CS256/Spring 2008 — Lecture #6
Zohar Manna

Chapter 1

Invariance: Proof Methods

For assertion ¢
and SPL program P

show PEq
(i.e., g is P-invariant)

6-1

Verification Conditions
(proof obligations)

standard verification condition

For assertions ¢, 1 and transition 7,

{e} T {3} (“Hoare triple”) stands for the state formula

pT/\w—wﬂ’\

“Verification condition (VC) of ¢ and 9
relative to transition 7"

6-3

Proving Invariances

Definitions

Recall:

e the variables of assertion:

— free (flexible) system variables
V=YU{r}

where Y are the program variables and 7 is the
control variable
— quantified (rigid) specification variables

e ¢’ is the primed version of g, obtained by replacing
each free occurrence of a system variable y € V' by

its primed version y'.

e p; is the transition relation of 7, expressing the re-

lation holding between a state s and any of its 7-
successors s’ € T(s).

6-2

Verification Conditions (Con’t)

Example:

p. >0 ANy =x4+y A==z
p:y=3 Pry=x4+3

Then {p} 7 {v}:
r_ ’_ —
> 0Ny=zxzt+y ANz =zAN y=3
pr ¢
_ y/:x/+3
w/

6-4

Verification Conditions (Con’t)

eforre7T inP

{e}r{v}: prAe— !
“r leads from ¢ to ¢ in P”

e for 7 in P

(AT} {p}r{w} foreveryreT
“T leads from ¢ to 9 in P”

Claim (Verification Condition)

If {p}r{1} is P-state valid,
then every 7-successor of a ¢-state is a 1)-state.

Verification Conditions (Con’t)

Substituted Form of Verification Condition

Transition relation can be written as
p.. C. N (VI=E)

where
C,: enabling condition
V': primed variable list

E: expression list

e The substituted form of
verification condition {@}r{}:

(G, Ay — Y[E/V]]

where
Y[E/V]: replace each variable v € V'
in 2 by the corresponding e € E
Note: No primed variables!

Verification Conditions (Con’t)
Special Cases

e while, conditional pri prV Pk

{3} pE Ao — ¥
{30} pF A — ¥

{err{v} {edr™{¥} A {e}r"{¥}
e idle

{edr el o A — ¢

always valid, since
pr, = v = forallv € V,

s0 @' = .

6-6

Verification Conditions (Con’t)

Example:
pric>0ANyY =x+y A =c¢

Standard
> I — ! — —
>0 Ay r+y ANz z Ny=3
pT ®
N y/ — x/ + 3
—
w/
Substituted

z>0ANy=3 -z+y=z+3
Cr s Y[E/V]

The substituted form of a verification condition is P-state
valid iff the standard form is

6-7

6-8

Verification Conditions (Con’t) Simplifying Control Expressions

move(L1,L>): L1 Cwm A = (r—L1)UL>

Example:)
eg. for Ly = {1}, Ly = {£o}
o=y v x=y+1 move(€1,02): fre€m A 7' = (7 —{l1})U{l}
. N Consequences implied by move(L1, Lo):
prig > 0N (@,y)=(x+1,y)
ot v B
The substituted form of {p}r{e} is o for every [£] € L1

at_£ =" (ie., [£] € 7)

r>0 A=y —
C ® o for every [£] € Lo

=y+D[=+1,9)/(z,y)] at_ L= (ie., [[] €)
Y[E/V]

e forevery [{] € L1—L»
at_€ =T (ie., [£] € m) and
at’ =7 (e, [£] € ')

or equivalently

>0 ANz=y - z4+1=y+1

e forevery £ ¢ L1 U Ly
at’ €= at_L (ie., [f] € m,7’" or €] € 7, 7)

6-9 6-10

Proving invariance properties: P k[]q
Proving invariance properties (Con’t)
We want to show that for every
computation of P
O :80,51,82,...
assertion g holds in every state s;, j > 0,

This definition suggests a way to prove
invariance properties [q:

Le., s; IF q.

1. Base case:
Recall: Prove that ¢ holds initially
A sequence o : sg, 81, 82, - - - I8 a computation 0 —gq

if the following hold (from Chapter 0): i.c., ¢ holds at so.

1. Initiality: sg I ©
2. Inductive step:

2. Consecution: For each j > 0, prove that g is preserved by all transitions
8j41 1s a T-successor of s; for some 7 € T gApr—g forallTeT
(sj41 € 7(55)) {a}r{a}

i.e., if g holds at s, then it holds at every T-successor

Sj+1-

3, 4. Fairness conditions are respected.

Note: Truth of safety properties over programs
does not depend on fairness conditions.

Rule B-INV (basic invariance)

Show P E[Jq (i.e. ¢ is P-invariant)

For assertion ¢,

Bl Pk O — g

B2. P Ik {¢} T {q}

P EF q

where B2 stands for
‘ P E {q} 7 {q} forevery T € T‘

e The rule states that if we can prove the
P-state validity of @ — ¢ and {¢}7 {q}
then we can conclude that [] ¢ is P-valid.

e Thus the proof of a temporal property
is reduced to the proof of 1 4 | 7|
first-order verification conditions.
6-13

Example 1: request-release (Con’t)

Bl: z=1An={l{} — >0
(2] q
holds sincez =1 — x>0

B2:

Toor >0 A move(g, 1) ANz >0A2' =z —1 — ' >0

q pTgO
holds sincex >0 —x—1>0

o0 x>0 A move(£1,lo) N’ =2z — 2’ >0

q PTgl q

holds sincex > 0 — x> 0

T 20 A move(bo,3) N’ =z +1 — 2’ >0

/

q Py, q
holds sincex >0 —x+1>0

6-15

Example 1: REQUEST-RELEASE

local z: integer where x =1

lo: request x
f1: critical
l> . release x
l3:

O z=1 A m={{l}

T: {7, To, ey o}

Prove

P E[Jz>0
N
q
using B-INV.

6-14

Example 1: request-release (Con’t)

local z: integer where x =1

fo: request x
£1 : critical
> . release x
43

We proved
PEJxz>0

using B-INV.

Now we want to prove

P E d(at—t1 — xz=0)
q

Example 1: request-release (Con’t)
Attempted proof:
Bl: z=1A7m={{} — (at_l; - x2=0)

e q
holds since m# = {{g} — at_€1 =F

B2: {Q}Tfo{q}

at_01 — x =0 A move({g,l1) ANz >0ANa =2 —1

q p’TeO
— at' 4y -2’ =0
q/
We have move(£g,01) — at_€1 =F, at' 41 =T
BUT

(F—2x=0)Az>0A2x =2—1 — (T — 2’ =0)

Cannot prove: | not state-valid

What is the problem?
We need a stronger rule.

6-17

Rule B-INvV(Con’t)

The problem is:
“The invariant is not inductive”

i.e., it is not strong enough to be preserved by all transi-

tions.

Another way to look at it is to observe that

{a} 74y {a}

is not state valid, but it is P-state valid,
i.e., it is true in all P-accessible states,
since in all P-accessible states

x = 1 when at location £.

This suggests two strategies to overcome this problem:
e strengthening

e incremental proof

Strategies for invariance proofs

Rule B-INV (basic invariance)

For assertion g,
B1. P EFE O — ¢
B2. P Ik {q} T {q}

P E [q

e g is inductive if BI and B2 are (state) valid

e By rule B-INV,
every inductive assertion ¢ is P-invariant

e The converse is not true

Example: In REQUEST-RELEASE

at_l1 — =0

is P-invariant, but not inductive

6-18

Strategy 1: Strengthening

Find a stronger assertion ¢ that is inductive and implies
the assertion g we want to prove.

P-accessible

X

In Chapter 2 it will be shown that there always exists
such an assertion ¢.

Strategy 1: Strengthening (Con’t)

Example:

To show

O(at_41 — =z =0)
q

strengthen q to
p: (at—ty — z=0) A (at_lyg — z=1)
and show

O(at—t1 — z=0) A (at_bg — xz=1)
©

by rule B-INV.

Strategy 1: Strengthening (Con’t)
The strengthening strategy relies on the
following rule, MON-1, which, combined with

B-INV leads to the general invariance rule INV.

Rule MON-1 (Monotonicity)

For assertions q1, ¢o,

PEOq P F qgq —q

P FE g

6-21

Strategy 1: Strengthening (Con’t)

Rule INV (general invariance)

For assertions ¢, ¢
I1. PEyp — q

2. PEO — ¢

B PIE{e} T {¢}

P E g

6-22

Soundness: If we manage to prove [] ¢ using the INV
rule for some program P, is g really an invariant for
the program?

We can prove that this is indeed the case. So INV
rule is sound.

Completeness: What if ¢ is an invariant for a program
P but there is no way of proving it under the INV
rule?

We can prove that this never happens. There always
exists an appropriate . In other words INV rule is
complete.

Strategy 1: Strengthening (Con’t) Control Invariants

Motivation: Some control invariants that can always be used (without

mentioning them)
PEey (by 12 and I3)

PlEp—gq (byll) e CONFLICT:
for labels £;, £; that are in conflict

Therefore, (i.e., not ~p, not parallel):

PEgq (by MON-I) O -(at—£; A at_£;)

o SOMEWHERE:

i.e., this rule requires that [J ¢ holds and ¢ implies ¢, for the set of labels £ in a
> oCL d 1

then [] ¢ can be concluded to hold by monotonicity. top-level process:

OV at_¢
Lel;

e EQUAL:
for labels I, m, s.t. I ~, m:

O(at—£ «— at_m)

6-25 6-26
Control Invariants (Con’t) Strategy 1: Strengthening (Con’t)
Example:
e PARALLEL:
for substatement [S1[|S5]: We proposed the strengthened invariant
[0(in_Sq < in_So) p: (at_bg — z=1) A (at_€; — z=0)

i.e, if control is in Sq it must also be in Sy and vice)
Consider {¢} 74 {¢}:

versa.
(at_fg —x=1) A (at_€1 —-x=0) A
)
I — —
Example: move((o,él)/\xp> OnNz' =z -1

Using the invariant CONFLICT, R (at/_Eo Ly = 1) A (at/_ﬁl g = 0)

move(€o,€3) implies lgg€m, 1 €7, I3&m ¢’
logn, lign’, lagn move(£g, £1) implies g € m,41 € m,41 € ', lg & 7'

Therefore
(T—=z=D)AF—..)A... A =z—-1A...

— (F—..)A(T—2'=0)
holds.

Strategy 1: Strengthening (Con’t)

Example (Con’t):

Consider {¢} 74, {¢}:
(at_Lg —x=1) A (at_£1 —x=0) A

©
move(lo, €3) Na' =z + 1
pTe2
— (at' bg—2'=1) A (at’ 01 — 2’ =0)

o

move(£o, £3) implies £3 € 7’
and by CONFLICT invariants £q, £1 & 7'

Therefore
AN = P2 =1)AF -2 =0)
holds.

{¢} 70, {} is not state-valid,
but it is P-state valid. Why?

6-29

Strategy 2: Incremental proof (Con’t)

Example:

To show

O(at—£1 — = =0)
q

prove first (separately) by rule B-INV

O(at_ty — z=1),
X

then show

O(at_¢; — =z =0)
q
by rule B-INV, but add the conjunct

at_lyg — z=1

to the antecedent of all verification conditions.

(Example continues...)

Strategy 2: Incremental proof

Use previously proven invariances x to exclude parts of
the state space from consideration.

2 A

N

6-30

Strategy 2: Incremental proof (Con’t)

Example: (cont’d)

e.g., to show {x A g}7g,{q}, prove

at_bg—x=1 AN at_l1 —xz=0 A
X q
move(g, 1) Az >0AN2' =z —1
PT@O

— at' 41 -2’ =0
[e —
q/

Strategy 2: Incremental proof (Con’t) Strategy 2: Incremental proof (Con’t)

In an incremental proof we use previously proven proper- Example: Program MUX-SEM
ties to eliminate parts of the state space (non P-accessible (mutual exclusion by semaphores)
states) from consideration, relying on the following rules:

Rule sv-psv: from state validities to local y: integer where y =1

P-state validities {o: loop forever do mg: loop forever do
For assertions ¢1, g and ¥, ¢1 : noncritical m7: noncritical
PEx Py l>: regl.lest y || P>:: mo: regl‘lest y
PIEYAqQ — ¢ {3 : critical m3: critical
Ly : release y mg: release y

P E (g1 — q2)

Rule 1-con: Conjunction Prove mutual exclusion

For assertions g1 and go, O-(at_f3 A at—m3)
P F[Oqa q
P E Qg
P F (a1 A g2)

6-33 6-34
Program MUX-sEM (Con't) Program MUX-SEM (Con'’t)
SLeps. y =0 1: >
3 steps: [(y = 0) Step 1: [((y = 0)

((at—t3 4+ at—-m3a+y=1)
2

by rule B-INV

(-(at—l3 N at_ms3)

p
where F = 0, T = 1. 7 ={lo,mo} Ny —y>0
e Y1
Let mp: w0 {lo,..., 4} B2.p, ANy>0 — ¢y >0
mm: wN{mg,...,ma}
By control invariants (CONFLICT, SOMEWHERE and check only £a, £4, M, ma
PARALLEL) (“y-modifiable transitions”)
el = [mm| =1

6-35 6-36

Program MUX-SEM (Con't)

/
: = y— >
£o move(1327€3)/\7;>0/\y y—1 Ay>0

AS)

!
Qﬁ\
{| v
(@]

ﬁ\

holds sincey >0 — y—1 >0

: ! = > >
64 move (647 ‘eo)p AN Yy y+l A t_ggg - &?Q
T ¥

holds since y > 0 — y+1 > 0.

Similarly for mo, mg.

6-37

Program MUX-SEM (Con’t)

B2 p, A g2 — ¢h

Pog N O+at-m3zs+y=1 —
O—|—at_m374—|—y=1

pey N Otat-mzat+y=1 —
O+ at_mga+y=1

pi, N Ot+at-m3za+y=1 —
1+at-mza+ (y—1) =1

pes N 1—|—at_m3’4—|—y=1 —
1—|—at_m374—|—y=1

pe, N 1+at-mza+y=1 —
— 1)=1
0 +atmagt D)
(]'t*€374 at’,m374 Y

6-39

Program MUx-SEM (Con't)

Step 2:

O(at—£34+ at—m34+y=1)
%2

by rule B-INV

Bl. m={lgp,mo} Ny=1 —
(C]

at_l3z 4 + al_m3zq + y =1
——— —_—— ~~
0 0 1
P2

Program MUX-SEM (Con’t)

Step 3: Show P E[]—(at_f3 A at_ms3)
q

e By I-CON

PEOv1, PEOw2

PEO(e1 A ¢2)
e By MON-I

PEO(p1 A ¢2)

PEy>0 A at_£3,4 + at_m3’4 +y=1
Y1 p2

— =(at_f3 A at_m3)
q

PE[J-(at_£3 N at_m3)
q

6-38

