CS256/Spring 2008 — Lecture #©6
Zohar Manna

Chapter 1

Invariance: Proof Methods

For assertion g
and SPL program P

show PE[]q
(i.e., g is P-invariant)

6-1

Proving Invariances

Definitions

Recall:

e the variables of assertion:

— free (flexible) system variables
V=Y U{n}

where Y are the program variables and 7 is the
control variable
— quantified (rigid) specification variables

e ¢’ is the primed version of g, obtained by replacing

each free occurrence of a system variable y € V' by

its primed version y’.

e pr is the transition relation of 7, expressing the re-

lation holding between a state s and any of its 7-

successors s’ € 7(s).

6-2

Verification Conditions
(proof obligations)

standard verification condition

For assertions ¢, v and transition 7,

{p} 7 {1} (“Hoare triple”) stands for the state formula

pr N —

“Verification condition (VC) of ¢ and @
relative to transition 7"

6-3

Verification Conditions (Con’t)

Example:

o x>0 ANy =x+y A==

p:y=3

v:iy=x+3

Then {¢} 7 {v}:
x> 0 A vy =x4+y A :c/=a;/\ y=3

pA

6-4

Verification Conditions (Con’t)

eforTe7 inP

{etr{v}: prAe—
“1 leads from ¢ to ¥ in P”

e for7 in P

{o}yT{}: {p}r{y} forevery Tt €T
“7 leads from ¢ to 9 in P~

Claim (Verification Condition)

If {o}r{y} is P-state valid,
then every 7-successor of a (-state is a 1-state.

6-5

Verification Conditions (Con’t)

Special Cases
e while, conditional P pLV pE

{e}r e} pp A — ¢
{e}r™ ¥} ol A — ¢

{etr{v} @ {3 {v} A {etr"{v}
e idle

{etrde}: o A — ¢

always valid, since

pr, = v =0 for all v € V,

so ¢ = .

6-6

Verification Conditions (Con’t)

Substituted Form of Verification Condition

Transition relation can be_ written as
p.. C. N (VI=F)

where
C_: enabling condition
V' primed variable list

E: expression list

e The substituted form of
verification condition {@}r{v}:

C, N ¢ — Y[E/V]

where
Y[E/V]: replace each variable v € V
in ¢ by the corresponding e € E
Note: No primed variables!

The substituted form of a verification condition is P-state
valid iff the standard form is

6-7

Verification Conditions (Con’t)

Example:
pr: >0 NY =xz4+y AN '==x

Standard

x>0 ANy =zxz4+y A x
or

'=2x AN y=3
- ——

Substituted
gzO0Ny=Z3 »egty=o+3
Cr 14 Y[E/V]

6-8

Verification Conditions (Con’t)

Example:

P x =y Yrr=y—+1

oz > 0N (@ y)=(@+1y)
v E
The substituted form of {p}r{y} is

r>0Nzr=y —
— N——
C Y

=y+D=+1,9)/(zy)]
Y[E/V]

or equivalently

x>0 AN Nzr=y — z+1=y+1

6-9

Simplifying Control Expressions
move(L1,L>): L1 Cwm A ' =(x—L1)UL>

e.g., for Ly = {1}, Lo = {{o}
move(£1,42). £1 €T A n = (m — {ﬁl}) U {l>}

Consequences implied by move(L1, Lo):

o for every [4] € Lq
at_£ =T (ie., [{] € 7)

e for every [4] € Lo
at’ £ = (ie., [£] € ')

o for every [¢] € L1—L>
at_€ =T (ie., [f] € w) and
at’ £ =F (ie., [f] € ')

o forevery £ ¢ L1 U Lo
at’ £ = at_¥£ (ie., [{] € w,n" or [£] & 7, n)

6-10

Proving invariance properties: P F[]q

We want to show that for every
computation of P

O .80,81,52,...
assertion g holds in every state s;, 7 > O,
Le., s IF q.

Recall:

A sequence o : sg, 1, S92, ... 18 a computation
if the following hold (from Chapter 0):

1. Initiality: sg IF ©

2. Consecution: For each 5 > 0,
S;j41 18 a T-successor of s; for some T € T

(sj41 € 7(55))

3, 4. Fairness conditions are respected.

Note: Truth of safety properties over programs
does not depend on fairness conditions.

6-11

Proving invariance properties (Con’t)

This definition suggests a way to prove
invariance properties [] q:

1. Base case:
Prove that ¢ holds initially

e — q
i.e., g holds at sq.

2. Inductive step:
prove that q is preserved by all transitions

g/\pT—>qi forall T € T
{qa}m{q}

L.e., if g holds at s, then it holds at every T-successor

Sj+1

6-12

Rule B-INV (basic invariance)

Show P E[]q (i.e. q is P-invariant)

For assertion gq.

Bl. Pl 6 — ¢

B2. P E {q} T {q}

P E[lq

where B2 stands for
P IF {q} 7 {q} forevery T €T

e The rule states that if we can prove the
P-state validity of © — q and {q}7{q}

then we can conclude that [] g is P-valid.

e Thus the proof of a temporal property
is reduced to the proof of 1 4 |7
first-order verification conditions.

6-13

Example 1: REQUEST-RELEASE

local z:

integer where z = 1

B4R

request x]
critical

release x

0. x=1 AN 7= {{o}

T {TI7 TEo? 7-617 7-62}

Prove

using B-INV.

PE[z>0

6-14

Example 1: request-release (Con’t)

Bl: x=1A7={{} — >0
(. é / T

holds sincex =1 — x> 0

B2:

0.0 x>0 A move(lg, 1) Ax>0A2' =2—1 — 2’ >0
0 —— N ~ v N——
q Peg q

holds sincex >0 —x—1>0

70,0 2 >0 A move(fl,ég) Az = r — z' >0
q P q'

holds sincex >0 — x>0

T0,s >0 A move(€2,€3)v/\ = x4+ 1 — z' >0
q /0@2 q

holds sincex >0 —x+1 >0

6-15

Example 1: request-release (Con’t)

local z: integer wherex =1
/g . request
¢1 . critical
¢> . release x
| {3 l
We proved
P EdJxz>0
using B-INV.

Now we want to prove

P EO(at_t; — z=0)
q

6-16

Example 1: request-release (Con’t)

Attempted proof:

Bl: z =1A7={{} — (at—€1 —x=0)
) q
holds since m = {€g} — at_f1 =F

B2: {q}7y,{q}
at_£y —x=0 A move(£Lo, 1) N x > ONg =z — 1
q Py

— atl 4y - 2'=0

q
We have move(£g,41) — at_€1 =F, at' 61 =TT
BUT

(F—-2=0)Az>0A2’=2z—1 — (T — 2’ =0)

Cannot prove: | not state-valid

What is the problem?

We need a stronger rule.

6-17

Strategies for invariance proofs

Rule B-INV (basic invariance)

For assertion gq,

B1. P IE © — q
B2. P F {q} T {q}

P E[]q

e ¢ is inductive if B1 and B2 are (state) valid

e By rule B-INV,
every inductive assertion ¢ is P-invariant

e The converse is not true

Example: In REQUEST-RELEASE
at_¢1 — =20

is P-invariant, but not inductive

6-18

Rule B-inv(Con’t)

The problem is:
“The invariant is not inductive”

i.e., it is not strong enough to be preserved by all transi-
tions.

Another way to look at it is to observe that

{a} 105 {9}

is not state valid, but it is P-state valid,
i.e., it is true in all P-accessible states,
since in all P-accessible states

x = 1 when at location £g.

This suggests two strategies to overcome this problem:
e strengthening

e incremental proof

6-19

Strategy 1: Strengthening

Find a stronger assertion ¢ that is inductive and implies
the assertion g we want to prove.

P-accessible

b))

In Chapter 2 it will be shown that there always exists
such an assertion .

6-20

Strategy 1: Strengthening (Con’t)

Example:

To show

((at—£; — x=0)
q

strengthen ¢ to

o0 (at_l1 — 2=0) A (at_bg — z=1)

and show

Dgat_él — x=0) A (at_lyg — == 12
@

by rule B-INV.

6-21

Strategy 1: Strengthening (Con’t)
The strengthening strategy relies on the
following rule, MON-1, which, combined with

B-INV leads to the general invariance rule INV.

Rule MON-1 (Monotonicity)

For assertions q1, qo,

PE[Oqn P IF q1 — g

P F [go

6-22

Strategy 1: Strengthening (Con’t)

Rule INV (general invariance)

For assertions q, ¢
I1. PlEFE oy — ¢

12. PIEO® — ¢

3. PlE{e} T {o}

P E []qg

6-23

Soundness: If we manage to prove [] g using the INV
rule for some program P, is g really an invariant for

the program?

We can prove that this is indeed the case. So INV
rule is sound.

Completeness: What if ¢ is an invariant for a program
P but there is no way of proving it under the INV
rule?

We can prove that this never happens. There always
exists an appropriate ¢. In other words INV rule is
complete.

6-24

Strategy 1: Strengthening (Con’t)

Motivation:
PEyp (by 12 and 13)
Pl p—q (byll)
Therefore,

PE[]q (by MON-T)

i.e., this rule requires that [] ¢ holds and ¢ implies gq,
then [] ¢ can be concluded to hold by monotonicity:.

6-25

Control Invariants

Some control invariants that can always be used (without
mentioning them)

e CONFLICT:
for labels £;, £; that are in conflict
(i.e., not ~ , not parallel):

1 —(at_€; A at_ﬁj)

e SOMEWHERE:
for the set of labels £; in a

top-level process:

[] \/ at _¥
el

e EQUAL:
for labels I, m, s.t. | ~; m:

(J(at—£ < at_m)

6-26

Control Invariants (Con’t)

® PARALLEL:
for substatement [S11]S5]:

[(1(in_S1 <> in_Sp)
i.e, if control is in S7 it must also be in S5 and vice

versa.

Example:

Using the invariant CONFLICT,

move(€>,03) implies Ilg&m, 1 €7, 3¢
logn, lign, lagn

6-27

Strategy 1: Strengthening (Con’t)

Example:

We proposed the strengthened invariant

o: (at_lg — x=1) N (at_l1 — = =0)

Consider {¢p} 17, {¢}:
(at_lg—x=1) AN (at_€1 —x=0) A

¥
move(£o, 1) ANx >0 ANl =ax — 1
Py,
— (at’_ bg—2'=1) A (at’_t1 — ' =0)

/

©
move(£g, ¥1) implies bg € 7,41 € m, 41 € 7' lg & 7’

Therefore
(T—wa2=1DAF—=..)A... AN =x—-1AN...

— (F—= ..)A(T—=2'=0)
holds.

6-28

Strategy 1: Strengthening (Con’t)

Example (Con’t):

Consider {¢} 74, {¢}:
\(at_eo —x=1) A (at_4] > x = O)J A

¥
move(lo,£3) A =z + 1
Py,
— (at' 4g — 2’ =1) A (at' t; — 2’ =0)

o

move(€o,¢3) implies £3 € 7/
and by CONFLICT invariants £q, £1 & 7.

Therefore

AN P =10)A0F—=2=0)
holds.

{} 7o, {#} 1s not state-valid,
but it is P-state valid. Why?

6-29

Strategy 2: Incremental proof

Use previously proven invariances x to exclude parts of
the state space from consideration.

N

P-accessible

D

6-30

Strategy 2: Incremental proof (Con’t)

Example:

To show

((at—£; — x=0)
q
prove first (separately) by rule B-INV

D\(at_ﬁo — T = 1)}
X

then show

(at—¢y — x=0)
q
by rule B-INV, but add the conjunct

at_lg — x =1

to the antecedent of all verification conditions.

(Example continues...)

6-31

Strategy 2: Incremental proof (Con’t)

Example: (cont’d)

e.g., to show {x A q}7p,{q}, prove

\at_éo—mc:lj A gt_€1—>$:Q A\
X q
move(£o,£1) N x > ONZ =z — 1
Py,

— at' b -2 =0

q/

6-32

Strategy 2: Incremental proof (Con’t)

In an incremental proof we use previously proven proper-
ties to eliminate parts of the state space (non P-accessible
states) from consideration, relying on the following rules:

Rule sv-pPsv: from state validities to
P-state validities

For assertions g1, go and ¥,
P EF [Jx
P IFxANq1 — q2

P E [(q1 — gq2)

Rule 1-con: Conjunction

For assertions g1 and ¢o,
P E[q

P F [go

P E [(q1 N g2)

6-33

Strategy 2: Incremental proof (Con’t)

Example: Program MUX-SEM

(mutual exclusion by semaphores)

local y: integer where y = 1

¢o: loop forever do mg: loop forever do |
[/1 : noncritical | [mq: noncritical |
Py :: ¢> . request y | P> :: mo: request y
¢3 : critical m3. critical
| /4 releasey | my4: releasey

Prove mutual exclusion

Dj(at_€3 A at_m3)1
q

6-34

Program MUX-SEM (Con’t)

3 steps: [J(y > 0)
P1

((at—t3 4+ at_mza+y=1)
©2

Dj(at_£3 A at_m3)1
P

where F = 0, T = 1.

Let 7ry: TN {ly, ..., 04}

T™Tm: wNO{mg,...,mg}

By control invariants (CONFLICT, SOMEWHERE and
PARALLEL)

7l = |mm| = 1

6-35

Program MUX-SEM (Con’t)

Step 1: [J(y > 0)

¥1

by rule B-INV

Bl. m ={lg,mpo} Ny=1 — y>0
o £1

B2. p, Ny>0 — ¢y >0

check only #5, €4, m>, may
(“y-modifiable transitions”)

6-36

Program MUX-SEM (Con’t)

2% = y—
2: move(£2,63) N y>0 Ny =y-1ANy=>0
Pr 2
— 3y >0
——
o

holds sincey >0 — y—1 >0

la: move(ly,Ly) A y = y+1 ANy>0— y' >0

< — - < _—
Pr "2 gp/

holds sincey > 0 — y+1 > 0.

Similarly for mo, mag.

6-37

Program MUX-SEM (Con’t)

Step 2:

(at {34+ at_mzs+y=1)
>

by rule B-INV

Bl.zTZ{fo,mo} N y=1/ —

o
t_/¢ t_ =1
a O3,4 + a ?3,@ + \?

A\ . g

¥2

6-38

Program MUX-SEM (Con’t)

B2. p, A w2 — ¥5

Pog N O+at-m3gs+y=1 —
O+ at-m34+y=1

pey N O+ at-m3zs+y=1 —
O+ at-m3zas+y=1

Poy N O+at-m3gs+y=1 —
1+ at_m3,4 -+ (y—l) =1

Pog N l1+at-m3a+y=1 —
l1+atl-m3a+y=1

Pe, N l+at-m3zag+y=1 —

O +otmzat @t =1
Cl,t/_£34

at’ m3 4 y

6-39

Program MUX-SEM (Con’t)

Step 3: Show P I=D:u(at_€3 A at_mg)j
q

e By I-CON

PEe1, PEp2

PE[(p1 A 92)
e By MON-I

PEO(p1 A ¢2)

P _ _ —
Fy >0 A flt 63,4 + at VM3,4 + v 1/
1 ©2

— j(at_€3 A at_m32
q

PFD:'(at_£3 A at_m32
q

6-40

