
CS156: The Calculus of

Computation
Zohar Manna
Autumn 2008

Chapter 9: Quantifier-free Equality and Data
Structures

Page 1 of 48

The Theory of Equality TE

ΣE : {=, a, b, c , . . . , f , g , h, . . . , p, q, r , . . .}

uninterpreted symbols:
• constants a, b, c , . . .
• functions f , g , h, . . .
• predicates p, q, r , . . .

Example:

x = y ∧ f (x) 6= f (y) TE -unsatisfiable

f (x) = f (y) ∧ x 6= y TE -satisfiable

f (f (f (a))) = a ∧ f (f (f (f (f (a))))) = a ∧ f (a) 6= a

TE -unsatisfiable

x = g(y , z)→ f (x) = f (g(y , z)) TE -valid

Page 2 of 48

Axioms of TE

1. ∀x . x = x (reflexivity)

2. ∀x , y . x = y → y = x (symmetry)

3. ∀x , y , z . x = y ∧ y = z → x = z (transitivity)

define = to be an equivalence relation.

Axiom schema

4. for each positive integer n and n-ary function symbol f ,

∀x̄ , ȳ .

(
n∧

i=1

xi = yi

)

→ f (x̄) = f (ȳ)

(function)

For example, for unary f , the axiom is

∀x ′, y ′. x ′ = y ′ → f (x ′) = f (y ′)

Therefore,
x = g(y , z) → f (x) = f (g(y , z))

is TE -valid. (x ′ → x , y ′ → g(y , z)).

Page 3 of 48

Axiom schema

5. for each positive integer n and n-ary predicate symbol p,

∀x̄, ȳ .

(
n∧

i=1

xi = yi

)

→ (p(x̄)↔ p(ȳ))

(predicate)

Thus, for unary p, the axiom is

∀x ′, y ′.x ′ = y ′ → (p(x ′) ↔ p(y ′))

Therefore,
a = b → (p(a)↔ p(b))

is TE -valid. (x ′ → a, y ′ → b).

Page 4 of 48

We discuss TE -formulae without predicates

For example, for ΣE -formula

F : p(x) ∧ q(x , y) ∧ q(y , z) → ¬q(x , z)

introduce fresh constant • and fresh functions fp and fq, and
transform F to

G : fp(x) = • ∧ fq(x , y) = • ∧ fq(y , z) = • → fq(x , z) 6= • .

Page 5 of 48

Equivalence and Congruence Relations: Basics

Binary relation R over set S

• is an equivalence relation if

◮ reflexive: ∀s ∈ S . s R s;

◮ symmetric: ∀s1, s2 ∈ S . s1 R s2 → s2 R s1;

◮ transitive: ∀s1, s2, s3 ∈ S . s1 R s2 ∧ s2 R s3 → s1 R s3.

Example:
Define the binary relation ≡2 over the set Z of integers

m ≡2 n iff (m mod 2) = (n mod 2)

That is, m, n ∈ Z are related iff they are both even or both odd.
≡2 is an equivalence relation

• is a congruence relation if in addition

∀s, t.
n∧

i=1

si R ti → f (s) R f (t) .

Page 6 of 48

Classes

For

{
equivalence
congruence

}

relation R over set S ,

the

{
equivalence

congruence

}

class of s ∈ S under R is

[s]R
def
= {s ′ ∈ S : sRs ′} .

Example:

The equivalence class of 3 under ≡2 over Z is

[3]≡2
= {n ∈ Z : n is odd} .

Partitions

A partition P of S is a set of subsets of S that is

◮ total

(
⋃

S ′∈P

S ′

)

= S

◮ disjoint ∀S1,S2 ∈ P . S1 6= S2 → S1 ∩ S2 = ∅

Page 7 of 48

Quotient

The quotient S/R of S by

{
equivalence
congruence

}

relation R is the

partition of S into

{
equivalence
congruence

}

classes

S/R = {[s]R : s ∈ S} .

It satisfies total and disjoint conditions.

Example: The quotient Z/ ≡2 is a partition of Z. The set of
equivalence classes

{{n ∈ Z : n is odd}, {n ∈ Z : n is even}}

Note duality between relations and classes

Page 8 of 48

Refinements

Two binary relations R1 and R2 over set S .
R1 is a refinement of R2, R1 ≺ R2, if

∀s1, s2 ∈ S . s1R1s2 → s1R2s2 .

R1 refines R2.

Examples:

◮ For S = {a, b},
R1 : {aR1b} R2 : {aR2b, bR2b}

Then R1 ≺ R2

◮ For set Z

R1 : {xR1y : x mod 2 = y mod 2}
R2 : {xR2y : x mod 4 = y mod 4}

Then R2 ≺ R1.

Page 9 of 48

Closures

Given binary relation R over S .
The equivalence closure RE of R is the equivalence relation s.t.

◮ R refines RE , i.e. R ≺ RE ;

◮ for all other equivalence relations R ′ s.t. R ≺ R ′,
either R ′ = RE or RE ≺ R ′

That is, RE is the “smallest” equivalence relation that “covers” R .

Example: If S = {a, b, c , d} and R = {aRb, bRc , dRd}, then

• aREb, bREc , dREd since R ⊆ RE ;
• aREa, bREb, cREc by reflexivity;
• bREa, cREb by symmetry;
• aREc by transitivity;
• cREa by symmetry.

Similarly, the congruence closure RC of R is the “smallest”
congruence relation that “covers” R .

Page 10 of 48

TE -satisfiability and Congruence Classes I

Definition: For ΣE -formula

F : s1 = t1 ∧ · · · ∧ sm = tm ∧ sm+1 6= tm+1 ∧ · · · ∧ sn 6= tn

the subterm set SF of F is the set that contains precisely
the subterms of F .

Example: The subterm set of

F : f (a, b) = a ∧ f (f (a, b), b) 6= a

is
SF = {a, b, f (a, b), f (f (a, b), b)} .

Note: we consider only quantifier-free conjunctive ΣE -formulae.
Convert non-conjunctive formula F to DNF

∨

i Fi , where each
disjunct Fi is a conjunction of =, 6=. Check each disjunct Fi . F is
TE -satisfiable iff at least one disjunct Fi is TE -satisfiable.

Page 11 of 48

TE -satisfiability and Congruence Classes II
Given ΣE -formula F

F : s1 = t1 ∧ · · · ∧ sm = tm ∧ sm+1 6= tm+1 ∧ · · · ∧ sn 6= tn

with subterm set SF , F is TE -satisfiable iff there exists a

congruence relation ∼ over SF such that

◮ for each i ∈ {1, . . . ,m}, si ∼ ti ;

◮ for each i ∈ {m + 1, . . . , n}, si 6∼ ti .

Such congruence relation ∼ defines TE -interpretation I : (DI , αI)
of F . DI consists of |SF/ ∼ | elements, one for each congruence
class of SF under ∼.

Instead of writing I |= F for this TE -interpretation, we abbreviate
∼ |= F

The goal of the algorithm is to construct the congruence relation
over SF , or to prove that no congruence relation exists.

Page 12 of 48

Congruence Closure Algorithm

F : s1 = t1 ∧ · · · ∧ sm = tm
︸ ︷︷ ︸

generate congruence closure

∧ sm+1 6= tm+1 ∧ · · · ∧ sn 6= tn
︸ ︷︷ ︸

search for contradiction

Decide if F is TE -satisfiable.

The algorithm performs the following steps:

1. Construct the congruence closure ∼ of

{s1 = t1, . . . , sm = tm}

over the subterm set SF . Then

∼ |= s1 = t1 ∧ · · · ∧ sm = tm .

2. If for any i ∈ {m + 1, . . . , n}, si ∼ ti , return unsatisfiable.

3. Otherwise, ∼|= F , so return satisfiable.

How do we actually construct the congruence closure in Step 1?

Page 13 of 48

Congruence Closure Algorithm (Details)

Initially, begin with the finest congruence relation ∼0 given by the
partition

{{s} : s ∈ SF} .

That is, let each term over SF be its own congruence class.

Then, for each i ∈ {1, . . . ,m}, impose si = ti by merging the
congruence classes

[si]∼i−1
and [ti]∼i−1

to form a new congruence relation ∼i .
To accomplish this merging,

◮ form the union of [si]∼i−1
and [ti]∼i−1

◮ propagate any new congruences that arise within this union.

The new relation ∼i is a congruence relation in which si ∼ ti .

Page 14 of 48

Congruence Closure Algorithm: Example 1 I

Given ΣE -formula

F : f (a, b) = a ∧ f (f (a, b), b) 6= a

Construct initial partition by letting each member of the subterm
set SF be its own class:

1. {{a}, {b}, {f (a, b)}, {f (f (a, b), b)}}

According to the first literal f (a, b) = a, merge

{f (a, b)} and {a}

to form partition
2. {{a, f (a, b)}, {b}, {f (f (a, b), b)}}

According to the (function) congruence axiom,

f (a, b) ∼ a, b ∼ b implies f (f (a, b), b) ∼ f (a, b) ,

resulting in the new partition
3. {{a, f (a, b), f (f (a, b), b)}, {b}}

Page 15 of 48

Congruence Closure Algorithm: Example 1 II
This partition represents the congruence closure of SF .

Is it the case that

{{a, f (a, b), f (f (a, b), b)}, {b}} |= F ?

No, as f (f (a, b), b) ∼ a but F asserts that f (f (a, b), b) 6= a.
Hence, F is TE -unsatisfiable.

Page 16 of 48

Congruence Closure Algorithm: Example 2 I
Example: Given ΣE -formula

F : f (f (f (a))) = a ∧ f (f (f (f (f (a))))) = a ∧ f (a) 6= a

From the subterm set SF , the initial partition is
1. {{a}, {f (a)}, {f 2(a)}, {f 3(a)}, {f 4(a)}, {f 5(a)}}

where, for example, f 3(a) abbreviates f (f (f (a))).
According to the literal f 3(a) = a, merge

{f 3(a)} and {a} .

From the union,
2. {{a, f 3(a)}, {f (a)}, {f 2(a)}, {f 4(a)}, {f 5(a)}}

deduce the following congruence propagations:

f 3(a) ∼ a ⇒ f (f 3(a)) ∼ f (a) i.e. f 4(a) ∼ f (a)
and

f 4(a) ∼ f (a) ⇒ f (f 4(a)) ∼ f (f (a)) i.e. f 5(a) ∼ f 2(a)

Thus, the final partition for this iteration is the following:
3. {{a, f 3(a)}, {f (a), f 4(a)}, {f 2(a), f 5(a)}} .

Page 17 of 48

Congruence Closure Algorithm: Example 2 II
3. {{a, f 3(a)}, {f (a), f 4(a)}, {f 2(a), f 5(a)}} .

From the second literal, f 5(a) = a, merge

{f 2(a), f 5(a)} and {a, f 3(a)}

to form the partition

4. {{a, f 2(a), f 3(a), f 5(a)}, {f (a), f 4(a)}} .

Propagating the congruence

f 3(a) ∼ f 2(a) ⇒ f (f 3(a)) ∼ f (f 2(a)) i.e. f 4(a) ∼ f 3(a)

yields the partition

5. {{a, f (a), f 2(a), f 3(a), f 4(a), f 5(a)}} ,

which represents the congruence closure in which all of SF are
equal. Now,

{{a, f (a), f 2(a), f 3(a), f 4(a), f 5(a)}} |= F ?

No, as f (a) ∼ a, but F asserts that f (a) 6= a. Hence, F is
TE -unsatisfiable.

Page 18 of 48

Congruence Closure Algorithm: Example 3

Given ΣE -formula

F : f (x) = f (y) ∧ x 6= y .

The subterm set SF induces the following initial partition:

1. {{x}, {y}, {f (x)}, {f (y)}} .

Then f (x) = f (y) indicates to merge

{f (x)} and {f (y)} .

The union {f (x), f (y)} does not yield any new congruences, so the
final partition is

2. {{x}, {y}, {f (x), f (y)}} .

Does
{{x}, {y}, {f (x), f (y)}} |= F ?

Yes, as x 6∼ y , agreeing with x 6= y . Hence, F is TE -satisfiable.

Page 19 of 48

Implementation of Algorithm

Directed Acyclic Graph (DAG)

For ΣE -formula F , graph-based data structure for representing the
subterms of SF (and congruence relation between them).

1 : f

2 : f

3 : a 4 : b

f (f (a, b), b)

f (a, b)

a b

Efficient way for computing the congruence closure.

Page 20 of 48

Summary of idea

f (a, b) = a ∧ f (f (a, b), b) 6= a

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

Initial DAG f (a, b) = a ⇒
merge f (a, b) a

explicit equation

f (a, b) ∼ a, b ∼ b ⇒
f (f (a, b), b) ∼ f (a, b)

merge f (f (a, b), b)
f (a, b)

by congruence

find f (f (a, b), b) = a = find a

f (f (a, b), b) 6= a

}

⇒ Unsatisfiable

Page 21 of 48

DAG representation

type node = {

id : id

node’s unique identification number

fn : string

constant or function name

args : id list

list of function arguments

mutable find : id

the representative of the congruence class

mutable ccpar : id set

if the node is the representative for its

congruence class, then its ccpar

(congruence closure parents) are all

parents of nodes in its congruence class
}

Page 22 of 48

DAG Representation of node 2

type node = {

id : id

fn : string

args : id list

mutable find : id

mutable ccpar : id set

}

. . . 2

. . . f

. . . [3, 4]

. . . 3

. . . ∅

1 : f

2 : f

3 : a 4 : b

Page 23 of 48

DAG Representation of node 3

type node = {

id : id

fn : string

args : id list

mutable find : id

mutable ccpar : id set

}

. . . 3

. . . a

. . . []

. . . 3

. . . {1, 2}

1 : f

2 : f

3 : a 4 : b

Page 24 of 48

The Implementation I

find function

returns the representative of node’s congruence class

let rec find i =

let n = node i in

if n.find = i then i else find n.find

1 : f

2 : f

3 : a 4 : b

Example: find 2 = 3

find 3 = 3
3 is the representative of {2, 3}.

Page 25 of 48

The Implementation II
union function

let union i1 i2 =

let n1 = node (find i1) in

let n2 = node (find i2) in

n1.find ← n2.find;

n2.ccpar ← n1.ccpar ∪ n2.ccpar;

n1.ccpar ← ∅

n2 is the representative of the union class

Page 26 of 48

The Implementation III
Example

1 : f

2 : f

3 : a 4 : b

union 1 2 n1 = 1 n2 = 3
1.find← 3
3.ccpar← {1, 2}
1.ccpar← ∅

Page 27 of 48

The Implementation IV
ccpar function

Returns parents of all nodes in i ’s congruence class

let ccpar i =

(node (find i)).ccpar

congruent predicate

Test whether i1 and i2 are congruent

let congruent i1 i2 =

let n1 = node i1 in

let n2 = node i2 in

n1.fn = n2.fn

∧ |n1.args| = |n2.args|

∧ ∀i ∈ {1, . . . , |n1.args|}. find n1.args[i] = find n2.args[i]

Page 28 of 48

The Implementation V
Example:

1 : f

2 : f

3 : a 4 : b

Are 1 and 2 congruent?

fn fields — both f

of arguments — same
left arguments f (a, b) and a — both congruent to 3
right arguments b and b — both 4 (congruent)

Therefore 1 and 2 are congruent.

Page 29 of 48

The Implementation VI
merge function

let rec merge i1 i2 =

if find i1 6= find i2 then begin

let Pi1 = ccpar i1 in

let Pi2 = ccpar i2 in

union i1 i2;

foreach t1 ∈ Pi1 , t2 ∈ Pi2 do

if find t1 6= find t2 ∧ congruent t1 t2

then merge t1 t2
done

end

Pi1 and Pi2 store the values of ccpar i1 and ccpar i2 (before the
union).

Page 30 of 48

Decision Procedure: TE -satisfiability

Given ΣE -formula

F : s1 = t1 ∧ · · · ∧ sm = tm ∧ sm+1 6= tm+1 ∧ · · · ∧ sn 6= tn ,

with subterm set SF , perform the following steps:

1. Construct the initial DAG for the subterm set SF .

2. For i ∈ {1, . . . ,m}, merge si ti .

3. If find si = find ti for some i ∈ {m + 1, . . . , n}, return
unsatisfiable.

4. Otherwise (if find si 6= find ti for all i ∈ {m + 1, . . . , n})
return satisfiable.

Page 31 of 48

Example 1: TE -Satisfiability

f (a, b) = a ∧ f (f (a, b), b) 6= a

(1) 1 : f

2 : f

3 : a 4 : b

(2) 1 : f

2 : f

3 : a 4 : b

(3) 1 : f

2 : f

3 : a 4 : b

Initial DAG
merge 2 3

P2 = {1}

P3 = {2}

union 2 3

congruent 1 2

merge 1 2

P1 = {}

P2 = {1, 2}

union 1 2

find f (f (a, b), b) = a = find a ⇒ Unsatisfiable

Page 32 of 48

Given ΣE -formula

F : f (a, b) = a ∧ f (f (a, b), b) 6= a .

The subterm set is

SF = {a, b, f (a, b), f (f (a, b), b)} ,

resulting in the initial partition

(1) {{a}, {b}, {f (a, b)}, {f (f (a, b), b)}}

in which each term is its own congruence class. Fig (1).

Final partition (Fig (3))

(2) {{a, f (a, b), f (f (a, b), b)}, {b}}

Note: dash edge merge dictated by equalities in F

dotted edge deduced merge

Does
{{a, f (a, b), f (f (a, b), b)}, {b}} |= F ?

No, as f (f (a, b), b) ∼ a, but F asserts that f (f (a, b), b) 6= a.
Hence, F is TE -unsatisfiable. Page 33 of 48

Example 2: TE -Satisfiability

f (f (f (a))) = a ∧ f (f (f (f (f (a))))) = a ∧ f (a) 6= a

5 : f 4 : f 3 : f 2 : f 1 : f 0 : a (1)

Initial DAG

5 : f 4 : f 3 : f 2 : f 1 : f 0 : a (2)

f (f (f (a))) = a ⇒ merge 3 0 : P3 = {4} P0 = {1} union 3 0

⇒ merge 4 1 : P4 = {5} P1 = {2} union 4 1

⇒ merge 5 2 : P5 = {} P2 = {3} union 5 2

Page 34 of 48

Example 2: TE -Satisfiability

f (f (f (a))) = a ∧ f (f (f (f (f (a))))) = a ∧ f (a) 6= a

5 : f 4 : f 3 : f 2 : f 1 : f 0 : a (2)

5 : f 4 : f 3 : f 2 : f 1 : f 0 : a (3)

f (f (f (f (f (a))))) = a ⇒ merge 5 0 : P5 = {3} P0 = {1, 4}

union 5 0

⇒ merge 3 1 : STOP .Why?

union 3 1

find f (a) = f (a) = find a ⇒ Unsatisfiable
Page 35 of 48

Given ΣE -formula

F : f (f (f (a))) = a ∧ f (f (f (f (f (a))))) = a ∧ f (a) 6= a ,

which induces the initial partition

1. {{a}, {f (a)}, {f 2(a)}, {f 3(a)}, {f 4(a)}, {f 5(a)}} .

The equality f 3(a) = a induces the partition

2. {{a, f 3(a)}, {f (a), f 4(a)}, {f 2(a), f 5(a)}} .

The equality f 5(a) = a induces the partition

3. {{a, f (a), f 2(a), f 3(a), f 4(a), f 5(a)}} .

Now, does

{{a, f (a), f 2(a), f 3(a), f 4(a), f 5(a)}} |= F ?

No, as f (a) ∼ a, but F asserts that f (a) 6= a. Hence, F is
TE -unsatisfiable.

Page 36 of 48

Theorem (Sound and Complete)

Quantifier-free conjunctive ΣE -formula F is TE -satisfiable iff the
congruence closure algorithm returns satisfiable.

Page 37 of 48

Recursive Data Structures

Quantifier-free Theory of Lists Tcons

Σcons : {cons, car, cdr, atom, =}

• constructor cons : cons(x , y) list constructed by
appending y to x

• left projector car : car(cons(x , y)) = x

• right projector cdr : cdr(cons(x , y)) = y

• atom : unary predicate

Page 38 of 48

Axioms of Tcons

◮ reflexivity, symmetry, transitivity

◮ function (congruence) axioms:

∀x1, x2, y1, y2. x1 = x2 ∧ y1 = y2 → cons(x1, y1) = cons(x2, y2)

∀x , y . x = y → car(x) = car(y)

∀x , y . x = y → cdr(x) = cdr(y)

◮ predicate (congruence) axiom:

∀x , y . x = y → (atom(x) ↔ atom(y))

◮

(A1) ∀x , y . car(cons(x , y)) = x (left projection)

(A2) ∀x , y . cdr(cons(x , y)) = y (right projection)

(A3) ∀x . ¬atom(x)→ cons(car(x), cdr(x)) = x (construction)

(A4) ∀x , y . ¬atom(cons(x , y)) (atom)

Page 39 of 48

Simplifications

◮ Consider only quantifier-free conjunctive Σcons-formulae.
Convert non-conjunctive formula to DNF and check each
disjunct.

◮ ¬atom(ui) literals are removed:

replace ¬atom(ui) with ui = cons(u1
i , u

2
i)

by the (construction) axiom.

◮ Result of a conjunctive Σcons-formula with literals

s = t s 6= t atom(u)

◮ Because of similarity to ΣE , we sometimes combine
Σcons ∪ ΣE .

Page 40 of 48

Algorithm: Tcons-Satisfiability (the idea)

F : s1 = t1 ∧ · · · ∧ sm = tm
︸ ︷︷ ︸

generate congruence closure

∧ sm+1 6= tm+1 ∧ · · · ∧ sn 6= tn
︸ ︷︷ ︸

search for contradiction

∧ atom(u1) ∧ · · · ∧ atom(uℓ)
︸ ︷︷ ︸

search for contradiction

where si , ti , and ui are Tcons-terms

Page 41 of 48

Algorithm: Tcons-Satisfiability

1. Construct the initial DAG for SF

2. for each node n with n.fn = cons
◮ add car(n) and merge car(n) n.args[1]
◮ add cdr(n) and merge cdr(n) n.args[2]

by axioms (A1), (A2)

3. for 1 ≤ i ≤ m, merge si ti

4. for m + 1 ≤ i ≤ n, if find si = find ti , return unsatisfiable

5. for 1 ≤ i ≤ ℓ, if ∃v . find v = find ui ∧ v .fn = cons,
return unsatisfiable

6. Otherwise, return satisfiable

car cdr

cons

x y

Page 42 of 48

Example

Given (Σcons ∪ΣE)-formula

F :
car(x) = car(y) ∧ cdr(x) = cdr(y)

∧ ¬atom(x) ∧ ¬atom(y) ∧ f (x) 6= f (y)

where the function symbol f is in ΣE

F ′ :

car(x) = car(y) ∧ (1)

cdr(x) = cdr(y) ∧ (2)

x = cons(u1, v1) ∧ (3)

y = cons(u2, v2) ∧ (4)

f (x) 6= f (y) (5)

Recall the projection axioms:

(A1) ∀x , y . car(cons(x , y)) = x

(A2) ∀x , y . cdr(cons(x , y)) = y

Page 43 of 48

Example (cont): Initial DAG

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

axioms (A1), (A2)

Page 44 of 48

Example (cont): merge

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(1) (2)

(3)

explicit equation

by congruence

1 : merge car(x) car(y)

2 : merge cdr(x) cdr(y)

3 : merge x cons(u1, v1)

⇓

Page 45 of 48

Example (cont): Propagation

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

3A
3B

Congruent:

car(x) car(cons(u1, v1))

find car(x) = car(y)

find car(cons(. . .)) = u1

Congruent:

cdr(x) cdr(cons(u1, v1))

find cdr(x) = cdr(y)

find cdr(cons(. . .)) = v1

Page 46 of 48

Example (cont): merge

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(4)

4A 4B

4 : merge y cons(u2, v2)

⇓

Congruent:

car(y) car(cons(u2, v2))

find car(y) = u1

find car(cons(. . .)) = u2

Congruent:

cdr(y) cdr(cons(u2, v2))

find cdr(y) = v1

find cdr(cons(. . .)) = v2

⇓

Page 47 of 48

Example (cont): congruence

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

4C

4D

Congruent:

cons(u1, v1) cons(u2, v2)

Congruent: f (x) f (y)

5 :
find f (x) = f (y)

find f (y) = f (y)
⇓

F is unsatisfiable

Page 48 of 48

