CS256/Spring 2008 - Lecture \#6

Zohar Manna

Chapter 1
Invariance: Proof Methods

```
For assertion q
and SPL program P
show P\vDash\squareq
    (i.e., q is P-invariant)
```


Verification Conditions

(proof obligations)
standard verification condition

For assertions φ, ψ and transition τ,
$\{\varphi\} \tau\{\psi\}$ ("Hoare triple") stands for the state formula

$$
\rho_{\tau} \wedge \varphi \rightarrow \psi^{\prime}
$$

"Verification condition (VC) of φ and ψ relative to transition τ "

Proving Invariances

Definitions
Recall:

- the variables of assertion:
- free (flexible) system variables

$$
V=Y \cup\{\pi\}
$$

where Y are the program variables and π is the control variable

- quantified (rigid) specification variables
- q^{\prime} is the primed version of q, obtained by replacing each free occurrence of a system variable $y \in V$ by its primed version y^{\prime}.
- ρ_{τ} is the transition relation of τ, expressing the relation holding between a state s and any of its τ successors $s^{\prime} \in \tau(s)$.

Verification Conditions (Con't)

Example:
$\rho_{\tau}: x \geq 0 \wedge y^{\prime}=x+y \wedge x^{\prime}=x$
$\varphi: y=3 \quad \psi: y=x+3$
Then $\{\varphi\} \tau\{\psi\}:$
$\underbrace{x \geq 0 \wedge y^{\prime}=x+y \wedge x^{\prime}=x}_{\rho_{\tau}} \wedge \underbrace{y=3}_{\varphi}$
$\rightarrow \underbrace{y^{\prime}=x^{\prime}+3}_{\psi^{\prime}}$

Verification Conditions (Con't)

- for $\tau \in \mathcal{T}$ in P

$$
\{\varphi\} \tau\{\psi\}: \quad \rho_{\tau} \wedge \varphi \rightarrow \psi^{\prime}
$$

" τ leads from φ to ψ in P "

- for \mathcal{T} in P
$\{\varphi\} \mathcal{T}\{\psi\}: \quad\{\varphi\} \tau\{\psi\} \quad$ for every $\tau \in \mathcal{T}$
" \mathcal{T} leads from φ to ψ in P "
Claim (Verification Condition)
If $\{\varphi\} \tau\{\psi\}$ is P-state valid,
then every τ-successor of a φ-state is a ψ-state.

Claim (Verification Condition)
If $\{\varphi\} \tau\{\psi\}$ is P-state valid,
then every τ-successor of a φ-state is a ψ-state.

Verification Conditions (Con't)

Special Cases

- while, conditional $\quad \rho_{\tau}: \rho_{\tau}^{\mathrm{T}} \vee \rho_{\tau}^{\mathrm{F}}$

$$
\begin{array}{ll}
\{\varphi\} \tau^{\mathrm{T}}\{\psi\}: & \rho_{\tau}^{\mathrm{T}} \wedge \varphi \rightarrow \psi^{\prime} \\
\{\varphi\} \tau^{\mathrm{F}}\{\psi\}: & \rho_{\tau}^{\mathrm{F}} \wedge \varphi \rightarrow \psi^{\prime}
\end{array}
$$

$$
\{\varphi\} \tau\{\psi\}:\{\varphi\} \tau^{\mathrm{T}}\{\psi\} \wedge\{\varphi\} \tau^{\mathrm{F}}\{\psi\}
$$

- idle

$$
\{\varphi\} \tau_{I}\{\varphi\}: \quad \rho_{\tau_{I}} \wedge \varphi \rightarrow \varphi^{\prime}
$$

always valid, since

$$
\begin{aligned}
& \quad \rho_{\tau_{I}} \rightarrow v^{\prime}=v \quad \text { for all } v \in V, \\
& \text { so } \varphi^{\prime}=\varphi \text {. }
\end{aligned}
$$

Verification Conditions (Con't)

Substituted Form of Verification Condition

Transition relation can be written as

$$
\rho_{\tau}: C_{\tau} \wedge\left(\bar{V}^{\prime}=\bar{E}\right)
$$

where
C_{τ} : enabling condition
$\overline{V^{\prime}}$: primed variable list
\bar{E} : expression list

- The substituted form of verification condition $\{\varphi\} \tau\{\psi\}$:

$$
C_{\tau} \wedge \varphi \rightarrow \psi[\bar{E} / \bar{V}]
$$

where

$$
\psi[\bar{E} / \bar{V}]:
$$

replace each variable $v \in \bar{V}$ in ψ by the corresponding $e \in \bar{E}$
Note: No primed variables!

[^0]
Verification Conditions (Con't)

Simplifying Control Expressions

Example:

$$
\begin{aligned}
& \varphi: x=y \quad \psi: x=y+1 \\
& \rho_{\tau}: \underbrace{x \geq 0}_{C_{\tau}} \wedge \underbrace{\left(x^{\prime}, y^{\prime}\right)}_{\overline{V^{\prime}}}=\underbrace{(x+1, y)}_{\bar{E}}
\end{aligned}
$$

The substituted form of $\{\varphi\} \tau\{\psi\}$ is

$$
\begin{aligned}
& \underbrace{x \geq 0}_{C_{\tau}} \wedge \underbrace{x=y}_{\varphi} \rightarrow \\
& \quad \underbrace{(x=y+1)[(x+1, y) /(x, y)]}_{\psi[\bar{E} / \bar{V}]}
\end{aligned}
$$

or equivalently

$$
x \geq 0 \wedge x=y \rightarrow x+1=y+1
$$

\qquad

Proving invariance properties: $P \vDash \square q$

We want to show that for every computation of P $\sigma: s_{0}, s_{1}, s_{2}, \ldots$
assertion q holds in every state $s_{j}, j \geq 0$, i.e., $s_{j} \mathbb{\vDash} q$.

Recall:

A sequence $\sigma: s_{0}, s_{1}, s_{2}, \ldots$ is a computation
if the following hold (from Chapter 0):

1. Initiality: $s_{0} \| \neq \Theta$
2. Consecution: For each $j \geq 0$,
s_{j+1} is a τ-successor of s_{j} for some $\tau \in \mathcal{T}$ $\left(s_{j+1} \in \tau\left(s_{j}\right)\right)$

3, 4. Fairness conditions are respected.

Note: Truth of safety properties over programs does not depend on fairness conditions.
$\operatorname{move}\left(L_{1}, L_{2}\right): \quad L_{1} \subseteq \pi \wedge \pi^{\prime}=\left(\pi-L_{1}\right) \cup L_{2}$
e.g., for $L_{1}=\left\{\ell_{1}\right\}, L_{2}=\left\{\ell_{2}\right\}$
$\operatorname{move}\left(\ell_{1}, \ell_{2}\right): \quad \ell_{1} \in \pi \wedge \pi^{\prime}=\left(\pi-\left\{\ell_{1}\right\}\right) \cup\left\{\ell_{2}\right\}$
Consequences implied by move $\left(L_{1}, L_{2}\right)$:

- for every $[\ell] \in L_{1}$
$a t_{-} \ell=\mathrm{T}($ i.e., $[\ell] \in \pi)$
- for every $[\ell] \in L_{2}$ $a t_{-}^{\prime} \ell=\mathrm{T}\left(\right.$ i.e., $\left.[\ell] \in \pi^{\prime}\right)$
- for every $[\ell] \in L_{1}-L_{2}$ $a t-\ell=\mathrm{T}$ (i.e., $[\ell] \in \pi$) and $a t_{-}^{\prime} \ell=\mathrm{F}$ (i.e., $\left.[\ell] \notin \pi^{\prime}\right)$
- for every $\ell \notin L_{1} \cup L_{2}$ $a t_{-}^{\prime} \ell=a t_{-} \ell$ (i.e., $[\ell] \in \pi, \pi^{\prime}$ or $[\ell] \notin \pi, \pi^{\prime}$)

6-10

Proving invariance properties (Con't)

This definition suggests a way to prove invariance propertiesq :

1. Base case:

Prove that q holds initially

$$
\begin{aligned}
& \quad \Theta \rightarrow q \\
& \text { i.e., } q \text { holds at } s_{0} \text {. }
\end{aligned}
$$

2. Inductive step:
prove that q is preserved by all transitions

$$
\underbrace{q \wedge \rho_{\tau} \rightarrow q^{\prime}}_{\{q\} \tau\{q\}} \quad \text { for all } \tau \in \mathcal{T}
$$

i.e., if q holds at s_{j}, then it holds at every τ-successor s_{j+1}.

Rule B-INV (basic invariance)
Example 1: REQUEST-RELEASE
Show $P \vDash \square q$ (i.e. q is $\underline{P \text {-invariant })}$

For assertion q,		
	31. $\quad P \\|=\Theta \rightarrow$	
	32. $P \\|\{q\} \mathcal{T}\{q\}$	
	$P \vDash \square q$	

where B2 stands for
P \| $\{q\} \tau\{q\}$ for every $\tau \in \mathcal{T}$

- The rule states that if we can prove the P-state validity of $\Theta \rightarrow q$ and $\{q\} \mathcal{T}\{q\}$ then we can conclude that $\square q$ is P-valid.
- Thus the proof of a temporal property is reduced to the proof of $1+|\mathcal{T}|$ first-order verification conditions.

$$
6-13
$$

Example 1: request-release (Con't)

B1: $\underbrace{x=1 \wedge \pi=\left\{\ell_{0}\right\}}_{\Theta} \rightarrow \underbrace{x \geq 0}_{q}$
holds since $x=1 \rightarrow x \geq 0$

B2:

$\tau_{\ell_{0}}: \underbrace{x \geq 0}_{q} \wedge \underbrace{\operatorname{move}\left(\ell_{0}, \ell_{1}\right) \wedge x>0 \wedge x^{\prime}=x-1}_{\rho_{\tau_{0}}} \rightarrow \underbrace{x^{\prime} \geq 0}_{q^{\prime}}$
holds since $x>0 \rightarrow x-1 \geq 0$
$\tau_{\ell_{1}}: \underbrace{x \geq 0}_{q} \wedge \underbrace{\operatorname{move}\left(\ell_{1}, \ell_{2}\right) \wedge x^{\prime}=x}_{\rho_{\tau_{1}}} \rightarrow \underbrace{x^{\prime} \geq 0}_{q^{\prime}}$
holds since $x \geq 0 \rightarrow x \geq 0$
$\tau_{\ell_{2}}: \underbrace{x \geq 0}_{q} \wedge \underbrace{\operatorname{move}\left(\ell_{2}, \ell_{3}\right) \wedge x^{\prime}=x+1}_{\rho_{\ell_{2}}} \rightarrow \underbrace{x^{\prime} \geq 0}_{q^{\prime}}$
holds since $x \geq 0 \rightarrow x+1 \geq 0$
local x : integer where $x=1$

$$
\left[\begin{array}{ll}
\ell_{0}: & \text { request } x \\
\ell_{1}: & \text { critical } \\
\ell_{2}: & \text { release } x \\
\ell_{3}: &
\end{array}\right]
$$

$\Theta: \quad x=1 \wedge \pi=\left\{\ell_{0}\right\}$
$\mathcal{T}:\left\{\tau_{I}, \tau_{\ell_{0}}, \tau_{\ell_{1}}, \tau_{\ell_{2}}\right\}$

Prove

$$
P \vDash \square \underbrace{x \geq 0}_{q}
$$

using B-INV.

6-14

Example 1: request-release (Con't)
local x : integer where $x=1$

$$
\left[\begin{array}{ll}
\ell_{0}: & \text { request } x \\
\ell_{1}: & \text { critical } \\
\ell_{2}: & \text { release } x \\
\ell_{3}: &
\end{array}\right]
$$

We proved

$$
P \vDash \square x \geq 0
$$

using B-INV.

Now we want to prove

$$
P \vDash \square \underbrace{\left(a t_{-} \ell_{1} \rightarrow x=0\right)}_{q}
$$

Example 1: request-release (Con't)

Strategies for invariance proofs

Attempted proof:

B1: $\underbrace{x=1 \wedge \pi=\left\{\ell_{0}\right\}}_{\Theta} \rightarrow(\underbrace{a t-\ell_{1} \rightarrow x=0}_{q})$
holds since $\pi=\left\{\ell_{0}\right\} \rightarrow a t-\ell_{1}=\mathrm{F}$
B2: $\{q\} \tau_{\ell_{0}}\{q\}$
$\underbrace{a t-\ell_{1} \rightarrow x=0}_{q} \wedge \underbrace{\operatorname{move}\left(\ell_{0}, \ell_{1}\right) \wedge x>0 \wedge x^{\prime}=x-1}_{\rho_{\ell_{0}}}$

$$
\rightarrow \underbrace{a t_{-}^{\prime} \ell_{1} \rightarrow x^{\prime}=0}_{q^{\prime}}
$$

We have $\operatorname{move}\left(\ell_{0}, \ell_{1}\right) \rightarrow a t_{-} \ell_{1}=\mathrm{F}, a t_{-}^{\prime} \ell_{1}=\mathrm{T}$
BUT
$(\mathrm{F} \rightarrow x=0) \wedge x>0 \wedge x^{\prime}=x-1 \rightarrow\left(\mathrm{~T} \rightarrow x^{\prime}=0\right)$

Cannot prove: not state-valid

What is the problem?
We need a stronger rule.

Rule B-INV (Con't)

The problem is:
"The invariant is not inductive"
i.e., it is not strong enough to be preserved by all transitions.

Another way to look at it is to observe that

$$
\{q\} \tau_{\ell_{0}}\{q\}
$$

is not state valid, but it is P-state valid, i.e., it is true in all P-accessible states, since in all P-accessible states

$$
x=1 \text { when at location } \ell_{0}
$$

This suggests two strategies to overcome this problem:

- strengthening
- incremental proof

Rule B-INV (basic invariance)

For assertion q,

B1.	$P \\| \in \rightarrow q$
B2.	$P \\|\{q\} \mathcal{T}\{q\}$
	$P \vDash \square q$

- q is inductive if B1 and B2 are (state) valid
- By rule B-INV,
every inductive assertion q is P-invariant
- The converse is not true

Example: In REQUEST-RELEASE

$$
a t_{-} \ell_{1} \rightarrow x=0
$$

is P-invariant, but not inductive

Strategy 1: Strengthening

Find a stronger assertion φ that is inductive and implies the assertion q we want to prove.

In Chapter 2 it will be shown that there always exists such an assertion φ.

Strategy 1: Strengthening (Con't)

Example:

To show

$$
\square(\underbrace{a t-\ell_{1} \rightarrow x=0}_{q})
$$

strengthen q to

$$
\varphi:\left(a t_{-} \ell_{1} \rightarrow x=0\right) \wedge\left(a t_{-} \ell_{0} \rightarrow x=1\right)
$$

and show

$$
\square \underbrace{\left(a t_{-} \ell_{1} \rightarrow x=0\right) \wedge\left(a t_{-} \ell_{0} \rightarrow x=1\right)}_{\varphi}
$$

by rule B-INV.

Strategy 1: Strengthening (Con't)

Rule INV (general invariance)

For assertions q, φ
I1. $\quad P \vDash$ 恠 $\varphi \rightarrow q$
I2. $\quad P \mathbb{\\|}$
I3. P ㅑ $\{\varphi\} \mathcal{T}\{\varphi\}$
$P \vDash \square q$

Strategy 1: Strengthening (Con't)

The strengthening strategy relies on the following rule, MON-I, which, combined with B-INV leads to the general invariance rule INV.

Rule MON-I (Monotonicity)

For assertions q_{1}, q_{2},
$P \vDash \square q_{1} \quad P \not \vDash q_{1} \rightarrow q_{2}$
$P \vDash \square q_{2}$

6-22

Soundness: If we manage to prove $\square q$ using the INV rule for some program P, is q really an invariant for the program?

We can prove that this is indeed the case. So INV rule is sound.

Completeness: What if q is an invariant for a program P but there is no way of proving it under the INV rule?

We can prove that this never happens. There always exists an appropriate φ. In other words INV rule is complete.

Strategy 1: Strengthening (Con't)

Motivation:

$$
\begin{array}{ll}
P \vDash \square \varphi & (\text { by I2 and I3) } \\
P \Vdash \varphi \rightarrow q & (\text { by I1 })
\end{array}
$$

Therefore,
$P \vDash \square q \quad($ by MON-I)
i.e., this rule requires thatφ holds and φ implies q, thenq can be concluded to hold by monotonicity.

Control Invariants (Con't)

- Parallel:
for substatement $\left[S_{1} \| S_{2}\right.$]:

$$
\square\left(i n_{-} S_{1} \leftrightarrow i n _S_{2}\right)
$$

i.e, if control is in S_{1} it must also be in S_{2} and vice versa.

Example:

Using the invariant CONFLICT,
$\operatorname{move}\left(\ell_{2}, \ell_{3}\right) \quad$ implies $\quad l_{0} \notin \pi, l_{1} \notin \pi, l_{3} \notin \pi$ $l_{0} \notin \pi^{\prime}, l_{1} \notin \pi^{\prime}, l_{2} \notin \pi^{\prime}$

Control Invariants

Some control invariants that can always be used (without mentioning them)

- CONFLICT:
for labels ℓ_{i}, ℓ_{j} that are in conflict
(i.e., not \sim_{L}, not parallel):

$$
\square \neg\left(a t_{-} \ell_{i} \wedge a t_{-} \ell_{j}\right)
$$

- SOMEWHERE:
for the set of labels \mathcal{L}_{i} in a top-level process:

$$
\square \bigvee_{\ell \in \mathcal{L}_{i}} a t-\ell
$$

- EQUAL:
for labels l, m, s.t. $l \sim_{L} m$:

$$
\square\left(a t _\ell \leftrightarrow a t _m\right)
$$

Strategy 1: Strengthening (Con't)

Example:

We proposed the strengthened invariant

$$
\varphi:\left(a t_{-} \ell_{0} \rightarrow x=1\right) \wedge\left(a t_{-} \ell_{1} \rightarrow x=0\right)
$$

Consider $\{\varphi\} \tau_{\ell_{0}}\{\varphi\}$:
$\underbrace{\left(a t_{-} \ell_{0} \rightarrow x=1\right) \wedge\left(a t_{-} \ell_{1} \rightarrow x=0\right)}_{\varphi} \wedge$
$\underbrace{\operatorname{move}\left(\ell_{0}, \ell_{1}\right) \wedge x>0 \wedge x^{\prime}=x-1}_{\rho_{\tau} \ell_{0}}$
$\rightarrow \underbrace{\left(a t_{-}^{\prime} \ell_{0} \rightarrow x^{\prime}=1\right) \wedge\left(a t_{-}^{\prime} \ell_{1} \rightarrow x^{\prime}=0\right)}_{\varphi^{\prime}}$
$\operatorname{move}\left(\ell_{0}, \ell_{1}\right)$ implies $\ell_{0} \in \pi, \ell_{1} \notin \pi, \ell_{1} \in \pi^{\prime}, \ell_{0} \notin \pi^{\prime}$

Therefore
$(\mathrm{T} \rightarrow x=1) \wedge(\mathrm{F} \rightarrow \ldots) \wedge \ldots \wedge x^{\prime}=x-1 \wedge \ldots$
$\rightarrow(\mathrm{F} \rightarrow \ldots) \wedge\left(\mathrm{T} \rightarrow x^{\prime}=0\right)$
holds.

Strategy 1: Strengthening (Con't)

Example (Con't):

Consider $\{\varphi\} \tau_{\ell_{2}}\{\varphi\}$:
$\underbrace{\left(a t-\ell_{0} \rightarrow x=1\right) \wedge\left(a t-\ell_{1} \rightarrow x=0\right)}_{\varphi} \wedge$
$\underbrace{\operatorname{move}\left(\ell_{2}, \ell_{3}\right) \wedge x^{\prime}=x+1}_{\rho_{\tau_{2}}}$
$\rightarrow \underbrace{\left(a t_{-}^{\prime} \ell_{0} \rightarrow x^{\prime}=1\right) \wedge\left(a t_{-}^{\prime} \ell_{1} \rightarrow x^{\prime}=0\right)}_{\varphi^{\prime}}$
$\operatorname{move}\left(\ell_{2}, \ell_{3}\right)$ implies $\ell_{3} \in \pi^{\prime}$
and by CONFLICT invariants $\ell_{0}, \ell_{1} \notin \pi^{\prime}$.

Therefore
$\ldots \wedge \ldots \rightarrow\left(\mathrm{F} \rightarrow x^{\prime}=1\right) \wedge\left(\mathrm{F} \rightarrow x^{\prime}=0\right)$
holds.
$\{\varphi\} \tau_{\ell_{2}}\{\varphi\}$ is not state-valid,
but it is P-state valid. Why?

Strategy 2: Incremental proof (Con't)

Example:

To show

$$
\square(\underbrace{a t-\ell_{1} \rightarrow x=0}_{q})
$$

prove first (separately) by rule B-INV

$$
\square \underbrace{\left(a t-\ell_{0} \rightarrow x=1\right)}_{\chi},
$$

then show

$$
\square(\underbrace{a t-\ell_{1} \rightarrow x=0}_{q})
$$

by rule B-INV, but add the conjunct

$$
a t-\ell_{0} \rightarrow x=1
$$

to the antecedent of all verification conditions.
(Example continues...)

Strategy 2: Incremental proof

Use previously proven invariances χ to exclude parts of the state space from consideration.

6-30

Strategy 2: Incremental proof (Con't)

Example: (cont'd)
e.g., to show $\{\chi \wedge q\} \tau_{\ell_{0}}\{q\}$, prove

$$
\begin{aligned}
& \underbrace{a t_{-} \ell_{0} \rightarrow x=1}_{\chi} \wedge \underbrace{a t_{-} \ell_{1} \rightarrow x=0}_{q} \\
& \underbrace{\operatorname{move}\left(\ell_{0}, \ell_{1}\right) \wedge x>0 \wedge x^{\prime}=x-1}_{\rho_{\tau} \ell_{0}} \\
& \quad \rightarrow \underbrace{a t_{-}^{\prime} \ell_{1} \rightarrow x^{\prime}=0}_{q^{\prime}}
\end{aligned}
$$

Strategy 2: Incremental proof (Con't)

In an incremental proof we use previously proven properties to eliminate parts of the state space (non P-accessible states) from consideration, relying on the following rules:

Rule SV-PSV: from state validities to

P-state validities
For assertions q_{1}, q_{2} and χ,
$P \vDash \square \chi$
$P \vDash \not \vDash \wedge q_{1} \rightarrow q_{2}$
$P \vDash \square\left(q_{1} \rightarrow q_{2}\right)$

Rule i-con: Conjunction

For assertions q_{1} and q_{2},	
P	$\vDash \square q_{1}$
$P \vDash \square q_{2}$	
P	$\vDash \square\left(q_{1} \wedge q_{2}\right)$

3 steps:

$\square \underbrace{\neg\left(a t-\ell_{3} \wedge a t _m_{3}\right)}_{p}$
where $\mathrm{F}=0, \mathrm{~T}=1$.

$$
\begin{aligned}
\text { Let } \pi_{\ell}: & \pi \cap\left\{\ell_{0}, \ldots, \ell_{4}\right\} \\
\pi_{m}: & \pi \cap\left\{m_{0}, \ldots, m_{4}\right\}
\end{aligned}
$$

By control invariants (CONFLICT, SOMEWHERE and PARALLEL)

$$
\left|\pi_{\ell}\right|=\left|\pi_{m}\right|=1
$$

Strategy 2: Incremental proof (Con't)

Example: Program MUX-SEM
(mutual exclusion by semaphores)
local y : integer where $y=1$
$P_{1}::\left[\begin{array}{c}\ell_{0}: \text { loop forever do } \\ {\left[\begin{array}{l}\ell_{1}: \text { noncritical } \\ \ell_{2}: \text { request } y \\ \ell_{3}: \text { critical } \\ \ell_{4}: \text { release } y\end{array}\right]}\end{array}\right] \| P_{2}::\left[\begin{array}{c}m_{0}: \text { loop forever do } \\ {\left[\begin{array}{l}m_{1}: \text { noncritical } \\ m_{2}: \text { request } y \\ m_{3}: \text { critical } \\ m_{4}: \text { release } y\end{array}\right]}\end{array}\right]$

Prove mutual exclusion
$\square \underbrace{\neg\left(a t-\ell_{3} \wedge a t-m_{3}\right)}_{q}$

6-34

Program MUX-SEM (Con't)

Step 1: $\square(\underbrace{y \geq 0}_{\varphi_{1}})$
by rule B-INV

B1. $\underbrace{\pi=\left\{\ell_{0}, m_{0}\right\} \wedge y=1}_{\Theta} \rightarrow \underbrace{y \geq 0}_{\varphi_{1}}$

B2. $\rho_{\tau} \wedge y \geq 0 \rightarrow y^{\prime} \geq 0$
check only $\ell_{2}, \ell_{4}, m_{2}, m_{4}$
(" y-modifiable transitions")

holds since $y>0 \rightarrow y-1 \geq 0$
$\ell_{4}: \underbrace{\operatorname{move}\left(\ell_{4}, \ell_{0}\right) \wedge y^{\prime}=y+1}_{\rho_{\tau}} \wedge \underbrace{y \geq 0}_{\varphi} \rightarrow \underbrace{y^{\prime} \geq 0}_{\varphi^{\prime}}$
holds since $y \geq 0 \rightarrow y+1 \geq 0$.

$$
6-37
$$

Program MUX-SEM (Con't)

B2. $\rho_{\tau} \wedge \varphi_{2} \rightarrow \varphi_{2}^{\prime}$
$\rho_{\ell_{0}} \wedge 0+a t_{-} m_{3,4}+y=1 \rightarrow$

$$
0+a t_{-} m_{3,4}+y=1
$$

$\rho_{\ell_{1}} \wedge 0+a t_{-} m_{3,4}+y=1 \rightarrow$ $0+a t_{-} m_{3,4}+y=1$
$\rho_{\ell_{2}} \wedge 0+a t_{-} m_{3,4}+y=1 \rightarrow$

$$
1+a t_{-} m_{3,4}+(y-1)=1
$$

$\rho_{\ell_{3}} \wedge 1+a t_{-} m_{3,4}+y=1 \rightarrow$

$$
1+a t_{-} m_{3,4}+y=1
$$

$\rho_{\ell_{4}} \wedge 1+a t_{-} m_{3,4}+y=1 \rightarrow$

$$
\underbrace{0}_{a t_{-}^{\prime} \ell_{3,4}}+\underbrace{a t-m_{3,4}}_{a t_{-}^{\prime} m_{3,4}}+\underbrace{(y+1)}_{y^{\prime}}=1
$$

Similarly for m_{2}, m_{4}.

Step 2:

$$
\square(\underbrace{a t _\ell_{3,4}+a t _m_{3,4}+y=1}_{\varphi_{2}})
$$

by rule B-INV

B1. $\underbrace{\pi=\left\{\ell_{0}, m_{0}\right\} \wedge y=1}_{\Theta} \rightarrow$
$\underbrace{\underbrace{a t_{-} \ell_{3,4}}_{0}+\underbrace{a t_{-} m_{3,4}}_{0}+\underbrace{y}_{1}=1}_{\varphi_{2}}$

Step 3: Show $P \vDash \square \underbrace{\neg\left(a t_{-} \ell_{3} \wedge a t-m_{3}\right)}_{q}$

- By i-con
$\frac{P \vDash \square \varphi_{1}, P \vDash \square \varphi_{2}}{P \vDash \square\left(\varphi_{1} \wedge \varphi_{2}\right)}$
- By MON-I

$$
P \vDash \square\left(\varphi_{1} \wedge \varphi_{2}\right)
$$

$$
\left.\begin{array}{rl}
P & \equiv \underbrace{y \geq 0}_{\varphi_{1}}
\end{array}\right) \underbrace{a t-\ell_{3,4}+a t_{-} m_{3,4}+y=1}_{\varphi_{2}}, \underbrace{\neg\left(a t_{-} \ell_{3} \wedge a t-m_{3}\right)}_{q},
$$

$$
P \vDash \square \underbrace{\neg\left(a t-\ell_{3} \wedge a t-m_{3}\right)}_{q}
$$

[^0]: The substituted form of a verification condition is P-state valid iff the standard form is

