CS256/Spring 2008 — Lecture #1

Zohar Manna

FORMAL METHODS FOR REACTIVE SYSTEMS

Instructor: Zohar Manna Email: **zm@cs** Office hours: by appointment

TA: Eric W. Smith Email: ewsmith@stanford Office hours: Tues. 3:45-4:45, Thurs. 3:45-4:45 Office: Gates 312

Web page:

http://cs256.stanford.edu Course Meetings: TTh 12:50-2:05, Gates B12

1-1

1-3

Course work

- Weekly homeworks
- Final exam (3:30pm-6:30pm on Friday, June 6)

 \underline{No} collaboration on homeworks & exam (but welcome otherwise).

No late homeworks.

1 - 2

Textbooks

Manna & Pnueli Springer

- Vol. I: "The Temporal Logic of Reactive and Concurrent Systems: <u>Specification</u>" Springer 1992
- Vol II: "Temporal Verification of Reactive Systems: Safety" Springer 1995
- Vol. III: "Temporal Verification of Reactive Systems: <u>Progress</u>" Chapters 1–3, on Manna's web site.

Copies of lecture slides.

Papers.

Textbook Overview

(Volume II)

- Chapter 0: Preliminary Concepts [Summary of volume I]
- Chapter 1: Invariance: Proof Methods
- Chapter 2: Invariance: Applications
- Chapter 3: Precedence
- [Chapter 4: General Safety]
- Chapter 5: Algorithmic Verification ("Model Checking")

Extra:

- ω -automata
- branching time logic CTL; BDDs

1 - 5

Transformational Systems

Observable only at the beginning and the end of their execution ("black box")

 $\stackrel{\text{input}}{\longrightarrow} \boxed{\text{system}} \stackrel{\text{output}}{\longrightarrow}$

with no interaction with the environment.

 \bullet specified by

input-output relations ↓ state formulas (assertions) First-Order Logic

\bullet typically

terminating sequential programs e.g., input $x \ge 0 \rightarrow$ output $z = \sqrt{x}$

1-6

Interaction with the environment

 $\bullet\,$ specified by

their on-going behaviors (histories of interactions with their environment) ↓ sequence formulas Temporal Logic

- Typically
 - Airline reservation systems
 - Operating systems
 - Process control programs
 - Communication networks

Reactive Systems

Observable throughout their execution ("black cactus")

 $\downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$

system

 $\downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$

environment

 $| \longrightarrow \text{time}$

Overview of the Verification Process

The Components

• System Description Language SPL (Simple Programming Language)

Pascal-like high-level language with constructs for

- concurrency
- nondeterminism
- synchronous/asynchronous communication

• Computational Model

FTS (Fair Transition System)

Compact first-order representation of all sequences of states that can be generated by a system

1-9

The Components (cont.)

• Specification Language

TL (temporal logic)

models of a TL formula are infinite sequences of states

• Verification Techniques

- <u>algorithmic</u> (model checking) search a state-graph for counterexample
- <u>deductive</u> (theorem proving)
 prove first-order verification conditions

1 - 10

States

• <u>vocabulary</u> \mathcal{V} — set of typed variables (type defines the domain over which the values can range)

- expression over \mathcal{V} x+y

- <u>assertion</u> over \mathcal{V} x > y

• <u>state</u> s — interpretation over \mathcal{V}

Example: $\mathcal{V} = \{x, y : \text{integer}\}$ $s = \{x : 2, y : 3\}$ (also written as $s[x] = 2, \quad s[y] = 3$) x + y is 5 on s $x > y \quad \text{false on } s$

• Σ — set of all states

1-13

Fair Transition System (FTS)

Chapter 0:

Preliminary Concepts

 $\Phi = \langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$

(represents a Reactive Program)

• $V = \{u_1, \ldots, u_n\} \subseteq \mathcal{V}$ - vocabulary

A finite set of system variables

System variables = data variables + control variables

• $\Theta - \underline{\text{initial condition}}$

First-order assertion over V that characterizes all initial states

Example:

$$\Theta: x = 5 \land 3 \le y \le 5$$

initial states: $\{x:5, y:3\}$
 $\{x:5, y:4\}$
 $\{x:5, y:5\}$

• \mathcal{T} — finite set of <u>transitions</u>

For each $\tau \in \mathcal{T}$, $\tau : \Sigma \to 2^{\Sigma}$ (τ is a function from states to sets of states)

-s' is a au-successor of s if $s' \in au(s)$

- τ is represented by the <u>transition relation</u> ("next-state" relation) $\rho_{\tau}(V, V')$ where

- V values of variables in the current state
- V' values of variables in the next state

Example: $\rho_{\tau} : x' = x + 1 \text{ means}$ s'[x] = s[x] + 1

- special idling (stuttering) transition τ_I ,

$$\rho_{\tau_I}: V = V'$$

1-15

1 - 14

Enabled/Disabled/Taken Transition

Example:

 $\langle x:5,y:3
angle \stackrel{ au}{\longrightarrow} \{\langle x:5,y:4
angle, \langle x:5,y:5
angle\}$

"When in state $\langle x : 5, y : 3 \rangle \tau$ may increment y by either 1 or 2, and keep x unchanged."

 $\langle x:5, y:4 \rangle$ and $\langle x:5, y:5 \rangle$ are τ -successors of $\langle x:5, y:3 \rangle$.

- $\mathcal{J} \subseteq \mathcal{T}$: set of just (weakly fair) transitions
- $C \subseteq T$: set of <u>compassionate</u> (strongly fair) transitions

• For each $\tau \in \mathcal{T}$,

au is <u>enabled</u> on s if $au(s) \neq \emptyset$

 τ is <u>disabled</u> on s if $\tau(s) = \emptyset$

• For an infinite sequence of states

 $\sigma: s_0, s_1, s_2, \ldots, s_k, s_{k+1}, \ldots$

- $\begin{array}{l} \ \tau \in \mathcal{T} \text{ is enabled at position } k \text{ of } \sigma \\ \text{ if } \tau \text{ is enabled on } s_k \end{array}$
- $-\tau \in \mathcal{T} \text{ is taken at position } k \text{ of } \sigma$ if s_{k+1} is a τ -successor of s_k

1 - 17

1 - 18

Infinite sequence of states

 $\sigma: s_0, s_1, s_2, \ldots$

is a computation of an FTS Φ (Φ -computation), if it satisfies the following:

Computation

- Initiality: s_0 is an initial state (satisfies Θ)
- <u>Consecution</u>: For each $i = 0, 1, ..., s_{i+1} \in \tau(s_i)$ for some $\tau \in \mathcal{T}$.

Example:

$$\sigma : \ldots \langle \overline{x:5, y:3} \rangle, \langle \overline{x:6, y:3} \rangle \ldots$$

 τ is enabled at position k

 τ is taken at position k

• <u>Justice</u>: For each $\tau \in \mathcal{J}$, it is <u>not</u> the case that τ is continually enabled beyond some position j in σ but not taken beyond j.

Example:

 $V : \{x : \text{integer}\} \\ \Theta : x = 0 \\ \mathcal{T} : \{\tau_I, \tau_{\text{inc}}\} \text{ with } \rho_{\tau_{\text{inc}}} : x' = x + 1 \\ \mathcal{J} : \{\tau_{\text{inc}}\} \\ \mathcal{C} : \emptyset \\ \\ \sigma : \langle x : 0 \rangle \xrightarrow{\tau_I} \langle x : 0 \rangle \xrightarrow{\tau_I} \langle x : 0 \rangle \xrightarrow{\tau_I} \dots \\ \\ \text{satisfies Initiality and Consecution, but not Justice.} \\ \\ \text{Therefore } \sigma \text{ is not a computation.} \\ \\ (\text{In any computation of this system,} \\ x \text{ grows beyond any bound.}) \\ \end{cases}$

$$\sigma : \begin{bmatrix} \langle x:0\rangle \longrightarrow \langle x:1\rangle \longrightarrow \langle x:2\rangle \longrightarrow \langle x:2\rangle \longrightarrow \\ \langle x:3\rangle \longrightarrow \langle x:3\rangle \longrightarrow \langle x:3\rangle \longrightarrow \\ \langle x:4\rangle \longrightarrow \cdots \end{bmatrix}$$

is a computation

Question: $\rho_{\tau_{\text{inc}}}$: $(x = 0 \lor x = 1) \land x' = x + 1$ Is

$$\sigma: \left[\begin{array}{c} \langle x:0\rangle \longrightarrow \langle x:1\rangle \longrightarrow \langle x:2\rangle \longrightarrow \\ \langle x:2\rangle \longrightarrow \langle x:2\rangle \longrightarrow \cdots \end{array} \right]$$

a computation?

1-22

1-21

• <u>Compassion</u>: For each $\tau \in C$, it is <u>not</u> the case that τ is enabled at infinitely many positions in σ , but taken at only finitely many positions in σ .

Example:

$$V : \{x, y: \text{ integer}\} \\ \Theta : x = 0 \land y = 0 \\ \mathcal{T} : \{\tau_I, \tau_x, \tau_y\} \text{ with } \\ \rho_{\tau_x} : x' = x + 1 \mod 2 \\ \rho_{\tau_y} : x = 1 \land y' = y + 1 \\ \mathcal{J} : \{\tau_x\} \\ \mathcal{C} : \{\tau_y\} \\ \sigma : \langle \overset{x}{0}, \overset{y}{0} \rangle \xrightarrow{\tau_x} \langle 1, 0 \rangle \xrightarrow{\tau_x} \langle 0, 0 \rangle \xrightarrow{\tau_x} \dots \\ \text{is not a computation: } \tau_y \text{ is infinitely often enabled, but never taken.} \\ (\text{Note: If } \tau_y \text{ had only been just, } \\ \sigma \text{ would have been a computation, since } \\ \tau_y \text{ is not continually enabled.} \end{cases}$$

FTS $\Phi = \langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$

Run = Initiality + Consecution

Fairness = Justice + Compassion

Computation= Run + Fairness

Notation: $s_0 \xrightarrow{\tau_1} s_1 \xrightarrow{\tau_2} s_2 \xrightarrow{\tau_3} s_3 \rightarrow \dots$

Note: For every two consecutive states s_i, s_{i+1} , there may be more than one transition that leads from s_i to s_{i+1} .

Therefore, several different transitions can be considered as taken at the same time.

Finite-State

• For a computation σ of \varPhi

 $\sigma: s_0, s_1, s_2, \ldots, s_i, \ldots,$

state s_i is a <u> Φ -accessible</u> state.

- Φ is <u>finite-state</u> if the set of Φ -accessible states is finite. Otherwise, it is infinite-state.
 - If the domain of all variables of Φ is finite, (e.g., booleans, subranges, etc.), then Φ is finite-state.
 - Even if the domain of some variables of Φ is infinite (e.g., integer), Φ may still be finite-state.

Example:

```
V : \{x : \text{integer}\} \\ \Theta : x = 1 \\ \mathcal{T} : \{\tau_I, \tau_1, \tau_2\} \text{ with } \\ \rho_{\tau_1} : x = 1 \land x' = 2 \\ \rho_{\tau_2} : x = 2 \land x' = 1 \\ \mathcal{J}, \mathcal{C} : \emptyset \\ \\ \text{has 2 accessible states: } \\ \langle x : 1 \rangle \text{ and } \langle x : 2 \rangle \end{cases}
```

1-25