CS156: The Calculus of Computation Zohar Manna Autumn 2008

Chapter 9: Quantifier-free Equality and Data Structures

Page 1 of 48

Axioms of T_F

1.
$$\forall x. x = x$$
 (reflexivity)
2. $\forall x. y. x = y \rightarrow y = x$ (symmetry)
3. $\forall x. y. z. x = y \land y = z \rightarrow x = z$ (transitivity)
define = to be an equivalence relation.

Axiom schema

4. for each positive integer n and n-ary function symbol f,

$$\forall \bar{x}, \bar{y}. \left(\bigwedge_{i=1}^n x_i = y_i \right) \to f(\bar{x}) = f(\bar{y})$$

(function)

For example, for unary f, the axiom is

$$\forall x', y'. \ x' = y' \ \rightarrow \ f(x') = f(y')$$

Therefore,

 $\begin{aligned} \mathbf{x} &= g(y,z) \rightarrow f(x) = f(g(y,z)) \\ \text{is } T_{E}\text{-valid. } (x' \rightarrow x, y' \rightarrow g(y,z)). \end{aligned}$

The Theory of Equality T_E

$$\Sigma_E$$
: {=, a, b, c, ..., f, g, h, ..., p, q, r, ...}

uninterpreted symbols:

- constants a, b, c, . . .
- functions f, g, h, \ldots
- predicates p, q, r, \dots

Example:

$$\begin{array}{ll} x = y \land f(x) \neq f(y) & T_E\text{-unsatisfiable} \\ f(x) = f(y) \land x \neq y & T_E\text{-satisfiable} \\ f(f(f(a))) = a \land f(f(f(f(f(a)))))) = a \land f(a) \neq a \\ & T_E\text{-unsatisfiable} \\ x = g(y, z) \to f(x) = f(g(y, z)) & T_E\text{-valid} \end{array}$$

Page 2 of 48

Axiom schema

5. for each positive integer n and n-ary predicate symbol p,

$$\forall \bar{x}, \bar{y}. \left(\bigwedge_{i=1}^{n} x_{i} = y_{i} \right) \rightarrow \left(p(\bar{x}) \leftrightarrow p(\bar{y}) \right)$$

(predicate)

Thus, for unary p, the axiom is

$$\forall x', y'. x' = y' \rightarrow (p(x') \leftrightarrow p(y'))$$

Therefore,

$$a = b \rightarrow (p(a) \leftrightarrow p(b))$$

is T_E -valid. $(x' \rightarrow a, y' \rightarrow b)$.

Page 4 of 48

We discuss T_E -formulae without predicates For example, for Σ_E -formula

 $F: p(x) \land q(x,y) \land q(y,z) \rightarrow \neg q(x,z)$

introduce fresh constant \bullet and fresh functions f_p and $f_q,$ and transform F to

$$G: f_p(x) = \bullet \land f_q(x, y) = \bullet \land f_q(y, z) = \bullet \rightarrow f_q(x, z) \neq \bullet$$

Equivalence and Congruence Relations: Basics

Binary relation R over set S

- · is an equivalence relation if
 - ▶ reflexive: $\forall s \in S. \ s \ R \ s$;
 - ▶ symmetric: $\forall s_1, s_2 \in S$. $s_1 R s_2 \rightarrow s_2 R s_1$;
 - ▶ transitive: $\forall s_1, s_2, s_3 \in S$. $s_1 R s_2 \land s_2 R s_3 \rightarrow s_1 R s_3$.

Example:

Define the binary relation \equiv_2 over the set \mathbb{Z} of integers

 $m \equiv_2 n$ iff $(m \mod 2) = (n \mod 2)$

That is, $m,n\in\mathbb{Z}$ are related iff they are both even or both odd. \equiv_2 is an equivalence relation

· is a congruence relation if in addition

$$\forall \overline{s}, \overline{t}. \bigwedge_{i=1}^n s_i R t_i \rightarrow f(\overline{s}) R f(\overline{t}) .$$

Page 6 of 48

Page 5 of 48

$$s]_R \stackrel{\text{def}}{=} \{s' \in S : sRs'\}$$
.

Example:

The equivalence class of 3 under \equiv_2 over \mathbb{Z} is

$$[3]_{\equiv_2} = \{n \in \mathbb{Z} : n \text{ is odd}\}$$

Partitions

A partition P of S is a set of subsets of S that is

► total
$$(\bigcup_{S' \in P} S') = S$$

► disjoint $\forall S_1, S_2 \in P. S_1 \neq S_2 \rightarrow S_1 \cap S_2 = \emptyset$
Page 7 of 48

Quotient

The quotient
$$S/R$$
 of S by $\begin{cases} equivalence \\ congruence \end{cases}$ relation R is the partition of S into $\begin{cases} equivalence \\ congruence \end{cases}$ classes $S/R = \{[s]_R : s \in S\}$.

It satisfies total and disjoint conditions.

Example: The quotient \mathbb{Z}/\equiv_2 is a partition of $\mathbb{Z}.$ The set of equivalence classes

 $\{\{n \in \mathbb{Z} : n \text{ is odd}\}, \{n \in \mathbb{Z} : n \text{ is even}\}\}$

Note duality between relations and classes

Page 8 of 48

Refinements

Two binary relations R_1 and R_2 over set S. R_1 is a refinement of R_2 , $R_1 \prec R_2$, if

 $\forall s_1, s_2 \in S, s_1R_1s_2 \rightarrow s_1R_2s_2$

R1 refines R2.

Examples:

► For
$$S = \{a, b\}$$
,
 $R_1 : \{aR_1b\}$ $R_2 : \{aR_2b, bR_2b\}$
Then $R_1 \prec R_2$

$$R_1 : \{xR_1y : x \mod 2 = y \mod 2\}$$

$$R_2 : \{xR_2y : x \mod 4 = y \mod 4\}$$

Then $R_2 \prec R_1$.

101 (B) (S) (S) (S) (B) (O) Page 9 of 48

T_F-satisfiability and Congruence Classes I

<u>Definition</u>: For Σ_F -formula

 $F: s_1 = t_1 \land \cdots \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land \cdots \land s_n \neq t_n$

the subterm set S_{F} of F is the set that contains precisely the subterms of F

Example: The subterm set of

 $F: f(a, b) = a \land f(f(a, b), b) \neq a$

is

 $S_{F} = \{a, b, f(a, b), f(f(a, b), b)\}$

Note: we consider only quantifier-free conjunctive Σ_F -formulae. Convert non-conjunctive formula F to DNF V_i F_i, where each disjunct F_i is a conjunction of $=, \neq$. Check each disjunct F_i . F is T_F -satisfiable iff at least one disjunct F_i is T_F -satisfiable.

101 101 121 121 2 DOG Page 11 of 48

Closures

Given binary relation R over S.

- The equivalence closure R^E of R is the equivalence relation s.t.
 - ▶ R refines R^E , i.e. $R \prec R^E$.
 - for all other equivalence relations R' s.t. R ≺ R'. either $R' = R^E$ or $R^E \prec R'$

That is, R^E is the "smallest" equivalence relation that "covers" R.

Example: If $S = \{a, b, c, d\}$ and $R = \{aRb, bRc, dRd\}$, then

• aR^Eb , bR^Ec , dR^Ed since $R \subseteq R^E$. • aR^Ea, bR^Eb, cR^Ec by reflexivity: bR^Ea.cR^Eb by symmetry: • aR^Ec by transitivity;

• cR^Ea by symmetry.

Similarly, the congruence closure R^{C} of R is the "smallest" congruence relation that "covers" R.

> 000 (40) (20) (20) 2 000 Page 10 of 48

T_F-satisfiability and Congruence Classes II

Given Σ_F -formula F

 $F: s_1 = t_1 \land \cdots \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land \cdots \land s_n \neq t_n$

with subterm set S_F , F is T_E -satisfiable iff there exists a congruence relation \sim over S_F such that

- ▶ for each $i \in \{1, \ldots, m\}$, $s_i \sim t_i$:
- ▶ for each $i \in \{m+1, \ldots, n\}$, $s_i \not\sim t_i$.

Such congruence relation \sim defines $T_{\rm F}$ -interpretation $I: (D_I, \alpha_I)$ of F. D_I consists of $|S_F/ \sim |$ elements, one for each congruence class of S_{F} under \sim .

Instead of writing $I \models F$ for this T_{F} -interpretation, we abbreviate $\sim \models F$

The goal of the algorithm is to construct the congruence relation over S_F , or to prove that no congruence relation exists. Page 12 of 48

Congruence Closure Algorithm

 $F: \underbrace{s_1 = t_1 \land \cdots \land s_m = t_m}_{\text{generate congruence closure}} \land \underbrace{s_{m+1} \neq t_{m+1} \land \cdots \land s_n \neq t_n}_{\text{search for contradiction}}$

Decide if F is T_E -satisfiable.

The algorithm performs the following steps:

1. Construct the congruence closure \sim of

$${s_1 = t_1, \dots, s_m = t_m}$$

over the subterm set S_F . Then

$$\sim \models s_1 = t_1 \land \cdots \land s_m = t_m$$
.

2. If for any $i \in \{m + 1, ..., n\}$, $s_i \sim t_i$, return unsatisfiable.

3. Otherwise, $\sim \models F$, so return satisfiable.

How do we actually construct the congruence closure in Step 1? Page 13 of 48 $$\mathsf{Page}$$ 13 of 48

Congruence Closure Algorithm: Example 1 I

Given Σ_E -formula

$$F: f(a, b) = a \land f(f(a, b), b) \neq a$$

Construct initial partition by letting each member of the subterm set S_F be its own class:

1. {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}} According to the first literal f(a, b) = a, merge {f(a, b)} and {a} to form partition 2. {{a, f(a, b)}, {b}, {f(f(a, b), b)}} According to the (function) congruence axiom, f(a, b) < a, b < b implies f(f(a, b), b) < f(a, b), resulting in the new partition 3. {{a, f(a, b), f(f(a, b), b)}, {b}}

Page 15 of 48

Congruence Closure Algorithm (Details)

Initially, begin with the finest congruence relation \sim_0 given by the partition

$$\{\{s\} : s \in S_F\}$$

That is, let each term over S_F be its own congruence class. Then, for each $i \in \{1, ..., m\}$, impose $s_i = t_i$ by merging the congruence classes

 $[s_i]_{\sim_{i-1}}$ and $[t_i]_{\sim_{i-1}}$

to form a new congruence relation $\sim_i.$ To accomplish this merging,

- ▶ form the union of [s_i]_{∼i−1} and [t_i]_{∼i−1}
- propagate any new congruences that arise within this union.

The new relation \sim_i is a congruence relation in which $s_i \sim t_i$.

Page 14 of 48

Congruence Closure Algorithm: Example 1 II

This partition represents the congruence closure of $\mathcal{S}_{\mathcal{F}}.$ Is it the case that

$$\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\} \models F ?$$

No, as $f(f(a, b), b) \sim a$ but F asserts that $f(f(a, b), b) \neq a$. Hence, F is T_{E} -unsatisfiable.

Page 16 of 48

Congruence Closure Algorithm: Example 2 I

Example: Given Σ_E -formula

 $F: f(f(f(a))) = a \land f(f(f(f(a)))) = a \land f(a) \neq a$ From the subterm set S_F , the initial partition is 1. {{a}, {f(a)}, { $f^{2}(a)$ }, { $f^{3}(a)$ }, { $f^{4}(a)$ }, { $f^{5}(a)$ }} where, for example, $f^{3}(a)$ abbreviates f(f(f(a))). According to the literal $f^3(a) = a$, merge $\{f^{3}(a)\}$ and $\{a\}$. From the union. 2. { $\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$ deduce the following congruence propagations: $f^{3}(a) \sim a \Rightarrow f(f^{3}(a)) \sim f(a)$ i.e. $f^{4}(a) \sim f(a)$ and $f^4(a) \sim f(a) \Rightarrow f(f^4(a)) \sim f(f(a))$ i.e. $f^5(a) \sim f^2(a)$ Thus, the final partition for this iteration is the following: 3. {{ $a, f^{3}(a)$ }, { $f(a), f^{4}(a)$ }, { $f^{2}(a), f^{5}(a)$ }}. 101 (B) (S) (S) (S) (B) (O) Page 17 of 48

Congruence Closure Algorithm: Example 3

Given Σ_E -formula

$$F: f(x) = f(y) \land x \neq y.$$

The subterm set SF induces the following initial partition:

1. $\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$.

Then f(x) = f(y) indicates to merge

$$\{f(x)\}\ \text{and}\ \{f(y)\}\ .$$

The union $\{f(x), f(y)\}$ does not yield any new congruences, so the final partition is

2. $\{\{x\}, \{y\}, \{f(x), f(y)\}\}$.

Does

 $\{\{x\}, \{y\}, \{f(x), f(y)\}\} \models F ?$

Yes, as $x \not\sim y$, agreeing with $x \neq y$. Hence, F is T_{E} -satisfiable.

Page 19 of 48

Congruence Closure Algorithm: Example 2 II

3. $\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$.

From the second literal, $f^5(a) = a$, merge

 $\{f^2(a), f^5(a)\}$ and $\{a, f^3(a)\}$

to form the partition

4. $\{\{a, f^2(a), f^3(a), f^5(a)\}, \{f(a), f^4(a)\}\}$.

Propagating the congruence

$$f^{3}(a) \sim f^{2}(a) \Rightarrow f(f^{3}(a)) \sim f(f^{2}(a))$$
 i.e. $f^{4}(a) \sim f^{3}(a)$

yields the partition

5. $\{\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\}\}$,

which represents the congruence closure in which all of $\mathcal{S}_{\mathcal{F}}$ are equal. Now,

$$\{\{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}\} \models F ?$$

No, as $f(a) \sim a$, but F asserts that $f(a) \neq a$. Hence, F is T_{F} -unsatisfiable.

Page 18 of 48

Implementation of Algorithm

Directed Acyclic Graph (DAG)

For Σ_E -formula *F*, graph-based data structure for representing the subterms of S_F (and congruence relation between them).

Efficient way for computing the congruence closure.

Summary of idea

DAG representation

Page 23 of 48

penode = {		
id	:	id
		node's unique identification number
fn	:	string
		constant or function name
args	;	id list
		list of function arguments
mutable find	;	id
		the representative of the congruence class
mutable ccpar	;	id set
		if the node is the representative for its
		congruence class, then its ccpar
		(congruence closure parents) are all
		parents of nodes in its congruence class

Page 22 of 48

DAG Representation of node 3

type node $=$ {			
id	:	id	3
fn	:	string	а
args	:	id list	[]
mutable find	1	id	3
mutable ccpar	:	id set	{1,2}
}			

The Implementation I

FIND function

returns the representative of node's congruence class

let rec FIND i =let n = NODE i in if n find = i then i else FIND n find

Example: FIND 2 = 3FIND 3 = 33 is the representative of {2,3}.

101 (B) (S) (S) (S) (B) (O) Page 25 of 48

101 101 121 121 2 DOG

Page 27 of 48

The Implementation III

Example

UNION 1.2 $n_1 = 1$ $n_2 = 3$ 1 find \leftarrow 3 $3.ccpar \leftarrow \{1,2\}$ $1.ccpar \leftarrow \emptyset$

The Implementation II

UNION function

let UNION $i_1 i_2 =$ let $n_1 = \text{NODE}(\text{FIND } i_1)$ in let $n_2 = \text{NODE}(\text{FIND } i_2)$ in $n_1.find \leftarrow n_2.find;$ $n_2.ccpar \leftarrow n_1.ccpar \cup n_2.ccpar;$ $n_1.ccpar \leftarrow \emptyset$

 n_2 is the representative of the union class

101 (B) (2) (2) (2) 2 000 Page 26 of 48

The Implementation IV

CCPAR function Returns parents of all nodes in i's congruence class

> let CCPAR i =(NODE (FIND i)).ccpar

CONGRUENT predicate Test whether *i*₁ and *i*₂ are congruent

```
let CONGRUENT i1 i2 =
  let n_1 = \text{NODE } i_1 in
  let n_2 = \text{NODE } i_2 in
  n_1.fn = n_2.fn
     \wedge |n_1.args| = |n_2.args|
     \land \forall i \in \{1, \dots, |n_1.args|\}. FIND n_1.args[i] = FIND n_2.args[i]
                                                   101 (0) (2) (2) (2) 2 040
                                                              Page 28 of 48
```


The Implementation V

Example:

Are 1 and 2 congruent?

Therefore 1 and 2 are congruent.

Page 29 of 48

Decision Procedure: T_E -satisfiability Given Σ_E -formula

$$F: s_1 = t_1 \land \cdots \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land \cdots \land s_n \neq t_n ,$$

with subterm set S_F , perform the following steps:

- 1. Construct the initial DAG for the subterm set S_F .
- 2. For $i \in \{1, ..., m\}$, MERGE $s_i t_i$.
- If FIND s_i = FIND t_i for some i ∈ {m + 1,...,n}, return unsatisfiable.
- Otherwise (if FIND s_i ≠ FIND t_i for all i ∈ {m + 1,...,n}) return satisfiable.

The Implementation VI MERGE function

let rec MERCE $i_1 i_2 =$ if FIND $i_1 \neq$ FIND i_2 then begin let $P_{i_1} = CCPAR i_1$ in let $P_{i_2} = CCPAR i_2$ in UNION $i_1 i_2$: foreach $t_1 \in P_{i_1}, t_2 \in P_{i_2}$ do if FIND $t_1 \neq$ FIND $t_2 \land$ CONGRUENT $t_1 t_2$ then MERCE $t_1 t_2$ done end

 P_{i_1} and P_{i_2} store the values of CCPAR i_1 and CCPAR i_2 (before the union).

Page 30 of 48

Example 1: T_E-Satisfiability

$$f(a, b) = a \land f(f(a, b), b) \neq a$$

Given Σ_E -formula

 $F: f(a,b) = a \land f(f(a,b),b) \neq a$.

The subterm set is

 $S_F = \{a, b, f(a, b), f(f(a, b), b)\},\$

resulting in the initial partition

(1) {{a}, {b}, {f(a, b)}, {f(f(a, b), b}}

in which each term is its own congruence class. Fig (1).

Final partition (Fig (3))

(2) {{a, f(a, b), f(f(a, b), b)}, {b}}

Note: dash edge ____ merge dictated by equalities in *F* dotted edge deduced merge

Does

$$\{a, f(a, b), f(f(a, b), b)\}, \{b\}\} \models F$$
?

No, as $f(f(a, b), b) \sim a$, but F asserts that $f(f(a, b), b) \neq a$. Hence, F is T_E -unsatisfiable. Page 33 of 48

Example 2: TE-Satisfiability

 \Rightarrow MERGE 3 1 : STOP. Why?

FIND $f(a) = f(a) = FIND \ a \Rightarrow$ Unsatisfiable Page 35 of 48

Example 2: T_E-Satisfiability

$$f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$$

$$\overbrace{5:f} \rightarrow \overbrace{4:f} \rightarrow \overbrace{3:f} \rightarrow \overbrace{2:f} \rightarrow \overbrace{1:f} \rightarrow \overbrace{0:a} (1)$$
Initial DAG

Page 34 of 48

Given Σ_E -formula

$$F: f(f(f(a))) = a \land f(f(f(f(a)))) = a \land f(a) \neq a,$$

which induces the initial partition

- $\begin{array}{ll} & 2. \ \left\{\{a, \ f^3(a)\}, \ \{f(a), \ f^4(a)\}, \ \{f^2(a), \ f^5(a)\} \right\} \ . \\ & \text{The equality } f^5(a) = a \text{ induces the partition} \end{array}$
- 3. {{a, f(a), $f^{2}(a)$, $f^{3}(a)$, $f^{4}(a)$, $f^{5}(a)$ }. Now, does

$$\{\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\}\} \models F ?$$

No, as $f(a) \sim a$, but F asserts that $f(a) \neq a$. Hence, F is T_{E} -unsatisfiable.

Theorem (Sound and Complete)

Quantifier-free conjunctive Σ_E -formula F is T_E -satisfiable iff the congruence closure algorithm returns satisfiable.

Recursive Data Structures

Quantifier-free Theory of Lists T_{cons}

 Σ_{cons} : {cons, car, cdr, atom, =}

- <u>constructor</u> cons : cons(x, y) list constructed by appending y to x
- left projector car : car(cons(x, y)) = x
- right projector cdr : cdr(cons(x, y)) = y
- atom : unary predicate

101 (B) (2) (2) 2 940

Page 37 of 48

Axioms of $T_{\rm cons}$

► reflexivity, symmetry, transitivity

function (congruence) axioms:

$$\begin{aligned} \forall x_1, x_2, y_1, y_2. \ x_1 &= x_2 \land \ y_1 &= y_2 \to \ \cos(x_1, y_1) = \cos(x_2, y_2) \\ \forall x, y. \ x &= y \to \ \operatorname{car}(x) = \operatorname{car}(y) \\ \forall x, y. \ x &= y \to \ \operatorname{cdr}(x) = \operatorname{cdr}(y) \end{aligned}$$

predicate (congruence) axiom:

$$\forall x, y. x = y \rightarrow (atom(x) \leftrightarrow atom(y))$$

►

$$\begin{array}{ll} (A1) \ \forall x, y. \ car(cons(x,y)) = x & (left \ projection) \\ (A2) \ \forall x, y. \ cdr(cons(x,y)) = y & (right \ projection) \\ (A3) \ \forall x. \ \neg atom(x) \rightarrow cons(car(x), cdr(x)) = x & (construction) \\ (A4) \ \forall x, y. \ \neg atom(cons(x,y)) & (atom) \\ \hline Page 39 \ of 48 \end{array}$$

Page 38 of 48

Simplifications

- Consider only quantifier-free conjunctive Σ_{cons}-formulae. Convert non-conjunctive formula to DNF and check each disjunct.
- ¬atom(u_i) literals are removed:

replace $\neg \operatorname{atom}(u_i)$ with $u_i = \operatorname{cons}(u_i^1, u_i^2)$ by the (construction) axiom.

Result of a conjunctive Σ_{cons}-formula with literals

$$s = t$$
 $s \neq t$ atom (u)

► Because of similarity to Σ_E , we sometimes combine $\Sigma_{cons} \cup \Sigma_E$.

Algorithm: T_{cons} -Satisfiability (the idea)

- F : $s_1 = t_1 \land \cdots \land s_m = t_m$ generate congruence closure
 - $\land s_{m+1} \neq t_{m+1} \land \cdots \land s_n \neq t_n$ search for contradiction
 - \land atom $(u_1) \land \cdots \land$ atom (u_ℓ) search for contradiction

where s_i , t_i , and u_i are T_{cons} -terms

Algorithm: T_{cons}-Satisfiability

- 1. Construct the initial DAG for SF
- for each node n with n.fn = cons
 - add car(n) and MERGE car(n) n.args[1]
 - add cdr(n) and MERGE cdr(n) n.args[2]

by axioms (A1), (A2)

- 3. for $1 \le i \le m$. MERGE s: t:
- 4. for $m + 1 \le i \le n$, if FIND $s_i = FIND t_i$, return unsatisfiable
- 5. for $1 \le i \le \ell$, if $\exists v$, FIND $v = FIND u_i \land v$, fn = cons. return unsatisfiable
- 6. Otherwise, return satisfiable

cons

Example (cont): Initial DAG cdr car cdr cdr car car cdr axioms (A1), (A2) cons cons

Recall the projection axioms:

- (A1) $\forall x, y. \operatorname{car}(\operatorname{cons}(x, y)) = x$
- (A2) $\forall x, y. \operatorname{cdr}(\operatorname{cons}(x, y)) = y$

101 (B) (2) (2) (2) 2 000 Page 41 of 48

Example

$$\begin{array}{ll} \mathsf{Given} \ (\Sigma_{\mathsf{cons}} \cup \Sigma_E)\text{-formula} \\ F : & \mathsf{car}(x) = \mathsf{car}(y) \ \land \ \mathsf{cdr}(x) = \mathsf{cdr}(y) \\ \land \ \neg \mathsf{atom}(x) \ \land \ \neg \mathsf{atom}(y) \ \land \ f(x) \neq f(y) \end{array}$$

where the function symbol f is in Σ_F

	car(x) = car(y)	^	(1)
	$\operatorname{cdr}(x) = \operatorname{cdr}(y)$	\wedge	(2)
F':	$x = cons(u_1, v_1)$	Λ	(3)
	$y = cons(u_2, v_2)$	Λ	(4)
	$f(x) \neq f(y)$		(5)

(a) (B) (2) (2) (2) Page 44 of 48

Page 47 of 48

Page 48 of 48