CS256/Spring 2008 — Lecture #2
Zohar Manna

2-1

SPL (CON'T)

Schematic Statements
In Mutual-Exclusion programs:

e noncritical
may not terminate
e critical

terminates

In Producer-Consumer programs:

e produce x

terminates — assign nonzero value to x
e consume y

terminates

2-3

SPL (Simple Programming Language)

Syntax
Basic Statements
e skip
e assignment
(ua, ... ug) = (e1,-..,e)
variables expressions

e await c

(where ¢ is a boolean expression)
special case: halt = await F

e Communication by message-passing

o <= e (send)
a = u (receive)

(where « is a channel)

e Semaphore operations

request r (r>0—-r:=r—1)
release r (r:=r+1)
(where r is an integer variable) 9.9

No program variables are modified by
schematic statements. One exception:

(3

2” in produce x

SPL (CON’T)

Compound Statements

e Conditional
if ¢ then Sq else S5
if c then S

e Concatenation

S1; o5 Sy

Example:

whencdo S = awaitc; S

e Sclection
Sy or---or Sy

e while
while cdo S

Example:

loop forever do S = whileTdo S

2-4

SPL (CON’T)
Basic types — boolean, integer, character, . ..
Structured types — array, list, set, . ..
Static variable initialization

(variables get initialized at the
start of the execution)

2-6

SPL (CON'T)

Compound Statements (Con’t)

e Cooperation Statement

€[Sy L1 N Lk Sk B 1 2

process

S1,...,Sy are parallel to one another

interleaved execution.

entry step: from £ to £1,£p, ..., 4,
exit step: from £1, %o, ..., ¢ to /.

e Block

[local declaration; S]

local variable , ..., variable : type where Pi
Yyr==¢€1, .-, Yn = €n
25
Programs

P |declaration; Py i [€1:S71; 010] |-l
Py [0k Sy Oy]}

Py, ..., P, are top-level processes
Variables in P called program variables

Declaration

mode variable, ..., variable: type where @;
program variables

in (not modified) constraints on

local initial values

out

p1 A ... App data-precondition of the program

2-7

Channel Declaration

e synchronous channels
(no buffering capacity)

mode a1, ap, . ..,an: channel of type

e asynchronous channels
(unbounded buffering capacity)

mode a1, s, . ..,an: channel [1..] of type
where ¢;

— (p; is optional

— p; = A (empty list) by default

2-8

Note: For £: [€1 : S1||---|1€k : Skl
Cobr by At b p -

because of the entry step

Example: In Figure 0.1
lo~rpla
lo~pl3 ~p s

| Foundations for SPL Semantics

Labels
{: 8

o Label ¢ identifies statement S

e Equivalence Relation ~, between labels:

— For £: [€1:51;...; €, SE]
0~y 4

— For £: [€1:S1 or ... or £;:S;]
€ ~p by ~p o o~ A

— For £: [local declaration; £1:S1]

0~ 0

2-9

in a, b :integer wherea >0, >0
local y1, yo: integer where y; =a, y2 =10
out g : integer

£1: while y; # y2 do
£3: await y1 > y2; fa: Y1 :=y1 — Y2
£y: £o: or
£5: await yo > y1; Lt Yo := Y2 — Y1
by g=1y

£g:

Figure 0.1

A Fully Labeled Program GCD-F

Locations

[€]
Identify site of control

e [/] is the location corresponding to label £.

e Multiple labels identifying different statements may

identify the same location.

[l = (|~ 0}

[¢1: while y; # yo do

Example: Fig 0.1: A fully labeled program

[lo] = [41] = {40, 1} [46] = {¢6}
[£o] = {2, 43,05} [47] = {t7}
[l4] = {44} (48] = {¢g}

Example: Fig 0.2: A partially labeled program
l3 — (5
s — &

shortcut: label £ “represents” {¢, £%, €3}

Post Location

0:8; 0 post(S) = [4]

o For [£1:S1; f1: 11| -+ || [k S Ot]
post(S;) = [], foreveryi=1,...,k

e For S = [61151;...;6162516]

post(S;) = [ljyq] fori=1,... k-1
post(Sy) = post(S)

e For S =1[¢1:57 or ... or £;: 5]
post(S1) = --- = post(Sy) = post(S)

e For S = [if c then S else S5]
post(S1) = post(Sz) = post(S)

e For [¢: while ¢ do 5]
post(S") = [/]

2-12

in a, b :integer wherea >0, 6 >0
local y;, yo: integer where y; = a, yo = b
out g : integer

5. await g1 > yo; £40 y1:=y1 — 2
£o: or
€5 await g2 > y1; fo: y2 7= Y2 — ¥1
£7: g ==y
{g:

Figure 0.2

A Partially Labeled Program GCD

213
Example: Post Locations of Fig 0.2
post(£1) = [£7]
post(€2) = post(L4)
= post(le) = [t1]
post(63) = [£a]
post(£5) = [¢e]
post(t7) = [Lg]
215

Ancestor

S is an ancestor of S’
if S’ is a substatement of S

S is a common ancestor of Sq and S5

if it is an ancestor of both S1 and Sy

S is a least common ancestor (LCA) of S1 and Sp
if S is a common ancestor of S7 and Sp
and any other common ancestor
of S1 and S5 is an ancestor of S

LCA is unique for given statements S1 and So

Example: [S1; [S2]|S3]; Sa) || Ss

LCA of Sp, S3 [S2|53]
LCA of Sp, Sa [S1; [921193]; Sa
LCA of S, S5 [S1: [S2]153; Sa] || Ss

2-16

Conflicting Labels

conflicting labels not equivalent and
not parallel

Example:

f]_ZS]_;
0o: (13 S3; 23:] || [a: Sa; Za:1); | |l [l6: S Ze:]

65255; 252

£3 is parallel to each of {4, 04, s, g}
and in conflict with each of
{gla £27 £37 £57 £5}

L and 26 are in conflict with each other
but are parallel to each of
{gla £27 £37 £37 £47 £47 £5a £5}

Parallel Labels

e Statements S and S are parallel if
their LCA is a cooperation statement
that is different from statements S and S

Example: S = [S1; [S2/Sal; Sa |l S5

Statements LCA

So parallel to S3 So || S3

So parallel to Sy S

S5 not parallel to Sa [S1; --+; Sa] not coop.

So not parallel to Sp || S35 So || S3 same

e parallel labels — labels of parallel statements

2-17

Critical References

Writing References:

z:= ... o = u producez requestr
T 7 T T
release r

1

Reading References: all other references

critical reference of a variable in S if:

e writing ref to a variable that has reading
or writing refs in S’ (parallel to S)

e rcading reference to a variable that has
writing references in S’ (parallel to .S)

e reference to a channel

Limited Critical References (LCR)

Statement obeys LCR restriction (LCR-Statement)
if each test (for await, conditional, while)
and entire statement (for assignment)
contains at most one critical reference.

Example: Fig 0.3
¢5,m1, m3 are LCR-Statements
£1, mo violate the LCR~requirement

LCR-Program: only LCR-statements

Interleaved vs. Concurrent Execution

Claim : If P is an LCR program, then the
interleaving computations of P and the

concurrent executions of P give the same results.

Discussion & explanation: Blue Book.

2-20
‘SPL Semantics‘
Transition Semantics:
SPL P computation of P
FTS® — computation of ¢
Given an SPL-program P, we can construct
the corresponding FTS @ = (V,0,7,7,C):
e system variables V
Y ={y1,...,yn} — program variables of P
domains: as declared in P
7 — control variable
domain: sets of locations in P
V=YU{r}
222

m1: await +y2 <n

P o ::yl—l H Py - m2:@5:|£|/92

mg: Y2 :=y2+ 1

l3:
my:
Figure 0.3
Critical references
221
SPL Semantics (Con’t)
Comments:

—For label £, at_¢: [flen
at’ ¢: [0 en

Note: When going from an SPL program to an FTS we
lose the sequential nature of the program. We need to
model control explicitly in the FTS: 7 can be viewed as
a program counter.

SPL Semantics (Con’t)

Example: Fig 0.1

V= {7Ta a, b» Y1,Y2; g}
7 - ranges over subsets of

{[‘el]a [£2]7 [£4]7 [66]7 [67]7 [68]}

a,b,...,g-range over integers

e Initial Condition @
For P :: [dcc; [Pl oS 1 |
Pk . [EkSk, Ek::]”
with data-precondition ¢,

o: W:{[Ella"'a [Ek,]} A

Example: Fig0.1

6: = {[ta]} A
a>0Ab>0ANyr=a Ayr=bd
data-precondition

2-24

SPL Semantics (Con’t)

e Transitions 7

the statements of P

T={TI}U{

transitions associated with }

where 7; is the “idling transition”
p; V=V

abbreviation

— pres(U): N\ (v =) (where U C V)

uelU
the value of u € U are preserved

— move(L,L): LCw A # =(r—L)UL

where L, L are sets of locations

— move(£,2): move({[4]}, {[4]})

in a, b :integer wherea >0, 6 >0
local y;, yo: integer where y; = a, yo = b
out g : integer

[¢1: while y; # yo do
50 await y1 > yo; 41 y1 =11 — ¥2
£o: or
€5 await g2 > y1; fo: y2 7= Y2 — ¥1
€7 g:=y1
{g:

Figure 0.2

A Partially Labeled Program GCD

2-25
SPL Semantics (Con’t)

We list the transitions (transition relations)

associated with the statements of P

&5 Pe

|Basic Statements

¢: skip; ¢ — move(£,2) A pres(Y)

t:u=¢ 0 — move(¢,0) N U =€

A pres (Y—{ﬂ})

SPL Semantics (Con’t)
Basic Statements (Con’t)
¢ await ¢; £© — move(4,0) A ¢ A pres(Y)

¢: request r; £ — move(£,€) A r>0
Arl=r—-1
A pres(Y—{r})

¢: release r; — move(4,0) A ' =r+1
A pres(Y—{r})

2-28

SPL Semantics (Con’t)

| Schematic Statements | Py

¢: noncritical; — move(£,€) A pres (Y)
(nontermination modeled by 7, ¢ J)

~

£: critical; £: — move(€,2) A pres(Y)

SPL Semantics (Con’t)
Basic Statements (Con’t)

asynchronous send

0 a<=e; 0 — move(4,€) A o/ =aee
A pres(Y—{a})

asynchronous receive

move(4,) A |a| >0
ANa=ued

A pres (Y—{u, a})

E:a:>u;l7: —

synchronous send-receive

U a<=e; L. m. o= u;, m.

move({ﬁ,m},{@, ﬁ}) ANu =e A pres(Y—{u})

2-29

SPL Semantics (Con’t)

‘ Compound Statements ‘

¢ {ifcthen ¢1: 51 else Lo 52]; 0 —
PP, V p, where
p,: move(,£1) A ¢ A pres(Y)

py: move(£,£2) N —c A pres(Y)

!

¢: [while ¢ do [¢: S]]; €
Py pzT Vv pf where
P, move(£,£) N ¢ A pres(Y)

Py move(€,€) A =c A pres(Y)

l: {[61:51;)0 Il [y Sk Zk:]}; -
Py move({ﬁ}7 {217...,£k}) A pres(Y) (entry)

Py move({@l,...,zk}, {Z}) A pres(Y) (exit)

2-31

Grouped Statements (S)
executed in a single atomic step

Example:
(r:=y+1;, z: =22+ 1)
=y+1 A Z=2y+3

the same as (z,2) ;== (y+ 1, 2y + 3)

Example:
(a:=3;a:=05)
a =5

a = 3 is never visible to the outside
world, nor to other processes

2-32

Computations of Programs

local z: integer where z = 1
g await x =1
Lo: or mg: while T do

P>
¢ skip I P2

[mi1: 2= —x]

lq:

Fig 0.4 Process P; terminates in all

computations.

oi(m: {lg,mo},w:1) =% (m:{lg,m1},w:1) b

(m: {lg,mo}, x: —1) =% (m:{lg,m1}, i —1) L

mo

(m:{lg, mo},z:1) — ---

o is a computation. Unjust towards E%
(enabled on all states but never taken)

2-34

SPL Semantics (Con’t)

e Justice Set J
All transitions except
7, and all transitions associated
with noncritical statements

e Compassion Set C

All transitions associated with
send, receive, request statements

2-33

Computations of Programs (Con’t)

local z: integer where x = 1
¢ await x =1
EO: or || mQ: while T do
Eg: await z # 1
61:

[mq: = := —z]

[Fig 0.5 skip — awaitz #1

o (i {lo,mo}, @ 1) =% (m:{lo,m1}, @ 1) b

(m: {lg,mo}, x: —1) =% (m:{lg,m1},x:—1) L

(m: {tg,mo},x:1) =% ...

o is a computation —
since none of the just transitions are
continually enabled.

Computations of Programs (Con’t)

local z: integer where x =1

Lo: if x = 1 then

¢, skip mo: while T do
Py else | P2 [m1: o= —a]
£ skip o

£3Z

Fig 0.6 Process P; terminates in all

computations.

o (m: {bg,mo}, z: 1) 29 (m:{lg,m1},x:1) %

(m: {o,mo},z: 1) % (m:{lg,m1},z: 1)

(7 {fo,mo},xi 1) Mo, ..

o is a computation —
since £g is continually enabled,
but not taken.
2-36

SPL Semantics (Con’t)

accessible configuration —

appears as value of 7 in some accessible state

Control Configurations

L= {[61], R [Ek]} of P is called conflict-free
if no [¢;] conflicts with [¢;], for i # j.

L is called a (control) configuration of P
if it is a maximal conflict-free set.

Example:

{[ZO], [ml]} does not appear in any accessible state

Is a given configuration accessible?
Undecidable

Example:

local z: integer where x = 0
lo: x:=1 mg: await z = 1
Py || Pp ::

lq: m1.

Configurations

{[6o], Imol}, {[tol, [mal},
{lea], Imol }, {lea, [mal}

2-37

The Mutual-Exclusion Problem

loop forever do loop forever do
noncritical noncritical
critical critical
Requirements:

o Exclusion

While one of the processes is in its critical section,
the other is not

e Accessibility
Whenever a process is at the noncritical section exit,
it must eventually reach its critical section

Example: mutual exclusion by semaphores

Fig. 0.7

Message-Passing Programs

Example: Producer-Consumer Fig. 0.9

assumption:
local y: integer where y = 1 channel send < N values

{o: loop forever do mgq: loop forever do
£1: noncritical my: noncritical local send, ack: channel [1..] of integer
{>: request y I my. request y where send = A, ack = [1,...,1]
e
£3: critical m3: critical N
€4Z release Y maq: release Yy local z, t: integer local y: integer
L E L E fo: loop forever do mg: loop forever do
P1 P2 Prod :: ?1: produce = || Cons :: mi: send =y
f2: ack =1t ma: ack <=1
l3: send <z mg: consume y

Fig. 0.7 Program MUX-SEM

Fig. 0.9 Program PROD-CONS

2-40 2-41

