Course work

CS256/Spring 2008 - Lecture \#1

Zohar Manna

FORMAL METHODS FOR REACTIVE SYSTEMS

Instructor: Zohar Manna
Email: zm@cs
Office hours: by appointment

TA: Eric W. Smith
Email: ewsmith@stanford
Office hours: Tues. 3:45-4:45, Thurs. 3:45-4:45
Office: Gates 312

Web page:
http://cs256.stanford.edu
Course Meetings: TTh 12:50-2:05, Gates B12

1-1

Textbooks
Manna \& Pnueli Springer

Vol. I:"The Temporal Logic of Reactive and Concurrent Systems: Specification" Springer 1992

$$
\begin{array}{|l}
\hline \text { Vol II: "Temporal Verification of Reactive Systems: } \\
\frac{\text { Safety" }}{\text { Springer } 1995} \\
\text { Vol. III: "Temporal Verification of Reactive Systems: } \\
\frac{\text { Progress" }}{\text { Chapters } 1-3 \text {, on Manna's web site. }}
\end{array}
$$

Copies of lecture slides.

Papers.

Textbook Overview

(Volume II)

Chapter 0: Preliminary Concepts
[Summary of volume I]
Chapter 1: Invariance: Proof Methods
Chapter 2: Invariance: Applications
Chapter 3: Precedence
[Chapter 4: General Safety]
Chapter 5: Algorithmic Verification
("Model Checking")

Extra:

- ω-automata
- branching time logic CTL; BDDs

Reactive Systems

Observable throughout their execution ("black cactus")

$\downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$
environment
$\mid \longrightarrow$ time

Interaction with the environment

Transformational Systems

Observable only at the beginning and the end of their execution ("black box")

$$
\xrightarrow{\text { input }} \text { system }^{\text {output }}
$$

with no interaction with the environment.

- specified by
- typically
terminating sequential programs e.g., input $x \geq 0 \rightarrow$ output $z=\sqrt{x}$
- specified by
their on-going behaviors
(histories of interactions with their environment)
\Downarrow
sequence formulas
Temporal Logic
- Typically
- Airline reservation systems
- Operating systems
- Process control programs
- Communication networks

The Components

Overview of the Verification Process

- System Description Language

SPL (Simple Programming Language)

Pascal-like high-level language with constructs for

- concurrency
- nondeterminism
- synchronous/asynchronous communication

- Computational Model

FTS (Fair Transition System)

Compact first-order representation of all sequences of states that can be generated by a system

1-10

The Components (cont.)

- Specification Language

TL (temporal logic)
models of a TL formula are infinite
sequences of states

- Verification Techniques

- algorithmic (model checking)
search a state-graph for counterexample
- deductive (theorem proving)
prove first-order verification conditions

Reactive System

$\frac{\text { SPL Program } P}{\downarrow}$
Fair Transition System (FTS) $\Phi \underline{\downarrow}$

Verification	
Proof $\operatorname{Com}(\Phi) \subseteq \operatorname{Mod}(\psi)$ i.e., all computations of Φ are models of ψ Counterexample computation σ of Φ, s.t. $\sigma \notin \operatorname{Mod}(\psi)$	

States

- vocabulary \mathcal{V} - set of typed variables (type defines the domain over which the values can range)

$$
\begin{array}{ll}
- \text { expression over } \mathcal{V} & x+y \\
- \text { assertion over } \mathcal{V} & x>y
\end{array}
$$

- state s - interpretation over \mathcal{V}

Chapter 0:

Preliminary Concepts

$$
\begin{aligned}
& \text { Example: } \\
& \mathcal{V}=\{x, y: \text { integer }\} \\
& s=\{x: 2, y: 3\} \\
& \text { (also written as } \\
& s[x]=2, \quad s[y]=3) \\
& x+y \text { is } 5 \text { on } s \\
& x>y \quad \text { false on } s
\end{aligned}
$$

- Σ - set of all states

$$
\begin{gathered}
\text { Fair Transition System (FTS) } \\
\qquad \Phi=\langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C}\rangle
\end{gathered}
$$

(represents a Reactive Program)

- $V=\left\{u_{1}, \ldots, u_{n}\right\} \subseteq \mathcal{V}-\underline{\text { vocabulary }}$

A finite set of system variables
System variables $=$ data variables +
control variables

- Θ - $\underline{\text { initial condition }}$

First-order assertion over V that
characterizes all initial states

$$
\begin{array}{ll}
\text { Example: } \\
\Theta: x=5 & \wedge 3 \leq y \leq 5 \\
\text { initial states: } & \{x: 5, y: 3\} \\
& \{x: 5, y: 4\} \\
& \{x: 5, y: 5\}
\end{array}
$$

- \mathcal{T} - finite set of transitions

For each $\tau \in \mathcal{T}$,

$$
\tau: \Sigma \rightarrow 2^{\Sigma}
$$

(τ is a function from states to sets of states)
$-s^{\prime}$ is a τ-successor of s if $s^{\prime} \in \tau(s)$
$-\tau$ is represented by the transition relation
("next-state" relation) $\rho_{\tau}\left(V, V^{\prime}\right)$ where V - values of variables in the current state
V^{\prime} - values of variables in the next state

$$
\begin{aligned}
& \text { Example: } \\
& \rho_{\tau}: x^{\prime}=x+1 \text { means } \\
& s^{\prime}[x]=s[x]+1
\end{aligned}
$$

- special idling (stuttering) transition τ_{I},

$$
\rho_{\tau_{I}}: V=V^{\prime}
$$

Enabled/Disabled/Taken Transition

Example:
$\langle x: 5, y: 3\rangle \xrightarrow{\tau}\{\langle x: 5, y: 4\rangle,\langle x: 5, y: 5\rangle\}$
"When in state $\langle x: 5, y: 3\rangle \tau$ may increment y by either 1 or 2 , and keep x unchanged."
$\langle x: 5, y: 4\rangle$ and $\langle x: 5, y: 5\rangle$ are τ-successors of $\langle x: 5, y: 3\rangle$.

- $\mathcal{J} \subseteq \mathcal{T}:$ set of just (weakly fair) transitions
- $\mathcal{C} \subseteq \mathcal{T}$: set of compassionate
(strongly fair) transitions
- For each $\tau \in \mathcal{T}$,
τ is enabled on s if $\tau(s) \neq \emptyset$
τ is disabled on s if $\tau(s)=\emptyset$
- For an infinite sequence of states

$$
\sigma: s_{0}, s_{1}, s_{2}, \ldots, s_{k}, s_{k+1}, \ldots
$$

$-\tau \in \mathcal{T}$ is enabled at position k of σ if τ is enabled on s_{k}
$-\tau \in \mathcal{T}$ is taken at position k of σ if s_{k+1} is a τ-successor of s_{k}

Example:

$\rho_{\tau}: x=5 \wedge x^{\prime}=x+1 \wedge y^{\prime}=y$
τ is enabled on all states s.t. $s[x]=5$
and disabled on all other states
$\sigma: \ldots \overbrace{\langle x: 5, y: 3\rangle}^{s_{k}}, \overbrace{\langle x: 6, y: 3\rangle}^{s_{k+1}} \ldots$
τ is enabled at position k
τ is taken at position k

Computation

Infinite sequence of states

$$
\sigma: s_{0}, s_{1}, s_{2}, \ldots
$$

is a computation of an FTS Φ (Φ-computation), if it satisfies the following:

- Initiality: s_{0} is an initial state (satisfies Θ)
- Consecution: For each $i=0,1, \ldots$, $s_{i+1} \in \tau\left(s_{i}\right)$ for some $\tau \in \mathcal{T}$.
- Justice: For each $\tau \in \mathcal{J}$, it is not the case that τ is continually enabled beyond some position j in σ but not taken beyond j.

Example:

$V:\{x:$ integer $\}$
$\Theta: x=0$
$\mathcal{T}:\left\{\tau_{I}, \tau_{\text {inc }}\right\}$ with $\rho_{\tau_{\text {inc }}}: x^{\prime}=x+1$
$\mathcal{J}:\left\{\tau_{\text {inc }}\right\}$
$\mathcal{C}: \emptyset$
$\sigma:\langle x: 0\rangle \xrightarrow{\tau_{I}}\langle x: 0\rangle \xrightarrow{\tau_{I}}\langle x: 0\rangle \xrightarrow{\tau_{I}} \ldots$
satisfies Initiality and Consecution, but not Justice.
Therefore σ is not a computation.
(In any computation of this system,
x grows beyond any bound.)

- Compassion: For each $\tau \in \mathcal{C}$, it is not the case that τ is enabled at infinitely many positions in σ, but taken at only finitely many positions in σ.

```
Example:
V:{x,y: integer }
\Theta:x=0^y=0
\mathcal{T}}:{\mp@subsup{\tau}{I}{},\mp@subsup{\tau}{x}{},\mp@subsup{\tau}{y}{}}\mathrm{ with
    \rho}\mp@subsup{\tau}{x}{}:\mp@subsup{x}{}{\prime}=x+1\operatorname{mod}
    \rho}\mp@subsup{\tau}{y}{}:x=1\wedge\mp@subsup{y}{}{\prime}=y+
\mathcal{J}:{\mp@subsup{\tau}{x}{}}
\mathcal{C}:{\tauy}
\sigma:\langle\stackrel{x}{0},\stackrel{y}{0}\rangle\xrightarrow{}{\mp@subsup{\tau}{x}{}}\langle1,0\rangle\xrightarrow{}{\mp@subsup{\tau}{x}{}}\langle0,0\rangle\xrightarrow{}{\mp@subsup{\tau}{x}{}}\ldots
is not a computation: }\mp@subsup{\tau}{y}{}\mathrm{ is infinitely
often enabled, but never taken.
(Note: If }\mp@subsup{\tau}{y}{}\mathrm{ had only been just,
\sigma}\mathrm{ would have been a computation, since
\tauy is not continually enabled.)
```

$$
\begin{aligned}
& \sigma:\left[\begin{array}{c}
\langle x: 0\rangle \longrightarrow\langle x: 1\rangle \longrightarrow\langle x: 2\rangle \longrightarrow\langle x: 2\rangle \longrightarrow \\
\quad\langle x: 3\rangle \\
\quad\langle x: 4\rangle \longrightarrow\langle x: 3\rangle \longrightarrow\langle x: 3\rangle \longrightarrow
\end{array}\right. \\
& \text { is a computation }
\end{aligned}
$$

Question: $\rho_{\tau_{\text {inc }}}:(x=0 \vee x=1) \wedge x^{\prime}=x+1$ Is

$$
\sigma:\left[\begin{array}{c}
\langle x: 0\rangle \longrightarrow\langle x: 1\rangle \longrightarrow\langle x: 2\rangle \longrightarrow \\
\langle x: 2\rangle \longrightarrow\langle x: 2\rangle \longrightarrow \cdots
\end{array}\right.
$$

a computation?
$\operatorname{FTS} \Phi=\langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C}\rangle$

Run $=$ Initiality + Consecution
Fairness $=$ Justice + Compassion

Computation $=$ Run + Fairness

$$
\text { Notation: } s_{0} \xrightarrow{\tau_{1}} s_{1} \xrightarrow{\tau_{2}} s_{2} \xrightarrow{\tau_{3}} s_{3} \rightarrow \ldots
$$

Note: For every two consecutive states s_{i}, s_{i+1}, there may be more than one transition that leads from s_{i} to s_{i+1}.
Therefore, several different transitions can be considered as taken at the same time.

Finite-State

- For a computation σ of Φ

$$
\sigma: s_{0}, s_{1}, s_{2}, \ldots, s_{i}, \ldots
$$

state s_{i} is a Φ-accessible state.

- Φ is finite-state if the set of Φ-accessible states is finite. Otherwise, it is infinite-state.
- If the domain of all variables of Φ is finite, (e.g., booleans, subranges, etc.), then Φ is finite-state.
- Even if the domain of some variables of Φ is infinite (e.g., integer), Φ may still be finite-state.

```
Example:
V:{x: integer }
\Theta:x=1
\mathcal{T}}:{\mp@subsup{\tau}{I}{},\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{}}\mathrm{ with
    \rho}\mp@subsup{\tau}{1}{}:x=1\wedge\mp@subsup{x}{}{\prime}=
    \rho}\mp@subsup{\tau}{2}{}:x=2\wedge\mp@subsup{x}{}{\prime}=
J},\mathcal{C}:
```

has 2 accessible states:
$\langle x: 1\rangle$ and $\langle x: 2\rangle$

