CS256/Spring 2008 — Lecture #8 Finding Inductive Assertions
Top-Down Approach

Zohar Manna

Assertion propagation

we have previously proven [] x
and we want to prove [] ¢
but

{x A p}r{e}

is not state-valid for some 7 € 7.

What is the problem?
(assuming that ¢ is indeed an invariant)

8-1 8-2

Top-Down Approach (Con’d) Precondition of ¢ w.r.t. 7

pre(r,) : YV pr — ¢/

P-accessible e |

a state s satisfies pre(r,)
iff
all T-successors of s satisfy .

Solution: Take the largest set of states that will result Note:
s trivially satisfies pre(r,) if it does not have any 7-

in a y-state when 7 is taken. How? : ’ :
successors (i.e., T is not enabled in s).

8-3 8-4

Precondition of ¢ w.r.t. 7 (Con’d)

Example:

V i {x} integer

>0 - x—12>2

z<0Vz>3

<0V zx>3 x> 2

Properties of pre(r,) (Con’d)

Claim: If ¢ is P-invariant then so is pre(r, ¢) for every
TeT.

Proof:

Suppose p is P-invariant, but pre(r,) is not P-invariant.

Then there exists a P-accessible state s such that
s B pre(T,).

But then, by the definition of pre(r, @), there exists a
T-successor s’ of s such that s’ ¥ .

Since s is P-accessible, s is also P-accessible,
contradicting that ¢ is a P-invariant.

8-7

Properties of pre(r,)

By the definition of pre(r, ¢),

{x Ao Apre(r,0)} T {0}

is guaranteed to be state-valid.

But we have to justify adding the conjunct pre(r, ¢) to
the antecedent.
This can be done in two ways:

1. Incremental: prove (] pre(T,)
2. Strengthening: prove [J(¢ A pre(T, ©))
86

Properties of pre(r,¢) (Con’d)

Definition: A transition 7 is said to be self-disabling if for
every state s, 7 is disabled in all 7-successors of s.

Claim: For every assertion ¢ and self-disabling transition
-
{onpre(r,o)} 7 {o A pre(r,¢)}

is state-valid.

Proof:
Assume s Ep A pre(T,).

Then by definition of pre(r, ¢), for every s’
T-successor of s,
s E.

Since 7 is self-disabling, 7 is disabled in all
T-successors s’ of s, and so trivially
s' Epre(T,)

Thus for all T-successors s’ of s,
s'E@ A pre(T, @).

8-8

Heuristic Example:

o o local z: integer where x =1
If the verification condition
{o : request z
{x A etr{e} £y : critical
is not state-valid: {3 : release x

Find pre(r, ¢) and then We want to prove

O (at—£1 — = = 0)

e Strengthening approach:

strengthen ¢ by adding the conjunct pre(r,)

©
prove (1(p A pre(T, ¢))
or, Problem:
e Incremental approach: {at_t; — z =0} Tt {at_t; — 2 =0}
prove [] pre(T,) is not state-valid.

and add pre(r, @) to x.

If we use the above heuristic we get

Note: b pre(rey,) =
pre(T,) 15‘ not g‘udrcmtee to be an Inc ugtlve‘ Invariant, va!, 7. (move(fo, 1) Az > 0 A = — 1)
so the premises of INV have to be checked again. Py
0
— (at’_ 41 — 2’ =0)
o'
8-9 8-10

Example (Con’d):

pre(ryy, @) = Substituted form of pre(r,)
va!, 7' (move(£g, 1) ANx >0ANz =z —1)
Ply Many transition relations have the form
— (at" 41y — 2’ =0) p.: Co ANV =FE
¢ where C, is the enabled condition of 7.
Since
) And so
2o, 2 t_log=T,at_€1 =T _ .,
mowve(0 1) —a 0 a 1 pre(T,) VV’.CT AVI=FE — <p'
d=z-1Ad=0 - 2z=1 can be simplified to

YV'.C, — ¢[E/V]
it simplifies to replacing all primed variables by its

pre(TgO, w): at_bghx>0 —> z=1 corresponding expression,
thus the quantifier can be eliminated to obtain

Strengthened assertion S
\pre(ﬂ ¢): C, — @[E/V]\

o A pre(Ty,)t (at—£y — = 0) A (at_€g — z = 1)

what we “guessed” before

Show that ¢ A pre(7y,,) is inductive
(“strengthening approach™)

Example: Program mux-petl(Fig. 2.25)

(Peterson’s Algorithm for mutual exclusion) Example: Program mux-petl (Fig. 2.25) (Con’d)

We want to prove mutual exclusion:

local yi,y>: boolean wherey; =F,yo =F O-(at_£y N at_mg)
s . integer wheres=1 W

lo : loop forever do Bottom-up invariants:

¢1 : noncritical
©Yo. S= 1V s=2
P €2 : (ylu S) = (T7 1) ‘¢ 0
: : — at_
! 03 await (—yo) V (s % 1) oo t 3.5
£4 . critical $2: Y2 < al-m3.5
b5 y1:=F
‘ ‘)) Problem: the verification conditions
 loon f 4 {vo A w1 A w2 A b} L3 {3}
mo - foop forever _:_ : _ {wo N w1 A w2 A} m3 {9}
m1 : noncritica
_ _ are not state-valid
mo: (y2, 8) == (T, 2)
P>

m3: await (-y1) V (s #2)

mg . critical

ms: Yo .= F
8-13 8-14

Example: Program mux-petl (Fig. 2.25) (Con’d)

pre(Tey,)i V't move(£3,£a) A (Dy2 V s#E1) — Example: Program mux-petl (Fig. 2.25) (Con’d)
Pis
—(at’_ty N at’_my) Proof tree:

O —(at—4 A at_mg)

w/
since

move(£3,£4) implies at’ 4 = T, at’_mg = at _my
pre(7y,,) simplifies to:
at_€3z AN (myo V s# 1) — —at_mgy

nit o £ 52 - 54 65 mo m1 mg -m4 m5

‘ p3: at_l3 N at_mg — yo A s=1

T T T
not not
. state- state-
pre(Tmg,) Vol stat :
valid valid
simplifies to: WPC | | WPC
|paiat_ls A at_mz — y1 A s=2] O pre(7eg,) O pre(tms, ¢)

U I

are inductive relative to g A 1 A o

N

T = state-valid (relative to the bottom-up invariants)

(“incremental approach™)

Then show that) is inductive relative to

8-15 8-16
Yo N ... \Npg.

Example: pre may never terminate

The transition is

priad=x4+y Ay =y

The property is

p: x>0
The VC is
r_ r_ > I
x z+y ANy y AN >0 — x_/O
pr 14 14

which is not state valid.

Step 1: The precondition is

pre(t,x > 0) : Va',y/: 2’ = az+yny =y — 2/ >0

that is y > —=x.

Attempting to prove [] pre(r,) state valid, the VC

/ / / /
=z+y A =y A > - — > —
T Ty Y Y Yy > —x Yy 2> —x

pr pre pre’

is not state-valid.
8-17

Finite-State Algorithmic Verification

finite-state program P

each € V assumes only finitely many
values in all P-computations

Therefore,
there are only finitely many distinct
P-accessible states.

Example:
MUX-PET1 (Fig 2.25) is finite-state program:

s = 1,2
y1 = T,F y2 = T,F

7 can assume at most 36 different values

Step 2: Compute pre(r, y > —x)

vyt i =ty Ay =y — Yy >-—a
pr pre’

at i _Z
that sy > —5.

In general the precondition

pre(T,yZ—E)i Yy > — °
n n—+1

Taking the limit as n approaches infinity, we obtain

y>0

which is what we want.

8-18

Example: Program mux-petl (Fig. 2.25)
(Peterson’s Algorithm for mutual exclusion)

local yi,y>: boolean where y; =F,yp =F
S . integer wheres=1

Lo : loop forever do

£1 : noncritical
P by (y1,8) = (1, 1)
L l3: await (-yo) V (s # 1)
l4 : critical
| {5 y1:=F |
mg : loop forever do
[m1: noncritical |
ma: (y2, s) = (1T, 2)
Py

m3z . await (—y1) V (s # 2)

mgq . critical

ms . Yp = F
8-20

Algorithm (transition-graph)

For a given finite-state program P
Incrementally construct the
state-transition graph G p, where each node

represents a state.

e Initially

Place as nodes in G p all initial states

(satisty O)

e Repeat until no new nodes or

new edges can be added to Gp

For some s € Gp, let s1,..., s be its succes-
SOT'S
Add to Gp all new nodes in {s1,...,s;}
and draw edges connecting s to s;,
i=1,... .k
821

Program MUX-SEM (Fig. 2.26)

(mutual exclusion by semaphores)

local y: integer where y = 1

£go: loop forever do

£1 : noncritical m1: noncritical
£ : request y || Po:: mo: request y
¢3 : critical m3: critical

Ly : release y my: release y

mgq: loop forever do

Algorithmic Verification of Invariance

For assertion ¢,
To check validity of [] ¢ over finite-state program P:

1. Construct the state-transition graph Gp.

2. Check if ¢ holds in each state of the graph.
Example: Program MUX-SEM (Fig 2.26)
Generates finite state-transition graph (Fig 2.27)

Check assertion
p: —(at_€3 N at_m3)
in the graph.

 holds over all accessible states.
Thus, [J ¢ for MUX-SEM.

8-22

Program MUX-SEM state-transition graph (Fig. 2.27)

~ .m0}, 1)

Example: Program MUX-PET1 (Fig 2.25)

State-transition graph G p (Fig 2.28)

Example: Program mux-petl(Fig. 2.25)
(Peterson’s Algorithm for mutual exclusion)

(4,7,v) means m:{€;,m;}, siv local yi,y>: boolean wherey; =F,yp =F
N . s . integer wheres=1
0 Y1, Yo since
yp=1 if 3<i<5 {o : loop forever do
yp=1 if 3<;<5 [41 : noncritical |
62 : (y17 S) = (T7 1)
) ., Py
Property checked 1 t3: await (-yo) V (s £ 1)
O —(at_ls N at_mgy) £4 . critical
¥ |5 y1:=F _
mg : loop forever do
[mq : noncritical]
b ma: (y2, s) = (T, 2)
2 ms: await (—y1) V (s # 2)
ma critical
ms : Yo = F |
8-25 8-26
MUX-PET1 State-transition graph (Fig 2.28)
=) ' Compl f rul
(7 omp eteness of rule INV
(0,0,2)+[0,1,2)+(0,2,;)\—_,£ ,2) »(0,4,2)»(0,5,2) - -
i)) - | | Rule INV (general invariance)
(1,0,2) + (1,1,2) »(1,2,2) F(1,3,2) +(1,4,2) (1,5, 2)
4 ' ' g J’ ' For assertions ¢, q
(2,0,2) (2,1,2) = (2,2,2) (2,3,2) +(2,4,2) » (2,5,2) BE 5S¢4
| | e
L L \) I1. IFp — g
p 2. FO — ¢
(‘*\ *I 1 3. E{p} T {v}
(0,0,1) (0, 1,1) »(0,2,1)
' b FOg
(1,0,1)+ (1,1,1) »(1,2,1)
} }
(Q,i, D (2.1,1)+ (2,2, 1) Theorem (Relative completeness of rule INV)
e, I
(*t +{ (3,3,1) -,(3,}1, 1)+ (3,5,1) For every assertion g such that
Y ‘
- (3,3,1)1-[3,1,1)-»(3,;,1) (3,?i,2) [is P-valid
(4,0,1)+ (4,1,1) + (4,2,1) (4,3,2) there exists an assertion ¢ such that 11 — I3
(i D (} Do (i 1 (i 2 J are provable from state validities
5,0,1)» (5,1,1)» (5,2, 5,3,
| |)' -27 8-28
—

We actually show 1. acc, satisfies I1 — 13

“completeness relative to

first-order reasoning” .
g e Premise [1: accp, — ¢
~——

taking all state-valid assertions as axioms

©
Outline of proof s |F accp (:*>) s is P-accessible state
Given FTS P with system variables (program + control (T:) slEgq
variables
) Thus
-~ accp — q
= (Y1, ym) =
is state-valid
e Assume []q is P-valid, i.e.,
(1) q holds over every P-accessible state e Premise [2: © — accp
N
©

e Construct (to be shown) accessibility assertion

accp(y)
such that for any state s,
(*) s is P-accessible state iff s IE accp

slE O = s ls P-accessible

~

*
= sk accp
N

~—

©
o Take ¢ = accp Thus
O — accp
~——
We have to show : @
1. accp satisfies [1 — 13 is state-valid
2. accp can be “constructed” 8-29
e Premise [3: forevery 7 € T, 2. Construction of accp
/
pr N\ accp — accy,
where acc;) = accp(¥). Assume assertion language includes

. . dynamic array a over D
Take s’ to be a g-variant of s (s agrees with s’ on all Y va

variables other than) and for each y; take
s'[yi] = sly]] o _
Array a is viewed as function,
a: [1.n] — D
Then
sl p. = s isa7-successor of s

()

s |E accp, = sis P-accessible

where n is the size of the array

..) The assumption is not essential
= ¢ is P-accessible

) / We can use Godel numbering

= s IF accp . k

= s |k acc (k1,...,kn) n=pi"- - ppn
P

where p; is the 4th prime number
Example:

T: {7, 7}, where priy =y +2
For this program: accp(y): y > 0 A even(y)

8-31

Case: single-variable y array a represents a prefix

X S815.-+58n
Define
acep(y): (3n>0) (Ga € [L.n] o D). of a computation where a[i] stands for
init A last N evolve the value of y at state s;
where
Claim:

init: O(a[l])
last: a[n] = y

evolve: Vi.1<i<mn.\/ pr(ali,ali+1])
TeT iff

d is a possible value of y in a P-accessible state

For any value d € D,

accp(d) =T

i.e., there exists an array a, such that
e a[l] is an initial state accp(d) asserts the existence of a computation prefix
e a[n] has value y (last element) that leads to a state where y = d.

e cvery two consecutive elements are
related by some transition relation

8-33 8-34
Example: Transition system EVEN
V: {y} ranges over 7 (the integers) Discussion
O:ry=0 Although the assertion accp is inductive and strengthens
piy =y+2 any P-invariant, it is not very useful in practice.
accp(y):

(3n > 0)(Fa € [1.n] — 7).

(a[1]=0 Aaln]l=yA)
Vi.l<i<n.ali+ 1] =ali]+2

simplifies to
(3n > 0)(Fa € [1.n] — 7).
(a[n] =y A)
Vi.l<i<n.ali]=2-(i—1)

simplifies to

‘y >0 A even(y)‘

The shaded area is preserved by all transitions. Its

Precisely characterizes the values that y may :
description is much simpler than that of accp.

assume In P-accessible states of EVEN

Multivariable ¥ = (y1,...,Yym) case

Use 2-dimensional array a

u Ym
a[l,1] al[l,m]
al2,1] a[2,m]

8-37

(3n > 0)(Fa € [1..n] x [1,2] = N).

a[l,1]1=1 A a[1,2] =1 A
aln,11 =y A a[n,2] =z

A
Vii 1<i<ni ali+1,1] =afi,1]+1 A
ali +1,2] = (ali, 1] 4+ 1) - a4, 2]

simplifies to

(3n > 0)(Fa € [1.n] x [1,2] = N).

aln,1] =y A a[n,2] =z
VAN
Vii 1<i<n: ali,1]=i A afi,2] =i

simplifies to

y>1 /\z:y!‘

Precisely characterizes the P-accessible states
for the transition system FACT

Example: Transition system FACT

y,z ranging over N (the nonnegative integers)
O:.y=1A2=1
iy =y+1AZd=@W+1) =

Construction of acc:
(In>0)(Fa€[l.n] x[1,2] = N).

a[l,1] =1 A a[1,2] =1A
aln,1] =y A a[n,2] ==
A
Vii 1<i<n ali+1,1] =ali,1]+1 A
alt +1,2] = (alz,1] 4+ 1) - alz, 2]

8-38

