CS256/Spring 2008 — Lecture #2
Zohar Manna

2-1

SPL (Simple Programming Language)

Syntax
Basic Statements
e skip
e assignment
(uy,...,ug) = (e1,...,ex)
variables expressions

e await c

(where ¢ is a boolean expression)

special case: halt = await F

e Communication by message-passing
a < e (send)
a = u (receive)
(where v is a channel)

e Semaphore operations
request r (r>0—r:=r—1)
release r (r:=r+1)
(where r is an integer variable) 05

SPL (CON’T)

Schematic Statements
In Mutual-Exclusion programs:

e noncritical
may not terminate
e critical

terminates

In Producer-Consumer programs:

e produce x
terminates — assign nonzero value to x
e consume y

terminates

2-3

No program variables are modified by

schematic statements. One exception:

W _n

2’ in produce x

SPL (CON’T)
Compound Statements
e Conditional

if c then S7 else S
if c then S

e (Concatenation

S1; -+ Sk

Example:

whencdo S = awaitc; S

e Selection
Sior---or S

e while
while ¢ do S

Example:

loop forever do S = whileTdo S

SPL (CON’T)

Compound Statements (Con’t)

e Cooperation Statement

0 [09:81; L1l - || [Sk Ly 15 2
pProcess
S1,...,8S are parallel to one another

interleaved execution.

entry step: from £ to £, 62, .. Ek,

exit step: from 61, 62, .. Ek to 0.

e Block

[local declaration; S|

local able , . .. able : t h :
ocal variable , ..., variable : type where p;

Yyi — €1, -y Yn — €n

2-5

SPL (CON’T)

Basic types — boolean, integer, character, ...

Structured types — array, list, set, ...

Static variable initialization
(variables get initialized at the
start of the execution)

2-6

Programs

P \|declaration, Py i [€1:S71; ¢1:] | -
Py [0 Sk Oy]]

Py, ..., P are top-level processes
Variables in P called program variables

Declaration

mode variable, ..., variable: type where ¢,
programvvariables

in (not modified) constraints on

local initial values

out

w1 A ... A pn data-precondition of the program

2-7

Channel Declaration

e synchronous channels

(no buffering capacity)

mode a1, oo, .. .,an. channel of type

e asynchronous channels

(unbounded buffering capacity)

mode a1, o, . ..,an: channel [1..] of type
where ¢,

— (p; 1s optional

— @; = A (empty list) by default

2-8

Foundations for SPL Semantics

Labels
. S

e [abel 7 identifies statement S

e [quivalence Relation ~ between labels:

— For £: [€1:571;...; 0 Sk]

0 ~p 01

— For £: [¢1:S1 0or ... or £: Si]

b o~p by ~poc L b

— For £: [local declaration; £1:S1]

b ~p £

2-9

Note: For ¢ : [61 : Sl”---”Ek

€ 2p b1 % Lo F#p ...
because of the entry step

: Sk]

Example: In Figure 0.1
to ~r £1

by ~p £33 ~ L5

2-10

in a, b :integer wherea >0, b >0
local y1, y2: integer where y1 = a, yo = b
out g . integer

_51: while al % Y2 do

£3: await y1 > yo; £4: y1 = Y1 — Y2
£9: or

£5: await yo > y1; f60 y2 == y2 — Y1

lr g

Figure 0.1

A Fully Labeled Program GCD-F

2-11

Locations

[£]

Identify site of control

e [/] is the location corresponding to label £.

e Multiple labels identifying different statements may
identify the same location.

(] = {{'| ¥ ~p &}

Example: Fig 0.1: A fully labeled program

Lo] = [£1] = {40, ?1} L] = {46}
lo] = {{2,43,05} l7] = {47}
04] = {€4} lg] = {ls}

Example: Fig 0.2: A partially labeled program

t

b3 — {5

65—>£g

shortcut: label £o “represents” {£2, £3, fg}
212

¢1: while y1 # 12 do

in

a, b :integer where a >0, 6> 0

local y{, yo: integer where y; = a, yo = b

out

%: await y1 > yo; £4: y1 = y1 — ’92_
.€2: or
Eg: await yo > y1; 4 y2 1= Yo — yl
€7 9=y

fg:

q . integer

Figure 0.2

A Partially Labeled Program GCD

2-13

Post Location
0:S; ¢ post(S) = [¢]

For [£1:51; £1: 11 -+ |l €k Sk gt]
post(S;) = [¢;], foreveryi=1,....k

For S = [21151; ;Ek:Sk]

post(S;) = [lj41], fori=1,..., k-1
post(Sr) = post(S)

For S = [£1:S1 or ... or ¢S]
post(S1) = --- = post(Sr) = post(S)

For S = [if ¢ then S; else S5]
post(S1) = post(S>) = post(S)

For [¢ : while ¢ do S’]

post(S') = [¢]
214

Example: Post Locations of Fig 0.2

post(£1) = [47]

post(£p) = post(£a)
= post(lsg) = [l1]
post(£3) = [{4]

post(£3) = [¢e]

post(£7) = [{g]

2-15

Ancestor

S is an ancestor of S’
if S’ is a substatement of S

S is a common ancestor of S1 and So

if it is an ancestor of both S1 and S5

S is a least common ancestor (LCA) of S and Sy
if S is a common ancestor of S and S5
and any other common ancestor
of S1 and S5 is an ancestor of S

LCA is unique for given statements Sq and S»o

Example: [51; [S2[|S3]; 54] | Ss

LCA of SQ, 53 [SQ||S3]
LCA of S5, Sa S1: [S2]1S3]; Sal
LCA of S5, S5 [Sl; [S2]|53]; 54] | Ss

2-16

Parallel Labels

e Statements S and S are parallel if

their LCA is a cooperation statement
that is different from statements S and S

Example: S = [51; [S2[|S3]; 54} | Ss

Statements LCA

S> parallel to S3 So || S3

So parallel to Sg S

S» not parallel to Sy [S1; ---; Sa] not coop.

So not parallel to S || S5 So || S3 same

e parallel labels — labels of parallel statements

2-17

Conflicting Labels

conflicting labels — not equivalent and
not parallel

Example:

€1:571;
t2: ([03: S35 £3:] || [Ca: Sa; La:]);

/5. Sk; 252

¢5 is parallel to each of {€a, 04, 0g, lg}
and in conflict with each of

{217227Zé7£5azé}

¢e and 26 are in conflict with each other
but are parallel to each of

{617627637Eé7£47za7£57zé}

| [¢6: Se; %6:]

2-18

Critical References

Writing References:

x.:= ... o = u producex requestr
T T T T
release r

1

Reading References: all other references

critical reference of a variable in S if:

e writing ref to a variable that has reading
or writing refs in S’ (parallel to S)

e reading reference to a variable that has
writing references in S’ (parallel to S)

e reference to a channel

2-19

Limited Critical References (LCR)

Statement obeys LCR restriction (LCR-Statement)
if each test (for await, conditional, while)
and entire statement (for assignment)
contains at most one critical reference.

Example: Fig 0.3

¢>, mq1, m3 are LCR-Statements
/1, m» violate the LCR-requirement

LCR-Program: only LCR-statements

Interleaved vs. Concurrent Execution

Claim : If P is an LCR program, then the
interleaving computations of P and the

concurrent executions of P give the same results.

Discussion & explanation: Blue Book.
2-20

Y1

y—1| || P

Critical references

Figure 0.3

mi:

mo:

ms:

TT4:

await [4 |+ y2 < n]

bl-— b/’y2
y2 =y + 1

2-21

SPL Semantics

Transition Semantics:

SPL P computation of P

l T

FTS & — computation of @

Given an SPL-program P, we can construct
the corresponding FTS @ = (V. 0,7, 7,C):

e system variables V

Y ={y1,...,yn} — program variables of P
domains: as declared in P

7 — control variable
domain: sets of locations in P

V=YU{n}

2-22

SPL Semantics (Con’t)
Comments:

— For label £, at_¢: [f] €
at’ 02 [4] €«

Note: When going from an SPL program to an F'T'S we
lose the sequential nature of the program. We need to
model control explicitly in the FTS: 7 can be viewed as

a program counter.

2-23

SPL Semantics (Con’t)

Example: Fig0.1

V = {777 a, b7 Y1, Y2, g}
7 - ranges over subsets of

{[61]7 [62]7 [64]7 [66]7 [67]7 [68]}

a,b,...,g-range over integers

e [nitial Condition ©
For P :: [dec; [Pl oS 1 |
Pt [0 Sk Oy]H
with data-precondition ¢,
O: m=A{llal,..., [t} Ao

Example: Fig0.1

6: m={[t1]} A
a>0ANbD>0ANyg=a N yr=2>b

data—pregondition

2-24

¢1: while y1 # 12 do

in

a, b :integer where a >0, 6> 0

local y{, yo: integer where y; = a, yo = b

out

%: await y1 > yo; £4: y1 = y1 — ’92_
.€2: or
Eg: await yo > y1; 4 y2 1= Yo — yl
€7 9=y

fg:

q . integer

Figure 0.2

A Partially Labeled Program GCD

2-25

SPL Semantics (Con’t)

e 'Iransitions 7

transitions associated with
T =17}V { the statements of P }

where 7, is the “idling transition”

p; V=V
abbreviation
— pres(U): (v = u) (where U C V)
uelU

the value of w € U are preserved

— move(L,L): LCw A @ =(x—L)UL

where L, L are sets of locations

— move(£,0): move({[]}, {[{]})

2-26

SPL Semantics (Con’t)

We list the transitions (transition relations)
associated with the statements of P

) Py

Basic Statements

¢: skip; ¢ — move(€,0) A pres(Y)

0 ui=c¢ ¢ o move(£,0) N u =¢€
N p?"es({u})

2-27

SPL Semantics (Con’t)
Basic Statements (Con’t)

¢: await ¢; £1 — move(£,) N ¢ A pres(Y)

¢: request r; £ o move(4,) A r >0
ANr=r—1

A pres(Y—{r})

0: releaser; 01 — move(£,€) AN v =r+1
A pres(Y—{r})

2-28

SPL Semantics (Con’t)
Basic Statements (Con’t)

asynchronous send

AN

l: a<=e; L o move(£,0) A o =aee
A pres(Y—{oz})

asynchronous receive

0 o= u; L o move(¢,£) A |a| >0

AN a=u ed

A pres (Y—{u, a})

synchronous send-receive

AN
—

V. oo <=e; L. m. o« = u, m.

move({ﬁ,m},{@, ﬁ}) ANu =e A pres(Y—{u})

2-29

SPL Semantics (Con’t)

Schematic Statements 0y

¢: noncritical; ¢: — move(£,0) A pres (Y)
(nontermination modeled by 7, ¢ J)

¢: critical; ¢: — move(£,0) A pres(Y)

2-30

SPL Semantics (Con’t)

Compound Statements

£: [if c then £1: Sy else £5: So; £: —
p,:p, V p, where
pg: move(£,£1) N ¢ A pres(Y)

pg: move(£,€5) N —c A pres(Y)

¢: |while cdo [¢:S]]; & —
p,:p, V p, where
p,: move(£,0) A ¢ A pres(Y)

P, move(£,£) N —c A pres(Y)

0 [[61:51; 01211 - || [€: Sk Zk:]]; 0: —
pf: mm)e({ﬁ}, {51,...,£k}) A pres(Y) (entry)

Py mave({zl,...,zk}, {Z}) A pres(Y) (exit)

2-31

Grouped Statements (S)
executed in a single atomic step

Example:

(r:=y+1;, z:=2x+ 1)
r=y+1 AN Z=2y+3

the same as (z,2) ;= (y+ 1, 2y + 3)

Example:
\<a:=3;a:=5>/
a,’;5

a = 3 is never visible to the outside
world, nor to other processes

2-32

SPL Semantics (Con’t)

e Justice Set J
All transitions except

7, and all transitions associated
with noncritical statements

e Compassion Set C

All transitions associated with
send, receive, request statements

2-33

Computations of Programs

local z: integer where z = 1

| E4E await z = 17 |
60: or mo. while T do
b 1 I P2 L
£ skip | [m1: = := —x]
61 _
Fig 0.4 Process P; terminates in all

computations.

mQ mi

o.(m:{ly,mo},z:1) — (mw:{lp,m1},x:1) —

mo mj

(m:{ly,mo},x: =1y — (m:{lg,m1},z:—-1) —

mo

(m:{ly, mg},z:1) — -

o 18 | not

a computation. Unjust towards E%

(enabled on all states but never taken)

2-34

Computations of Programs (Con’t)

local z: integer where x = 1

| K4k await z = 17|
Lo or | Py mo: while T do
¢3: await z 7= 1| 2 Imy o= —a]
41 _
Fig 0.5 skip — awaitz # 1

o (m: {lo,mo},z: 1) —> (m:{lg,m1},z: 1)

m

m

(m:{lg,mo},z: —1) —> (m:{lg,m1},z:—1)

mo

(m: {lg,mg},z:1) — --.

o 18 a computation —

since none of the just transitions are

continually enabled.

mi
—

mi
—

2-35

({g: if £ = 1 then]

Computations of Programs (Con’t)

832

local z: integer where z = 1

f1: skip mg: while T do
else | P> o
[m1: = —x]
2% Skip

Fig 0.6 Process Pq terminates in all

computations.

mQ mi

o.(m:{ly,mo},z:1) — (w:{lp,m1},x:1) —

mo mi

(m:{ly,mo},x: =1y — (m:{lg,m1},2:—-1) —

mQ

(m:{lg,mp},z:1) — ---

o 1S

not

a computation —

since £g is continually enabled,
but not taken.

2-36

Control Configurations

L = {[El], e [ﬁk]} of P is called conflict-free
if no [¢;] conflicts with [£;], for ¢ 7 j.

L is called a (control) configuration of P

if 1t 1s a maximal conflict-free set.

Example:

local x: integer where x = 0

lo: x =1 mo. await x = 1
Py | Po ::
fli

mq.

Configurations

{[¢0], Imol}, {[ol, [mal},
{[e1], Imol}, {lea), [mal}

2-37

SPL Semantics (Con’t)

accessible configuration —

appears as value of 7 in some accessible state

Example:

{[éo], [ml]} does not appear in any accessible state

Is a given configuration accessible?

Undecidable

2-38

The Mutual-Exclusion Problem

loop forever do loop forever do
‘noncritical] ‘noncritical |
critical critical
Requirements:

e [xclusion

While one of the processes is in its critical section,

the other is not

o Accessibility

Whenever a process is at the noncritical section exit,
it must eventually reach its critical section

Example: mutual exclusion by semaphores

Fig. 0.7

2-39

local y: integer where y = 1

0y: loop forever do 'mo: loop forever do |
/1: noncritical | 'm1: noncritical]
¢>. request y I mo. request y
¢3: critical m3. critical
ly: releasey | my: release y |
) P1 o P2 i

Fig. 0.7 Program MUX-SEM

2-40

Message-Passing Programs

Example: Producer-Consumer Fig. 0.9
assumption:
channel send < N values
local send, ack: channel [1..] of integer
where send = A, ack = [1,...,1]
P~

'local z, ¢: integer
£g: loop forever do
Prod :: £1: produce x ||
fa0 ack =t
f3: send = «x

Cons ::

N

'local y: integer

mo: loop forever do
mi: send =y
mo: ack <1

m3: consume ¥y

Fig. 0.9 Program PROD-CONS

2-41

