CS156: The Calculus of
Computation

Zohar Manna
Autumn 2008

Chapter 9: Quantifier-free Equality and Data

Structures
Page 1 of 48
Axioms of Tg
1 Vx. x = x (reflexivity)
2.Vx,y.x=y — y=x (symmetry)
3.Vx,y,z.x=y ANy=2z - x=2z (transitivity)

define = to be an equivalence relation.
Axiom schema
4. for each positive integer n and n-ary function symbol f,

n
V%, 7. </\ X = y.-) — (%) = £(7)
i=1
(function)
For example, for unary f, the axiom is
vy X =y — f(X)=f(y)
Therefore,
x=gly.z) — f(x)=1(gly,2))
is Te-valid. (X' — x,y’ — g(y.2)).
Page 3 of 48

The Theory of Equality Tg

Ye:{=.a, b ocf, g hp q r ...}
uninterpreted symbols:
e constants a, b,c,...
e functions f,g.h,...
e predicates p,q,r,...

Example:
x=y A f(x)#f(y) Tg-unsatisfiable
f(x)=fy) A x#y Tesatisfiable
FF(F@) = a A FFCFCE(FED)) = 2 A F(2) £ a
Te-unsatisfiable
x = gly;z) = f(x) = f(g(y,2)) Te-valid

Page 2 of 48

Axiom schema

5. for each positive integer n and n-ary predicate symbol p,
n
V%, 3. (/\ xi = ,W) = (p(%) < p(¥))
i=1
(predicate)
Thus, for unary p, the axiom is
Y,y X =y = (p(X) < p(y)

Therefore,
a=b— (p(a) < p(b))

is Tg-valid. (x' — a,y’ — b).

Page 4 of 48

We discuss Tg-formulae without predicates

For example, for X g-formula
F:p(x) A alxy) Aaly,2) = —q(x.2)

introduce fresh constant e and fresh functions f, and f;, and
transform F to

G: f(x) = A flxy) = A fly.2)=e — fox,2)£s.

Page 5 of 48
Classes
ival .

For { equivalence }relat\on R over set S,

congruence

equivalence .
the { gqulvatence } class of s € S under R is

congruence

[s]r & {s' €S : sRs'}.

Example:
The equivalence class of 3 under =, over Z is

[Bls, ={n€Z : nisodd} .

Partitions
A partition P of S is a set of subsets of S that is

> total (U S’> =S
sep
> disjpint VS, €P. 51 # S5 = 5NS=10
Page 7 of 48

Equivalence and Congruence Relations: Basics

Binary relation R over set S
e is an equivalence relation if
> reflexive: Ys€ S. s R s;
> symmetric: V51,5 € 5.5t Rs; — s R sy;
> transitive: Vs1,8,53 € S.51 R A s Rs3 — s R s3.
Example:
Define the binary relation = over the set Z of integers
m=,n iff (mmod2)=(nmod?2)
That is, m, n € Z are related iff they are both even or both odd.
=5 is an equivalence relation
® is a congruence relation if in addition
n
vs.& J\ siRt — f(5)Rf(7).
i=1

Page 6 of 48
Quotient
The quotient S/R of S by { equivalence }relation R is the
— congruence
L . ival
partition of S into { equivalence }classes
congruence

S/R = {[slg : s€S}.

It satisfies total and disjoint conditions.

Example: The quotient Z/ = is a partition of Z. The set of
equivalence classes

{{n€Z : nisodd}, {n€Z : niseven}}

Note duality between relations and classes

Page 8 of 48

Refinements Closures

Two binary relations Ry and R over set S. Given binary relation R over S.
Ry is a refinement of Ry, Ry < Ry, if The equivalence closure RE of R is the equivalence relation s.t.

> R refines RE, i.e. R < RE;
» for all other equivalence relations R’ s.t. R < R/,
Ry refines Ry. either R = RE or RE < R/
That is, RE is the “smallest” equivalence relation that “covers’ R

Vs, € S. s1R1s; — s1Rasp

Examples:
> For S = {a, b} Example: If S = {a, b,c,d} and R = {aRb, bRc, dRd}, then
Ri:{aRib} Ry:{aRsb, bRyb} o aREb, bREC,dREd since R C RF;
Then Ry < R, o aREa, bRED, cREc by reflexivity;
E E .
» For set Z . nga. cR"b I;y symm.e.tljy,.
Ri:{xRiy : x mod 2=y mod 2} . aREc by transitivity;
Ry: {xRay : x mod 4 =y mod 4} ¢ chva Yy symmetry.
Then R < Ry Similarly, the congruence closure RC of R is the “smallest”
congruence relation that “covers” R.
Page 9 of 48 Page 10 of 48
Te-satisfiability and Congruence Classes | Te-satisfiability and Congruence Classes I

Definition: For ¥ g-formula Given X g-formula F

Fistmti Ao A Smmtm A Smis % tmer A o A Sn Fisi=ti A ASm=tm A Smi1# tmgr A - A Sp# by

with subterm set Sg, F is Tg-satisfiable iff there exists a
congruence relation ~ over Sg such that

> foreach i e {1,....m}, si ~ t;;
Example: The subterm set of » foreach i€ {m+1,....n}, 54t

F: f(a,b)=a A f(f(a,b),b) #a

the subterm set S¢ of F is the set that contains precisely
the subterms of F.

Such congruence relation ~ defines Tg-interpretation / : (Dj, o)
of F. Dy consists of |Sg/ ~ | elements, one for each congruence

Sk ={a, b, f(a,b), f(f(a,b),b)} . class of Sg under ~.
Note: we consider only quantifier-free conjunctive ¥ g-formulae. Instead of writing / |= F for this Tg-interpretation, we abbreviate
Convert non-conjunctive formula F to DNF \/; F;, where each ~kE F

disjunct F; is a conjunction of =, #. Check each disjunct F;. F is

Te-satisfiable iff at least one disjunct F; is Tg-satisfiable. The goal of the algorithm is to construct the congruence relation

over Sg, or to prove that no congruence relation exists.
Page 11 of 48 Page 12 of 48

Congruence Closure Algorithm
A Sm=tm A Smy1 7 tmer A ot

generate congruence closure

A sp#ty

search for contradiction

F:si=t A -

Decide if F is Tg-satisfiable.

The algorithm performs the following steps:
1. Construct the congruence closure ~ of

(51=t1 s 5m = tm}
over the subterm set Sg. Then

~ESsi=t A A Sy =ty

2. Ifforany i € {m+1,....n}, s; ~ t;, return unsatisfiable.
3. Otherwise, ~= F, so return satisfiable.
How do we actually construct the congruence closure in Step 17
Page 13 of 48
Congruence Closure Algorithm: Example 1 |

Given X g-formula
F: f(a,b)=a A f(f(a,b),b) # a

Construct initial partition by letting each member of the subterm
set S¢ be its own class:
L {{a}, {b}, {f(a,b)}, {f(f(a b),b)}}
According to the first literal f(a, b) = a, merge
{f(a,b)} and {a}
to form partition
2 {{a. f(a.b)}. {b}, {F(F(a.b).5)}}
According to the (function) congruence axiom,
f(a,b)~a, b~b implies f(f(a,b),b)~ f(a,b),
resulting in the new partition

3. {{a.f(a,b).f(f(a, b),b)}, {b}}

Page 15 of 48

Congruence Closure Algorithm (Details)

Initially, begin with the finest congruence relation ~q given by the
partition

{{s} : seSF}.
That is, let each term over Sg be its own congruence class.

Then, for each i € {1,..., m}, impose s; = t; by merging the
congruence classes
[silviey and - [ti]ni g
to form a new congruence relation ~;.
To accomplish this merging,
» form the union of [si]., , and [t]]., ,
> propagate any new congruences that arise within this union.

i1

The new relation ~; is a congruence relation in which s; ~ t;.

Page 14 of 48

Congruence Closure Algorithm: Example 1 11

This partition represents the congruence closure of Sg.
Is it the case that

{{a.f(a,b).f(f(ab). b)}. {b}} = F?

No, as f(f(a, b), b) ~ a but F asserts that f(f(a,b).b) # a.
Hence, F is Tg-unsatisfiable.

Page 16 of 48

Congruence Closure Algorithm: Example 2 | Congruence Closure Algorithm: Example 2 1

Example: Given X g-formula 3. {{a,f3(a)}, {f(a).f*(a)}, {f¥(a).f>(a)}} -
F: f(f(f(a))) =a A f(f(F(f(f(a))) =a A f(a)#a From the second literal, f5(a) = a, merge

From the subterm set Sg, the initial partition is £2(a). f3(a and {a,f3(a
L {{a}. {f(a)}. {FP(a} (@)} {F(a} (P} (). 1a)) e

h f le, £3(a) abbrevi F(F(F(3) to form the partition

where, for example, £3(a) abbreviates a))). 2 3 5 4

According to the literal £3(a) = a, merge 4 {{a.r3(a),*(a). F(a)}, {f(a). F*(a)}} -
{f3a)} and {a}.

From the union,

Propagating the congruence

3(a) ~ f2(a) = f(f3(a)) ~ F(f3(a)) i.e. F4(a) ~ f3(a)

2 {{a, @) {F@), (P, (Fa) 1)) ields the partition
deduce the following congruence propagations: 5. {{a.f(a).f*(a), f3(a), (), £(a)}} .
fS(a) ~a = f(f:‘(a)) ~f(a) e f“(a) ~f(a) which represents the congruence closure in which all of S¢ are
and equal. Now,
f4(a) ~ f(a) = f(f¥(a)) ~ f(f(a)) ie. 3(a)~ f3(a) {{a,f(a),f%(a),f3(a). f*(a).f5(a)}} = F?
Thus, the final partition for this iteration is the following: No, as f(a) ~ a, but F asserts that f(a) # a. Hence, F is
3. {{a,f3(a)}, {f(a).f*(a)}. {f3(a).f>(a)}} - Te-unsatisfiable.
Page 17 of 48 Page 18 of 48
Congruence Closure Algorithm: Example 3 Implementation of Algorithm
Given T g-formula Directed Acyclic Graph (DAG)
o f For Xg-formula F, graph-based data structure for representing the
Fif)=f) nxy. subterms of Sr (and congruence relation between them).

The subterm set S induces the following initial partition:
LA vk L {F1) -
Then f(x) = f(y) indicates to merge
{fe} and {f(y)}-
The union {f(x), f(y)} does not yield any new congruences, so the
final partition is

240 v {F0. F)3) -

b Efficient way for computing the congruence closure.
oes

i Wk {FG).FO) = F 2

Yes, as x o y, agreeing with x # y. Hence, F is Tg-satisfiable.

Page 19 of 48 Page 20 of 48

Summary of idea

I'(ab)*a/\r'f a,b),b) #a

7

D

f(a,b)~a, b~b =
f(f(a, b),b) ~ f(a, b)

MERGE f(f(a, b), b)
f(a,b)

by congruence

Initial DAG =a é
MFRCE f(a,b) a

— _ explicit equation

FIND f(f(a, b),b) = a=FIND a -
= Unsatisfiable

f(f(a,b),b) # a
Page 21 of 48
DAG Representation of node 2

type node = {

id coid L2
fn © ostring ... f
args cidlist ... [3,4]
mutable find coid .. 3

mutable ccpar idset ... 0

Page 23 of 48

DAG representation

type node = {

id id
node’s unique identification number
fn string
constant or function name
args id list
list of function arguments
mutable find id
the representative of the congruence class
mutable ccpar id set
if the node is the representative for its
congruence class, then its ccpar
(congruence closure parents) are all
parents of nodes in its congruence class

DAG Representation of node 3

type node = {

id cid)
fn : ostring ...a
args coidlist L]
mutable find : id ... 3

id set

QR
/

mutable ccpar

Page 22 of 48

Page 24 of 48

The Implementation |
FIND function
returns the representative of node's congruence class
let rec FIND j =
let n = NODE/in

if n.find = i then / else FIND n.find

FIND 2 =3
FIND 3 =3
3 is the representative of {2,3}.

Example:

Page 25 of 48

The Implementation |11

Example

UNION 1 2 m=1
1.find — 3
3.ccpar «— {1,2}
l.ccpar « ()

n=3

Page 27 of 48

The Implementation |1

UNION function

let UNION i ip =
let n = NODE (FIND i) in
let i = NODE (FIND i) in
nm.find < np.find;
m.ccpar « np.ccpar U m.ccpar;
n.ccpar « 0

ny is the representative of the union class

The Implementation 1V
CCPAR function

Returns parents of all nodes in i’s congruence class

let CCPAR i =
(NODE (FIND i)).ccpar

CONGRUENT predicate

Test whether /1 and i> are congruent

let CONGRUENT iy ip =
let n = NODE jj in
let mp = NODE f» in
n.fn = np.fn
A |ny.args| = |n.args|
AVie{l,

Page 26 of 48

ny.args|}. FIND ny.args|i] = FIND np.args|i]

Page 28 of 48

The Implementation V

Example:

Are 1 and 2 congruent?

fn fields — both f

of arguments — same

left arguments f(a, b) and a — both congruent to 3
right arguments b and b — both 4 (congruent)

Therefore 1 and 2 are congruent.

Page 29 of 48

Decision Procedure: Tg-satisfiability

Given X g-formula
Fisg=ti A ASyp=tm A Smp1 F tmer A o+ A Sy # by,

with subterm set Sg, perform the following steps:

1. Construct the initial DAG for the subterm set Sg.
2. Forie{l,..., m}, MERGE s; t;.
3. If FIND s; = FIND t; for some i € {m+1,...,n}, return

unsatisfiable.

. Otherwise (if FIND s; # FIND t; for all i € {m+1,...,n})
return satisfiable.

~

Page 31 of 48

The Implementation VI

ME! function

let rec MERGE /; ip =
if FIND /; # FIND ip then begin
let P; = CCPAR /i in
let P, = CCPAR iy in
UNION 71 fp;
foreach t; € P, t € Pj, do
if FIND t; # FIND t A CONGRUENT t; tp

then MERGE t; tp
done
end

P, and P;, store the values of CCPAR iy and CCPAR i (before the
union).

Page 30 of 48

Example 1: Tg-Satisfiability

f(a,b)=a A f(f(a,b),b) #a

(1)

Initial DAG MERGE 2 3 MERGE 1 2
Py = {1} Pi={}
Py ={2) Py = {12}
UNION 2 3 UNION 12

CONGRUENT 1 2
FIND f(f(a, b), b) = a = FIND a = Unsatisfiable

Page 32 of 48

Given X g-formula

F: f(a,b)=a A f(f(a,b),b)#a.
The subterm set is

Sk ={a, b, f(a,b), f(f(a,b).b)} ,
resulting in the initial partition

(1) {{a}, {b}, {f(a,b)}, {f(f(a.b).D)}}

in which each term is its own congruence class. Fig (1)
Final partition (Fig (3))

() {{a.f(a,b). f(f(ab), b)}, {b}}

Note: dash edge ____ merge dictated by equalities in F
dotted edge deduced merge

Does

{{a.f(a,b),f(f(a,b),b)}, {b}} = F?
No, as f(f(a, b), b) ~ a, but F asserts that f(f(a,b),b) # a.
Hence, F is Tg-unsatisfiable. Page 33 of 48

Example 2: Tg-Satisfiability
AU = A ARG =2 1 1) %2

@‘@@@.

@‘@@@.

f(F(F(f(f(a)))) =a = MERGE50: Ps= {3) Po={1,4}
UNION 5 0
= MERGE 3 1: STOP.Why?
UNION 3 1

FIND f(a) = f(a) = FIND a = Unsatisfiable
Page 35 of 48

Example 2: Tg-Satisfiability
f(F(f(2))) = a A F(F(F(F(F(2)))) =a A F(a) #a

G D~G DG D-CD~-TD-TD O

Initial DAG

@‘@@@.

f(f(f(a)))=a = MERGE30: P3={4} Py={1} UNION3O
= MERGE41: P;={5} Py ={2} UNION41
= MERGE52: Ps={} P,={3} UNION52

Page 34 of 48
Given X g-formula
F f(f(f(2)) = a A FF(F(F(F(2))) = a A f(a) # 2

which induces the initial partition

L {{a}, {f@)}. {F(@}. {F@), (@)} {Fa)}) -
The equality £3(a) = a induces the partition
{{a, P@)}, {f(a), (2} {F2(a), F(a)}} -
The equality 5(a) = a induces the partition
Ha. f(a). f2(a). F(a). f(a). F*(a)}} -
Now, does

{{a.f(a). f3(2).F(a).f*(a). F*(a)}} = F?

No, as f(a) ~ a, but F asserts that f(a) # a. Hence, F is
Te-unsatisfiable.

N

w

Page 36 of 48

Theorem (Sound and Complete)

Quantifier-free conjunctive X g-formula F is Tg-satisfiable iff the
congruence closure algorithm returns satisfiable.

Page 37 of 48
Axioms of Teons
» reflexivity, symmetry, transitivity

» function (congruence) axioms:

Vxi, %, y1,¥2. X1 = X2 A y1=y» — cons(x1,y1) = cons(x, y2)

Vx,y.x =y — car(x) = car(y)
Vx,y. x =y — cdr(x) = cdr(y)

> predicate (congruence) axiom:
Vx,y.x =y — (atom(x) < atom(y))

>
(A1) (left projection
(A2) ¥x, y. cdr(cons(x,y)) =y

(A3) Vx. matom(x) — cons(car(x), cdr(x)) = x

(A4) ¥x, y. ~atom(cons(x, y)) (atom

¥x, y. car(cons(x, y)) = x

)

(right projection)
(construction)

)

Page 39 of 48

Recursive Data Structures

Quantifier-free Theory of Lists Tcons

Tcons © {cons, car, cdr, atom, =}

: cons(x, y) list constructed by
appending y to x

® constructor cons

o left projector car : car(cons(x, y)) = x
o right projector cdr : cdr(cons(x,y)) = y

® atom : unary predicate

Page 38 of 48

Simplifications

» Consider only quantifier-free conjunctive ¥cons-formulae.
Convert non-conjunctive formula to DNF and check each
disjunct.

> —atom(u;) literals are removed:

‘replace —atom(u;) with u,-:cons(u,-l.u,?)‘

by the (construction) axiom.

> Result of a conjunctive ¥ cons-formula with literals
s=t s#t atom(u)

» Because of similarity to X g, we sometimes combine
Teons ULE-

Page 40 of 48

Algorithm: Tons-Satisfiability (the idea)

F: si=t1 A o A Sp=tm

generate congruence closure

A SmitF tmpn N N SpFE

search for contradiction

A atom(uy) A --- A atom(ug)
search for contradiction

where s;, tj, and u; are Tons-terms

Page 41 of 48

Example
Given (Econs U Xg)-formula
car(x) = car(y) A cdr(x) = cdr(y)
Fo A Satom(x) A —atom(y) A F(x) % f(y)
where the function symbol f is in £g

car(x) = car(y)

cdr(x) = cdr(y)

F': x=cons(uy,vi)
)

> > > >

y = cons(uz, va
f(x) # f(y)
Recall the projection axioms:
(A1) Vx,y. car(cons(x,y)) = x
(A2) V¥x.y. cdr(cons(x,y)) =y

GISICICIC

Page 43 of 48

Algorithm: T ,ns-Satisfiability

1. Construct the initial DAG for S
2. for each node n with n.fn = cons
> add car(n) and MERGE car(n) n.args[1]
» add cdr(n) and MERGE cdr(n) n.args[2]
by axioms (A1), (A2)
3. for 1 <i < m, MERGE s; t;
4. for m+1 < i < n, if FIND s; = FIND t;, return unsatisfiable
5. for 1 <i </, if 3v. FIND v = FIND u; A v.fn = cons,
return unsatisfiable
6. Otherwise, return satisfiable

Page 42 of 48

Example (cont): Initial DAG

© axioms (A1), (A2)

Page 44 of 48

Example (cont): MERGE

—_ explicit equation

by congruence

1: MERGE car(x) car(y)
2 : MERGE cdr(x) cdr(y)

3: MERGE x cons(us, v1)

13

Page 45 of 48

Example (cont): MERGE

4: MERGE y cons(u, v2)
13

Congruent

car(y) car(cons(us, v2))

FIND car(y) = uy

FIND car(cons(...)) = v

Congruent
cdr(y) cdr(cons(uz, v2))
FIND cdr(y) = v

FIND cdr(cons(...)) = va

I

Page 47 of 48

Example (cont): Propagation

Congruent:
car(x) car(cons(uy, v1))
FIND car(x) = car(y)

FIND car(cons(...)) = uy
Congruent:
cdr(x) cdr(cons(uy, v1))

FIND cdr(x) = cdr(y)
FIND cdr(cons(...)) = vy

Page 46 of 48

Example (cont): CONGRUENCE

Congruent:
cons(uy, v1) cons(u, v2)

Congruent: f(x) f(y)

FIND f(x) = f(y)
FIND f(y) = f(y)

F is unsatisfiable

Page 48 of 48

