{C}$ to get the value of a machine hour:

$$
\begin{aligned}
& y_{A}=200 \wedge y_{B}=100 \wedge y_{C}=0 \\
& 170 y_{A}+150 y_{B}+180 y_{C}=49000
\end{aligned}
$$

This is the dual problem. It has the same optimal value.

The Simplex Method

Consider linear program

$$
\begin{aligned}
M: & \max \bar{c}^{\top} \bar{x} \\
& \text { subject to } G: A \bar{x} \leq \bar{b}
\end{aligned}
$$

The simplex method solves the linear program in two main steps:

1. Obtain an initial vertex \bar{v}_{1} of $A \bar{x} \leq \bar{b}$.
2. Iteratively traverse the vertices of $A \bar{x} \leq \bar{b}$, beginning at \bar{v}_{1}, in search of the vertex that maximizes $\bar{c}^{\bar{\top}} \bar{x}$. On each iteration determine if $\bar{c}^{\top} \bar{v}_{i}>\bar{c}^{\top} \bar{v}_{i}^{\prime}$ for the vertices \bar{v}_{i}^{\prime} adjacent to \bar{v}_{i} :

- If not, move to one of the adjacent vertices \bar{v}_{i}^{\prime} with a greater objective value.
- If so, halt and report \bar{v}_{i} as the optimum point with value $\bar{c}^{\top} \bar{v}_{i}$.

The final vertex \bar{v}_{i} is a local optimum since its adjacent vertices have lesser objective values. But because the space defined by $A \bar{x} \leq \bar{b}$ is convex, \bar{v}_{i} is also the global optimum: it is the highest value attained by any point that satisfies the constraints.

Example

Page 31 of 125

Example

Page 32 of 125

Example

Page 33 of 125

Example

Page 34 of 125

Example

Page 35 of 125

How do we use optimization to determine satisfiability?

We are not interested in an optimal solution \bar{x} such that

$$
F: A \bar{x} \leq \bar{b} ;
$$

we want some solution. However, this hard to find.
Idea: Transform F into an optimization problem with an initial (not-optimal) vertex \bar{v}_{1} and a desired optimum v_{F}.
Apply the Simplex Method until an optimal vertex \bar{v}^{*} is obtained.
The optimum value for \bar{v}^{*} is v_{F} iff $F: A x \leq b$ is satisfiable.
The solution can be computed from the optimal solution \bar{x} of the optimization problem.

Outline of the Algorithm I

Determine if $\Sigma_{\mathbb{Q}}$-formula

$$
\begin{aligned}
& F: \bigwedge_{i=1}^{m} a_{i 1} x_{1}+\ldots+a_{i n} x_{n} \leq b_{i} \\
& \wedge \\
& \bigwedge_{i=1}^{\ell} \alpha_{i 1} x_{1}+\ldots+\alpha_{i n} x_{n}<\beta_{i}
\end{aligned}
$$

is satisfiable.
Note: Equations

$$
a_{i 1} x_{1}+\ldots+a_{i n} x_{n}=b_{i}
$$

are allowed; break them into two inequalities:

$$
\begin{aligned}
a_{i 1} x_{1}+\ldots+a_{i n} x_{n} & \leq b_{i} \\
-a_{i 1} x_{1}+\ldots+-a_{i n} x_{n} & \leq-b_{i}
\end{aligned}
$$

Outline of the Algorithm II

F is $T_{\mathbb{Q}}$-equivalent to the $\Sigma_{\mathbb{Q}}$-formula

$$
\begin{aligned}
F^{\prime}: & \bigwedge_{i=1}^{m} a_{i 1} x_{1}+\ldots+a_{i n} x_{n} \leq b_{i} \\
& \wedge \\
& \bigwedge_{i=1}^{\ell} \alpha_{i 1} x_{1}+\ldots+\alpha_{i n} x_{n}+z \leq \beta_{i} \\
& \wedge z>0
\end{aligned}
$$

Outline of the Algorithm III

To decide the $T_{\mathbb{Q}^{-}}$-satisfiability of F^{\prime}, solve the linear program

$\max z$

subject to

$$
\begin{aligned}
\bigwedge_{i=1}^{m} a_{i 1} x_{1}+\ldots+a_{i n} x_{n} & \leq b_{i} \\
\bigwedge_{i=1}^{\ell} \alpha_{i 1} x_{1}+\ldots+\alpha_{i n} x_{n}+z & \leq \beta_{i}
\end{aligned}
$$

F^{\prime} is $T_{\mathbb{Q}}$-satisfiable iff the optimum is positive.

Outline of the Algorithm IV

When F does not contain any strict inequality literals, the corresponding linear program
$\boldsymbol{m a x} 1$
subject to

$$
\bigwedge_{i=1}^{m} a_{i 1} x_{1}+\ldots+a_{i n} x_{n} \leq b_{i}
$$

has optimum $\quad-\infty$ iff the constraints are $T_{\mathbb{Q}^{-}}$-unsatisfiable, 1 iff the constraints are $T_{\mathbb{Q}}$-satisfiable.

Outline of the Algorithm V

To determine the satisfiability of $F: A \bar{x} \leq \bar{b}$,
$M \rightarrow M_{0}$
reformulate the satisfiability of F as an optimization problem:

$$
M_{0}: \max \left\{\bar{c}^{\top} \bar{x}^{\prime} \mid A^{\prime} \bar{x}^{\prime} \leq \bar{b}^{\prime}\right\}
$$

such that F is $T_{\mathbb{Q}^{-}}$-satisfiable iff the optimal value of M_{0} is a particular value v_{F} (derived from the structure of F).

Simplex Method
vertex traversal until termination

Outline of the Algorithm VI

The simplex method traverses the vertices of $A^{\prime} \bar{x}^{\prime} \leq \bar{b}^{\prime}$ searching for the maximum of the objective function $\bar{c}^{\top} \bar{x}^{\prime}$.

If $\bar{v}_{1}, \bar{v}_{2}, \ldots$ are the traversed vertices in the iteration, then

$$
\bar{c}^{\top} \bar{v}_{1}<\bar{c}^{\top} \bar{v}_{2}<\cdots .
$$

The simplex method terminates at some vertex $\bar{v}_{i^{*}}$ where $\bar{c}^{\top} \bar{v}_{i^{*}}$ is the global optimum

Final step: Compare the discovered optimal value $\bar{c}^{\top} \bar{v}_{i^{*}}$ to the desired value v_{F}.

- if equal, then F is $T_{\mathbb{Q}^{-}}$-satisfiable
- otherwise, F is $T_{\mathbb{Q}}$-unsatisfiable

Step 0: From Satisfiability to Optimization

Given $\Sigma_{\mathbb{Q}}$-formula

$$
\begin{equation*}
F: A \bar{x} \leq \bar{b} \tag{8.1}
\end{equation*}
$$

reformulate to new constraint system (new A, \bar{x}, \bar{b})

$$
F^{\prime}: \bar{x} \geq 0, A \bar{x} \leq \bar{b}
$$

such that F^{\prime} is $T_{\mathbb{Q}}$-equisatisfiable to F
The trick: replace each variable x in F by $x_{1}-x_{2}$ and add $\bar{x} \geq 0$

Step 0: From Satisfiability to Optimization

Making the b_{i} positive
Collect the lines where b_{i} is negative:

$$
A \bar{x}=\left[\begin{array}{c}
D_{1} \\
-D_{2}
\end{array}\right] \bar{x} \leq\left[\begin{array}{c}
\bar{g}_{1} \\
-\bar{g}_{2}
\end{array}\right]=\bar{b}
$$

where

$$
\begin{aligned}
& \bar{g}_{1} \geq 0 \\
& \bar{g}_{2}>0
\end{aligned}
$$

Multiply the bottom rows with -1 :

$$
\begin{aligned}
& D_{1} \bar{x} \leq \bar{g}_{1} \\
& D_{2} \bar{x} \geq \bar{g}_{2}
\end{aligned}
$$

Example 1: $x+y \geq 1 \wedge x-y \geq-1$

$\Sigma_{\mathbb{Q}}$-formula

$$
F: x+y \geq 1 \wedge x-y \geq-1
$$

To convert it to the form $\bar{x} \geq \overline{0} \wedge A \bar{x} \leq \bar{b}$, introduce nonnegative x_{1}, x_{2} for x and y_{1}, y_{2} for y :

$$
\begin{aligned}
F^{\prime}: & \left(x_{1}-x_{2}\right)+\left(y_{1}-y_{2}\right) \geq 1 \wedge\left(x_{1}-x_{2}\right)-\left(y_{1}-y_{2}\right) \geq-1 \\
& \wedge x_{1}, x_{2}, y_{1}, y_{2} \geq 0
\end{aligned}
$$

F is $T_{\mathbb{Q}}$-equisatisfiable to F^{\prime}. In matrix form (with $\bar{x} \geq 0$),

$$
F^{\prime}: \underbrace{\left[\begin{array}{rrrr}
-1 & 1 & -1 & 1 \\
-1 & 1 & 1 & -1
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
y_{1} \\
y_{2}
\end{array}\right] \leq \underbrace{\left[\begin{array}{r}
-1 \\
1
\end{array}\right]}_{\bar{b}}
$$

Example 1: $x+y \geq 1 \wedge x-y \geq-1$

$$
\begin{aligned}
F^{\prime}: & \left(x_{1}-x_{2}\right)+\left(y_{1}-y_{2}\right) \geq 1 \wedge\left(x_{1}-x_{2}\right)-\left(y_{1}-y_{2}\right) \geq-1 \\
& \wedge x_{1}, x_{2}, y_{1}, y_{2} \geq 0
\end{aligned}
$$

Since $b_{1}<0$ and $b_{2}>0$, separating constraints yields

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{lll}
-1 & 1 & 1
\end{array}\right]}_{D_{1}}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
y_{1} \\
y_{2}
\end{array}\right] \leq \underbrace{[1]}_{\bar{g}_{1}} \\
& \underbrace{\left[\begin{array}{lll}
1 & -1 & 1
\end{array}\right]}_{D_{2}}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
y_{1} \\
y_{2}
\end{array}\right] \geq \underbrace{[1]}_{\overline{g_{2}}}
\end{aligned}
$$

Step 0: From Satisfiability to Optimization

$$
\begin{array}{ll}
D_{1} \bar{x} \leq \bar{g}_{1} & \bar{g}_{1} \geq 0 \\
D_{2} \bar{x} \geq \bar{g}_{2} & \bar{g}_{2}>0
\end{array}
$$

Generate the optimization problem:

$$
M_{0}: \max \overline{1}^{\top}\left(D_{2} \bar{x}-\bar{z}\right)
$$

subject to

$$
\begin{align*}
\bar{x}, \bar{z} & \geq \overline{0} \tag{1}\\
D_{1} \bar{x} & \leq \bar{g}_{1} \tag{2}\\
D_{2} \bar{x}-\bar{z} & \leq \bar{g}_{2} \tag{3}
\end{align*}
$$

length of variable vector $\bar{z}=\#$ of rows of D_{2}

- The point $\bar{x}=\overline{0}, \bar{z}=\overline{0}$ satisfies constraints (1) - (3). It's a vertex.
- The optimum v_{F} equals $\overline{1}^{\top} \bar{g}_{2}$ (the equality in (3) holds) iff F is $T_{\mathbb{Q}}$-satisfiable. (proof on p .220)
The \bar{x} part of the optimal solution \bar{v}^{*} satisfies F.

Step 0: From Satisfiability to Optimization

M_{F} can be written in standard form as

$$
M_{F}: \max \underbrace{\overline{1}^{\top}\left[\begin{array}{ll}
D_{2} & -I
\end{array}\right]}_{\bar{c}^{\top}} \underbrace{\left[\begin{array}{c}
\bar{x} \tag{8.3}\\
\bar{z}
\end{array}\right]}_{\bar{y}}
$$

subject to

$$
\underbrace{\left[\begin{array}{cc}
-I & \\
& -I \\
D_{1} & \\
D_{2} & -I
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
\bar{x} \\
\bar{z}
\end{array}\right]}_{\bar{y}} \leq \underbrace{\left[\begin{array}{c}
\overline{0} \\
\overline{0} \\
\bar{g}_{1} \\
\bar{g}_{2}
\end{array}\right]}_{\bar{b}}
$$

Example 1: $x+y \geq 1 \wedge x-y \geq-1$

$\underbrace{\left[\begin{array}{llll}-1 & 1 & 1 & -1\end{array}\right]}_{D_{1}}\left[\begin{array}{l}x_{1} \\ x_{2} \\ y_{1} \\ y_{2}\end{array}\right] \leq \underbrace{[1]}_{\bar{g}_{1}}$ and $\underbrace{\left[\begin{array}{lll}1-1 & 1 & -1\end{array}\right]}_{D_{2}}\left[\begin{array}{l}x_{1} \\ x_{2} \\ y_{1} \\ y_{2}\end{array}\right] \geq \underbrace{[1]}_{\bar{g}_{2}}$
D_{2} has only one row, so $\bar{z}=[z]$.
Pose the following optimization problem:
$\max \left[\begin{array}{llll}1 & -1 & 1 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ y_{1} \\ y_{2}\end{array}\right]-[z]$
subject to

Example 1: $x+y \geq 1 \wedge x-y \geq-1$

$$
\begin{gathered}
x_{1}, x_{2}, y_{1}, y_{2}, z \geq 0 \\
{\left[\begin{array}{llll}
-1 & 1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
y_{1} \\
y_{2}
\end{array}\right] \leq[1]} \\
{\left[\begin{array}{llll}
1 & -1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
y_{1} \\
y_{2}
\end{array}\right]-[z] \leq[1]}
\end{gathered}
$$

F is $T_{\mathbb{Q}}$-satisfiable iff the optimum is $\overline{1}^{\top} \bar{g}_{2}=1$.
$\left[\begin{array}{lllll}x_{1} & x_{2} & y_{1} & y_{2} & z\end{array}\right]=\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$ is a vertex.

Example 1: $x+y \geq 1 \wedge x-y \geq-1$

Rewriting the optimization problem
$\max \underbrace{\left[\begin{array}{lllll}1 & -1 & 1 & -1 & -1\end{array}\right]}_{\bar{\tau}^{\top}}\left[\begin{array}{c}x_{1} \\ x_{2} \\ y_{1} \\ y_{2} \\ z\end{array}\right]$

subject to

$\overbrace{\left[\begin{array}{rrrrr}-1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ -1 & 1 & 1 & -1 & 0 \\ 1 & -1 & 1 & -1 & -1\end{array}\right]}^{A} \overbrace{\left[\begin{array}{l}0 \\ 0 \\ x_{1} \\ x_{2} \\ y_{1} \\ y_{2} \\ z\end{array}\right]}^{\bar{b}}$

From $<$ to \leq (reminder)

If we have some strict inequalities:

$$
\begin{aligned}
\bar{x} & \geq 0 \\
A_{0} \bar{x} & \leq \bar{b}_{0} \\
A_{1} \bar{x} & <\bar{b}_{1}
\end{aligned}
$$

introduce a new variable $z \geq 0$ and maximize z, such that

$$
\begin{aligned}
\bar{x} \geq 0 \wedge z & \geq 0 \\
A_{0} \bar{x} & \leq \bar{b}_{0} \\
A_{1} \bar{x}+z \cdot \overline{1} & \leq \bar{b}_{1}
\end{aligned}
$$

The maximum is greater than 0 iff the original constraint is satisfiable.
Note: In this case, one can stop the simplex algorithm after the first time z increases. Why?

Example 1A: $x+y>1 \wedge x-y>-1$

Normal form:

$$
\begin{array}{r}
x_{1}, x_{2}, y_{1}, y_{2} \geq 0 \\
-x_{1}+x_{2}+y_{1}-y_{2}<1 \\
-x_{1}+x_{2}-y_{1}+y_{2}<-1
\end{array}
$$

Introduce z_{1} for the strictness: Maximize z_{1} subject to

$$
\begin{array}{r}
x_{1}, x_{2}, y_{1}, y_{2}, z_{1} \geq 0 \\
-x_{1}+x_{2}+y_{1}-y_{2}+z_{1} \leq 1 \\
-x_{1}+x_{2}-y_{1}+y_{2}+z_{1} \leq-1
\end{array}
$$

Introduce z_{2} to get rid of negative bound:

Example 1A: $x+y>1 \wedge x-y>-1$

Maximize $x_{1}-x_{2}+y_{1}-y_{2}-z_{1}-z_{2}$ subject to

$$
\begin{aligned}
x_{1}, x_{2}, y_{1}, y_{2}, z_{1} & \geq 0 \\
-x_{1}+x_{2}+y_{1}-y_{2}+z_{1} & \leq 1 \\
x_{1}-x_{2}+y_{1}-y_{2}-z_{1}-z_{2} & \leq 1
\end{aligned}
$$

Example 1A: $x+y>1 \wedge x-y>-1$

In matrix form:
$\max \left[\begin{array}{lllll}1 & -1 & 1 & -1 & -1\end{array}\right] \bar{x}$

subject to

$\left[\begin{array}{cccccc}-1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ -1 & 1 & 1 & -1 & 1 & 0 \\ 1 & -1 & 1 & -1 & -1 & -1\end{array}\right] \bar{x} \leq\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right]$

From Satisfiability to Optimization: Summary

1. Adding the constraints $\bar{x} \geq 0$ Replace each variable x by $x_{1}-x_{2}$, then add $\bar{x} \geq 0$.
2. Getting rid of strict inequality $<$ Add variable $z \geq 0$, replace $A x<\bar{b}$ with $A \bar{x}+z \leq \bar{b}$, optimize z.
Strict inequality satisfiable iff optimum >0.
3. Making the b_{i} positive

Vertex Traversal: Find a Better Vertex

Optimization problem of form

$$
\begin{equation*}
\max \quad \bar{c}^{\top} \bar{x} \tag{8.3}
\end{equation*}
$$

subject to

$$
A \bar{x} \leq \bar{b}
$$

we are given satisfying vertex \bar{v}_{i}.

- The simplex method traverses vertices of the space defined by $A \bar{x} \leq \bar{b}$ to find the vertex \bar{v}^{*} that maximizes $\bar{c}^{\top} \bar{x}$.
- One iteration seeks vertex \bar{v}_{i+1} "adjacent" ($n-1$ shared defining constraints) to \bar{v}_{i} s.t. $\bar{c}^{\top} \bar{v}_{i+1}>\bar{c}^{\top} \bar{v}_{i}$
- For $i=1$, the initial vertex \bar{v}_{1} of M_{0} is $\bar{x}=\overline{0}, \bar{z}=\overline{0}$

Example (cont):

$$
\bar{v}_{1}=\left[\begin{array}{llll}
x_{1} & x_{2} & y_{1} & y_{2}
\end{array}\right]^{\top}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right]^{\top}
$$

Vertex Traversal

Find \bar{u}
Construct vector \bar{u} s.t.

$$
\begin{equation*}
\bar{u}^{\top} A=\bar{c}^{\top} \tag{8.4}
\end{equation*}
$$

If $\bar{u} \geq \overline{0}$ then by the Duality Theorem \bar{v}_{i} is optimal.

- Given \bar{v}_{i}
- Construct $n \times n$ nonsingular submatrix A_{i} with corresponding rows \bar{b}_{i} s.t.

$$
A_{i} \bar{v}_{i}=\bar{b}_{i}
$$

- Let $R=$ rows of A in A_{i}
- Solve

$$
\begin{equation*}
A_{i}{ }^{\mathrm{T}} \bar{u}_{i}=\bar{c} \tag{8.5}
\end{equation*}
$$

- Let \bar{u} be \bar{u}_{i} for indices in R and

0 's for indices not in R (\bar{u}_{i} suffices!)

Example 1: $x+y \geq 1 \wedge x-y \geq-1$

Choose the first five rows of A and $\bar{b}(R=[1 ; 2 ; 3 ; 4 ; 5])$ since

$$
\underbrace{\left[\begin{array}{rrrrr}
-1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right]}_{A_{1}} \underbrace{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}_{\bar{V}_{1}}=\underbrace{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}_{\bar{b}_{1}}
$$

i.e. $-I \bar{v}_{1}=\bar{b}_{1}$. Solving (by Gaussian elimination):

$$
\underbrace{\left[\begin{array}{rrrrr}
-1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right]}_{A_{1}^{\top}} \bar{u}_{1}=\underbrace{\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1 \\
-1
\end{array}\right]}_{\bar{c}}
$$

Page 59 of 125

Example 1: $x+y \geq 1 \wedge x-y \geq-1$
(i.e. $-I \bar{u}_{1}=\bar{c}$, and thus $\bar{u}_{1}=-\bar{c}$) yields

$$
\bar{u}_{1}^{\top}=\left[\begin{array}{lllll}
-1 & 1 & -1 & 1 & 1
\end{array}\right] .
$$

Then

$$
\bar{u}=\left[\begin{array}{lllllll}
-1 & 1 & -1 & 1 & 1 & 0 & 0
\end{array}\right]^{\top}
$$

Vertex Traversal

Case 1: $\bar{u} \geq \overline{0}$
In this case, \bar{v}_{i} is actually the optimal point with optimal value $\bar{c}^{\top} \bar{v}_{i}$. (proof on p. 226)

Case 2: $\bar{u} \nsupseteq \overline{0}$, i.e. there exists some $u_{k}<0$
In this case, \bar{v}_{i} is not the optimal point. We need to move along an edge to an adjacent vertex to increase the value of the objective function.

- Let k be the lowest index of \bar{u} s.t. $u_{k}<0$ (must be $k \in R$)
- Let k^{\prime} be the index of the corresponding row of \bar{u}_{i} and A_{i} and the corresponding column of $-A_{i}^{-1}$

Vertex Traversal

Find \bar{y}

- Let \bar{y} be the k^{\prime} th column of $-A_{i}^{-1}$. Solve

$$
\begin{equation*}
A_{i} \bar{y}=-\mathrm{e}_{k^{\prime}} \tag{8.8}
\end{equation*}
$$

That is,

$$
\begin{array}{ll}
\bar{a}_{\ell} \bar{y}=0 & \text { for every row } \bar{a}_{\ell} \text { of } A_{i}, \ell \neq k^{\prime} \\
\bar{a}_{k^{\prime}} \bar{y}=-1 & \text { for the } k^{\prime} \text { th row } \bar{a}_{k^{\prime}} \text { of } A_{i}
\end{array}
$$

The vector \bar{y} provides the direction along which to move to the next vertex.

Example 1: $x+y \geq 1 \wedge x-y \geq-1$

We found so far
$\bar{u}_{1}=\left[\begin{array}{lllll}-1 & 1 & -1 & 1 & 1\end{array}\right]^{\top}$ and $\bar{u}=\left[\begin{array}{lllllll}-1 & 1 & -1 & 1 & 1 & 0 & 0\end{array}\right]^{\top}$
$k=1$ since the first row of \bar{u} is $-1 . k^{\prime}=1$ since it is also the first row of \bar{u}_{i}.
Thus, solve

$$
\underbrace{\left[\begin{array}{rrrrr}
-1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right]}_{A_{1}} \bar{y}=\underbrace{\left[\begin{array}{r}
-1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}_{-e_{1}}
$$

i.e. $-I \bar{y}=-e_{1}$, yielding $\bar{y}=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}\right]^{\top}$.

Vertex Traversal

Find λ and v_{i+1}
We move along edge \bar{y} to better vertex \bar{v}_{i+1}.

- Let $S=$ indices ℓ s.t. $\bar{a}_{\ell} \bar{y}>0$
- Find greatest $\lambda_{i} \geq 0$ such that

$$
A\left(\bar{v}_{i}+\lambda_{i} \bar{y}\right) \leq \bar{b}
$$

Choose $\lambda_{i}>0$ such that

$$
\begin{array}{ll}
\bar{a}_{\ell}\left(\bar{v}_{i}+\lambda_{i} \bar{y}\right)=b_{\ell} & \text { for some } \ell \in S \\
\bar{a}_{m}\left(\bar{v}_{i}+\lambda_{i} \bar{y}\right) \leq b_{m} & \text { for } m \in S-\{\ell\}
\end{array}
$$

Vertex Traversal

- Set $\quad \bar{v}_{i+1}=\bar{v}_{i}+\lambda_{i} \bar{y}$

Vertex \bar{v}_{i+1} is discovered by moving along ray \bar{y} as far as possible without violating the constraints. Moreover,

$$
\bar{c}^{\top} \bar{v}_{i+1}>\bar{c}^{\top} \bar{v}_{i} .
$$

- Construct A_{i+1} from A_{i} for next iteration by substituting row \bar{a}_{ℓ} of A for row $\bar{a}_{k^{\prime}}$ of A_{i}

Since there are only finite number of vertices to examine, Case 1 eventually occurs.

Vertex Traversal

(a) bounded

(b) unbounded
(a) depicts the discovery of vertex \bar{v}_{i+1} by moving along ray \bar{y} as far as possible without violating the constraints.
(b) illustrates what happens when all points along the ray laybeled \bar{y} satisfy the constraints: moving along the ray increases $\bar{c}^{\top} \bar{x}$ without bound.

Example 1: $x+y \geq 1 \wedge x-y \geq-1$

We found in Step 1

$$
\bar{y}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right]^{\top}
$$

where

$$
\underbrace{\left[\begin{array}{rrrrr}
-1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right]}_{A_{1}} \underbrace{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}_{\bar{y}}=\underbrace{\left[\begin{array}{r}
-1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}_{-e_{1}}
$$

Example 1: $x+y \geq 1 \wedge x-y \geq-1$

Compute $A \bar{y}$

$$
\underbrace{\left[\begin{array}{rrrrr}
-1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 \\
-1 & 1 & 1 & -1 & 0 \\
1 & -1 & 1 & -1 & -1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}_{\bar{y}}=\left[\begin{array}{r}
-1 \\
0 \\
0 \\
0 \\
0 \\
-1 \\
1
\end{array}\right]
$$

Example 1: $x+y \geq 1 \wedge x-y \geq-1$

$S=[7]$ since $\bar{a}_{7} \bar{y}=1>0$. Examining the 7 th row of the constraints, choose the greatest λ_{1} such that (8.7b)

$$
\begin{aligned}
\underbrace{\left[\begin{array}{lll}
1-1 & 1-1-1
\end{array}\right]}_{\bar{a}_{7}}\left(\bar{v}_{1}+\lambda_{1} \bar{y}\right) & = \\
{\left.\left[\begin{array}{lll}
1-1 & 1 & -1
\end{array}\right]\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+\lambda_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right) } & =\underbrace{1}_{b_{7}}
\end{aligned}
$$

that is, choose $\lambda_{1}=1$. Therefore, (8.7c)

$$
\bar{v}_{2}=\bar{v}_{1}+\lambda_{1} \bar{y}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right]^{\top}
$$

Example 1: $x+y \geq 1 \wedge x-y \geq-1$

Form A_{2} from A_{1} replacing the 1 st row $\left(k^{\prime}=1\right)$ of A_{1} by the 7 th row $(\ell=7)$ of A.

$$
A_{2}=\left[\begin{array}{rrrrr}
1 & -1 & 1 & -1 & -1 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right] \quad \bar{b}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Thus, $A_{2} \bar{v}_{2}=\bar{b}_{2}$. This move to vertex \bar{v}_{2} makes progress:

Page 70 of 125

Example 1: $x+y \geq 1 \wedge x-y \geq-1$

Now $R=[7 ; 2 ; 3 ; 4 ; 5]$ (rows of A in A_{2}).
Solve

$$
\underbrace{\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 \\
-1 & 0 & 0 & -1 & 0 \\
-1 & 0 & 0 & 0 & -1
\end{array}\right]}_{A_{2}^{\top}} \bar{u}_{2}=\underbrace{\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1 \\
-1
\end{array}\right]}_{\bar{c}}
$$

for \bar{u}_{2} yielding $\bar{u}_{2}=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}\right]^{\top}$. Since $\bar{u}_{2} \geq 0$, we are in Case 1: we have found an optimum point, \bar{v}_{2}, with optimal value 1 .

Since we have that $v_{F}=\overline{1}^{\top} \bar{g}_{2}=1$, the equality of the optimial point and v_{F} implies that

Example 1: $x+y \geq 1 \wedge x-y \geq-1$

$$
F: x+y \geq 1 \wedge x-y \geq-1
$$

is $T_{\mathbb{Q}}$-satisfiable. In particular, extract from

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
y_{1} \\
y_{2} \\
z
\end{array}\right]=\bar{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

the assignment

$$
x=x_{1}-x_{2}=1-0=1 \quad \text { and } \quad y=y_{1}-y_{2}=0-0=0
$$

which indeed satisfies F.

Example 2

Consider optimization problem of the form (8.3)
$\boldsymbol{\operatorname { m a x }} \underbrace{\left[\begin{array}{ll}-1 & 1\end{array}\right]}_{\bar{c}^{\top}} \bar{x}$
subject to

$$
\underbrace{\left[\begin{array}{cc}
-1 & 0 \\
0 & -1 \\
2 & 1
\end{array}\right]}_{A} \bar{x} \leq \underbrace{\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]}_{\bar{b}}
$$

$\bar{v}_{1}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$ is a vertex.
The first two constraints are the defining constraints of \bar{v}_{1}, so choose $R=[1 ; 2]$:

$$
A_{1}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \quad \bar{b}_{1}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Thus $A_{1} \bar{v}_{1}=\bar{b}_{1}$.

The solid lines represent the constraints. The dashed line indicates $\bar{c}^{\top} \bar{x}$; the arrow points in the direction of increasing value.

Example 2

First Iteration

From (8.5), solving

$$
\underbrace{\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]}_{A_{1}^{\top}} \bar{u}_{1}=\underbrace{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}_{\bar{c}} \quad \text { i.e., }-I \bar{u}_{1}=\bar{c}
$$

for \bar{u}_{1} yields

$$
\bar{u}_{1}=-\bar{c}=\left[\begin{array}{ll}
1 & -1
\end{array}\right]^{\top} .
$$

Adding 0s for rows not in R produces

$$
\bar{u}=\left[\begin{array}{lll}
1 & -1 & 0
\end{array}\right]^{\top} .
$$

This \bar{u} satisfies $\bar{u}^{\top} A=\bar{c}^{\top}$ of (8.6).

Example 2

Since the 2 nd row of \bar{u} is -1 , we are in Case $2(\bar{u} \nsupseteq 0)$ with $k=2$ of \bar{u}, corresponding to row $k^{\prime}=2$ of \bar{u}_{1}.

Let \bar{y} be the 2 nd column of $-A_{1}^{-1}$, and solve (8.8)

$$
\underbrace{\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]}_{A_{1}} \bar{y}=\underbrace{\left[\begin{array}{c}
0 \\
-1
\end{array}\right]}_{-e_{2}}
$$

for \bar{y}, yielding

$$
\bar{y}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]^{\top} .
$$

The \bar{y} is visualized by the dark solid arrow that points up from \bar{v}_{1}. The vertical and horizontal lines are the defining constraints of \bar{v}_{1}; in moving in the direction \bar{y}, we keep the vertical constraint for the next vertex \bar{v}_{2} but drop the horizontal constraint. The diagonal constraint will become the second of \bar{v}_{2} 's defining constraints.

Example 2

Choose λ_{1} such that

$$
\underbrace{\left[\begin{array}{cc}
-1 & 0 \\
0 & -1 \\
2 & 1
\end{array}\right]}_{A}(\underbrace{\left[\begin{array}{l}
0 \\
0
\end{array}\right]}_{\bar{v}_{1}}+\lambda_{1} \underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}_{\bar{y}}) \leq \underbrace{\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]}_{\bar{b}} .
$$

Example 2

We have

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{ll}
-1 & 0
\end{array}\right]}_{(A)_{1}} \underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}_{\bar{y}}=0 \\
& \underbrace{\left[\begin{array}{ll}
0 & -1
\end{array}\right]}_{(A)_{2}} \underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}_{\bar{y}}<0 \\
& \underbrace{\left[\begin{array}{ll}
2 & 1
\end{array}\right]}_{(A)_{3}} \underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}_{\bar{y}}>0 \Rightarrow\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\lambda_{1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=2 \\
& \\
& \Rightarrow \lambda_{1}=2
\end{aligned}
$$

Thus $\lambda_{1}=2, \ell=3$.

Example 2

From (8.12),

$$
\bar{v}_{2}=\bar{v}_{1}+\lambda_{1} \bar{y}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
2
\end{array}\right] .
$$

Choosing $R=[1 ; 3]$ and replacing the 2 nd row of A_{1} and \bar{b}_{1} ($k^{\prime}=2$) with the 3rd row $\left(\ell_{3}=3\right)$ of $A \bar{x} \leq \bar{b}$ yields

$$
A_{2}=\left[\begin{array}{cc}
-1 & 0 \\
2 & 1
\end{array}\right] \quad \text { and } \quad \bar{b}_{2}=\left[\begin{array}{l}
0 \\
2
\end{array}\right] ; \quad \text { i.e., } A_{2} \bar{v}_{2}=\bar{b}_{2}
$$

The vertical and diagonal constraints are the defining constraints of \bar{v}_{2}.

Example 2

Next Iteration
In the next iteration, solving

$$
\underbrace{\left[\begin{array}{cc}
-1 & 2 \\
0 & 1
\end{array}\right]}_{A_{2}^{\top}} \bar{u}_{2}=\underbrace{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}_{\bar{c}}
$$

yields $\bar{u}_{2}=\left[\begin{array}{ll}3 & 1\end{array}\right]^{\top}$. Adding 0 s for rows not in R produces

$$
\bar{u}=\left[\begin{array}{lll}
3 & 0 & 1
\end{array}\right]^{\top} .
$$

Since $\bar{u} \geq \overline{0}$, we are in Case 1. The max is

$$
\bar{c}^{\top} \bar{v}_{2}=\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right]=2
$$

at vertex $\bar{v}_{2}^{\top}=\left[\begin{array}{ll}0 & 2\end{array}\right]$.

Example 3: $x \geq 0 \wedge y \geq 0 \wedge x \geq 2 \wedge y \geq 2 \wedge x+y \leq 3$

$\Sigma_{\mathbb{Q}}$-formula (8.1)
$F: x \geq 0 \wedge y \geq 0 \wedge x \geq 2 \wedge y \geq 2 \wedge x+y \leq 3$, or, in matrix form,

$$
F:\left[\begin{array}{rr}
-1 & 0 \\
0 & -1 \\
-1 & 0 \\
0 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \leq\left[\begin{array}{r}
0 \\
0 \\
-2 \\
-2 \\
3
\end{array}\right]
$$

Is $F T_{\mathbb{Q}}$-satisfiable?

Example 3: $x \geq 0 \wedge y \geq 0 \wedge x \geq 2 \wedge y \geq 2 \wedge x+y \leq 3$

Step 0
Because x and y are already constrained to be nonnegative, we do not need to introduce new $x_{1}, x_{2}, y_{1}, y_{2}$. Rewrite:

$$
\underbrace{\left[\begin{array}{ll}
1 & 1
\end{array}\right]}_{D_{1}}\left[\begin{array}{l}
x \\
y
\end{array}\right] \leq \underbrace{[3]}_{\bar{g}_{1}} \text { and } \underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}_{D_{2}}\left[\begin{array}{l}
x \\
y
\end{array}\right] \geq \underbrace{\left[\begin{array}{l}
2 \\
2
\end{array}\right]}_{\bar{g}_{2}}
$$

so that $\bar{g}_{1} \geq 0$ and $\bar{g}_{2}>0$.
Then (8.2):
$\max \overline{1}^{\top}\left(D_{2} \bar{x}-\bar{z}\right)$
subject to

$$
\begin{aligned}
\bar{x}, \bar{z} & \geq \overline{0} \\
D_{1} \bar{x} & \leq \bar{g}_{1} \\
D_{2} \bar{x}-\bar{z} & \leq \bar{g}_{2}
\end{aligned}
$$

Example 3: $x \geq 0 \wedge y \geq 0 \wedge x \geq 2 \wedge y \geq 2 \wedge x+y \leq 3$

Expanding, we have

$$
\begin{aligned}
\bar{c}^{\top} \bar{x} & =\overline{1}^{\top}\left[\begin{array}{ll}
D_{2} & -l
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z_{1} \\
z_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z_{1} \\
z_{2}
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{llll}
1 & 1 & -1 & -1
\end{array}\right]}_{\bar{c}^{\top}}\left[\begin{array}{c}
x \\
y \\
z_{1} \\
z_{2}
\end{array}\right]
\end{aligned}
$$

Page 84 of 125

Example 3: $x \geq 0 \wedge y \geq 0 \wedge x \geq 2 \wedge y \geq 2 \wedge x+y \leq 3$ obtaining the optimization problem (8.3)
$\max \underbrace{\left[\begin{array}{lll}1 & 1 & -1\end{array}-1\right.}_{\bar{c}^{\top}}]\left[\begin{array}{c}x \\ y \\ z_{1} \\ z_{2}\end{array}\right]$
subject to

$$
\underbrace{\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]}_{A}\left[\begin{array}{c}
x \\
y \\
z_{1} \\
z_{2}
\end{array}\right] \leq \underbrace{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
3 \\
2 \\
2
\end{array}\right]}_{\bar{b}}
$$

Page 85 of 125

Example 3: $x \geq 0 \wedge y \geq 0 \wedge x \geq 2 \wedge y \geq 2 \wedge x+y \leq 3$

Use the initial vertex

$$
\bar{v}_{1}=\left[\begin{array}{c}
x \\
y \\
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

in Step 1.
F is satisfiable iff the optimal value v_{F} is equal to

$$
\overline{1}^{\top} \bar{g}_{2}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
2
\end{array}\right]=4 .
$$

We use the simplex algorithm to find the optimum.

Example 3: $x \geq 0 \wedge y \geq 0 \wedge x \geq 2 \wedge y \geq 2 \wedge x+y \leq 3$

Step 1
Choose rows $R=[1 ; 2 ; 3 ; 4]$ of A and \bar{b}, giving

$$
\underbrace{\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]}_{A_{1}} \underbrace{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}_{\bar{v}_{1}}=\underbrace{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}_{\bar{b}_{1}}
$$

Solving

$$
\underbrace{\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]}_{A_{1}{ }^{\top}} \bar{u}_{1}=\underbrace{\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right]}_{\bar{c}}
$$

Page 87 of 125

Example 3: $x \geq 0 \wedge y \geq 0 \wedge x \geq 2 \wedge y \geq 2 \wedge x+y \leq 3$

 yields $\bar{u}_{1}=\left[\begin{array}{llll}-1 & -1 & 1 & 1\end{array}\right]^{\top}$. Adding 0 s for the rows not in R produces \bar{u} :$$
\bar{u}=\left[\begin{array}{lllllll}
-1 & -1 & 1 & 1 & 0 & 0 & 0
\end{array}\right]^{\top} .
$$

Since $u_{1}, u_{2}<0$, we are in Case 2 with $k=k^{\prime}=1$. Let \bar{y} be the first column of $-A_{1}^{-1}$: solve

$$
\underbrace{\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]}_{A_{1}} \bar{y}=\underbrace{\left[\begin{array}{r}
-1 \\
0 \\
0 \\
0
\end{array}\right]}_{-\bar{e}_{1}}
$$

to yield $\bar{y}=\left[\begin{array}{cccc}1 & 0 & 0 & 0\end{array}\right]^{\top}$. Then $S=[5 ; 6]$; i.e., the 5th and 6 th rows \bar{a} of A are such that $\overline{a y}>0$. Choose the largest λ_{1} such that $A\left(\bar{v}_{1}+\lambda_{1} \bar{y}\right) \leq \bar{b}$.

Example 3: $x \geq 0 \wedge y \geq 0 \wedge x \geq 2 \wedge y \geq 2 \wedge x+y \leq 3$

Focusing on the 5th and 6th rows of A (since $S^{\prime}=[5 ; 6]$), choose the largest λ_{1} such that

$$
\underbrace{\left[\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0
\end{array}\right]}_{\text {rows } 5,6 \text { of } A}(\underbrace{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}_{\bar{v}_{1}}+\lambda_{\bar{y}}^{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]}) \leq \underbrace{\left[\begin{array}{l}
3 \\
2
\end{array}\right]}_{\text {rows } 5,6 \text { of } \bar{b}}
$$

Namely, choose $\lambda_{1}=2$ (and $\ell=6$). Then

$$
\bar{v}_{2}=\bar{v}_{1}+\lambda_{1} \bar{y}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]+2\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right]
$$

Example 3: $x \geq 0 \wedge y \geq 0 \wedge x \geq 2 \wedge y \geq 2 \wedge x+y \leq 3$

Replace the 1 st row of A_{1} (since $k^{\prime}=1$) by the 6 th row of A (since $\ell=6$) to produce

$$
A_{2}=\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \quad \text { and } \quad \bar{b}_{2}=\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right]
$$

Have we made progress? Yes, for

$$
\bar{c}^{\top} \bar{v}_{1}=0<2=\bar{c}^{\top} \bar{v}_{2} .
$$

The objective function has increased from 0 to 2 .

Example 3: $x \geq 0 \wedge y \geq 0 \wedge x \geq 2 \wedge y \geq 2 \wedge x+y \leq 3$

Step 2
Now $R=[6 ; 2 ; 3 ; 4]$ (the indices of rows of A in A_{2}). Solve

$$
\underbrace{\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]}_{A_{2}{ }^{\top}} \bar{u}_{2}=\underbrace{\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right]}_{\bar{c}}
$$

to yield

$$
\bar{u}_{2}=\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
6 & 2 & 3 & 4
\end{array}\right]^{\top} .
$$

Example 3: $x \geq 0 \wedge y \geq 0 \wedge x \geq 2 \wedge y \geq 2 \wedge x+y \leq 3$

 Then filling in 0 s for the other rows of A produces:$$
\bar{u}=\left[\begin{array}{ccccccc}
0 & -1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]^{\top}
$$

$u_{2}<0$, so $k=2$, which corresponds to row $k^{\prime}=2$ of \bar{u}_{2}.
According to Case 2, let \bar{y} be the 2nd column of $-A_{2}^{-1}$: solve $A_{2} \bar{y}=-\mathrm{e}_{2}$ to yield $\bar{y}=\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]^{\top}$. Then the 5th and 7th rows \bar{a} of A are such that $\overline{a y}>0$ so that $S=[5 ; 7]$.

Focusing on the 5th and 7 th rows of A, choose the largest λ_{2} such that

$$
\underbrace{\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]}_{\text {rows } 5,7 \text { of } A}(\underbrace{\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right]}_{\bar{v}_{2}}+\lambda_{2} \underbrace{\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]}_{\bar{y}}) \leq \underbrace{\left[\begin{array}{c}
3 \\
2
\end{array}\right]}_{\text {rows } 5,7 \text { of } \bar{b}}
$$

Example 3: $x \geq 0 \wedge y \geq 0 \wedge x \geq 2 \wedge y \geq 2 \wedge x+y \leq 3$

Choose $\lambda_{2}=1$ (and $\ell=5$). Then

$$
\bar{v}_{3}=\bar{v}_{2}+\lambda_{2} \bar{y}=\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right]+1\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]
$$

Replace the 2 nd row of A_{2} (since $k^{\prime}=2$) by the 5 th row of A (since $\ell=5$) to produce

$$
A_{3}=\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \quad \text { and } \quad \bar{b}_{3}=\left[\begin{array}{l}
2 \\
3 \\
0 \\
0
\end{array}\right]
$$

Example 3: $x \geq 0 \wedge y \geq 0 \wedge x \geq 2 \wedge y \geq 2 \wedge x+y \leq 3$

Have we made progress? Yes, for

$$
\begin{aligned}
\bar{c}^{\top} \bar{v}_{1} & =0 \\
<\quad \bar{c}^{\top} \bar{v}_{2} & =2 \\
<\quad \bar{c}^{\top} \bar{v}_{3} & =3
\end{aligned}
$$

The objective function has increased from 2 to 3 .

Example 3: $x \geq 0 \wedge y \geq 0 \wedge x \geq 2 \wedge y \geq 2 \wedge x+y \leq 3$

Step 3
Now $R=[6 ; 5 ; 3 ; 4]$. Solve $A_{3}{ }^{\top} \bar{u}_{3}=\bar{c}$, yielding $\bar{u}_{3}=\left[\begin{array}{lll}0 & 1 & 1\end{array} 1\right]^{\top}$.
Now $\bar{u}_{3} \geq \overline{0}$, so we are in Case 1: \bar{v}_{3} is the optimum with objective value

$$
\underbrace{\left[\begin{array}{lll}
1 & 1 & -1
\end{array}-1\right]}_{\bar{c}^{\top}}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right] .
$$

Final Step: Satisfiability
The optimal value of the constructed optimization problem is 3 , which is less than the required $v_{F}=4$ of Step 0 . Hence, F is $T_{\mathbb{Q}}$-unsatisfiable.

Linear Programming (Dantzig 1940s)

A linear programming problem involves the optimization of a linear objective function, subject to linear inequality constraints.

$$
\begin{array}{ll}
\max \bar{c}^{\top} \bar{x} & \text { (objective function) } \\
\text { subject to } A \bar{x} \leq \bar{b} & \text { (constraints) }
\end{array}
$$

\bar{x} denotes a vector:

$$
\begin{array}{ll}
\max & \sum_{i=1}^{n} c_{i} x_{i} \\
\text { subject to } & {\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \leq\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right]}
\end{array}
$$

Example: Linear Programming

A company is producing two different products using three machines A, B, and C .

- Product 1 needs A for one, and B for one hour.
- Product 2 needs A for two, B for one, and C for three hours.
- Product 1 can be sold for $\$ 300$; Product 2 for $\$ 500$.
- Monthly availability of machines:

A: 170 hours, B: 150 hours, C 180 hours.
Let x_{1} and x_{2} denote the projected monthly sale of product 1 and product 2 , respectively.
We want to optimize $300 x_{1}+500 x_{2}$ subject to:

$$
\begin{aligned}
& 1 x_{1}+2 x_{2} \leq 170 \\
& 1 x_{1}+1 x_{2} \leq 150 \\
& 0 x_{1}+3 x_{2} \leq 180 \\
& x_{1} \geq 0 \wedge x_{2} \geq 0
\end{aligned}
$$

Machine (A)
Machine (B)
Machine (C)

The Simplex Algorithm

To find the optimal solution proceed as follows:

- start at some vertex of the solution space,
- proceed along adjacent edge to reach a vertex with better cost,
- continue until local optimum is found.

The solution space forms a convex polyhedron. Therefore local optimum is global optimum.

A Problem with a Simple Vertex

If the problem is of the following shape:

$$
\begin{aligned}
x_{1} & \geq 0 \\
& \vdots \\
x_{n} & \geq 0 \\
A \bar{x} & \leq \bar{b}, \text { where } \bar{b} \geq \overline{0}
\end{aligned}
$$

or (in matrix form)

$$
\left[\begin{array}{ccc}
-1 & & 0 \\
& \ddots & \\
0 & & -1 \\
& & \\
& A & \\
& &
\end{array}\right] \bar{x} \leq\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
b_{1} \\
\cdots \\
b_{m}
\end{array}\right], \text { where } b_{1}, \ldots, b_{m} \geq 0
$$

then a simple (initial) vertex of solution space is $\bar{x}=0$.

Vertex of $A \bar{x} \leq \bar{b}$ and its dual

An n-vector \bar{v} is a vertex of $A \bar{x} \leq \bar{b}$ if there is nonsingular $n \times n$-submatrix A_{0} and corresponding n-subvector \bar{b}_{0} s.t.

$$
A_{0} \bar{v}=\bar{b}_{0} \text { and } A \bar{v} \leq \bar{b}
$$

Move the rows corresponding to A_{0} in A and \bar{b}_{0} in \bar{b} upwards:

$$
A=\left[\begin{array}{c}
A_{0} \\
*
\end{array}\right] \text { and } \bar{b}=\left[\begin{array}{c}
\bar{b}_{0} \\
*
\end{array}\right]
$$

Construct solution \bar{u} of the dual problem $A^{\top} \bar{y} \geq \bar{c}$ as follows:
Since A_{0} is invertible, we can solve

$$
A_{0}{ }^{\top} \bar{u}_{0}=\bar{c}
$$

to get \bar{u}_{0}. Set $\bar{u}:=\left[\begin{array}{c}\bar{u}_{0} \\ \overline{0}\end{array}\right]$, then:

$$
A^{\top} \bar{u}=\left[\begin{array}{ll}
A_{0}^{\top} & *
\end{array}\right]\left[\begin{array}{c}
\bar{u}_{0} \\
\overline{0}
\end{array}\right]=A_{0}^{\top} \bar{u}_{0}+\overline{0}=\bar{c} \cdot \bar{\partial} 100 \text { of } 125
$$

Case $\bar{u} \geq \overline{0}$

If $\bar{u} \geq \overline{0}$, then \bar{v} is optimal:
We have

$$
\begin{aligned}
\bar{c}^{\top} \bar{v} & =\left(A^{\top} \bar{u}\right)^{\top} \bar{v} \\
& =\bar{u}^{\top} A \bar{v} \\
& =\bar{u}^{\top}\left[\begin{array}{c}
A_{0} \\
*
\end{array}\right] \bar{v} \\
& =\left[\begin{array}{ll}
\bar{u}_{0}^{\top} & \overline{0}
\end{array}\right]\left[\begin{array}{c}
\bar{b}_{0} \\
*
\end{array}\right] \\
& =\bar{u}^{\top} \bar{b}
\end{aligned}
$$

Let \bar{x} be an arbitrary vector that satisfies $A \bar{x} \leq b$, then:

$$
\bar{c}^{\top} \bar{x}=\left(A^{\top} \bar{u}\right)^{\top} \bar{x}=\bar{u}^{\top} A \bar{x} \underset{\bar{u} \geq \overline{0}}{\leq} \bar{u}^{\top} \bar{b}=\bar{c}^{\top} \bar{v}
$$

Hence, $\bar{c}^{\top} \bar{v}$ is maximal.

Case $\bar{u} \nsupseteq \overline{0}$

If $\bar{u} \nsupseteq \overline{0}$, there is some coordinate k s.t. $u_{k}<0$.
This corresponds to some row of matrix A_{0}.
Find \bar{y}
Solve for \bar{y} in equation

$$
A_{0} \bar{y}=-\bar{e}_{k}
$$

This is the direction in which we move.
Set $\bar{v}^{\prime}=\bar{v}+\lambda \bar{y}$, where $\lambda \geq 0$. Then

$$
\begin{aligned}
A_{0} \bar{v}^{\prime} & =A_{0}(\bar{v}+\lambda \bar{y}) \\
& =\bar{b}_{0}-\lambda \bar{e}_{k} \\
& \leq \bar{b}_{0}
\end{aligned}
$$

and equality holds for all but the k th row.

Case $\bar{u} \nsupseteq \overline{0}$

Moreover, \bar{v}^{\prime} is better than \bar{v} :

$$
\begin{aligned}
\bar{c}^{\top} \bar{y} & =\bar{u}_{0}^{\top} A_{0} \bar{y} \\
& =\bar{u}_{0}^{\top}\left(-\bar{e}_{k}\right) \\
& =-u_{k} \\
& >0 .
\end{aligned}
$$

Hence,

$$
\bar{c}^{\top} \bar{v}^{\prime}=\bar{c}^{\top} \bar{v}+\lambda \underbrace{\bar{c}^{\top} \bar{y}}_{>0} \geq \bar{c}^{\top} \bar{v}
$$

How to find λ

Find λ

Now choose λ such that still $A(\bar{v}+\lambda \bar{y}) \leq b$ and equality holds for some constraint $(A)_{\ell}(\bar{v}+\lambda \bar{y})=b_{\ell}, \ell>n$.
This gives a better vertex.
For each row $\ell>n$ with $(A)_{\ell} \bar{y}>0$, solve λ_{ℓ} in the equation

$$
(A)_{\ell}\left(\bar{v}+\lambda_{\ell} \bar{y}\right)=b_{\ell}
$$

From $(A)_{\ell} \bar{v} \leq b_{\ell}$:

$$
0 \leq b_{\ell}-(A)_{\ell} \bar{v}=\lambda_{\ell}(A)_{\ell} \bar{y}
$$

Since $(A)_{\ell} \bar{y}>0$, we have $\lambda_{\ell} \geq 0$.
Choose as λ the smallest λ_{ℓ}.

The cases for λ

Since $A_{0} \bar{y}=-\bar{e}_{k}$,

Case 1
There is no $\ell>n$ with $(A)_{\ell} \bar{y}>0$. Then $A(\bar{v}+\lambda \bar{y}) \leq b$ holds for all $\lambda \geq 0$ and the maximum value of $\bar{c}^{\top} x$ is unbounded:

$$
\lim _{\lambda \rightarrow \infty} \bar{c}^{\top}(\bar{v}+\lambda \bar{y})=\lim _{\lambda \rightarrow \infty}(\bar{c}^{\top} \bar{v}+\lambda \underbrace{\bar{c}^{\top} \bar{y}}_{\geq 0})=\infty .
$$

The cases for λ

Case 2
If λ is the smallest λ_{ℓ} with $(A)_{\ell} \bar{y}>0$, then

$$
(A)_{\ell}(\bar{v}+\lambda \bar{y})=b_{\ell} \quad \text { and } \quad A(\bar{v}+\lambda \bar{y}) \leq \bar{b}
$$

Thus $\bar{v}+\lambda \bar{y}$ is a better vertex.

Example 4: Linear Programming

 max
subject to

$$
\underbrace{\left[\begin{array}{cc}
-1 & 0 \\
0 & -1 \\
1 & 2 \\
1 & 1 \\
0 & 3
\end{array}\right]}_{A} \bar{x} \leq \underbrace{\left[\begin{array}{c}
0 \\
0 \\
170 \\
150 \\
180
\end{array}\right]}_{\bar{b}}
$$

Example 4: Linear Programming

Page 108 of 125

Example 4: Linear Programming

$$
\begin{aligned}
& \bar{v}=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\top} \quad \underbrace{\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]}_{A_{0}} \underbrace{\left[\begin{array}{l}
0 \\
0
\end{array}\right]}_{\bar{v}}=\underbrace{\left[\begin{array}{l}
0 \\
0
\end{array}\right]}_{\bar{b}_{0}} \\
& \underbrace{\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]}_{A_{0}^{\top}} \bar{u}_{0}=\underbrace{\left[\begin{array}{l}
300 \\
500
\end{array}\right]}_{\bar{c}} \Rightarrow \bar{u}=\left[\begin{array}{llll}
-300 & -500 & 0 & 0
\end{array}\right]^{\top} \\
& u_{2}=-500<0 \Rightarrow \text { choose } k=2 \\
& \underbrace{\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]}_{A_{0}} \bar{y}=\underbrace{\left[\begin{array}{c}
0 \\
-1
\end{array}\right]}_{-\bar{e}_{2}} \Rightarrow \bar{y}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]^{\top}
\end{aligned}
$$

Example 4: Linear Programming

$$
\begin{aligned}
\underbrace{\left[\begin{array}{ll}
1 & 2
\end{array}\right]}_{(A)_{3}} \underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}_{\bar{y}}>0 & \Rightarrow\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\lambda_{3}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=170 \\
& \Rightarrow \lambda_{3}=85 \\
\underbrace{\left[\begin{array}{ll}
1 & 1
\end{array}\right]}_{(A)_{4}} \underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}_{\bar{y}}>0 & \Rightarrow\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\lambda_{4}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=150 \\
& \Rightarrow \lambda_{4}=150 \\
\underbrace{\left[\begin{array}{ll}
0 & 3
\end{array}\right]}_{(A)_{5}} \underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}_{\bar{y}}>0 & \Rightarrow\left[\begin{array}{ll}
0 & 3
\end{array}\right]\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\lambda_{5}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=180 \\
& \Rightarrow \lambda_{5}=60
\end{aligned}
$$

Example 4: Linear Programming

Thus $\lambda=\lambda_{5}=60, \ell=5$, and

$$
\bar{v}^{\prime}=\underbrace{\left[\begin{array}{l}
0 \\
0
\end{array}\right]}_{\bar{v}}+\underbrace{60}_{\lambda} \underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}_{\bar{y}}=\left[\begin{array}{c}
0 \\
60
\end{array}\right] .
$$

Example 4: Linear Programming

 max$$
\left[\begin{array}{ll}
300 & 500
\end{array}\right] \bar{x}
$$

subject to
$\left[\begin{array}{cc}-1 & 0 \\ 0 & 3 \\ 0 & -1 \\ 1 & 2 \\ 1 & 1\end{array}\right] \bar{x} \leq\left[\begin{array}{c}0 \\ 180 \\ 0 \\ 170 \\ 150\end{array}\right]$
$\ell=5 \Rightarrow k=2$
(not swap, but okay)

Example 4: Linear Programming

Page 113 of 125

Example 4: Linear Programming

$$
\begin{array}{l}
\bar{v}=\left[\begin{array}{ll}
0 & 60
\end{array}\right]^{\top} \\
\underbrace{\left[\begin{array}{cc}
-1 & 0 \\
0 & 3
\end{array}\right]}_{A_{0}} \underbrace{\left[\begin{array}{c}
0 \\
60
\end{array}\right]}_{\bar{v}}=\underbrace{\left[\begin{array}{c}
0 \\
180
\end{array}\right]}_{\bar{b}_{0}} \\
\underbrace{\left[\begin{array}{cc}
-1 & 0 \\
0 & 3
\end{array}\right]}_{A_{0}^{\top}} \bar{u}_{0}=\underbrace{\left[\begin{array}{c}
300 \\
500
\end{array}\right]}_{\bar{c}} \Rightarrow \bar{u}=\left[\begin{array}{llll}
-300 & 166 \frac{2}{3} & 0 & 0
\end{array} 0^{\top}\right. \\
\underbrace{\top}_{A_{0}}=-300<0 \Rightarrow \text { choose } k=1 \\
{\left[\begin{array}{cc}
-1 & 0 \\
0 & 3
\end{array}\right]} \\
y
\end{array}=\underbrace{\left[\begin{array}{c}
-1 \\
0
\end{array}\right]}_{-\bar{e}_{1}} \Rightarrow \bar{y}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{\top}]
$$

Example 4: Linear Programming

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{ll}
0 & -1
\end{array}\right]}_{(A)_{3}} \underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{\bar{y}}=0 \\
& \underbrace{\left[\begin{array}{ll}
1 & 2
\end{array}\right]}_{(A)_{4}} \underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{\bar{y}}>0 \Rightarrow\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left(\left[\begin{array}{c}
0 \\
60
\end{array}\right]+\lambda_{4}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=170 \\
& \Rightarrow \lambda_{4}=50 \\
& \underbrace{\left[\begin{array}{ll}
1 & 1
\end{array}\right]}_{(A)_{5}} \underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{\bar{y}}>0 \Rightarrow\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left(\left[\begin{array}{c}
0 \\
60
\end{array}\right]+\lambda_{5}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=150 \\
& \Rightarrow \lambda_{5}=90
\end{aligned}
$$

Example 4: Linear Programming

Since $(A)_{3} \bar{y}=0, \lambda_{4}=50$, and $\lambda_{5}=90$,
we have $\lambda=50$ and $\ell=4$, so

$$
\bar{v}^{\prime}=\underbrace{\left[\begin{array}{c}
0 \\
60
\end{array}\right]}_{\bar{v}}+\underbrace{50}_{\lambda} \underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{\bar{y}}=\left[\begin{array}{l}
50 \\
60
\end{array}\right] .
$$

Example 4: Linear Programming

 max$$
\left[\begin{array}{ll}
300 & 500
\end{array}\right] \bar{x}
$$

subject to

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & 2 \\
0 & 3 \\
-1 & 0 \\
0 & -1 \\
1 & 1
\end{array}\right] \bar{x} \leq\left[\begin{array}{c}
170 \\
180 \\
0 \\
0 \\
150
\end{array}\right]} \\
& \ell=4 \Leftrightarrow k=1 \text { (swap) }
\end{aligned}
$$

Example 4: Linear Programming

Page 118 of 125

Example 4: Linear Programming

$$
\bar{v}=\left[\begin{array}{ll}
50 & 60
\end{array}\right]^{\top} \quad \underbrace{\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]}_{A_{0}} \underbrace{\left[\begin{array}{l}
50 \\
60
\end{array}\right]}_{\bar{v}}=\underbrace{\left[\begin{array}{c}
170 \\
180
\end{array}\right]}_{\bar{b}_{0}}
$$

$$
\underbrace{\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right]}_{A_{0}^{\top}} \bar{u}_{0}=\underbrace{\left[\begin{array}{l}
300 \\
500
\end{array}\right]}_{\bar{c}} \Rightarrow \bar{u}=\left[\begin{array}{lllll}
300 & -33 \frac{1}{3} & 0 & 0 & 0
\end{array}\right]^{\top}
$$

$$
u_{2}=-33 \frac{1}{3}<0 \Rightarrow \text { choose } k=2
$$

$$
\underbrace{\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]}_{A_{0}} \bar{y}=\underbrace{\left[\begin{array}{c}
0 \\
-1
\end{array}\right]}_{-\bar{\epsilon}_{2}} \Rightarrow \bar{y}=\left[\begin{array}{ll}
\frac{2}{3} & -\frac{1}{3}
\end{array}\right]^{\top}
$$

Example 4: Linear Programming

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{cc}
-1 & 0
\end{array}\right]}_{(A)_{3}} \underbrace{\left[\begin{array}{c}
\frac{2}{3} \\
-\frac{1}{3}
\end{array}\right]}_{\bar{y}}<0 \\
& \underbrace{\left[\begin{array}{cc}
0 & -1
\end{array}\right]}_{(A)_{4}} \underbrace{\left[\begin{array}{c}
\frac{2}{3} \\
-\frac{1}{3}
\end{array}\right]}_{\bar{y}}>0 \Rightarrow \underbrace{\left[\begin{array}{cc}
0 & -1
\end{array}\right]}_{(A)_{4}}(\underbrace{\left[\begin{array}{l}
50 \\
60
\end{array}\right]}_{\bar{v}}+\lambda_{4} \underbrace{\left[\begin{array}{c}
\frac{2}{3} \\
-\frac{1}{3}
\end{array}\right]}_{\bar{y}})=\underbrace{0}_{b_{4}} \\
& \Rightarrow \quad \lambda_{4}=180 \\
& \underbrace{\left[\begin{array}{cc}
1 & 1
\end{array}\right]}_{(A)_{5}} \underbrace{\left[\begin{array}{c}
\frac{2}{3} \\
-\frac{1}{3}
\end{array}\right]}_{\bar{y}}>0 \Rightarrow \underbrace{\left[\begin{array}{cc}
1 & 1
\end{array}\right]}_{(A)_{5}}(\underbrace{\left[\begin{array}{c}
50 \\
60
\end{array}\right]}_{\bar{v}}+\lambda_{5} \underbrace{\left[\begin{array}{c}
\frac{2}{3} \\
-\frac{1}{3}
\end{array}\right]}_{\bar{y}})=\underbrace{150}_{b_{5}} \\
& \Rightarrow \quad \lambda_{5}=120
\end{aligned}
$$

Example 4: Linear Programming

Since $(A)_{3} \bar{y}<0, \lambda_{4}=180$, and $\lambda_{5}=120$,
we have $\lambda=120$ and $\ell=5$, so

$$
\bar{v}^{\prime}=\underbrace{\left[\begin{array}{c}
50 \\
60
\end{array}\right]}_{\bar{v}}+\underbrace{120}_{\lambda} \underbrace{\left[\begin{array}{c}
\frac{2}{3} \\
-\frac{1}{3}
\end{array}\right]}_{\bar{y}}=\left[\begin{array}{c}
130 \\
20
\end{array}\right] .
$$

Example 4: Linear Programming

 max$$
\left[\begin{array}{ll}
300 & 500
\end{array}\right] \bar{x}
$$

subject to

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & 2 \\
1 & 1 \\
-1 & 0 \\
0 & -1 \\
0 & 3
\end{array}\right] \bar{x} \leq\left[\begin{array}{c}
170 \\
150 \\
0 \\
0 \\
180
\end{array}\right]} \\
& \ell=5 \Leftrightarrow k=2(\mathrm{swap})
\end{aligned}
$$

Example 4: Linear Programming

Page 123 of 125

Example 4: Linear Programming

$$
\begin{gathered}
\bar{v}=\left[\begin{array}{ll}
130 & 20
\end{array}\right]^{\top} \\
\underbrace{\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]}_{A_{0}} \underbrace{\left[\begin{array}{c}
130 \\
20
\end{array}\right]}_{\bar{v}}=\underbrace{\left[\begin{array}{c}
170 \\
150
\end{array}\right]}_{\bar{b}_{0}} \\
\underbrace{\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]}_{A_{0}^{\top}} \bar{u}_{0}=\underbrace{\left[\begin{array}{c}
300 \\
500
\end{array}\right]}_{\bar{c}} \Rightarrow \bar{u}=\left[\begin{array}{lllll}
200 & 100 & 0 & 0 & 0
\end{array}\right]^{\top}
\end{gathered}
$$

Since $\bar{u} \geq 0$, we have reached the maximum, with

$$
\bar{x}=\left[\begin{array}{c}
130 \\
20
\end{array}\right] .
$$

Example 4: Linear Programming

Finally, therefore,

$$
\boldsymbol{\operatorname { m a x }}=\underbrace{\left[\begin{array}{ll}
300 & 500
\end{array}\right]}_{\bar{c}^{\top}} \underbrace{\left[\begin{array}{c}
130 \\
20
\end{array}\right]}_{\bar{x}}=49000 .
$$

