# CS156: The Calculus of <br> Computation 

Zohar Manna
Autumn 2008

Chapter 9: Quantifier-free Equality and Data Structures

Page 1 of 48
Axioms of $T_{E}$

1. $\forall x \cdot x=x$
2. $\forall x, y . x=y \rightarrow y=x$
(reflexivity)
(symmetry)
3. $\forall x, y, z . x=y \wedge y=z \rightarrow x=z$
(transitivity)
define $=$ to be an equivalence relation.
Axiom schema
4. for each positive integer $n$ and $n$-ary function symbol $f$,

$$
\forall \bar{x}, \bar{y} .\left(\bigwedge_{i=1}^{n} x_{i}=y_{i}\right) \rightarrow f(\bar{x})=f(\bar{y})
$$

(function)
For example, for unary $f$, the axiom is

$$
\forall x^{\prime}, y^{\prime} \cdot x^{\prime}=y^{\prime} \rightarrow f\left(x^{\prime}\right)=f\left(y^{\prime}\right)
$$

Therefore,

$$
x=g(y, z) \rightarrow f(x)=f(g(y, z))
$$

is $T_{E^{-}}$valid. $\left(x^{\prime} \rightarrow x, y^{\prime} \rightarrow g(y, z)\right)$.

## We discuss $T_{E}$-formulae without predicates

For example, for $\Sigma_{E}$-formula

$$
F: p(x) \wedge q(x, y) \wedge q(y, z) \rightarrow \neg q(x, z)
$$

introduce fresh constant $\bullet$ and fresh functions $f_{p}$ and $f_{q}$, and transform $F$ to

$$
G: f_{p}(x)=\bullet \wedge f_{q}(x, y)=\bullet \wedge f_{q}(y, z)=\bullet \rightarrow f_{q}(x, z) \neq \bullet
$$

## Classes

For $\left\{\begin{array}{l}\text { equivalence } \\ \text { congruence }\end{array}\right\}$ relation $R$ over set $S$,
the $\left\{\frac{\text { equivalence }}{\text { congruence }}\right\} \underline{\text { class of } s \in S \text { under } R \text { is }}$

$$
[s]_{R} \xlongequal{\text { def }}\left\{s^{\prime} \in S: s R s^{\prime}\right\} .
$$

## Example:

The equivalence class of 3 under $\equiv_{2}$ over $\mathbb{Z}$ is

$$
[3]_{\equiv_{2}}=\{n \in \mathbb{Z}: n \text { is odd }\} .
$$

## Partitions

A partition $P$ of $S$ is a set of subsets of $S$ that is


- disjoint $\forall S_{1}, S_{2} \in P . S_{1} \neq S_{2} \rightarrow S_{1} \cap S_{2}=\emptyset$


## Equivalence and Congruence Relations: Basics

Binary relation $R$ over set $S$

- is an equivalence relation if
- reflexive: $\forall s \in S . s R s$;
- symmetric: $\forall s_{1}, s_{2} \in S . s_{1} R s_{2} \rightarrow s_{2} R s_{1}$;
- transitive: $\forall s_{1}, s_{2}, s_{3} \in S . s_{1} R s_{2} \wedge s_{2} R s_{3} \rightarrow s_{1} R s_{3}$.

Example:
Define the binary relation $\equiv_{2}$ over the set $\mathbb{Z}$ of integers

$$
m \equiv_{2} n \quad \text { iff } \quad(m \bmod 2)=(n \bmod 2)
$$

That is, $m, n \in \mathbb{Z}$ are related iff they are both even or both odd. $\equiv_{2}$ is an equivalence relation

- is a congruence relation if in addition

$$
\forall \bar{s}, \bar{t} . \bigwedge_{i=1}^{n} s_{i} R t_{i} \rightarrow f(\bar{s}) R f(\bar{t})
$$

## Quotient

The quotient $S / R$ of $S$ by $\left\{\begin{array}{c}\text { equivalence } \\ \text { congruence }\end{array}\right\}$ relation $R$ is the partition of $S$ into $\left\{\begin{array}{l}\text { equivalence } \\ \text { congruence }\end{array}\right\}$ classes

$$
S / R=\left\{[s]_{R}: s \in S\right\}
$$

It satisfies total and disjoint conditions.
Example: The quotient $\mathbb{Z} / \equiv_{2}$ is a partition of $\mathbb{Z}$. The set of equivalence classes

$$
\{\{n \in \mathbb{Z}: n \text { is odd }\},\{n \in \mathbb{Z}: n \text { is even }\}\}
$$

Note duality between relations and classes

## Refinements

Two binary relations $R_{1}$ and $R_{2}$ over set $S$.
$R_{1}$ is a refinement of $R_{2}, R_{1} \prec R_{2}$, if

$$
\forall s_{1}, s_{2} \in S . s_{1} R_{1} s_{2} \rightarrow s_{1} R_{2} s_{2}
$$

$R_{1}$ refines $R_{2}$.

## Examples:

- For $S=\{a, b\}$,
$R_{1}:\left\{a R_{1} b\right\} \quad R_{2}:\left\{a R_{2} b, b R_{2} b\right\}$
Then $R_{1} \prec R_{2}$
- For set $\mathbb{Z}$
$R_{1}:\left\{x R_{1} y: x \bmod 2=y \bmod 2\right\}$
$R_{2}:\left\{x R_{2} y: x \bmod 4=y \bmod 4\right\}$
Then $R_{2} \prec R_{1}$.


## Page 9 of 48

## $T_{E}$-satisfiability and Congruence Classes I

## Definition: For $\Sigma_{E}$-formula

$$
F: s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_{n} \neq t_{n}
$$

the subterm set $S_{F}$ of $F$ is the set that contains precisely the subterms of $F$.
Example: The subterm set of

$$
F: f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

is

$$
S_{F}=\{a, b, f(a, b), f(f(a, b), b)\}
$$

Note: we consider only quantifier-free conjunctive $\Sigma_{E}$-formulae. Convert non-conjunctive formula $F$ to DNF $\bigvee_{i} F_{i}$, where each disjunct $F_{i}$ is a conjunction of $=, \neq$. Check each disjunct $F_{i} . F$ is $T_{E}$-satisfiable iff at least one disjunct $F_{i}$ is $T_{E}$-satisfiable.

## Closures

Given binary relation $R$ over $S$.
The equivalence closure $R^{E}$ of $R$ is the equivalence relation s.t.

- $R$ refines $R^{E}$, i.e. $R \prec R^{E}$;
- for all other equivalence relations $R^{\prime}$ s.t. $R \prec R^{\prime}$, either $R^{\prime}=R^{E}$ or $R^{E} \prec R^{\prime}$
That is, $R^{E}$ is the "smallest" equivalence relation that "covers" $R$.
Example: If $S=\{a, b, c, d\}$ and $R=\{a R b, b R c, d R d\}$, then
- $a R^{E} b, b R^{E} c, d R^{E} d$ since $R \subseteq R^{E}$;
- $a R^{E} a, b R^{E} b, c R^{E} c$ by reflexivity;
- $b R^{E} a, c R^{E} b \quad$ by symmetry;
- $a R^{E} C \quad$ by transitivity;
- $c R^{E}{ }_{a} \quad$ by symmetry.

Similarly, the congruence closure $R^{C}$ of $R$ is the "smallest" congruence relation that "covers" $R$.

Page 10 of 48

## $T_{E}$-satisfiability and Congruence Classes II

Given $\Sigma_{E}$-formula $F$

$$
F: s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_{n} \neq t_{n}
$$

with subterm set $S_{F}, F$ is $T_{E}$-satisfiable iff there exists a
congruence relation $\sim$ over $S_{F}$ such that

- for each $i \in\{1, \ldots, m\}, s_{i} \sim t_{i}$;
- for each $i \in\{m+1, \ldots, n\}, s_{i} \nsim t_{i}$.

Such congruence relation $\sim$ defines $T_{E}$-interpretation $I:\left(D_{l}, \alpha_{I}\right)$ of $F$. $D_{l}$ consists of $\left|S_{F} / \sim\right|$ elements, one for each congruence class of $S_{F}$ under $\sim$.

Instead of writing $/ \models F$ for this $T_{E}$-interpretation, we abbreviate

$$
\sim \models F
$$

The goal of the algorithm is to construct the congruence relation over $S_{F}$, or to prove that no congruence relation exists.

## Congruence Closure Algorithm

$F: \underbrace{s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m}}_{\text {generate congruence closure }} \wedge \underbrace{s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_{n} \neq t_{n}}_{\text {search for contradiction }}$
Decide if $F$ is $T_{E}$-satisfiable.
The algorithm performs the following steps:

1. Construct the congruence closure $\sim$ of

$$
\left\{s_{1}=t_{1}, \ldots, s_{m}=t_{m}\right\}
$$

over the subterm set $S_{F}$. Then

$$
\sim \models s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m}
$$

2. If for any $i \in\{m+1, \ldots, n\}, s_{i} \sim t_{i}$, return unsatisfiable.
3. Otherwise, $\sim \models F$, so return satisfiable.

How do we actually construct the congruence closure in Step 1?

## Congruence Closure Algorithm (Details)

Initially, begin with the finest congruence relation $\sim_{0}$ given by the partition

$$
\left\{\{s\}: s \in S_{F}\right\}
$$

That is, let each term over $S_{F}$ be its own congruence class. Then, for each $i \in\{1, \ldots, m\}$, impose $s_{i}=t_{i}$ by merging the congruence classes

$$
\left[s_{i}\right]_{\sim_{i-1}} \text { and }\left[t_{i}\right]_{\sim_{i-1}}
$$

to form a new congruence relation $\sim_{i}$.
To accomplish this merging,

- form the union of $\left[s_{i}\right]_{\sim_{i-1}}$ and $\left[t_{i}\right]_{\sim_{i-1}}$
- propagate any new congruences that arise within this union.

The new relation $\sim_{i}$ is a congruence relation in which $s_{i} \sim t_{i}$.

## Congruence Closure Algorithm: Example 1 II

This partition represents the congruence closure of $S_{F}$. Is it the case that

$$
\{\{a, f(a, b), f(f(a, b), b)\},\{b\}\} \vDash F ?
$$

No, as $f(f(a, b), b) \sim a$ but $F$ asserts that $f(f(a, b), b) \neq a$. Hence, $F$ is $T_{E \text {-unsatisfiable. }}$

## Congruence Closure Algorithm: Example 2 I

Example: Given $\Sigma_{E}$-formula

$$
F: f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge f(a) \neq a
$$

From the subterm set $S_{F}$, the initial partition is

1. $\left\{\{a\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{3}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}$
where, for example, $f^{3}(a)$ abbreviates $f(f(f(a)))$.
According to the literal $f^{3}(a)=a$, merge

$$
\left\{f^{3}(a)\right\} \text { and }\{a\} .
$$

From the union,

$$
\text { 2. }\left\{\left\{a, f^{3}(a)\right\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}
$$

deduce the following congruence propagations:

$$
f^{3}(a) \sim a \Rightarrow f\left(f^{3}(a)\right) \sim f(a) \text { i.e. } \quad f^{4}(a) \sim f(a)
$$

and

$$
f^{4}(a) \sim f(a) \Rightarrow f\left(f^{4}(a)\right) \sim f(f(a)) \text { i.e. } f^{5}(a) \sim f^{2}(a)
$$

Thus, the final partition for this iteration is the following:
3. $\left\{\left\{a, f^{3}(a)\right\},\left\{f(a), f^{4}(a)\right\},\left\{f^{2}(a), f^{5}(a)\right\}\right\}$.

Page 17 of 48

## Congruence Closure Algorithm: Example 3

Given $\Sigma_{E}$-formula

$$
F: f(x)=f(y) \wedge x \neq y .
$$

The subterm set $S_{F}$ induces the following initial partition:

$$
\text { 1. }\{\{x\},\{y\},\{f(x)\},\{f(y)\}\} \text {. }
$$

Then $f(x)=f(y)$ indicates to merge

$$
\{f(x)\} \quad \text { and } \quad\{f(y)\} .
$$

The union $\{f(x), f(y)\}$ does not yield any new congruences, so the final partition is
2. $\{\{x\},\{y\},\{f(x), f(y)\}\}$.

Does

$$
\{\{x\},\{y\},\{f(x), f(y)\}\} \models F ?
$$

Yes, as $x \nsim y$, agreeing with $x \neq y$. Hence, $F$ is $T_{E \text {-satisfiable. }}$

Congruence Closure Algorithm: Example 2 II
3. $\left\{\left\{a, f^{3}(a)\right\},\left\{f(a), f^{4}(a)\right\},\left\{f^{2}(a), f^{5}(a)\right\}\right\}$.

From the second literal, $f^{5}(a)=a$, merge

$$
\left\{f^{2}(a), f^{5}(a)\right\} \quad \text { and } \quad\left\{a, f^{3}(a)\right\}
$$

to form the partition
4. $\left\{\left\{a, f^{2}(a), f^{3}(a), f^{5}(a)\right\},\left\{f(a), f^{4}(a)\right\}\right\}$.

Propagating the congruence

$$
f^{3}(a) \sim f^{2}(a) \Rightarrow f\left(f^{3}(a)\right) \sim f\left(f^{2}(a)\right) \text { i.e. } f^{4}(a) \sim f^{3}(a)
$$

yields the partition

$$
\text { 5. }\left\{\left\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\right\}\right\}
$$

which represents the congruence closure in which all of $S_{F}$ are equal. Now,

$$
\left\{\left\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\right\}\right\} \models F ?
$$

No, as $f(a) \sim a$, but $F$ asserts that $f(a) \neq a$. Hence, $F$ is $T_{E}$-unsatisfiable.

Page 18 of 48

## Implementation of Algorithm

Directed Acyclic Graph (DAG)
For $\Sigma_{E}$-formula $F$, graph-based data structure for representing the subterms of $S_{F}$ (and congruence relation between them).


Efficient way for computing the congruence closure.

DAG representation

$$
\left.\begin{array}{r}
\text { FIND } f(f(a, b), b)=a=\text { FIND } a \\
f(f(a, b), b) \neq a
\end{array}\right\} \Rightarrow \text { Unsatisfiable }
$$

$$
\left.\begin{array}{l}
f(f(a, b), b) \neq a
\end{array}\right\} \Rightarrow \text { Unsatisfiable }
$$

$\left.\begin{array}{l}\text { FIND } f(f(a, b), b)=a=\text { FIND } a \\ f(f(a, b), b) \neq a\end{array}\right\} \Rightarrow$ Unsatisfiable


DAG Representation of node 2
$\left.\begin{array}{llll}\text { type node }=\{ & & \\ \quad \text { id } & : & \text { id } & \ldots .2 \\ \text { fn } & : & \text { string } & \ldots f \\ \text { args } & : & \text { id list } & \ldots[3,4] \\ \quad \text { mutable find } & : & \text { id } & \ldots 3 \\ \text { mutable ccpar } & : & \text { id set } & \ldots \emptyset\end{array}\right\}$


| type node $=\{$ |  |
| :---: | :---: |
| id | id |
|  | node's unique identification number |
| fn | string |
|  | constant or function name |
| args | id list |
|  | list of function arguments |
| mutable find | id |
|  | the representative of the congruence class |
| mutable ccpar | id set |
|  | if the node is the representative for its |
|  | congruence class, then its ccpar |
|  | (congruence closure parents) are all |
|  | parents of nodes in its congruence class |

Page 22 of 48

DAG Representation of node 3

The Implementation I

## FIND function

returns the representative of node's congruence class

```
let rec FIND i=
    let n= NODE i in
    if n.find = i then i else FIND n.find
```



Example:
FIND $2=3$
FIND $3=3$
3 is the representative of $\{2,3\}$.

The Implementation III
Example


[^0]The Implementation II
UNION function

$$
\begin{aligned}
& \text { let UNION } i_{1} i_{2}= \\
& \quad \text { let } n_{1}=\text { NODE }\left(\text { FIND } i_{1}\right) \text { in } \\
& \text { let } n_{2}=\text { NODE }\left(\text { FIND } i_{2}\right) \text { in } \\
& \quad n_{1} \cdot f \text { ind } \leftarrow n_{2} \cdot f \text { ind; } \\
& n_{2} \cdot \text { ccpar } \leftarrow n_{1} \cdot \text { ccpar } \cup n_{2} \cdot \text { ccpar; } \\
& n_{1} \cdot \text { ccpar } \leftarrow \emptyset
\end{aligned}
$$

$n_{2}$ is the representative of the union class

## The Implementation IV

## CCPAR function

Returns parents of all nodes in $i$ 's congruence class

$$
\begin{aligned}
& \text { let CCPAR } i= \\
& \quad(\text { NODE (FIND } i)) \cdot \text { ccpar }
\end{aligned}
$$

CONGRUENT predicate

```
Test whether \(i_{1}\) and \(i_{2}\) are congruent
let CONGRUENT \(i_{1} i_{2}=\)
    let \(n_{1}=\) NODE \(i_{1}\) in
    let \(n_{2}=\) NODE \(i_{2}\) in
    \(n_{1} \cdot \mathrm{fn}=n_{2} \cdot \mathrm{fn}\)
        \(\wedge\left|n_{1} \cdot \operatorname{args}\right|=\left|n_{2} \cdot \operatorname{args}\right|\)
        \(\wedge \forall i \in\left\{1, \ldots,\left|n_{1} \cdot \operatorname{args}\right|\right\}\). FIND \(n_{1} \cdot \operatorname{args}[i]=\) FIND \(n_{2}\).args \([i]\)
```



The Implementation V

## Example:



Are 1 and 2 congruent?

$$
\begin{array}{ll}
\text { fn fields } & \text { - both } f \\
\# \text { of arguments } & \text { - same }
\end{array}
$$

$$
\text { left arguments } f(a, b) \text { and } a \text { - both congruent to } 3
$$

$$
\text { right arguments } b \text { and } b \quad \text { - both } 4 \text { (congruent) }
$$

Therefore 1 and 2 are congruent.

## Decision Procedure: $T_{E}$-satisfiability

Given $\Sigma_{E}$-formula
$F: s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_{n} \neq t_{n}$,
with subterm set $S_{F}$, perform the following steps:

1. Construct the initial DAG for the subterm set $S_{F}$.
2. For $i \in\{1, \ldots, m\}$, MERGE $s_{i} t_{i}$.
3. If FIND $s_{i}=$ FIND $t_{i}$ for some $i \in\{m+1, \ldots, n\}$, return unsatisfiable.
4. Otherwise (if FIND $s_{i} \neq$ FIND $t_{i}$ for all $i \in\{m+1, \ldots, n\}$ ) return satisfiable.

## The Implementation VI

MERGE function

```
let rec MERGE \(i_{1} i_{2}=\)
    if FIND \(i_{1} \neq\) FIND \(i_{2}\) then begin
            let \(P_{i_{1}}=\) CCPAR \(i_{1}\) in
            let \(P_{i_{2}}=\) CCPAR \(i_{2}\) in
            UNION \(i_{1} i_{2}\);
            foreach \(t_{1} \in P_{i_{1}}, t_{2} \in P_{i_{2}}\) do
                if FIND \(t_{1} \neq\) FIND \(t_{2} \wedge\) CONGRUENT \(t_{1} t_{2}\)
                    then MERGE \(t_{1} t_{2}\)
            done
        end
```

$P_{i_{1}}$ and $P_{i_{2}}$ store the values of CCPAR $i_{1}$ and CCPAR $i_{2}$ (before the union).


## Example 1: $T_{E}$-Satisfiability

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$



Initial DAG


MERGE 23

$$
P_{2}=\{1\}
$$

$$
P_{3}=\{2\}
$$

$$
\text { UNION } 23
$$

$$
\text { ONGRUENT } 12
$$

FIND $f(f(a, b), b)=a=$ FIND $a \Rightarrow$ Unsatisfiable

Given $\Sigma_{E}$-formula

$$
F: f(a, b)=a \wedge f(f(a, b), b) \neq a .
$$

The subterm set is

$$
S_{F}=\{a, b, f(a, b), f(f(a, b), b)\}
$$

resulting in the initial partition
(1) $\{\{a\},\{b\},\{f(a, b)\},\{f(f(a, b), b)\}\}$
in which each term is its own congruence class. Fig (1).
Final partition (Fig (3))
(2) $\{\{a, f(a, b), f(f(a, b), b)\},\{b\}\}$

Note: dash edge _-_- merge dictated by equalities in $F$ dotted edge ........ deduced merge

Does

$$
\{\{a, f(a, b), f(f(a, b), b)\},\{b\}\} \models F ?
$$

No, as $f(f(a, b), b) \sim a$, but $F$ asserts that $f(f(a, b), b) \neq a$.
Hence, $F$ is $T_{E}$-unsatisfiable.
Page 33 of 48
Example 2: $T_{E}$-Satisfiability

$$
f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge f(a) \neq a
$$




$$
\begin{aligned}
f(f(f(f(f(a)))))=a \Rightarrow \text { MERGE 5 0 : } & P_{5}=\{3\} \quad P_{0}=\{1,4\} \\
& \text { UNION } 50 \\
\Rightarrow \text { MERGE 3 1: } & \text { STOP.Why? } \\
& \text { UNION 3 } 1
\end{aligned}
$$

## Example 2: $T_{E}$-Satisfiability

$$
\begin{equation*}
f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge f(a) \neq a \tag{1}
\end{equation*}
$$



Initial DAG


$$
\begin{array}{lllll}
f(f(f(a)))=a & \Rightarrow & \text { MERGE } 30: & P_{3}=\{4\} & P_{0}=\{1\}  \tag{2}\\
\text { UNION } 30 \\
& \Rightarrow & \text { MERGE 4 1: } & P_{4}=\{5\} & P_{1}=\{2\} \\
& \text { UNION } 41 \\
& \Rightarrow & \text { MERGE 5 2: } & P_{5}=\{ \} & P_{2}=\{3\}
\end{array} \text { UNION } 52
$$

Page 34 of 48
Given $\Sigma_{E-\text { formula }}$

$$
F: f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge f(a) \neq a,
$$

which induces the initial partition

1. $\left\{\{a\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{3}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}$.

The equality $f^{3}(a)=a$ induces the partition
2. $\left\{\left\{a, f^{3}(a)\right\},\left\{f(a), f^{4}(a)\right\},\left\{f^{2}(a), f^{5}(a)\right\}\right\}$.

The equality $f^{5}(a)=a$ induces the partition
3. $\left\{\left\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\right\}\right\}$.

Now, does

$$
\left\{\left\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\right\}\right\} \models F ?
$$

No, as $f(a) \sim a$, but $F$ asserts that $f(a) \neq a$. Hence, $F$ is $T_{E}$-unsatisfiable.

## Theorem (Sound and Complete)

Quantifier-free conjunctive $\Sigma_{E}$-formula $F$ is $T_{E}$-satisfiable iff the congruence closure algorithm returns satisfiable.

## Recursive Data Structures

Quantifier-free Theory of Lists $T_{\text {cons }}$
$\Sigma_{\text {cons }}:\{$ cons, car, cdr, atom, $=\}$

- constructor cons : cons $(x, y)$ list constructed by appending $y$ to $x$
- left projector $\mathrm{car}: \operatorname{car}(\operatorname{cons}(x, y))=x$
- right projector $\mathrm{cdr}: \operatorname{cdr}(\operatorname{cons}(x, y))=y$
- atom : unary predicate


## Axioms of $T_{\text {cons }}$

- reflexivity, symmetry, transitivity
- function (congruence) axioms:

$$
\begin{aligned}
& \forall x_{1}, x_{2}, y_{1}, y_{2} \cdot x_{1}=x_{2} \wedge y_{1}=y_{2} \rightarrow \operatorname{cons}\left(x_{1}, y_{1}\right)=\operatorname{cons}\left(x_{2}, y_{2}\right) \\
& \forall x, y \cdot x=y \rightarrow \operatorname{car}(x)=\operatorname{car}(y) \\
& \forall x, y \cdot x=y \rightarrow \operatorname{cdr}(x)=\operatorname{cdr}(y)
\end{aligned}
$$

- predicate (congruence) axiom:

$$
\forall x, y \cdot x=y \rightarrow(\operatorname{atom}(x) \leftrightarrow \operatorname{atom}(y))
$$

(A1) $\forall x, y \cdot \operatorname{car}(\operatorname{cons}(x, y))=x$
(left projection)
(A2) $\forall x, y \cdot \operatorname{cdr}(\operatorname{cons}(x, y))=y$ (right projection)
(A3) $\forall x, \neg \operatorname{atom}(x) \rightarrow \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x))=x \quad$ (construction)
(A4) $\forall x, y, \neg \operatorname{atom}(\operatorname{cons}(x, y))$
(atom)

## Simplifications

- Consider only quantifier-free conjunctive $\sum_{\text {cons }}$-formulae. Convert non-conjunctive formula to DNF and check each disjunct.
- $\neg$ atom $\left(u_{i}\right)$ literals are removed:

$$
\begin{array}{|lll|}
\hline \text { replace } & \neg \operatorname{atom}\left(u_{i}\right) & \text { with } \quad u_{i}=\operatorname{cons}\left(u_{i}^{1}, u_{i}^{2}\right) \\
\hline
\end{array}
$$

by the (construction) axiom.

- Result of a conjunctive $\Sigma_{\text {cons-formula }}$ with literals

$$
s=t \quad s \neq t \quad \operatorname{atom}(u)
$$

- Because of similarity to $\Sigma_{E}$, we sometimes combine $\Sigma_{\text {cons }} \cup \Sigma_{E}$.

Algorithm: $T_{\text {cons }}$-Satisfiability (the idea)

$$
F: \quad \underbrace{s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m}}_{\text {generate congruence closure }}
$$

$\wedge \underbrace{s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_{n} \neq t_{n}}$
search for contradiction
$\wedge \underbrace{\operatorname{atom}\left(u_{1}\right) \wedge \cdots \wedge \text { atom }\left(u_{\ell}\right)}$
search for contradiction
where $s_{i}, t_{i}$, and $u_{i}$ are $T_{\text {cons-terms }}$

## Algorithm: $T_{\text {cons }}$-Satisfiability

1. Construct the initial DAG for $S_{F}$
2. for each node $n$ with $n . f n=$ cons

- add $\operatorname{car}(n)$ and MERGE $\operatorname{car}(n)$ n.args[1]
- add $\operatorname{cdr}(n)$ and MERGE $\operatorname{cdr}(n) n \cdot \operatorname{args}[2]$ by axioms (A1), (A2)

3. for $1 \leq i \leq m$, MERGE $s_{i} t_{i}$

4. for $m+1 \leq i \leq n$, if FIND $s_{i}=$ FIND $t_{i}$, return unsatisfiable
5. for $1 \leq i \leq \ell$, if $\exists v$. FIND $v=$ FIND $u_{i} \wedge v . f n=$ cons, return unsatisfiable
6. Otherwise, return satisfiable

## Example

Given $\left(\Sigma_{\text {cons }} \cup \Sigma_{E}\right)$-formula

$$
\begin{gathered}
\operatorname{car}(x)=\operatorname{car}(y) \wedge \operatorname{cdr}(x)=\operatorname{cdr}(y) \\
\wedge \neg \operatorname{atom}(x) \wedge \neg \text { atom }(y) \wedge f(x) \neq f(y)
\end{gathered}
$$

where the function symbol $f$ is in $\Sigma_{E}$

$$
F^{\prime}: \quad \begin{align*}
& \operatorname{car}(x)=\operatorname{car}(y) \wedge  \tag{1}\\
& \operatorname{cdr}(x)=\operatorname{cdr}(y) \wedge  \tag{2}\\
& x=\operatorname{cons}\left(u_{1}, v_{1}\right) \wedge  \tag{3}\\
& y=\operatorname{cons}\left(u_{2}, v_{2}\right) \wedge  \tag{4}\\
&  \tag{5}\\
& f(x) \neq f(y)
\end{align*}
$$

Recall the projection axioms:
(A1) $\forall x, y \cdot \operatorname{car}(\operatorname{cons}(x, y))=x$
(A2) $\forall x, y \cdot \operatorname{cdr}(\operatorname{cons}(x, y))=y$

Example (cont): MERGE


Page 45 of 48


Page 46 of 48
Example (cont): CONGRUENCE



[^0]:    UNION $12 \quad n_{1}=1 \quad n_{2}=3$
    1.find $\leftarrow 3$
    3.ccpar $\leftarrow\{1,2\}$
    1.ccpar $\leftarrow \emptyset$

