CS256/Spring 2008 — Lecture #3 Zohar Manna

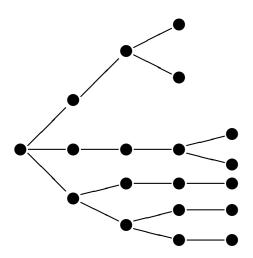
TEMPORAL LOGIC(S)

Languages that can specify the behavior of a reactive program.

Two views:

- (1) the program generates a set of sequences of states
 - the models of temporal logic are infinite sequences of states
 - <u>LTL</u> (<u>linear time temporal logic</u>) [Manna, Pnueli] approach

- (2) the program generates a tree, where the branching points represent nondeterminism in the program
 - the models of temporal logic are <u>infinite trees</u>
 - <u>CTL</u> (computation tree logic) [Clarke, Emerson] at CMU Also <u>CTL*</u>.



Temporal logic: underlying assertion language

Assertion language \mathcal{L} :

first-order language over
interpreted typed symbols
(functions and relations over
concrete domains)

Example:
$$x > 0 \rightarrow x + 1 > y$$
 $x, y \in \mathbf{Z}^+$

formulas in \mathcal{L} called:

state formulas or assertions

Temporal logic: underlying assertion language (Con't)

A state formula is evaluated over a single state to yield a truth value.

For state s and state formula p

$$s \Vdash p$$
 if $s[p] = T$

We say:

- p holds at s
- s satisfies p
- s is a p-state

Example:

For state $s : \{x : 4, y : 1\}$

$$s \Vdash x = 0 \lor y = 1$$

$$s \not\models x = 0 \land y = 1$$

$$s \models \exists z. \ x = z^2$$

Temporal logic: underlying assertion language (Con't)

p is state-satisfiable if

 $s \Vdash p$ for some state s

p is state-valid if

 $s \Vdash p$ for all states s

p and q are state-equivalent if

$$s \Vdash p$$
 iff $s \Vdash q$ for all states s

Example: (x, y : integer)

state-valid: $x \ge y \leftrightarrow x+1 > y$

state-equivalent: $x = 0 \rightarrow y = 1$

and

 $x \neq 0 \lor y = 1$

TEMPORAL LOGIC (TL)

A formalism for specifying sequences of states $TL = \underline{assertions} + temporal \ operators$

• <u>assertions</u> (<u>state formulas</u>):

First-order formulas describing the properties of a single state

• $\frac{\text{temporal operators}}{\text{Fig } 0.15}$

Future Temporal Operators

```
\Box p - Henceforth p

\diamondsuit p - Eventually p

p \mathcal{U} q - p Until q

p \mathcal{W} q - p Waiting-for (Unless) q

\bigcirc p - Next p
```

Past Temporal Operators

Fig. 0.15. The temporal operators

future temporal operators

$$\begin{array}{c|cccc} \longleftarrow & \text{past} & \longrightarrow | \longleftarrow & \text{future} & \longrightarrow \longrightarrow \longrightarrow \\ \hline 0 & \uparrow & \\ & \text{present} & \end{array}$$

$$\diamondsuit q$$
 — Eventually q $\frac{q}{0 \quad \uparrow}$
 $\square p$ — Henceforth p $\frac{p p p p \dots p p \dots p p p p \dots p p p p p q}{0 \quad \uparrow}$
 $p \mathcal{U} q$ — p Until q $\frac{p p p p p p q}{0 \quad \uparrow}$
 $p \mathcal{W} q$ — p Wait-for (Unless) q $\square p \vee p \mathcal{U} q$
 $\bigcirc p$ — Next p $\frac{p}{0 \quad \uparrow}$

past temporal operators

$$\diamondsuit q$$
 — Once q

$$\frac{q}{\mathsf{0}}$$

$$\Box p$$
 — So-far p

$$p \, \mathcal{S} \, q - p \, \text{Since } q$$

$$rac{q\;p\;p\;p\;p\;p}{\mathsf{0}}$$

$$p \mathcal{B} q$$
 — p Back-to q $\square p \vee p \mathcal{S} q$

$$\Box p \lor pSq$$

$$\bigcirc p$$
 — Previously p (false at position 0)

$$\frac{p}{\mathsf{0}}$$

 $\bigcirc p$ — Before p(true at position 0)

Temporal Logic: Syntax

- Every assertion is a temporal formula
- If p and q are temporal formulas (and u is a variable), so are:

$$\neg p \qquad p \lor q \qquad p \land q \qquad p \to q \quad p \leftrightarrow q$$

$$\exists u.p \qquad \forall u.p$$

$$\Box p$$
 $\Diamond p$ $p \mathcal{U} q$ $p \mathcal{W} q$ $\bigcirc p$

$$\Box p \qquad \diamondsuit p \qquad p \, \mathcal{S} \, q \qquad p \, \mathcal{B} \, q \qquad \bigcirc p \qquad \odot p$$

Example:

$$\Box(x > 0 \to \diamondsuit y = x)$$

$$p\mathcal{U}q \to \diamondsuit q$$

Temporal Logic: Semantics

Temporal formulas are evaluated over <u>a model</u> (an infinite sequence of states)

$$\sigma$$
: s_0 , s_1 , s_2 , ...

• The semantics of temporal logic formula p at a position $j \geq 0$ in a model σ ,

$$(\sigma, j) \models p$$

"formula p holds at position j of model σ ", is defined by induction on p:

$$\sigma$$
: $s_0, s_1, \ldots, s_j, \ldots$
 \uparrow
 (σ, j)

For state formula (assertion) p (i.e., no temporal operators)

$$\bullet \ (\sigma,j) \models p \iff s_j \models p$$

For a temporal formula p:

$$\bullet \ (\sigma, j) \models \neg p \iff (\sigma, j) \not \models p$$

•
$$(\sigma, j) \models p \lor q \iff (\sigma, j) \models p \text{ or } (\sigma, j) \models q$$

•
$$(\sigma, j) \models \Box p \iff$$

for all $k \ge j$, $(\sigma, k) \models p$

• $(\sigma, j) \models \diamondsuit p \iff$ for some $k \ge j$, $(\sigma, k) \models p$

• $(\sigma, j) \models p \mathcal{U} q \iff$ for some $k \geq j$, $(\sigma, k) \models q$, and for all $i, j \leq i < k$, $(\sigma, i) \models p$

- $(\sigma, j) \models p \mathcal{W} q \iff$ $(\sigma, j) \models p \mathcal{U} q \text{ or } (\sigma, j) \models \square p$
- $\bullet \quad (\sigma, j) \models \bigcirc p \iff \\ (\sigma, j + 1) \models p$

•
$$(\sigma, j) \models \Box p \iff$$

for all k , $0 \le k \le j$, $(\sigma, k) \models p$

• $(\sigma, j) \models \diamondsuit p \iff$ for some k, $0 \le k \le j$, $(\sigma, k) \models p$

• $(\sigma, j) \models p \, \mathcal{S} \, q \iff$ for some k, $0 \le k \le j$, $(\sigma, k) \models q$ and for all $i, k < i \le j$, $(\sigma, i) \models p$

•
$$(\sigma, j) \models p \mathcal{B} q \iff$$

 $(\sigma, j) \models p \mathcal{S} q \text{ or } (\sigma, j) \models \Box p$

•
$$(\sigma, j) \models \bigcirc p \iff$$

 $j \ge 1 \text{ and } (\sigma, j-1) \models p$

•
$$(\sigma, j) \models \bigcirc p \iff$$

either $j = 0$ or else $(\sigma, j-1) \models p$

Simple Examples

Given temporal formula φ , describe model σ , such that

$$(\sigma,0) \models \varphi$$

$$p \to \diamondsuit q$$

$$\frac{p}{0}$$

if initially p then eventually q

$$\Box(p \to \diamondsuit q)$$

every p is eventually followed by a q

$$\Box \diamondsuit q$$

$$\frac{q}{0}$$

every position is eventually followed by a q, i.e.,

infinitely many q's

Simple Examples (Con't)

$$\Diamond \Box q$$

$$q q q \cdots \cdots$$

eventually permanently q, i.e., finitely many $\neg q$'s

$$\square \diamondsuit p \to \square \diamondsuit q$$

if there are infinitely many p 's
then there are infinitely many q 's

$$(\neg p) \mathcal{W} q$$

$$\frac{\neg p \cdots \neg p \ q \qquad p}{0}$$

q precedes p (if p occurs)

$$\Box(p \to \bigcirc p)$$
 once p , always p

$$\Box(q \to \diamondsuit p)$$
every q is preceded by a p

Nested Waiting-for Formulas

$$q_1 \mathcal{W} q_2 \mathcal{W} q_3 \mathcal{W} q_4$$

stands for

$$q_1 \mathcal{W} (q_2 \mathcal{W} (q_3 \mathcal{W} q_4))$$

intervals of continuous q_i

• possibly empty interval

• possibly infinite interval

Abbreviation:

$$p \Rightarrow q$$
 for $\Box(p \rightarrow q)$

"p entails q"

Example:

$$p \Rightarrow \Diamond q$$

stands for

$$\Box(p \to \diamondsuit q)$$

Past/Future Formulas

Past Formula -

formula with no future operators

Future Formula –

formula with no past operators

A state formula is both a past and a future formula.

Definitions

• For temporal formula p, sequence σ and position $j \geq 0$:

$$(\sigma, j) \models p$$
: $p \text{ holds at position } j \text{ of } \sigma$

$$\sigma \text{ satisfies } p \text{ at } j$$

$$j \text{ is a } p\text{-position in } \sigma.$$

• For temporal formula p and sequence σ ,

$$\sigma \models p$$
 iff $(\sigma, 0) \models p$

$$\sigma \models p$$
: $p \text{ holds on } \sigma$

$$\sigma \text{ satisfies } p$$

Satisfiable/Valid

For temporal formula p,

- p is satisfiable if $\sigma \models p$ for some sequence (model) σ
- p is valid if $\sigma \models p$ for all sequences (models) σ

p is valid iff $\neg p$ is unsatisfiable

Example:
$$(x : integer)$$

$$\diamondsuit(x = 0) \text{ is satisfiable}$$

$$\diamondsuit(x = 0) \lor \Box(x \neq 0) \text{ is valid}$$

$$\diamondsuit(x = 0) \land \Box(x \neq 0) \text{ is unsatisfiable}$$

Equivalence

For temporal formulas p and q:

p is equivalent to q, written $p \sim q$

if
$$p \leftrightarrow q$$
 is valid

(i.e., p and q have the same truth-value at the <u>first</u> position of every model)

Example:

$$\Diamond p \sim \Diamond \Diamond p$$
 $\overbrace{0}$

$$\frac{\varphi \sim \psi}{(\sigma, 0) \models \varphi \text{ iff } (\sigma, 0) \models \psi}.$$

$$\varphi$$
 valid: for any σ , $(\sigma, 0) \models \varphi$.

Therefore,

$$\varphi, \psi \text{ valid} \Rightarrow \varphi \sim \psi.$$

$$\varphi$$
 unsatisfiable: for any σ , $(\sigma, 0) \not\models \varphi$.

For the same reason,

$$\varphi$$
, ψ unsatisfiable $\Rightarrow \varphi \sim \psi$.

first

Characterizes the first position.

$$first: \neg \bigcirc T$$

$$(\sigma, j) \models first$$
: true for $j = 0$ false for $j > 0$

Then

- \bullet T \sim \square T \sim first
- T, \square T, first are valid

Assume
$$V = \{ integer x \}$$

$$first: \neg \bigcirc (x = 0 \lor x \neq 0)$$

T:
$$(x = 0 \lor x \neq 0)$$

$$\Box$$
 T: \Box (x = 0 \lor x \neq 0)

For arbitrary σ :

$$(\sigma, 0) \models first \quad (\sigma, 0) \models T \quad (\sigma, 0) \models \Box T$$

$$(\sigma, j) \not\models first \quad (\sigma, j) \models T \quad (\sigma, j) \models \Box T \quad \text{for } j > 0$$

Congruence

For temporal formulas p and q: p is congruent to q, written $p \approx q$ if $\Box(p \leftrightarrow q)$ is valid $\varphi \approx \psi$: for any σ , j, $(\sigma, j) \models \varphi$ iff $(\sigma, j) \models \psi$

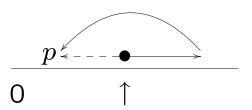
Example:

 $T \approx \Box T$

T $\not\approx first$ T may be true in the second state, but first is not

$$\Diamond p \not\approx \Diamond \Diamond p$$

 $\Diamond p \not\approx \Diamond \Diamond p$ because \Rightarrow , but $\not\ll$



$$\Box p \approx \neg \diamondsuit \neg p$$

$$\neg \bigcirc p \approx \bigcirc \neg p$$

Note

 $A \approx B$ iff $A \Rightarrow B$ and $B \Rightarrow A$ are valid $A \sim B$ iff $A \rightarrow B$ and $B \rightarrow A$ are valid

Congruences

"conjunction character" — match well with \land "disjunction character" — match well with \lor

- \square and \square have conjunction character
- \diamondsuit and \diamondsuit have disjunction character

 $\mathcal{U}, \mathcal{W}, \mathcal{S}, \mathcal{B}$ first argument has conjunction character second argument has disjunction character

$$\Box(p \land q) \qquad \approx \quad \Box \ p \land \Box \ q$$

$$\Diamond(p\vee q) \approx \Diamond p\vee \Diamond q$$

$$p\mathcal{U}(q\vee r) \approx (p\mathcal{U}q)\vee (p\mathcal{U}r)$$

$$(p \wedge q) \mathcal{U} r \approx (p \mathcal{U} r) \wedge (q \mathcal{U} r)$$

$$p \mathcal{W}(q \vee r) \approx (p \mathcal{W}q) \vee (p \mathcal{W}r)$$

$$(p \wedge q) \mathcal{W} r \approx (p \mathcal{W} r) \wedge (q \mathcal{W} r)$$

Expansions

$$\Box p \approx (p \land \bigcirc \Box p)$$

$$\diamondsuit p \approx (p \lor \bigcirc \diamondsuit p)$$

$$p \mathcal{U} q \approx [q \lor (p \land \bigcirc (p \mathcal{U} q))]$$

Strict Operators

(present not included)

$$\begin{bmatrix} \longleftarrow & \longrightarrow \\ s_0 & s_{j-1} & \uparrow & s_{j+1} \\ & s_j & \end{bmatrix}$$

$$\widehat{\Box}p \approx \bigcirc \Box p \qquad \widehat{\Box}p \approx \bigcirc \Box p$$

$$\widehat{\Diamond}p \approx \bigcirc \Diamond p \qquad \widehat{\Diamond}p \approx \bigcirc \Diamond p$$

$$p\widehat{\mathcal{U}}q \approx \bigcirc (p\mathcal{U}q) \qquad p\widehat{\mathcal{S}}q \approx \bigcirc (p\mathcal{S}q)$$

$$p\widehat{\mathcal{W}}q \approx \bigcirc (p\mathcal{W}q) \qquad p\widehat{\mathcal{B}}q \approx \bigcirc (p\mathcal{B}q)$$

Next and Previous Values of Exps

When evaluating x at position $j \geq 0$

$$x$$
 refers to $s_j[x]$
 x^+ refers to $s_{j+1}[x]$
 x^- refers to $\begin{cases} s_{j-1}[x] & \text{if } j > 0 \\ s_0[x] & \text{if } j = 0 \end{cases}$

Example:

$$\sigma$$
: $\langle x:0\rangle$, $\langle x:1\rangle$, $\langle x:2\rangle$, ...

satisfies

$$x = 0 \land \Box(x^{+} = x + 1) \land \bigcirc \Box(x = x^{-} + 1)$$

Temporal Logic: Substitutivity

The ability to substitute equals for equals in a formula and obtain a formula with identical meaning.

• For state formula $\phi(u)$

if
$$p \sim q$$
 then $\phi(p) \sim \phi(q)$

Example:

Consider state formula $\phi(u)$: $r \wedge u$

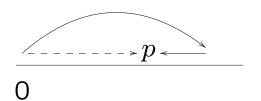
Since $\diamondsuit p \sim \diamondsuit \diamondsuit p$ then $r \wedge \diamondsuit p \sim r \wedge \diamondsuit \diamondsuit p$.

Temporal Logic: Substitutivity (Con't)

This does not hold if $\phi(u)$ is a temporal formula.

Example:

Consider temporal formula $\phi(u)$: $\square u$



• For temporal formula $\phi(u)$ if $p \approx q$ then $\phi(p) \approx \phi(q)$

Example:

Consider the temporal formula $\phi(u)$: $q \mathcal{U}u$

Since $\Box p \approx \neg \diamondsuit \neg p$

therefore $q \mathcal{U}(\square p) \approx q \mathcal{U}(\neg \diamondsuit \neg p)$