CS256/Spring 2008 — Lecture #2

Zohar Manna

SPL (Simple Programming Language)
Syntax

Basic Statements

- skip
- assignment $\underbrace{(u_1, \dots, u_k)}_{\text{variables}} := \underbrace{(e_1, \dots, e_k)}_{\text{expressions}}$
- await c (where c is a boolean expression)

special case: halt \equiv await F

• Communication by message-passing

$\alpha \leftarrow e$	(send)
$\alpha \Rightarrow u$	(receive)
(where α is a channel)	

• Semaphore operations

······································	
request r	$(r > 0 \rightarrow r := r - 1)$
release r	(r := r + 1)
(where r is an integer	variable) ₂₋₂

2 - 1

SPL (CON'T)

Schematic Statements

In Mutual-Exclusion programs:

• noncritical

may not terminate

• critical

terminates

In Producer-Consumer programs:

• produce x

terminates – assign nonzero value to x

• consume y

terminates

No program variables are modified by schematic statements. One exception: "x" in **produce** x

SPL (CON'T)

Compound Statements

- Conditional if c then S₁ else S₂ if c then S
- $\frac{\text{Concatenation}}{S_1; \cdots; S_k}$

Example:		
when $c \text{ do } S$	\equiv	await $c; S$

- <u>Selection</u> S_1 or \cdots or S_k
- while

while $c \operatorname{do} S$

Example: loop forever do $S \equiv$ while T do S

2-4

SPL (CON'T)

Compound Statements (Con't)

- Cooperation Statement
 - $\ell: \underbrace{[\ell_1:S_1; \hat{\ell}_1:}_{\text{process}}] \parallel \cdots \parallel [\ell_k:S_k; \hat{\ell}_k:]; \hat{\ell}:$

 S_1, \ldots, S_k are <u>parallel</u> to one another interleaved execution.

entry step: from ℓ to $\ell_1, \ell_2, \dots, \ell_k$, exit step: from $\widehat{\ell_1}, \widehat{\ell_2}, \dots, \widehat{\ell_k}$ to $\widehat{\ell}$.

• <u>Block</u>

[local declaration; S]
local variable,..., variable: type where
$$\varphi_i$$

 $y_1 = e_1, \ldots, y_n = e_n$

2-5

SPL (CON'T)

Basic types – boolean, integer, character, ...

Structured types – array, list, set, ...

Static variable initialization (variables get initialized at the start of the execution)

Programs

 $P :: \left[\text{declaration; } P_1 :: \left[\ell_1 : S_1; \ \hat{\ell}_1 : \ \right] \parallel \cdots \parallel \right. \\ \left. P_k :: \left[\ell_k : S_k; \ \hat{\ell}_k : \ \right] \right]$

 P_1, \ldots, P_k are top-level processes Variables in P called program variables

Declaration

out

mode
 variable, ..., variable:
 type where
$$\varphi_i$$

 program variables
 \downarrow

 in (not modified)
 constraints on initial values

 $\varphi_1 \wedge \ldots \wedge \varphi_n$ data-precondition of the program

Channel Declaration

• synchronous channels (no buffering capacity)

mode $\alpha_1, \alpha_2, \ldots, \alpha_n$: channel of type

• asynchronous channels (unbounded buffering capacity)

mode $\alpha_1, \alpha_2, \dots, \alpha_n$: channel [1..] of type where φ_i

 $-\varphi_i$ is optional

 $-\varphi_i = \Lambda$ (empty list) by default

Foundations for SPL Semantics

 $\begin{array}{c} \textbf{Labels} \\ \ell \ : \ S \end{array}$

- Label ℓ identifies statement S
- Equivalence Relation \sim_L between labels:

- For
$$\ell$$
: $[\ell_1: S_1; \dots; \ell_k: S_k]$
 $\ell \sim_L \ell_1$
- For ℓ : $[\ell_1: S_1 \text{ or } \dots \text{ or } \ell_k: S_k]$
 $\ell \sim_L \ell_1 \sim_L \dots \sim_L \ell_k$
- For ℓ : [local declaration; $\ell_1: S_1$]
 $\ell \sim_L \ell_1$

2-8

2-9

Note: For ℓ : $[\ell_1 : S_1 || \dots || \ell_k : S_k]$ $\ell \not\sim_L \ell_1 \not\sim_L \ell_2 \not\sim_L \dots$ because of the entry step

Example:	In Figure 0.1
	$\ell_0 \sim_L \ell_1$
	$\ell_2 \sim_L \ell_3 \sim_L \ell_5$

in a, b : integer where a > 0, b > 0local y_1, y_2 : integer where $y_1 = a, y_2 = b$ out g : integer

$$\ell_{0}: \begin{bmatrix} \ell_{1}: \text{ while } y_{1} \neq y_{2} \text{ do} \\ \\ \ell_{2}: \begin{bmatrix} \ell_{3}: \text{ await } y_{1} > y_{2}; \ \ell_{4}: \ y_{1} := y_{1} - y_{2} \\ \\ \text{or} \\ \\ \ell_{5}: \text{ await } y_{2} > y_{1}; \ \ell_{6}: \ y_{2} := y_{2} - y_{1} \end{bmatrix} \\ \\ \ell_{7}: \ g := y_{1} \end{bmatrix}$$

Figure 0.1

A Fully Labeled Program GCD-F

Locations $[\ell]$

Identify site of control

- $[\ell]$ is the location corresponding to label ℓ .
- Multiple labels identifying different statements may identify the same location.

 $[\ell] = \{\ell' \mid \ell' \sim_L \ell\}$

Example: Fig 0.1: A fully labeled program $[\ell_0] = [\ell_1] = \{\ell_0, \ell_1\}$ $[\ell_6] = \{\ell_6\}$ $[\ell_2] = \{\ell_2, \ell_3, \ell_5\}$ $[\ell_7] = \{\ell_7\}$ $[\ell_4] = \{\ell_4\}$ $[\ell_8] = \{\ell_8\}$

Example: Fig 0.2: A partially labeled program ℓ_0' $\ell_3 \rightarrow \ell_2^a$ $\ell_5 \rightarrow \ell_2^b$

shortcut: label ℓ_2 "represents" $\{\ell_2, \ell_2^a, \ell_2^b\}$

2-12

in a, b : integer where a > 0, b > 0local y_1, y_2 : integer where $y_1 = a, y_2 = b$ out g : integer

$$\begin{bmatrix} \ell_1: \text{ while } y_1 \neq y_2 \text{ do} \\ & \ell_2: \begin{bmatrix} \ell_2^a: \text{ await } y_1 > y_2; \ \ell_4: \ y_1 := y_1 - y_2 \\ \text{ or } \\ & \ell_2^b: \text{ await } y_2 > y_1; \ \ell_6: \ y_2 := y_2 - y_1 \end{bmatrix} \\ \ell_7: \ g := y_1 \\ \ell_8: \end{bmatrix}$$

Figure 0.2

A Partially Labeled Program GCD

2-13

Post Location

 $\ell: S; \ \hat{\ell}: \qquad post(S) = [\hat{\ell}]$

- For $[\ell_1: S_1; \hat{\ell}_1:] \parallel \cdots \parallel [\ell_k: S_k; \hat{\ell}_k:]$ $post(S_i) = [\hat{\ell}_i]$, for every i = 1, ..., k
- For $S = [\ell_1: S_1; ...; \ell_k: S_k]$ $post(S_i) = [\ell_{i+1}], \text{ for } i = 1, ..., k-1$ $post(S_k) = post(S)$
- For $S = [\ell_1: S_1 \text{ or } \dots \text{ or } \ell_k: S_k]$ $post(S_1) = \dots = post(S_k) = post(S)$
- For $S = [\text{if } c \text{ then } S_1 \text{ else } S_2]$ $post(S_1) = post(S_2) = post(S)$
- For $[\ell : \text{while } c \text{ do } S']$ $post(S') = [\ell]$

Example: Post Locations of Fig 0.2 $post(\ell_1) = [\ell_7]$ $post(\ell_2) = post(\ell_4)$ $= post(\ell_6) = [\ell_1]$ $post(\ell_2^a) = [\ell_4]$ $post(\ell_2^b) = [\ell_6]$ $post(\ell_7) = [\ell_8]$

Ancestor

- S is an <u>ancestor</u> of S'if S' is a substatement of S
- S is a common ancestor of S_1 and S_2 if it is an ancestor of both S_1 and S_2
- S is a <u>least common ancestor</u> (LCA) of S_1 and S_2 if S is a common ancestor of S_1 and S_2 and any other common ancestor of S_1 and S_2 is an ancestor of S

LCA is unique for given statements S_1 and S_2

Example: $[S_1; [S_2 S_3];$	S_4] S_5
LCA of S_2 , S_3 LCA of S_2 , S_4 LCA of S_2 , S_5 [S_1 ;	$\begin{bmatrix} S_2 \ S_3 \end{bmatrix} \\ \begin{bmatrix} S_1; & [S_2 \ S_3]; & S_4 \end{bmatrix} \\ \begin{bmatrix} S_2 \ S_3]; & S_4 \end{bmatrix} \ & S_5 \end{bmatrix}$

2-16

Parallel Labels

- <u>Statements</u> S and \tilde{S} are <u>parallel</u> if their LCA is a cooperation statement that is different from statements S and \tilde{S} Example: $S = [S_1; [S_2 || S_3]; S_4] || S_5$ <u>Statements</u> <u>LCA</u> S_2 parallel to S_3 $S_2 || S_3$ S_2 parallel to S_3 $S_2 || S_3$
 - S_2 parallel to S_3 $S_2 \parallel S_3$ S_2 parallel to S_5 S S_2 not parallel to S_4 $[S_1; \dots; S_4]$ not coop. S_2 not parallel to $S_2 \parallel S_3$ $S_2 \parallel S_3$ same
- parallel labels labels of parallel statements

2-17

Critical References

Writing References:

$x := \ldots$	$\alpha \ \Rightarrow u$	produce x	request r	
\uparrow	1	\uparrow	\uparrow	
			release r	

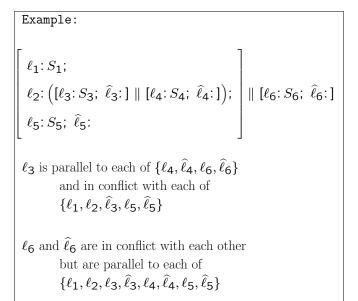
Reading References: all other references

 $\underline{\text{critical reference}}$ of a variable in S if:

- writing ref to a variable that has reading or writing refs in S' (parallel to S)
- reading reference to a variable that has writing references in S' (parallel to S)
- \bullet reference to a channel

Conflicting Labels

 $\underbrace{\text{conflicting labels}}_{\text{not parallel}} - \quad \begin{array}{l} \text{not equivalent and} \\ \text{not parallel} \end{array}$



Limited Critical References (LCR)

Statement obeys <u>LCR restriction (LCR-Statement)</u> if each test (for await, conditional, while) and entire statement (for assignment) contains at most one critical reference.

Example: Fig 0.3

 ℓ_2, m_1, m_3 are LCR-Statements

 ℓ_1, m_2 violate the LCR-requirement

LCR-Program: only LCR-statements

Interleaved vs. Concurrent Execution

Claim : If P is an LCR program, then the interleaving computations of P and the concurrent executions of P give the same results.

Discussion & explanation: Blue Book.

2-20

SPL Semantics

Transition Semantics:

 $\begin{array}{ccc} {\rm SPL} \; {\rm P} & & {\rm computation \ of \ P} \\ & & & \uparrow \\ {\rm FTS} \; \varPhi & \rightarrow & {\rm computation \ of \ } \varPhi \end{array}$

Given an SPL-program P, we can construct the corresponding FTS $\Phi = \langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$:

- system variables V
 - $Y = \{y_1, \dots, y_n\} \text{program variables of } P$ domains: as declared in P π - control variable domain: sets of locations in P

 $V = Y \cup \{\pi\}$

$$P_{1}:: \begin{bmatrix} \ell_{1}: \ b := \ b \cdot y_{1} \\ \ell_{2}: \ y_{1}:= y_{1} - 1 \\ \ell_{3}: \end{bmatrix} \mid P_{2}:: \begin{bmatrix} m_{1}: \text{ await } y_{1} + y_{2} \le n \\ m_{2}: \ b := \ b / y_{2} \\ m_{3}: \ y_{2}:= y_{2} + 1 \\ m_{4}: \end{bmatrix}$$

Figure 0.3

Critical references

2-21

SPL Semantics (Con't)

Comments:

- For label
$$\ell$$
, at_{ℓ} : $[\ell] \in \pi$
 at'_{ℓ} : $[\ell] \in \pi'$

Note: When going from an SPL program to an FTS we lose the sequential nature of the program. We need to model control explicitly in the FTS: π can be viewed as a program counter.

SPL Semantics (Con't)

Example: Fig 0.1
V = {π, a, b, y₁, y₂, g}
π - ranges over subsets of
 {[ℓ₁], [ℓ₂], [ℓ₄], [ℓ₆], [ℓ₇], [ℓ₈]}
a, b, ..., g - range over integers

• <u>Initial Condition</u> Θ For $P :: [dec; [P_1 :: [\ell_1: S_1; \hat{\ell}_1:] \parallel \cdots \parallel P_k :: [\ell_k: S_k; \hat{\ell}_k:]]]$ with data-precondition φ , $\Theta: \pi = \{[\ell_1], \ldots, [\ell_k]\} \land \varphi$

Example: Fig 0.1 $\Theta: \pi = \{ [\ell_1] \} \land$ $\underbrace{a > 0 \land b > 0 \land y_1 = a \land y_2 = b}_{\text{data-precondition}}$

2-24

in a, b : integer where a > 0, b > 0local y_1, y_2 : integer where $y_1 = a, y_2 = b$ out g : integer

$$egin{aligned} \ell_1: ext{ while } y_1
eq y_2 ext{ do} \ \ell_2^a: ext{ await } y_1 > y_2; \ \ell_4: \ y_1 := y_1 - y_2 \ ext{or} \ \ell_2^a: ext{ or} \ \ell_2^b: ext{ await } y_2 > y_1; \ \ell_6: \ y_2 := y_2 - y_1 \end{bmatrix} \ \ell_7: \ g := y_1 \ \ell_8: \end{aligned}$$

Figure 0.2

A Partially Labeled Program GCD

2-25

SPL Semantics (Con't)

• Transitions \mathcal{T}

$$\mathcal{T} = \{\tau_I\} \cup \left\{ \begin{array}{c} \text{transitions associated with} \\ \text{the statements of } P \end{array} \right\}$$

where τ_{I} is the "idling transition" ρ_{I} : V' = V

abbreviation

-
$$pres(U)$$
: $\bigwedge_{u \in U} (u' = u)$ (where $U \subseteq V$)
the value of $u \in U$ are preserved

- move(L, \hat{L}): $L \subseteq \pi \land \pi' = (\pi L) \cup \hat{L}$ where L, \hat{L} are sets of locations
- $move(\ell, \hat{\ell}): move(\{ [\ell] \}, \{ [\hat{\ell}] \})$

SPL Semantics (Con't)

We list the transitions (transition relations) associated with the statements of P

$$\begin{array}{c} \underline{\ell}:\underline{S} & \underline{\rho_{\ell}} \\ \hline \mathbf{Basic Statements} \\ \ell: \ \mathbf{skip}; \ \hat{\ell}: & \rightarrow & move(\ell, \hat{\ell}) \ \land \ pres(Y) \\ \ell: \ \overline{u}:=\overline{e}; \ \hat{\ell}: & \rightarrow & move(\ell, \hat{\ell}) \ \land \ \overline{u}'=\overline{e} \\ & \land \ pres(Y-\{\overline{u}\}) \end{array}$$

SPL Semantics (Con't)

Basic Statements (Con't)

$$\ell$$
: await c; $\hat{\ell}$: \rightarrow move $(\ell, \hat{\ell}) \land c \land pres(Y)$

 $\ell: \text{ release } r; \ \hat{\ell}: \longrightarrow move(\ell, \hat{\ell}) \land r' = r + 1 \\ \land pres(Y - \{r\})$

SPL Semantics (Con't)

Basic Statements (Con't)

$$\underbrace{\operatorname{asynchronous send}}_{\ell: \ \alpha \leftarrow e; \ \hat{\ell}: \ \rightarrow \ move(\ell, \hat{\ell}) \land \alpha' = \alpha \bullet e}_{\land \ pres(Y - \{\alpha\})}$$

$$\underbrace{\operatorname{asynchronous receive}}_{\widehat{\ell}}$$

 $\ell: \alpha \Rightarrow u; \ \hat{\ell}: \longrightarrow move(\ell, \hat{\ell}) \land |\alpha| > 0$ $\land \alpha = u' \bullet \alpha'$ $\land pres(Y - \{u, \alpha\})$

$$\frac{\text{synchronous send-receive}}{\ell: \ \alpha \leftarrow e; \ \hat{\ell}: \qquad m: \ \alpha \Rightarrow u; \ \widehat{m}:$$
$$move\left(\{\ell, m\}, \{\hat{\ell}, \widehat{m}\}\right) \ \land \ u' = e \ \land \ pres\left(Y - \{u\}\right)$$

2-29

2-28

 ho_ℓ

SPL Semantics (Con't)

Schematic Statements

 $\begin{array}{ccc} \ell: \text{ noncritical; } \widehat{\ell}: & \to & move(\ell, \widehat{\ell}) \ \land \ pres\bigl(Y\bigr) \\ & (\text{nontermination modeled by } \tau_{\ell} \notin \mathcal{J}) \end{array}$

 ℓ : critical; $\hat{\ell}$: \rightarrow $move(\ell, \hat{\ell}) \land pres(Y)$

SPL Semantics (Con't)

Compound Statements

$$\begin{split} \ell: & \left[\text{if } c \text{ then } \ell_1 : S_1 \text{ else } \ell_2 : S_2 \right]; \ \hat{\ell}: \to \\ & \rho_\ell : \rho_\ell^{\mathrm{T}} \lor \rho_\ell^{\mathrm{F}} \text{ where} \\ & \rho_\ell^{\mathrm{T}}: \ move(\ell, \ell_1) \land c \land pres(Y) \\ & \rho_\ell^{\mathrm{F}}: \ move(\ell, \ell_2) \land \neg c \land pres(Y) \end{split}$$

$$\begin{split} \ell: \ \left[\mathbf{while} \ c \ \mathbf{do} \ [\tilde{\ell}: \tilde{S} \] \right]; \ \hat{\ell}: \to \\ \rho_{\ell}: \rho_{\ell}^{\mathrm{T}} \lor \rho_{\ell}^{\mathrm{F}} \ \text{where} \\ \rho_{\ell}^{\mathrm{T}}: \ move(\ell, \tilde{\ell}) \ \land \ c \ \land \ pres(Y) \\ \rho_{\ell}^{\mathrm{F}}: \ move(\ell, \hat{\ell}) \ \land \ \neg c \ \land \ pres(Y) \end{split}$$

$$\begin{split} \ell: \ \left[\left[\ell_1 : S_1; \ \hat{\ell}_1 : \right] \parallel \cdots \parallel \left[\ell_k : S_k; \ \hat{\ell}_k : \right] \right]; \ \hat{\ell}: \to \\ \rho_{\ell}^{\mathrm{E}}: \ move\Big(\{\ell\}, \ \{\ell_1, \dots, \ell_k\} \Big) \ \land \ pres(Y) \ (\text{entry}) \\ \rho_{\ell}^{\mathrm{X}}: \ move\Big(\{\hat{\ell}_1, \dots, \hat{\ell}_k\}, \ \{\hat{\ell}\} \Big) \ \land \ pres(Y) \ (\text{exit}) \\ \\ \overset{2-31}{} \end{split}$$

Grouped Statements

executed in a single atomic step

$\langle S \rangle$

Example: $\langle x := y + 1; z := 2x + 1 \rangle$ $x' = y + 1 \land z' = 2y + 3$ the same as (x, z) := (y + 1, 2y + 3)

Example: $\underline{\langle a := 3; a := 5 \rangle}$ a' = 5

a = 3 is never visible to the outside world, nor to other processes

SPL Semantics (Con't)

- Justice Set \mathcal{J} All transitions except τ_I and all transitions associated with **noncritical** statements
- <u>Compassion Set C</u> All transitions associated with <u>send, receive,</u> request statements

2-32

Computations of Programs

local x: integer where
$$x = 1$$

 $P_1 :: \begin{bmatrix} \ell_0^a: \text{ await } x = 1 \\ \text{or} \\ \ell_0^b: \text{ skip} \\ \ell_1: \end{bmatrix} \parallel P_2 :: \begin{bmatrix} m_0: \text{ while T do} \\ [m_1: x := -x] \end{bmatrix}$

Fig 0.4 Process P_1 terminates in all computations.

$$\begin{aligned} \sigma \colon \langle \pi \colon \{\ell_0, m_0\}, x \colon 1 \rangle & \xrightarrow{m_0} & \langle \pi \colon \{\ell_0, m_1\}, x \colon 1 \rangle & \xrightarrow{m_1} \\ \langle \pi \colon \{\ell_0, m_0\}, x \colon -1 \rangle & \xrightarrow{m_0} & \langle \pi \colon \{\ell_0, m_1\}, x \colon -1 \rangle & \xrightarrow{m_1} \\ \langle \pi \colon \{\ell_0, m_0\}, x \colon 1 \rangle & \xrightarrow{m_0} & \cdots \end{aligned}$$

 $\sigma \text{ is not a computation. Unjust towards } \ell^b_0 \\ (\text{enabled on all states but never taken})$

Computations of Programs (Con't)

$$\begin{aligned} & \text{local } x: \text{ integer where } x = 1 \\ P_1 :: \begin{bmatrix} \ell_0: & \begin{bmatrix} \ell_0^a: \text{ await } x = 1 \\ \text{ or } \\ \ell_0^b: \text{ await } x \neq 1 \end{bmatrix} \end{bmatrix} \parallel P_2 :: \begin{bmatrix} m_0: \text{ while } T \text{ do} \\ [m_1: x := -x] \end{bmatrix} \\ \\ \hline \text{Fig } 0.5 \quad \text{skip } \to \text{ await } x \neq 1 \\ \\ \sigma: \langle \pi: \{\ell_0, m_0\}, x: 1 \rangle \xrightarrow{m_0} \langle \pi: \{\ell_0, m_1\}, x: 1 \rangle \xrightarrow{m_1} \\ \langle \pi: \{\ell_0, m_0\}, x: 1 \rangle \xrightarrow{m_0} \langle \pi: \{\ell_0, m_1\}, x: -1 \rangle \xrightarrow{m_1} \\ \langle \pi: \{\ell_0, m_0\}, x: 1 \rangle \xrightarrow{m_0} \cdots \end{aligned}$$

 σ is a computation –

since none of the just transitions are continually enabled.

2-33

Computations of Programs (Con't)

$$\begin{array}{c} \operatorname{local} x: \operatorname{integer} \text{ where } x = 1 \\ \ell_0: \text{ if } x = 1 \text{ then} \\ \ell_1: \text{ skip} \\ \text{ else} \\ \ell_2: \text{ skip} \\ \ell_3: \end{array} \right\| P_2:: \begin{bmatrix} m_0: \text{ while } \mathsf{T} \text{ do} \\ [m_1: x := -x] \end{bmatrix}$$

Fig 0.6 Process P_1 terminates in all computations.

- $\begin{aligned} \sigma \colon \langle \pi \colon \{\ell_0, m_0\}, x \colon \mathbf{1} \rangle & \xrightarrow{m_0} & \langle \pi \colon \{\ell_0, m_1\}, x \colon \mathbf{1} \rangle & \xrightarrow{m_1} \\ \langle \pi \colon \{\ell_0, m_0\}, x \colon -\mathbf{1} \rangle & \xrightarrow{m_0} & \langle \pi \colon \{\ell_0, m_1\}, x \colon -\mathbf{1} \rangle & \xrightarrow{m_1} \\ \langle \pi \colon \{\ell_0, m_0\}, x \colon \mathbf{1} \rangle & \xrightarrow{m_0} & \cdots \end{aligned}$
- σ is not a computation since ℓ_0 is continually enabled, but not taken.

2-36

Control Configurations

$$L = \left\{ [\ell_1], \dots, [\ell_k] \right\} \text{ of } P \text{ is called } \underline{\text{conflict-free}} \\ \text{if no } [\ell_i] \text{ conflicts with } [\ell_j], \text{ for } i \neq j.$$

L is called a (<u>control</u>) <u>configuration</u> of Pif it is a maximal conflict-free set.

Example:

local x : integer P_1 :: $\begin{bmatrix} \ell_0 : x := 1 \\ \ell_1 : \end{bmatrix} \parallel P_2$:	
Configurations	
$ \{ [\ell_0], [m_0] \}, \{ [\ell_0], [m_1] \}, \\ \{ [\ell_1], [m_0] \}, \{ [\ell_1], [m_1] \} $	

2-37

SPL Semantics (Con't)

 $\frac{\text{accessible configuration}}{\text{appears as value of } \pi \text{ in some accessible state}}$

Example:

 $\left\{ [\ell_0], [m_1] \right\}$ does not appear in any accessible state

Is a given configuration accessible?

Undecidable

The Mutual-Exclusion Problem

loop forever do	loop	forever do	
[noncritical]		[noncritical]	
critical		critical	
		[]	

Requirements:

• Exclusion

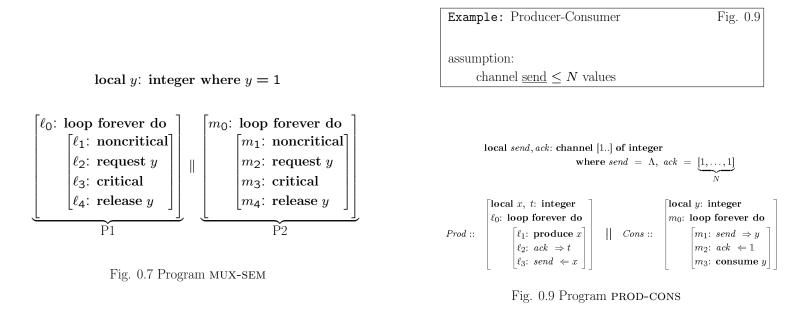
While one of the processes is in its critical section, the other is not

• Accessibility

Whenever a process is at the noncritical section exit, it must eventually reach its critical section

Example: mutual exclusion by semaphores Fig. 0.7

Message-Passing Programs



2-40

2-41