Zohar Manna

<u>Chapter 1</u> Invariance: Proof Methods

	sertion <i>q</i> PL program <i>P</i>
show	$P \models \Box q$ (i.e., q is P-invariant)

6-1

Verification Conditions

(proof obligations)

standard verification condition

For assertions φ, ψ and transition τ ,

 $\{\varphi\} \neq \{\psi\}$ ("Hoare triple") stands for the state formula

$$\rho_{\tau} \ \land \ \varphi \ \rightarrow \ \psi'$$

"Verification condition (VC) of φ and ψ relative to transition τ "

Proving Invariances

Definitions

Recall:

- the <u>variables of assertion</u>:
 - free (flexible) system variables

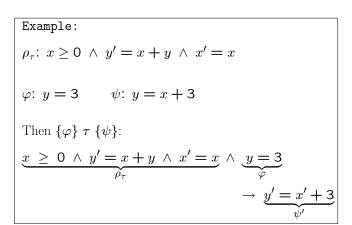
$$V = Y \cup \{\pi\}$$

where Y are the program variables and π is the control variable

- quantified (rigid) specification variables
- q' is the <u>primed version</u> of q, obtained by replacing each free occurrence of a system variable $y \in V$ by its primed version y'.
- ρ_{τ} is the <u>transition relation</u> of τ , expressing the relation holding between a state s and any of its τ -successors $s' \in \tau(s)$.

6-2

Verification Conditions (Con't)



Verification Conditions (Con't)

- for $\tau \in \mathcal{T}$ in P $\{\varphi\}\tau\{\psi\}: \quad \rho_\tau \wedge \varphi \to \psi'$ " τ leads from φ to ψ in P"
- for \mathcal{T} in P

 $\{\varphi\}\mathcal{T}\{\psi\}: \{\varphi\}\tau\{\psi\} \text{ for every } \tau \in \mathcal{T}$ " \mathcal{T} leads from φ to ψ in P"

Claim (Verification Condition) If $\{\varphi\} \tau \{\psi\}$ is *P*-state valid, then every τ -successor of a φ -state is a ψ -state.

Verification Conditions (Con't)

Special Cases

• while, conditional
$$\rho_{\tau} \colon \rho_{\tau}^{\mathrm{T}} \lor \rho_{\tau}^{\mathrm{F}}$$

$$\begin{split} \{\varphi\}\tau^{\mathrm{T}}\{\psi\} : & \rho_{\tau}^{\mathrm{T}} \wedge \varphi \to \psi' \\ \{\varphi\}\tau^{\mathrm{F}}\{\psi\} : & \rho_{\tau}^{\mathrm{F}} \wedge \varphi \to \psi' \end{split}$$

$$\{\varphi\}\tau\{\psi\}$$
 : $\{\varphi\}\tau^{\mathrm{T}}\{\psi\}$ \land $\{\varphi\}\tau^{\mathrm{F}}\{\psi\}$

• idle

$$\{\varphi\}\tau_I\{\varphi\}: \ \ \rho_{\tau_I} \land \ \varphi \ \rightarrow \ \varphi'$$

always valid, since

 $\rho_{\tau_I} \to v' = v \quad \text{for all } v \in V,$ so $\varphi' = \varphi$.

6-5

Verification Conditions (Con't)

Substituted Form of Verification Condition

Transition relation can be written as $\rho_{\tau}: C_{\tau} \wedge (\overline{V}' = \overline{E})$

where

 C_{τ} : enabling condition $\overline{V'}$: primed variable list

- primed variable list
- \overline{E} : expression list
- The substituted form of verification condition $\{\varphi\}\tau\{\psi\}$:

$$C_{\tau} \wedge \varphi \rightarrow \psi[\overline{E}/\overline{V}]$$

where $\psi[\overline{E}/\overline{V}]$:

replace each variable $v \in \overline{V}$ in ψ by the corresponding $e \in \overline{E}$ Note: No primed variables!

The substituted form of a verification condition is P-state valid iff the standard form is

Verification Conditions (Con't)

Example:

$$\rho_{\tau}: x \ge 0 \land y' = x + y \land x' = x$$

$$\varphi: y = 3 \qquad \psi: y = x + 3$$
Standard

$$\underbrace{x \ge 0 \land y' = x + y \land x' = x}_{\rho_{\tau}} \land \underbrace{y = 3}_{\varphi}$$

$$\rightarrow \underbrace{y' = x' + 3}_{\psi'}$$
Substituted

$$\underbrace{x \ge 0}_{C_{\tau}} \land \underbrace{y = 3}_{\varphi} \rightarrow \underbrace{x + y = x + 3}_{\psi[\overline{E}/\overline{V}]}$$

6-6

Verification Conditions (Con't)

Example: $\varphi: x = y \qquad \psi: x = y + 1$ $\rho_{\tau}: \underbrace{x \ge 0}_{C_{\tau}} \land \underbrace{(x', y')}_{\overline{V'}} = \underbrace{(x + 1, y)}_{\overline{E}}$ The substituted form of $\{\varphi\}\tau\{\psi\}$ is $\underbrace{x \ge 0}_{C_{\tau}} \land \underbrace{x = y}_{\varphi} \rightarrow \underbrace{(x = y + 1)[(x + 1, y)/(x, y)]}_{\psi[\overline{E}/\overline{V}]}$ or equivalently $x \ge 0 \land x = y \rightarrow x + 1 = y + 1$

6-9

Simplifying Control Expressions

move (L_1, L_2) : $L_1 \subseteq \pi \land \pi' = (\pi - L_1) \cup L_2$ e.g., for $L_1 = \{\ell_1\}, L_2 = \{\ell_2\}$ move (ℓ_1, ℓ_2) : $\ell_1 \in \pi \land \pi' = (\pi - \{\ell_1\}) \cup \{\ell_2\}$

Consequences implied by $move(L_1, L_2)$:

- for every $[\ell] \in L_1$ $at_{-\ell} = T$ (i.e., $[\ell] \in \pi$)
- for every $[\ell] \in L_2$ $at'_{\ell} = T$ (i.e., $[\ell] \in \pi'$)
- for every $[\ell] \in L_1 L_2$ $at_{-\ell} = T$ (i.e., $[\ell] \in \pi$) and $at'_{-\ell} = F$ (i.e., $[\ell] \notin \pi'$)
- for every $\ell \notin L_1 \cup L_2$ $at'_\ell = at_\ell \text{ (i.e., } [\ell] \in \pi, \pi' \text{ or } [\ell] \notin \pi, \pi')$

6 - 10

Proving invariance properties: $P \models \Box q$

We want to show that for every computation of P $\sigma: s_0, s_1, s_2, \dots$ assertion q holds in every state $s_j, j \ge 0$, i.e., $s_j \models q$.

Recall:

A sequence $\sigma : s_0, s_1, s_2, \dots$ is a <u>computation</u> if the following hold (from Chapter 0):

- 1. Initiality: $s_0 \models \Theta$
- 2. Consecution: For each $j \ge 0$, s_{j+1} is a τ -successor of s_j for some $\tau \in \mathcal{T}$ $(s_{j+1} \in \tau(s_j))$
- 3, 4. Fairness conditions are respected.

Note: Truth of *safety* properties over programs *does not* depend on fairness conditions.

Proving invariance properties (Con't)

This definition suggests a way to prove invariance properties $\Box q$:

1. Base case:

Prove that q holds initially

$$\label{eq:second} \begin{split} \Theta &\to q \\ \text{i.e., } q \text{ holds at } s_{\mathsf{0}}. \end{split}$$

2. Inductive step:

prove that \boldsymbol{q} is preserved by all transitions

$$\underbrace{q \wedge \rho_{\tau} \to q'}_{\{q\}\tau\{q\}} \quad \text{for all } \tau \in \mathcal{T}$$

i.e., if q holds at $s_j,$ then it holds at every $\tau\text{-successor}$ $s_{j+1}.$

Rule B-INV (basic invariance)

Show	P	⊨□	q (i.e.	q is	P-invariant))
DIIOW	1		4	1.0.	Y ¹⁰	<u>I mvariano</u>	/

For assertion q ,	
B1.	$P \models \Theta \rightarrow q$
B2.	$P \models \{q\} \mathcal{T} \{q\}$
	$P \models \Box q$

where B2 stands for

 $P \Vdash \{q\} \ \tau \ \{q\} \ \text{for every} \ \tau \in \mathcal{T}$

- The rule states that if we can prove the P-state validity of $\Theta \to q$ and $\{q\}\mathcal{T}\{q\}$ then we can conclude that $\Box q$ is P-valid.
- Thus the proof of a temporal property is reduced to the proof of 1 + |T| first-order verification conditions.

6 - 13

Example 1: REQUEST-RELEASE

local x: integer where
$$x = 1$$

$$\begin{bmatrix} \ell_0 : \text{ request } x \\ \ell_1 : \text{ critical} \\ \ell_2 : \text{ release } x \\ \ell_3 : \end{bmatrix}$$

 $\begin{array}{ll} \Theta: & x = 1 \ \land \ \pi = \{\ell_0\} \\ \\ \mathcal{T}: & \{\tau_I, \tau_{\ell_0}, \tau_{\ell_1}, \tau_{\ell_2}\} \end{array}$

Prove

$$P \models \square \underbrace{x \ge 0}_{q}$$

using B-INV.

6-14

Example 1: request-release (Con't)

B1:
$$\underbrace{x = 1 \land \pi = \{\ell_0\}}_{\Theta} \to \underbrace{x \ge 0}_{q}$$

holds since $x = 1 \to x \ge 0$

B2:

$$\tau_{\ell_0}: \underbrace{x \ge 0}_{q} \land \underbrace{move(\ell_0, \ell_1) \land x > 0 \land x' = x - 1}_{\rho_{\tau_{\ell_0}}} \to \underbrace{x' \ge 0}_{q'}$$

holds since $x > 0 \to x - 1 \ge 0$

$$\begin{split} \tau_{\ell_1} &: \underbrace{x \ge 0}_{q} \land \underbrace{move(\ell_1, \ell_2) \land x' = x}_{\rho_{\tau_{\ell_1}}} \to \underbrace{x' \ge 0}_{q'} \\ & \text{holds since } x \ge 0 \to x \ge 0 \end{split}$$

$$\tau_{\ell_2}: \underbrace{x \ge 0}_{q} \land \underbrace{move(\ell_2, \ell_3) \land x' = x + 1}_{\rho_{\tau_{\ell_2}}} \to \underbrace{x' \ge 0}_{q'}$$
holds since $x \ge 0 \to x + 1 \ge 0$

Example 1: request-release (Con't)

local x: integer where
$$x = 1$$

$$\begin{bmatrix} \ell_0 : \text{ request } x \\ \ell_1 : \text{ critical} \\ \ell_2 : \text{ release } x \\ \ell_3 : \end{bmatrix}$$

We proved

$$P \models \Box x \ge 0$$

using B-INV.

Now we want to prove

$$P \models \Box \underbrace{(at_{-}\ell_{1} \to x = 0)}_{q}$$

Example 1: request-release (Con't)

Attempted proof:

B1:
$$\underbrace{x = 1 \land \pi = \{\ell_0\}}_{\Theta} \rightarrow (\underbrace{at_{-}\ell_1 \rightarrow x = 0}_{q})$$

holds since $\pi = \{\ell_0\} \rightarrow at_{-}\ell_1 = F$

 $\begin{array}{l}
\mathbf{B2:} \{q\}\tau_{\ell_0}\{q\}\\ \underbrace{at_{-\ell_1} \to x = 0}_{q} \land \underbrace{move(\ell_0, \ell_1) \land x > 0 \land x' = x - 1}_{\rho_{\tau_{\ell_0}}}\\ \to \underbrace{at'_{-\ell_1} \to x' = 0}_{q'}
\end{array}$

We have $move(\ell_0, \ell_1) \rightarrow at_-\ell_1 = F$, $at'_-\ell_1 = T$ BUT

 $(\mathbf{F}
ightarrow x = \mathbf{0}) \land x > \mathbf{0} \land x' = x - \mathbf{1}
ightarrow (\mathbf{T}
ightarrow x' = \mathbf{0})$

Cannot prove: not state-valid

What is the problem? We need a stronger rule.

6-17

Strategies for invariance proofs

Rule B-INV (basic invariance)

For assertion q ,	
B1.	$P \Vdash \Theta \to q$
B2.	$P \models \{q\} \mathcal{T} \{q\}$
	$P \models \Box q$

- q is <u>inductive</u> if B1 and B2 are (state) valid
- By rule B-INV, every inductive assertion q is P-invariant
- <u>The converse is not true</u>

Example: In REQUEST-RELEASE

$$at_{-}\ell_{1} \rightarrow x = 0$$

is P-invariant, but not inductive

6-18

Rule B-INV(Con't)

The problem is:

"The invariant is not inductive"

i.e., it is not strong enough to be preserved by all transitions.

Another way to look at it is to observe that

$\{q\} \ \tau_{\ell_0} \ \{q\}$

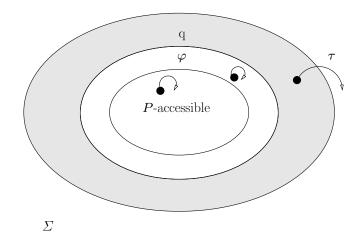
is not state valid, but it is *P*-state valid, i.e., it is true in all *P*-accessible states, since in all *P*-accessible states x = 1 when at location ℓ_0 .

This suggests two strategies to overcome this problem:

- strengthening
- incremental proof

Strategy 1: Strengthening

Find a stronger assertion φ that is inductive and implies the assertion q we want to prove.



In Chapter 2 it will be shown that there always exists such an assertion φ .

Example: To show $\Box(\underbrace{at_{-}\ell_{1} \rightarrow x = 0})$ strengthen q to φ : $(at_{-}\ell_{1} \rightarrow x = 0) \land (at_{-}\ell_{0} \rightarrow x = 1)$ and show $\Box(\underbrace{at_{-}\ell_{1} \rightarrow x = 0}) \land (at_{-}\ell_{0} \rightarrow x = 1)$ by rule B-INV. The strengthening strategy relies on the following rule, MON-I, which, combined with B-INV leads to the general invariance rule INV.

Rule MON-I (Monotonicity)

For assertions q_1, q_2 ,	
$P \models \Box q_1$	$P \models q_1 \rightarrow q_2$
I	$P \models \Box q_2$

6-21

Strategy 1: Strengthening (Con't)

<u>Rule INV</u> (general invariance)

For assertions q, φ	,
I1.	$P \Vdash \varphi \to q$
I2.	$P \models \Theta \rightarrow \varphi$
I3.	$P \Vdash \{\varphi\} \mathcal{T} \{\varphi\}$
	$P \models \Box q$

Soundness: If we manage to prove $\Box q$ using the INV rule for some program P, is q really an invariant for the program?

We can prove that this is indeed the case. So INV rule is *sound*.

Completeness: What if q is an invariant for a program P but there is **no** way of proving it under the INV rule?

We can prove that this never happens. There always exists an appropriate φ . In other words INV rule is *complete*.

6-22

Strategy 1: Strengthening (Con't)

Motivation:

$$P \models \Box \varphi \qquad (by I2 and I3)$$

$$P \models \varphi \rightarrow q \quad (by I1)$$

Therefore,

 $P \models \Box q$ (by MON-I)

i.e., this rule requires that $\Box \varphi$ holds and φ implies q, then $\Box q$ can be concluded to hold by monotonicity.

Control Invariants

Some control invariants that can always be used (without mentioning them)

• CONFLICT: for labels ℓ_i, ℓ_j that are in conflict (i.e., not \sim_L , not parallel):

$$\Box \neg (at_{-}\ell_{i} \land at_{-}\ell_{j})$$

• SOMEWHERE: for the set of labels \mathcal{L}_i in a top-level process:

$$\Box \bigvee_{\ell \in \mathcal{L}_i} at_{-\ell}$$

• EQUAL: for labels $l, m, \text{ s.t. } l \sim_L m$: $\Box(at_{\ell} \leftrightarrow at_{-}m)$

6-25

Control Invariants (Con't)

• PARALLEL:

for substatement $[S_1||S_2]$:

 $\Box(in_S_1 \leftrightarrow in_S_2)$

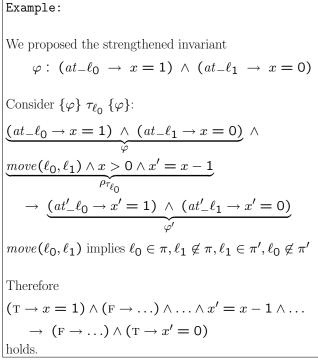
i.e, if control is in S_1 it must also be in S_2 and vice versa.

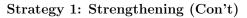
Example:

Using the invariant CONFLICT,

 $\begin{array}{ll} \textit{move}(\ell_2,\ell_3) & \text{implies} & l_0 \not\in \pi, \ l_1 \not\in \pi, \ l_3 \not\in \pi \\ & l_0 \not\in \pi', \ l_1 \not\in \pi', \ l_2 \not\in \pi' \end{array}$

Strategy 1: Strengthening (Con't)



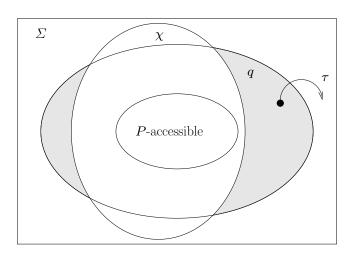


Example (Con't): Consider $\{\varphi\} \ \tau_{\ell_2} \ \{\varphi\}$: $(at_{-\ell_0} \to x = 1) \land (at_{-\ell_1} \to x = 0) \land$ φ $\underbrace{(at'_{-\ell_0} \to x' = x + 1)}_{\varphi_{\tau_{\ell_2}}} \land$ $\to (at'_{-\ell_0} \to x' = 1) \land (at'_{-\ell_1} \to x' = 0)$ g' $move(\ell_2, \ell_3) \text{ implies } \ell_3 \in \pi'$ and by CONFLICT invariants $\ell_0, \ell_1 \notin \pi'$. Therefore $\dots \land \dots \to (F \to x' = 1) \land (F \to x' = 0)$ holds. $\{\varphi\} \ \tau_{\ell_2} \ \{\varphi\} \text{ is not state-valid,}$ but it is *P*-state valid. Why?

6-29

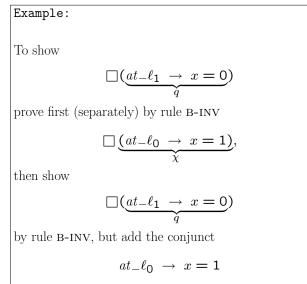
Strategy 2: Incremental proof

Use previously proven invariances χ to exclude parts of the state space from consideration.



6-30

Strategy 2: Incremental proof (Con't)



to the antecedent of all verification conditions.

(Example continues...)

Strategy 2: Incremental proof (Con't)

Example: (cont'd)
e.g., to show $\{\chi \wedge q\} au_{\ell_0}\{q\}$, prove
$\underbrace{at_{-}\ell_{0} \to x = 1}_{\chi} \land \underbrace{at_{-}\ell_{1} \to x = 0}_{q} \land$
$\underbrace{move(\ell_0,\ell_1) \land x > 0 \land x' = x - 1}_{\rho_{\tau_{\ell_0}}}$
$\rightarrow \underbrace{at'_{-}\ell_{1} \rightarrow x' = 0}_{q'}$

Strategy 2: Incremental proof (Con't)

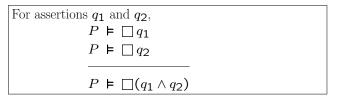
In an incremental proof we use previously proven properties to eliminate parts of the state space (non *P*-accessible states) from consideration, relying on the following rules:

$\ensuremath{\mathbf{Rule}}$ sv-psv: from state validities to

P-state validities

For assertions q_1, q_2 and χ , $P \models \Box \chi$ $P \models \chi \land q_1 \rightarrow q_2$ $P \models \Box (q_1 \rightarrow q_2)$

Rule I-CON: Conjunction



6-33

Strategy 2: Incremental proof (Con't)

Example: Program MUX-SEM

(mutual exclusion by semaphores)

$$\begin{array}{c} \text{local } y\text{: integer where } y=1\\ \\ P_1:: \left[\begin{array}{c} \ell_0\text{: loop forever do} \\ \left[\begin{array}{c} \ell_1\text{: noncritical} \\ \ell_2\text{: request } y \\ \ell_3\text{: critical} \\ \ell_4\text{: release } y \end{array} \right] \right] \mid P_2:: \left[\begin{array}{c} m_0\text{: loop forever do} \\ m_1\text{: noncritical} \\ m_2\text{: request } y \\ m_3\text{: critical} \\ m_4\text{: release } y \end{array} \right] \end{array}$$

Prove mutual exclusion $\Box \underbrace{\neg(at_{-}\ell_{3} \land at_{-}m_{3})}_{q}$

6-34

Program MUX-SEM (Con't)

3 steps: $\Box(\underbrace{y \ge 0}_{\varphi_1})$ $\Box(\underbrace{at - \ell_{3,4} + at - m_{3,4} + y = 1}_{\varphi_2})$ $\Box \underbrace{\neg(at - \ell_3 \land at - m_3)}_p$ where F = 0, T = 1.

Let π_{ℓ} : $\pi \cap \{\ell_0, \dots, \ell_4\}$ π_m : $\pi \cap \{m_0, \dots, m_4\}$

By control invariants (CONFLICT, SOMEWHERE and PARALLEL)

$$|\pi_\ell| = |\pi_m| = 1$$

Program MUX-SEM (Con't)

Step 1:
$$\Box(\underline{y \geq 0}_{\varphi_1})$$

by rule B-INV

B1.
$$\underbrace{\pi = \{\ell_0, m_0\} \land y = 1}_{\Theta} \rightarrow \underbrace{y \ge 0}_{\varphi_1}$$

B2. $\rho_{\tau} \land y \ge 0 \rightarrow y' \ge 0$

check only ℓ_2, ℓ_4, m_2, m_4 ("y-modifiable transitions")

Program MUX-SEM (Con't)

Program MUX-SEM (Con't)

$$\ell_{2}: \underbrace{move(\ell_{2},\ell_{3}) \land y > 0 \land y' = y - 1}_{\rho_{\tau}} \land \underbrace{y \ge 0}_{\varphi'} \rightarrow \underbrace{y' \ge 0}_{\varphi'}$$

holds since $y > 0 \rightarrow y-1 \ge 0$

$$\ell_4: \underbrace{move(\ell_4, \ell_0) \land y' = y + 1}_{\rho_{\tau}} \land \underbrace{y \ge 0}_{\varphi} \to \underbrace{y' \ge 0}_{\varphi'}$$

holds since
$$y \ge 0 \rightarrow y+1 \ge 0$$
.

Similarly for m_2 , m_4 .

Step 2:

$$\Box(\underbrace{at_{-}\ell_{3,4} + at_{-}m_{3,4} + y = 1}_{\varphi_2})$$

by rule B-INV

B1.
$$\underbrace{\pi = \{\ell_0, m_0\} \land y = 1}_{\Theta} \rightarrow \underbrace{at_-\ell_{3,4}}_{\varphi_2} + \underbrace{at_-m_{3,4}}_{\varphi_2} + \underbrace{y}_{1} = 1$$

6-38

Program MUX-SEM (Con't)
B2.
$$\rho_{\tau} \land \varphi_2 \rightarrow \varphi'_2$$

 $\rho_{\ell_0} \wedge 0 + at_{-}m_{3,4} + y = 1 \rightarrow 0 + at_{-}m_{3,4} + y = 1$

 $\begin{array}{rcl} \rho_{\ell_1} & \wedge & 0+at_-m_{3,4}+y=1 & \rightarrow \\ & 0+at_-m_{3,4}+y=1 \end{array}$

 $\rho_{\ell_2} \wedge 0 + at_{-}m_{3,4} + y = 1 \rightarrow 1 + at_{-}m_{3,4} + (y-1) = 1$

 $\rho_{\ell_3} \wedge 1 + at_{-}m_{3,4} + y = 1 \rightarrow 1 + at_{-}m_{3,4} + y = 1$

$$\rho_{\ell_4} \wedge 1 + at_{-}m_{3,4} + y = 1 \rightarrow \underbrace{0}_{at'_{-}\ell_{3,4}} + \underbrace{at_{-}m_{3,4}}_{at'_{-}m_{3,4}} + \underbrace{(y+1)}_{y'} = 1$$

6-39

6-37

Program MUX-SEM (Con't)

Step 3: Show
$$P \models \Box \underbrace{\neg(at_{-}\ell_{3} \land at_{-}m_{3})}_{q}$$

• By I-CON

 $P\models \Box \varphi_1, P\models \Box \varphi_2$

$$P\models \Box(\varphi_1 \land \varphi_2)$$

 \bullet By mon-1

 $P \models \Box(\varphi_1 \land \varphi_2)$

$$P \models \underbrace{y \ge 0}_{\varphi_1} \land \underbrace{at_{-\ell_{3,4}} + at_{-m_{3,4}} + y = 1}_{\varphi_2}$$
$$\rightarrow \underbrace{\neg(at_{-\ell_3} \land at_{-m_3})}_{q}$$
$$\underbrace{P \models \Box \neg(at_{-\ell_3} \land at_{-m_3})}_{P \models \Box \neg (at_{-\ell_3} \land at_{-m_3})}$$

 \widetilde{q}