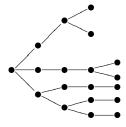
CS256/Spring 2008 — Lecture #3

Zohar Manna

TEMPORAL LOGIC(S)

Languages that can specify the behavior of a reactive program.


Two views:

- (1) the program generates a set of sequences of states
 - the models of temporal logic are infinite sequences of states
 - <u>LTL</u> (<u>linear time temporal logic</u>) [Manna, Pnueli] approach

3-1

- (2) the program generates a tree, where the branching points represent nondeterminism in the program
 - the models of temporal logic are infinite trees
 - <u>CTL</u> (computation tree logic) [Clarke, Emerson] at CMU Also <u>CTL*</u>.

Temporal logic: underlying assertion language

Assertion language \mathcal{L} :

first-order language over interpreted typed symbols (functions and relations over concrete domains)

Example:
$$x > 0 \rightarrow x + 1 > y$$

$$x, y \in \mathbf{Z}^+$$

formulas in \mathcal{L} called: state formulas or assertions

3-3

Temporal logic: underlying assertion language (Con't)

A state formula is evaluated over a single state to yield a truth value.

For state s and state formula p

$$s \Vdash p$$
 if $s[p] = T$

We say:

p holds at s

s satisfies p

s is a p-state

Example:

For state $s : \{x : 4, y : 1\}$

$$s \models x = 0 \lor y = 1$$

$$s \not\models x = 0 \land y = 1$$

$$s \models \exists z. \ x = z^2$$

p is state-satisfiable if $s \models p$ for some state s

p is state-valid if

 $s \models p$ for all states s

p and q are state-equivalent if

 $s \models p$ iff $s \models q$ for all states s

Temporal logic: underlying assertion

language (Con't)

Example: (x, y : integer)

state-valid: $x > y \leftrightarrow x+1 > y$

 $x = 0 \rightarrow y = 1$ state-equivalent:

 $x \neq 0 \lor y = 1$

3-5

TEMPORAL LOGIC (TL)

A formalism for specifying sequences of states

 $TL = \underline{assertions} + temporal operators$

• <u>assertions</u> (<u>state formulas</u>):

First-order formulas describing the properties of a single state

• temporal operators

Fig 0.15

Future Temporal Operators

 Henceforth p $\Box p$

 Eventually p $\Diamond p$

pUq - p Until q

pWq - p Waiting-for (Unless) q

 $\bigcirc p$ – Next p

Past Temporal Operators

 $\neg p$ – So-far p

 $\Leftrightarrow p$ - Once p

- p Since qpSq

pBq- p Back-to q

 $\bigcirc p$ - Previously p

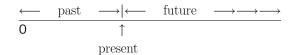

 $\bigcirc p$ - Before p

Fig. 0.15. The temporal operators

3-7

3-6

future temporal operators

past temporal operators

3-9

Temporal Logic: Syntax

- Every assertion is a temporal formula
- If p and q are temporal formulas (and u is a variable), so are:

$$\neg p \qquad p \lor q \qquad p \land q \qquad p \to q \quad p \leftrightarrow q$$

 $\exists u.p \quad \forall u.p$

$$\Box p$$
 $\Diamond p$ pUq pWq $\bigcirc p$

Example:
$$\Box (x > 0)$$

$$\Box(x > 0 \to \diamondsuit y = x)$$
$$p\mathcal{U} q \to \diamondsuit q$$

Temporal Logic: Semantics

Temporal formulas are evaluated over <u>a model</u> (an infinite sequence of states)

$$\sigma$$
: $s_0, s_1, s_2, ...$

• The semantics of temporal logic formula p at a position $j \geq 0$ in a model σ ,

$$(\sigma, j) \models p$$

"formula p holds at position j of model σ ", is defined by induction on p:

$$\sigma: s_0, s_1, \ldots, s_j, \ldots$$

$$\uparrow$$

$$(\sigma, j)$$

3-10

Temporal Logic: Semantics (Con't)

For state formula (assertion) p (i.e., no temporal operators)

•
$$(\sigma, j) \models p \iff s_j \models p$$

For a temporal formula p:

•
$$(\sigma, j) \models \neg p \iff (\sigma, j) \not\models p$$

•
$$(\sigma, j) \models p \lor q \iff (\sigma, j) \models p \text{ or } (\sigma, j) \models q$$

3-13

Temporal Logic: Semantics (Con't)

• $(\sigma, j) \models p \mathcal{U} q \iff$ for some $k \ge j$, $(\sigma, k) \models q$, and for all $i, j \le i < k$, $(\sigma, i) \models p$

- $(\sigma, j) \models p \mathcal{W} q \iff$ $(\sigma, j) \models p \mathcal{U} q \text{ or } (\sigma, j) \models \Box p$
- $(\sigma, j) \models \bigcirc p \iff$ $(\sigma, j + 1) \models p$

$$\begin{matrix} p \\ \hline 0 & j & j+1 \end{matrix}$$

Temporal Logic: Semantics (Con't)

• $(\sigma, j) \models \Box p \iff$ for all $k \ge j$, $(\sigma, k) \models p$

 $egin{pmatrix} p & p & p & \cdots \ \hline 0 & j & \hline \end{pmatrix}$

• $(\sigma, j) \models \Diamond p \iff$ for some $k \ge j$, $(\sigma, k) \models p$

0 j k

3-14

Temporal Logic: Semantics (Con't)

• $(\sigma, j) \models \Box p \iff$ for all $k, 0 \le k \le j, (\sigma, k) \models p$

• $(\sigma, j) \models \bigotimes p \iff$ for some $k, 0 \le k \le j, (\sigma, k) \models p$

Temporal Logic: Semantics (Con't)

• $(\sigma, j) \models p \, \mathcal{S} \, q \iff$ for some $k, \, 0 \leq k \leq j, \, (\sigma, k) \models q$ and for all $i, \, k < i \leq j, \, (\sigma, i) \models p$

• $(\sigma, j) \models p \mathcal{B} q \iff$ $(\sigma, j) \models p \mathcal{S} q \text{ or } (\sigma, j) \models \boxdot p$

Temporal Logic: Semantics (Con't)

• $(\sigma, j) \models \bigcirc p \iff$ $j \ge 1 \text{ and } (\sigma, j-1) \models p$

• $(\sigma, j) \models \bigcirc p \iff$ either j = 0 or else $(\sigma, j-1) \models p$

3-17

3-18

Simple Examples

Given temporal formula φ , describe model σ , such that

$$(\sigma,0) \models \varphi$$

$$p \to \diamondsuit q$$

 $\frac{p}{0}$

if initially p then eventually q

$$\Box(p\to \diamondsuit q)$$

 $\frac{p}{0}$

every p is eventually followed by a q

q q

every position is eventually followed by a q, i.e.,

infinitely many q's

Simple Examples (Con't)

 $\Diamond \Box q$

 $\frac{q \ q \ q \ \cdots \ \cdots}{0}$

eventually permanently q, i.e.,

finitely many $\neg q$'s

 $\square \diamondsuit p \to \square \diamondsuit q$

if there are infinitely many p's then there are infinitely many q's

 $(\neg p) \mathcal{W} q$

 $\neg p \cdots \neg p \ q \quad p$

q precedes p (if p occurs)

 $\Box(p \to \bigcirc p)$

<u>p p p p</u>

once p, always p

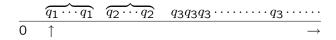
 $\Box(q \to \diamondsuit p)$

every q is preceded by a p

Nested Waiting-for Formulas

$$q_1 \mathcal{W} q_2 \mathcal{W} q_3 \mathcal{W} q_4$$

stands for


$$q_1 \mathcal{W} (q_2 \mathcal{W} (q_3 \mathcal{W} q_4))$$

intervals of continuous q_i

• possibly empty interval

$$\begin{array}{cccc}
 & \overline{q_1 \cdots q_1} & \overline{q_3 \cdots q_3} & q_4 \\
0 & \uparrow & \end{array}$$

• possibly infinite interval

3-21

Definitions

 For temporal formula p, sequence σ and position $j \geq 0:$

$$(\sigma, j) \models p: p \text{ holds at position } j \text{ of } \sigma$$

$$\sigma \text{ satisfies } p \text{ at } j$$

$$j \text{ is a } p\text{-position in } \sigma.$$

• For temporal formula p and sequence σ ,

$$\sigma \models p$$
 iff $(\sigma, 0) \models p$

 $\sigma \models p: p \text{ <u>holds on } \sigma$ </u> $\sigma \text{ <u>satisfies } p$ </u>

Abbreviation:

$$p \Rightarrow q$$
 for $\Box(p \rightarrow q)$

"p entails q"

Example:

$$p \Rightarrow \Diamond q$$

stands for

$$\Box(p \to \diamondsuit q)$$

Past/Future Formulas

Past Formula -

formula with no future operators

Future Formula -

formula with no past operators

A state formula is both a past and a future formula.

3-22

Satisfiable/Valid

For temporal formula p,

- p is satisfiable if $\sigma \models p$ for some sequence (model) σ
- p is valid if $\sigma \models p$ for all sequences (models) σ

p is valid iff $\neg p$ is unsatisfiable

 ${\tt Example:} \quad (x: {\tt integer})$

 $\langle (x = 0)$ is satisfiable

 $\langle (x=0) \vee \Box (x \neq 0)$ is valid

 $\langle (x=0) \wedge \Box (x \neq 0)$ is unsatisfiable

Equivalence

For temporal formulas p and q:

p is equivalent to q, written $p \sim q$ if $p \leftrightarrow q$ is valid

(i.e., p and q have the same truth-value at the first position of every model)

Example:

$$\Diamond p \sim \Diamond \Diamond p$$

for any σ , $\varphi \sim \psi$: $(\sigma,0) \models \varphi \text{ iff } (\sigma,0) \models \psi.$

for any σ , $(\sigma, 0) \models \varphi$. φ valid:

Therefore,

$$\varphi, \psi$$
 valid $\Rightarrow \varphi \sim \psi$.

 φ unsatisfiable: for any σ , $(\sigma, 0) \not\models \varphi$.

For the same reason,

 φ , ψ unsatisfiable $\Rightarrow \varphi \sim \psi$.

3-25

first

Characterizes the first position.

first: $\neg \bigcirc T$

 $(\sigma, j) \models first$: true for j = 0false for i > 0

Then

- \bullet T \sim \square T \sim first
- T, \square T, first are valid

Assume $V = \{ integer x \}$

 $first: \neg \bigcirc (x = 0 \lor x \neq 0)$

 $T: (x = 0 \lor x \neq 0)$

 \square T: $\square(x = 0 \lor x \neq 0)$

For arbitrary σ :

 $(\sigma,0) \models first$ $(\sigma,0) \models T \quad (\sigma,0) \models \Box T$

 $(\sigma, j) \not\models first \quad (\sigma, j) \models \Box \ \text{T} \quad \text{for } j > 0$

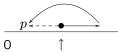
3-26

Congruence

For temporal formulas p and q:

$$p \text{ is } \underbrace{\text{congruent}}_{\text{if } \square(p \leftrightarrow q)} \text{ to } q, \text{ written } p \approx q$$

$$\varphi \approx \psi$$
: for any σ , j, $(\sigma, j) \models \varphi$ iff $(\sigma, j) \models \psi$


Example:

 $T \approx \Box T$

т $\not\approx$ first

T may be true in the second state, but first is not

 $\Diamond p \not\approx \Diamond \Diamond p$ because \Rightarrow , but $\not=$

 $\Box p \approx \neg \diamondsuit \neg p$ $\neg \bigcirc p \approx \bigcirc \neg p$

Note

 $A \approx B$ iff $A \Rightarrow B$ and $B \Rightarrow A$ are valid $A \sim B$ iff $A \to B$ and $B \to A$ are valid

Congruences

"conjunction character" — match well with \wedge

"disjunction character" — match well with \vee

and have conjunction character

 \Diamond and \Diamond have disjunction character

 $\mathcal{U}, \mathcal{W}, \mathcal{S}, \mathcal{B}$ first argument has conjunction character

second argument has

disjunction character

 $\Box (p \land q) \approx \Box p \land \Box q$

 $\Diamond (p \lor q) \approx \Diamond p \lor \Diamond q$

 $p\mathcal{U}(q \vee r) \approx (p\mathcal{U}q) \vee (p\mathcal{U}r)$

 $(p \wedge q) \mathcal{U} r \approx (p \mathcal{U} r) \wedge (q \mathcal{U} r)$

 $pW(q \vee r) \approx (pWq) \vee (pWr)$

 $(p \wedge q) \mathcal{W} r \approx (p \mathcal{W} r) \wedge (q \mathcal{W} r)$

Expansions

$$\Box p \approx (p \land \bigcirc \Box p)$$

$$\diamondsuit p \approx (p \lor \bigcirc \diamondsuit p)$$

$$p \mathcal{U} q \approx [q \lor (p \land \bigcirc (p \mathcal{U} q))]$$

Strict Operators

(present not included)

$$\begin{bmatrix} \longleftarrow & \longrightarrow \\ s_0 & s_{j-1} & \uparrow & s_{j+1} \\ & s_j & & \end{bmatrix}$$

$$\widehat{\Box}p \approx \bigcirc \Box p \qquad \widehat{\Box}p \approx \bigcirc \Box p$$

$$\widehat{\Diamond}p \approx \bigcirc \Diamond p \qquad \widehat{\Diamond}p \approx \bigcirc \Diamond p$$

$$p\widehat{\mathcal{U}}q \approx \bigcirc (p\mathcal{U}q) \qquad p\widehat{\mathcal{S}}q \approx \bigcirc (p\mathcal{S}q)$$

$$p\widehat{\mathcal{W}}q \approx \bigcirc (p\mathcal{W}q) \qquad p\widehat{\mathcal{B}}q \approx \bigcirc (p\mathcal{B}q)$$

3-30

Next and Previous Values of Exps

When evaluating x at position $j \geq 0$

$$\begin{array}{ll} x & \text{refers to } s_j[x] \\ x^+ & \text{refers to } s_{j+1}[x] \\ x^- & \text{refers to } \begin{cases} s_{j-1}[x] & \text{if } j > 0 \\ s_0[x] & \text{if } j = 0 \end{cases}$$

Example:

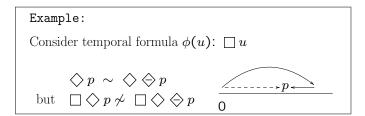
$$\sigma: \langle x: 0 \rangle, \langle x: 1 \rangle, \langle x: 2 \rangle, \dots$$
 satisfies
$$x = 0 \wedge \Box(x^+ = x + 1) \wedge \bigcirc \Box(x = x^- + 1)$$

Temporal Logic: Substitutivity

The ability to substitute equals for equals in a formula and obtain a formula with identical meaning.

• For state formula $\phi(u)$

if
$$p \sim q$$
 then $\phi(p) \sim \phi(q)$


Example:

Consider state formula $\phi(u)$: $r \wedge u$

Since $\diamondsuit p \sim \diamondsuit \diamondsuit p$ then $r \wedge \diamondsuit p \sim r \wedge \diamondsuit \diamondsuit p$.

Temporal Logic: Substitutivity (Con't)

This does not hold if $\phi(u)$ is a temporal formula.

• For temporal formula $\phi(u)$

if
$$p \approx q$$
 then $\phi(p) \approx \phi(q)$

Example:	
Consider the temporal formula $\phi(u)$: $q \mathcal{U}u$	
Since	$\Box p \approx \neg \diamondsuit \neg p$
therefore	$a\mathcal{U}(\Box n) \approx a\mathcal{U}(\neg \Diamond \neg n)$