# CS156: The Calculus of Computation Zohar Manna Autumn 2008

## Chapter 9: Quantifier-free Equality and Data Structures

イロト イポト イヨト イヨト

Page 1 of 48

The Theory of Equality  $T_E$ 

$$\Sigma_E$$
: {=, a, b, c, ..., f, g, h, ..., p, q, r, ...}

uninterpreted symbols:

- constants  $a, b, c, \ldots$
- functions  $f, g, h, \ldots$
- predicates  $p, q, r, \ldots$

Example:

$$\begin{array}{ll} x = y \ \land \ f(x) \neq f(y) & T_E\text{-unsatisfiable} \\ f(x) = f(y) \ \land \ x \neq y & T_E\text{-satisfiable} \\ f(f(f(a))) = a \ \land \ f(f(f(f(f(a))))) = a \ \land \ f(a) \neq a \\ & T_E\text{-unsatisfiable} \\ x = g(y, z) \rightarrow f(x) = f(g(y, z)) & T_E\text{-valid} \end{array}$$

#### Axioms of $T_E$

1. 
$$\forall x. x = x$$
  
2.  $\forall x, y. x = y \rightarrow y = x$   
3.  $\forall x, y, z. x = y \land y = z \rightarrow x = z$   
define = to be an equivalence relation.  
Axiom schema

4. for each positive integer n and n-ary function symbol f,

$$\forall \bar{x}, \bar{y}. \ \left( \bigwedge_{i=1}^n x_i = y_i \right) \to f(\bar{x}) = f(\bar{y})$$

(function)

For example, for unary f, the axiom is

$$\forall x', y'. \ x' = y' \ \rightarrow \ f(x') = f(y')$$

Therefore,

$$x = g(y, z) \rightarrow f(x) = f(g(y, z))$$

is  $T_E$ -valid.  $(x' \rightarrow x, y' \rightarrow g(y, z))$ .

(reflexivity) (symmetry) (transitivity)

Page 3 of 48

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うへの

Axiom schema

5. for each positive integer n and n-ary predicate symbol p,

$$\forall \bar{x}, \bar{y}. \ \left( \bigwedge_{i=1}^n x_i = y_i \right) \to (p(\bar{x}) \leftrightarrow p(\bar{y}))$$

(predicate)

Thus, for unary p, the axiom is

$$\forall x', y'. x' = y' \rightarrow (p(x') \leftrightarrow p(y'))$$

Therefore,

$$a = b \rightarrow (p(a) \leftrightarrow p(b))$$

is  $T_E$ -valid.  $(x' \rightarrow a, y' \rightarrow b)$ .

We discuss  $T_E$ -formulae without predicates

For example, for  $\Sigma_E$ -formula

$$F: p(x) \land q(x,y) \land q(y,z) \rightarrow \neg q(x,z)$$

introduce fresh constant  $\bullet$  and fresh functions  $f_p$  and  $f_q,$  and transform F to

$$G: f_p(x) = \bullet \land f_q(x,y) = \bullet \land f_q(y,z) = \bullet \rightarrow f_q(x,z) \neq \bullet$$

### Equivalence and Congruence Relations: Basics

Binary relation R over set S

- is an equivalence relation if
  - reflexive:  $\forall s \in S. \ s \ R \ s;$
  - ▶ symmetric:  $\forall s_1, s_2 \in S$ .  $s_1 R s_2 \rightarrow s_2 R s_1$ ;
  - ▶ transitive:  $\forall s_1, s_2, s_3 \in S$ .  $s_1 R s_2 \land s_2 R s_3 \rightarrow s_1 R s_3$ .

Example:

Define the binary relation  $\equiv_2$  over the set  $\mathbb{Z}$  of integers

 $m \equiv_2 n$  iff  $(m \mod 2) = (n \mod 2)$ 

That is,  $m, n \in \mathbb{Z}$  are related iff they are both even or both odd.  $\equiv_2$  is an equivalence relation

• is a congruence relation if in addition

$$\forall \overline{s}, \overline{t}. \bigwedge_{i=1}^{n} s_{i} R t_{i} \rightarrow f(\overline{s}) R f(\overline{t}) .$$

#### <u>Classes</u>

For 
$$\left\{\begin{array}{c} equivalence \\ congruence \end{array}\right\}$$
 relation  $R$  over set  $S$ ,  
the  $\left\{\begin{array}{c} equivalence \\ congruence \end{array}\right\}$  class of  $s \in S$  under  $R$  is

$$[s]_R \stackrel{\mathsf{def}}{=} \{s' \in S : sRs'\}$$
 .

#### Example:

The equivalence class of 3 under  $\equiv_2$  over  $\mathbb Z$  is

$$[3]_{\equiv_2} = \{n \in \mathbb{Z} : n \text{ is odd}\} .$$

#### **Partitions**

A partition P of S is a set of subsets of S that is

▶ total 
$$\left(\bigcup_{S' \in P} S'\right) = S$$
  
▶ disjoint  $\forall S_1, S_2 \in P. \ S_1 \neq S_2 \rightarrow S_1 \cap S_2 = \emptyset$   
Page 7 of 48

Quotient

The quotient 
$$S/R$$
 of  $S$  by  $\begin{cases} equivalence \\ congruence \end{cases}$  relation  $R$  is the partition of  $S$  into  $\begin{cases} equivalence \\ congruence \end{cases}$  classes

$$S/R = \{[s]_R : s \in S\}$$
.

It satisfies total and disjoint conditions.

<u>Example</u>: The quotient  $\mathbb{Z}/\equiv_2$  is a partition of  $\mathbb{Z}.$  The set of equivalence classes

 $\{\{n \in \mathbb{Z} : n \text{ is odd}\}, \{n \in \mathbb{Z} : n \text{ is even}\}\}$ 

Note duality between relations and classes

#### **Refinements**

Two binary relations  $R_1$  and  $R_2$  over set S.  $R_1$  is a <u>refinement</u> of  $R_2$ ,  $R_1 \prec R_2$ , if

$$\forall s_1, s_2 \in S. \ s_1 R_1 s_2 \ 
ightarrow \ s_1 R_2 s_2$$
 .

 $R_1$  refines  $R_2$ .

Examples:

#### <u>Closures</u>

Given binary relation R over S.

The equivalence closure  $R^E$  of R is the equivalence relation s.t.

- ▶ *R* refines  $R^E$ , i.e.  $R \prec R^E$ ;
- For all other equivalence relations R' s.t. R ≺ R', either R' = R<sup>E</sup> or R<sup>E</sup> ≺ R'

That is,  $R^E$  is the "smallest" equivalence relation that "covers" R.

Example:If  $S = \{a, b, c, d\}$  and  $R = \{aRb, bRc, dRd\}$ , then•  $aR^Eb, bR^Ec, dR^Ed$ since  $R \subseteq R^E$ ;•  $aR^Ea, bR^Eb, cR^Ec$ by reflexivity;•  $bR^Ea, cR^Eb$ by symmetry;•  $aR^Ec$ by transitivity;•  $cR^Ea$ by symmetry.

Similarly, the congruence closure  $R^C$  of R is the "smallest" congruence relation that "covers" R.

イロト イポト イヨト イヨト

Page 10 of 48

T<sub>E</sub>-satisfiability and Congruence Classes I

#### <u>Definition</u>: For $\Sigma_E$ -formula

 $F: s_1 = t_1 \land \cdots \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land \cdots \land s_n \neq t_n$ 

the subterm set  $S_F$  of F is the set that contains precisely the subterms of F.

Example: The subterm set of

$$F: f(a,b) = a \land f(f(a,b),b) \neq a$$

is

$$S_F = \{a, b, f(a, b), f(f(a, b), b)\}$$
.

<u>Note</u>: we consider only quantifier-free conjunctive  $\Sigma_E$ -formulae. Convert non-conjunctive formula F to DNF  $\bigvee_i F_i$ , where each disjunct  $F_i$  is a conjunction of  $=, \neq$ . Check each disjunct  $F_i$ . F is  $T_E$ -satisfiable iff at least one disjunct  $F_i$  is  $T_E$ -satisfiable.

## $T_E$ -satisfiability and Congruence Classes II Given $\Sigma_E$ -formula F

$$F: s_1 = t_1 \land \cdots \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land \cdots \land s_n \neq t_n$$

with subterm set  $S_F$ , F is <u> $T_E$ -satisfiable</u> iff there exists a congruence relation  $\sim$  over  $S_F$  such that

- for each  $i \in \{1, \ldots, m\}$ ,  $s_i \sim t_i$ ;
- for each  $i \in \{m+1,\ldots,n\}$ ,  $s_i \not\sim t_i$ .

Such congruence relation  $\sim$  defines  $T_E$ -interpretation  $I : (D_I, \alpha_I)$  of F.  $D_I$  consists of  $|S_F/ \sim |$  elements, one for each congruence class of  $S_F$  under  $\sim$ .

Instead of writing  $I \models F$  for this  $T_E$ -interpretation, we abbreviate  $\sim \models F$ 

The goal of the algorithm is to construct the congruence relation over  $S_F$ , or to prove that no congruence relation exists.

**Congruence Closure Algorithm** 

$$F: \underbrace{s_1 = t_1 \land \cdots \land s_m = t_m}_{m \to \infty} \land \underbrace{s_{m+1} \neq t_{m+1} \land \cdots \land s_n \neq t_n}_{m \to \infty}$$

generate congruence closure search for contradiction

Decide if F is  $T_F$ -satisfiable.

The algorithm performs the following steps:

1. Construct the congruence closure  $\sim$  of

$$\{s_1 = t_1, \ldots, s_m = t_m\}$$

over the subterm set  $S_F$ . Then

$$\sim \models s_1 = t_1 \land \cdots \land s_m = t_m$$
.

2. If for any  $i \in \{m + 1, ..., n\}$ ,  $s_i \sim t_i$ , return unsatisfiable.

3. Otherwise,  $\sim \models F$ , so return satisfiable.

How do we actually construct the congruence closure in Step 1? Page 13 of 48

### Congruence Closure Algorithm (Details)

Initially, begin with the finest congruence relation  $\sim_0$  given by the partition

$$\{\{s\} : s \in S_F\}$$
.

That is, let each term over  $S_F$  be its own congruence class.

Then, for each  $i \in \{1, ..., m\}$ , impose  $s_i = t_i$  by merging the congruence classes

$$[s_i]_{\sim_{i-1}}$$
 and  $[t_i]_{\sim_{i-1}}$ 

to form a new congruence relation  $\sim_i$ . To accomplish this merging,

▶ form the union of  $[s_i]_{\sim_{i-1}}$  and  $[t_i]_{\sim_{i-1}}$ 

▶ propagate any new congruences that arise within this union. The new relation  $\sim_i$  is a congruence relation in which  $s_i \sim t_i$ . Congruence Closure Algorithm: Example 1 I

Given  $\Sigma_E$ -formula

$$F: f(a,b) = a \land f(f(a,b),b) \neq a$$

Construct initial partition by letting each member of the subterm set  $S_F$  be its own class:

1. {{a}, {b}, {f(a,b)}, {f(f(a,b),b)}}

According to the first literal f(a, b) = a, merge

 $\{f(a, b)\}$  and  $\{a\}$ 

to form partition

2.  $\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$ 

According to the (function) congruence axiom,

 $f(a,b) \sim a, \ b \sim b$  implies  $f(f(a,b),b) \sim f(a,b)$ ,

イロト 不得 とくき とくき とうき

Page 15 of 48

resulting in the new partition

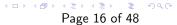
3.  $\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\}$ 

### Congruence Closure Algorithm: Example 1 II

This partition represents the congruence closure of  $S_F$ . Is it the case that

 $\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\} \models F ?$ 

No, as  $f(f(a, b), b) \sim a$  but F asserts that  $f(f(a, b), b) \neq a$ . Hence, F is  $T_E$ -unsatisfiable.



Congruence Closure Algorithm: Example 2 I Example: Given  $\Sigma_E$ -formula

 $F: f(f(f(a))) = a \land f(f(f(f(a)))) = a \land f(a) \neq a$ From the subterm set  $S_F$ , the initial partition is

1.  $\{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}\$ where, for example,  $f^3(a)$  abbreviates f(f(f(a))). According to the literal  $f^3(a) = a$ , merge

 $\{f^3(a)\}$  and  $\{a\}$ .

From the union,

2.  $\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$ deduce the following congruence propagations:

 $f^3(a) \sim a \Rightarrow f(f^3(a)) \sim f(a)$  i.e.  $f^4(a) \sim f(a)$ and

$$f^4(a) \sim f(a) \Rightarrow f(f^4(a)) \sim f(f(a))$$
 i.e.  $f^5(a) \sim f^2(a)$ 

Thus, the final partition for this iteration is the following:

3.  $\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$ .

Image: Image:

Congruence Closure Algorithm: Example 2 II

3.  $\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$ .

From the second literal,  $f^5(a) = a$ , merge

 $\{f^2(a), f^5(a)\}$  and  $\{a, f^3(a)\}$ 

to form the partition

4.  $\{\{a, f^2(a), f^3(a), f^5(a)\}, \{f(a), f^4(a)\}\}$ .

Propagating the congruence

 $f^3(a) \sim f^2(a) \Rightarrow f(f^3(a)) \sim f(f^2(a))$  i.e.  $f^4(a) \sim f^3(a)$ yields the partition

5.  $\{\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\}\}$ ,

which represents the congruence closure in which all of  $S_F$  are equal. Now,

 $\{\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\}\} \models F ?$ No, as  $f(a) \sim a$ , but F asserts that  $f(a) \neq a$ . Hence, F is  $T_{E}$ -unsatisfiable.

Congruence Closure Algorithm: Example 3

Given  $\Sigma_E$ -formula

$$F: f(x) = f(y) \land x \neq y .$$

The subterm set  $S_F$  induces the following initial partition:

1.  $\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$ .

Then f(x) = f(y) indicates to merge

 $\{f(x)\}\ \ \text{and}\ \ \{f(y)\}\ .$ 

The union  $\{f(x), f(y)\}$  does not yield any new congruences, so the final partition is

2.  $\{\{x\}, \{y\}, \{f(x), f(y)\}\}$ .

Does

$$\{\{x\}, \{y\}, \{f(x), f(y)\}\} \models F ?$$

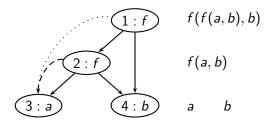
Yes, as  $x \not\sim y$ , agreeing with  $x \neq y$ . Hence, F is T<sub>E</sub>-satisfiable.

(ロ) (同) (三) (三) (三) (○) (○)

#### Implementation of Algorithm

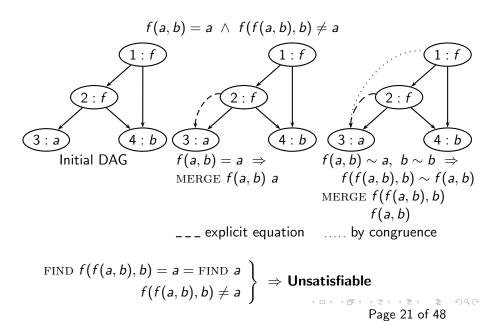
Directed Acyclic Graph (DAG)

For  $\Sigma_E$ -formula F, graph-based data structure for representing the subterms of  $S_F$  (and congruence relation between them).



Efficient way for computing the congruence closure.

#### Summary of idea



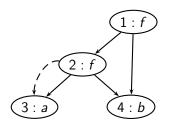
### DAG representation

| type node $=$ { |                                            |
|-----------------|--------------------------------------------|
| id :            | id                                         |
|                 | node's unique identification number        |
| fn :            | string                                     |
|                 | constant or function name                  |
| args :          | id list                                    |
|                 | list of function arguments                 |
| mutable find :  | id                                         |
|                 | the representative of the congruence class |
| mutable ccpar : | id set                                     |
|                 | if the node is the representative for its  |
|                 | congruence class, then its ccpar           |
|                 | (congruence closure parents) are all       |
|                 | parents of nodes in its congruence class   |
| }               |                                            |

DAG Representation of node 2

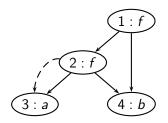
t

| sype node $=$ { |   |         |        |
|-----------------|---|---------|--------|
| id              | : | id      | 2      |
| fn              | : | string  | f      |
| args            | : | id list | [3, 4] |
| mutable find    | : | id      | 3      |
| mutable ccpar   | : | id set  | Ø      |
| }               |   |         |        |



DAG Representation of node 3

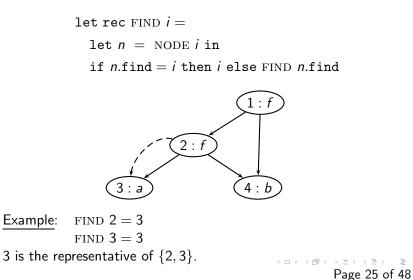
| type $\mathbf{node}$ = { |   |         |                 |
|--------------------------|---|---------|-----------------|
| id                       | : | id      | 3               |
| fn                       | : | string  | а               |
| args                     | : | id list | []              |
| mutable find             | : | id      | 3               |
| mutable ccpar            | : | id set  | $\dots \{1,2\}$ |
| }                        |   |         |                 |



### The Implementation I

FIND function

returns the representative of node's congruence class



### The Implementation II

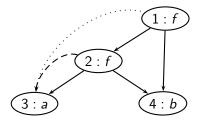
**UNION** function

let UNION  $i_1 i_2 =$ let  $n_1 =$  NODE (FIND  $i_1$ ) in let  $n_2 =$  NODE (FIND  $i_2$ ) in  $n_1$ .find  $\leftarrow n_2$ .find;  $n_2$ .ccpar  $\leftarrow n_1$ .ccpar  $\cup n_2$ .ccpar;  $n_1$ .ccpar  $\leftarrow \emptyset$ 

 $n_2$  is the representative of the union class

#### The Implementation III

Example



```
UNION 1 2 n_1 = 1 n_2 = 3

1.find \leftarrow 3

3.ccpar \leftarrow \{1, 2\}

1.ccpar \leftarrow \emptyset
```

### The Implementation IV

CCPAR function

Returns parents of all nodes in i's congruence class

```
let CCPAR i =
  (NODE (FIND i)).ccpar
```

 $\operatorname{CONGRUENT} predicate$ 

Test whether  $i_1$  and  $i_2$  are congruent

```
let CONGRUENT i_1 i_2 =

let n_1 = \text{NODE } i_1 in

let n_2 = \text{NODE } i_2 in

n_1.\text{fn} = n_2.\text{fn}

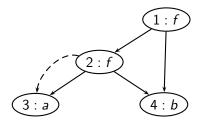
\land |n_1.\arg s| = |n_2.\arg s|

\land \forall i \in \{1, \dots, |n_1.\arg s|\}. FIND n_1.\arg s[i] = \text{FIND } n_2.\arg s[i]

Page 28 of 48
```

### The Implementation V

Example:



・ロト ・回ト ・ヨト ・ヨト

Page 29 of 48

Are 1 and 2 congruent?

fn fields — both f# of arguments — same left arguments f(a, b) and a — both congruent to 3 right arguments b and b — both 4 (congruent)

Therefore 1 and 2 are congruent.

### The Implementation VI

MERGE function

let rec MERGE  $i_1$   $i_2 =$ if FIND  $i_1 \neq$  FIND  $i_2$  then begin let  $P_{i_1}$  = CCPAR  $i_1$  in let  $P_{i_2}$  = CCPAR  $i_2$  in UNION i1 i2; foreach  $t_1 \in P_{i_1}, t_2 \in P_{i_2}$  do if FIND  $t_1 \neq$  FIND  $t_2 \land$  CONGRUENT  $t_1 t_2$ then MERGE t1 t2 done end

 $P_{i_1}$  and  $P_{i_2}$  store the values of CCPAR  $i_1$  and CCPAR  $i_2$  (before the union).

Decision Procedure:  $T_E$ -satisfiability

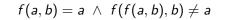
Given  $\Sigma_E$ -formula

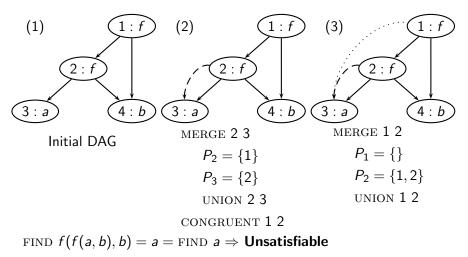
 $F: s_1 = t_1 \land \cdots \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land \cdots \land s_n \neq t_n ,$ 

with subterm set  $S_F$ , perform the following steps:

- 1. Construct the initial DAG for the subterm set  $S_F$ .
- 2. For  $i \in \{1, \ldots, m\}$ , MERGE  $s_i t_i$ .
- 3. If FIND  $s_i = FIND \ t_i$  for some  $i \in \{m + 1, ..., n\}$ , return unsatisfiable.
- 4. Otherwise (if FIND  $s_i \neq$  FIND  $t_i$  for all  $i \in \{m + 1, ..., n\}$ ) return satisfiable.

Example 1: T<sub>E</sub>-Satisfiability





Given  $\Sigma_E$ -formula

$$F: f(a,b) = a \land f(f(a,b),b) \neq a.$$

The subterm set is

$$S_F = \{a, b, f(a, b), f(f(a, b), b)\},\$$

resulting in the initial partition

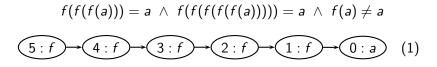
(1)  $\{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}$ in which each term is its own congruence class. Fig (1). Final partition (Fig (3))

(2) {{a, f(a, b), f(f(a, b), b)}, {b}}

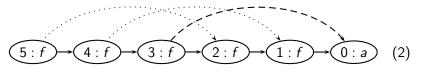
<u>Note</u>: dash edge \_\_\_\_ merge dictated by equalities in *F* dotted edge ...... deduced merge

Does

 $\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\} \models F ?$ No, as  $f(f(a, b), b) \sim a$ , but F asserts that  $f(f(a, b), b) \neq a$ . Hence, F is  $T_E$ -unsatisfiable. Page 33 of 48 Example 2:  $T_E$ -Satisfiability

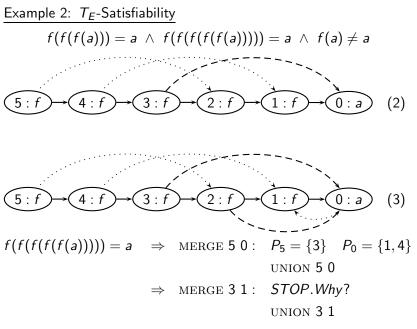


#### Initial DAG



 $f(f(a))) = a \implies \text{MERGE 3 0}: P_3 = \{4\} P_0 = \{1\} \text{ UNION 3 0}$ 

- $\Rightarrow$  merge 4 1:  $P_4 = \{5\}$   $P_1 = \{2\}$  union 4 1
- $\Rightarrow$  merge 5 2:  $P_5 = \{\}$   $P_2 = \{3\}$  union 5 2



FIND  $f(a) = f(a) = FIND a \Rightarrow$  Unsatisfiable A Bage 35 of 48

Given  $\Sigma_E$ -formula

$$F: f(f(f(a))) = a \land f(f(f(f(a))))) = a \land f(a) \neq a ,$$

which induces the initial partition

- 1. {{a}, {f(a)}, { $f^{2}(a)$ }, { $f^{3}(a)$ }, { $f^{4}(a)$ }, { $f^{5}(a)$ }}. The equality  $f^{3}(a) = a$  induces the partition
- 2. {{ $a, f^{3}(a)$ }, { $f(a), f^{4}(a)$ }, { $f^{2}(a), f^{5}(a)$ }}. The equality  $f^{5}(a) = a$  induces the partition
- 3. {{ $a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)$ }. Now, does

$$\{\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\}\} \models F ?$$

No, as  $f(a) \sim a$ , but F asserts that  $f(a) \neq a$ . Hence, F is  $T_E$ -unsatisfiable.

Theorem (Sound and Complete)

Quantifier-free conjunctive  $\Sigma_E$ -formula F is  $T_E$ -satisfiable iff the congruence closure algorithm returns satisfiable.

### **Recursive Data Structures**

Quantifier-free Theory of Lists  $T_{cons}$ 

 $\Sigma_{cons}: \ \{cons, \ car, \ cdr, \ atom, \ =\}$ 

- <u>constructor</u> cons : cons(x, y) list constructed by appending y to x
- left projector car : car(cons(x, y)) = x
- right projector cdr : cdr(cons(x, y)) = y
- <u>atom</u> : unary predicate

#### Axioms of $T_{cons}$

►

- reflexivity, symmetry, transitivity
- function (congruence) axioms:

$$\begin{aligned} \forall x_1, x_2, y_1, y_2. \ x_1 &= x_2 \land y_1 = y_2 \rightarrow \operatorname{cons}(x_1, y_1) = \operatorname{cons}(x_2, y_2) \\ \forall x, y. \ x &= y \rightarrow \operatorname{car}(x) = \operatorname{car}(y) \\ \forall x, y. \ x &= y \rightarrow \operatorname{cdr}(x) = \operatorname{cdr}(y) \end{aligned}$$

predicate (congruence) axiom:

$$\forall x, y. \ x = y \ \rightarrow \ (\operatorname{atom}(x) \ \leftrightarrow \ \operatorname{atom}(y))$$

## Simplifications

- Consider only quantifier-free conjunctive Σ<sub>cons</sub>-formulae. Convert non-conjunctive formula to DNF and check each disjunct.
- $\neg$ atom $(u_i)$  literals are removed:

replace  $\neg \operatorname{atom}(u_i)$  with  $u_i = \operatorname{cons}(u_i^1, u_i^2)$ by the (construction) axiom.

• Result of a conjunctive  $\Sigma_{cons}$ -formula with literals

$$s = t$$
  $s \neq t$  atom $(u)$ 

► Because of similarity to  $\Sigma_E$ , we sometimes combine  $\Sigma_{cons} \cup \Sigma_E$ .

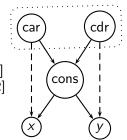
Algorithm:  $T_{cons}$ -Satisfiability (the idea)

$$F: \underbrace{s_1 = t_1 \land \cdots \land s_m = t_m}_{\text{generate congruence closure}}$$
$$\land \underbrace{s_{m+1} \neq t_{m+1} \land \cdots \land s_n \neq t_n}_{\text{search for contradiction}}$$
$$\land \underbrace{\text{atom}(u_1) \land \cdots \land \text{atom}(u_\ell)}_{\text{search for contradiction}}$$
where  $s_i, t_i$ , and  $u_i$  are  $T_{\text{cons-terms}}$ 

+□> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> + ()> +

# Algorithm: $T_{cons}$ -Satisfiability

- 1. Construct the initial DAG for  $S_F$
- 2. for each node n with n.fn = cons
  - add car(n) and MERGE car(n) n.args[1]
  - ▶ add cdr(n) and MERGE cdr(n) n.args[2] by axioms (A1), (A2)
- 3. for  $1 \leq i \leq m$ , MERGE  $s_i$   $t_i$



Page 42 of 48

- 4. for  $m + 1 \le i \le n$ , if FIND  $s_i = FIND t_i$ , return **unsatisfiable**
- 5. for  $1 \le i \le \ell$ , if  $\exists v$ . FIND  $v = \text{FIND } u_i \land v.\texttt{fn} = \texttt{cons}$ , return **unsatisfiable**
- 6. Otherwise, return satisfiable

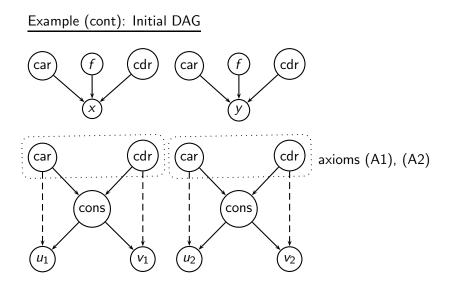
Example

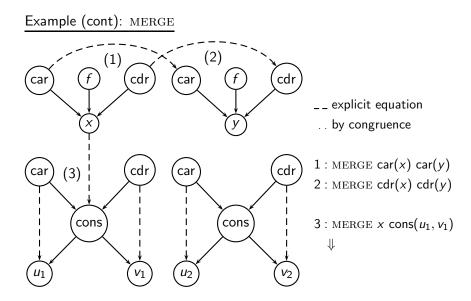
(日) (종) (종) (종) (종)

Page 43 of 48

Recall the projection axioms:

(A1) 
$$\forall x, y. \operatorname{car}(\operatorname{cons}(x, y)) = x$$
  
(A2)  $\forall x, y. \operatorname{cdr}(\operatorname{cons}(x, y)) = y$ 

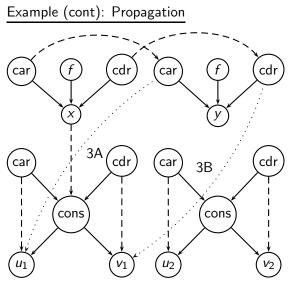




Page 45 of 48

3

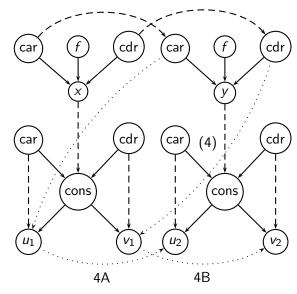
< ロ > < 同 > < 回 > < 回 >



Congruent:  $car(x) car(cons(u_1, v_1))$ FIND car(x) = car(y)FIND  $car(cons(...)) = u_1$ 

Congruent:  $cdr(x) cdr(cons(u_1, v_1))$ FIND cdr(x) = cdr(y)FIND  $cdr(cons(...)) = v_1$ 

#### Example (cont): MERGE



4 : MERGE  $y \operatorname{cons}(u_2, v_2)$ 1 Congruent:  $car(y) car(cons(u_2, v_2))$ FIND  $\operatorname{car}(y) = u_1$ FIND car(cons(...)) =  $u_2$ Congruent:  $\operatorname{cdr}(y) \operatorname{cdr}(\operatorname{cons}(u_2, v_2))$ FIND  $\operatorname{cdr}(y) = v_1$ FIND  $\operatorname{cdr}(\operatorname{cons}(\ldots)) = v_2$ ∜

