CS256/Spring 2008 — Lecture #09
Zohar Manna

Chapter 2

Invariance: Applications

9-1

Mutual exclusion:

P3: O(—=(at—l3 N at—_m3z) N —(at_€3 A at k3) A

=(at_m3z A at_k3))
P4 O A A =)

P™: 7

We want to deal with these programs,
i.e., programs with an arbitrary number of

identical components, in a more uniform way.

Solution: parametrization

9-3

Parameterized Programs

[40: loop forever do |
£1: noncritical

S - l>: request y

¢3: critical

L4 release y

P3:: [local y : integer where y = 1; [S]|S]||S] ]
(with some renaming of labels of the S’s.)

P%:: [local y : integer where y = 1; [S]]5]|S]||S]]

9-2

Syntax
Compound statements of variable size

S - DS [1S[M] ]

. M
cooperation: I

J=1
M

Selection: Ol} Sl - [S[1] or ... or S[M]]
]:

S[7] is a parameterized statement.

In what ways can j appear in S7

e explicit variable in expression

=54

e explicit subscript in array x
=zfl 4+ ... or z[f]i=...

e implicit subscript of all local variables in S[7]
z stands for z[7]

e implicit subscript of all labels in S[7]

£3 stands for £3[5] o



Program PAR-SUM-E (Fig. 2.2)

(Explicit subscripted parameterized statements

Example: Program PAR-SUM (Fig. 2.1) of PAR-SUM)
(parallel sum of squares) M>1
in M: integer where M > 1 in M: integer where M > 1
z : array [1..M] of integer z : array [1..M] of integer
out z : integer where z =0 out z :integer where z =0
local y: integer local y[j]: integer
M . M . I
j=1 bi: z:=24+y-y Jj=1 Gli]: 2 =2 +yl5]-yli]

& |t217) ]

We write the short version,

‘z = x[1]2+90[2]2+---+$[M]2‘

but we reason about this one.

95 9-6
Parameterized transition systems Array Operations

The number M of processes is not fixed, Arrays (explicit or implicit) are treated as

so there is an unbounded number of transitions. variables that range over functions:

To finitely represent these, we use [1...M] — integers

parameterization of transition relations.

Example: PAR-SUM . . . " .
P Representation of array operations in transition relations:

The unbounded number of transitions associated
with £g are represented by a single transition
relation using parameter j: e Retrieval: y[k]
to retrieve the value of the kth element of
peolil: move(€olil, €151 A

y'li] = z[5] A
pres({z, z})
where 7 = 1... M. o Modification: update(y, k, e)

array y

the resulting array agrees with y on all 1,
1 £~ k,and y[k] = e

9-7 9-8



Properties of update
update(y, k,e)[k] = e
update(y, k, e) [j] = ylj] for j # k

Example: PAR-SUM

The proper representation of the transition
relation for £g[j] is

polsl:  move(Lo[5], £1[5]) A
y' = update(y, j, z[j]) A
pres({z, 2})

9-9

Parameterized Programs: Specification
(Con’d)

Example: Program MPX-SEM (Fig 2.3) M > 2
(multiple mutual exclusion by semaphores)
where

. . (41 ifj<M
j@Ml—(jmodM)—l—l—{l it = M

Elaboration for M = 2:
Program MpX-SEM-2 (Fig 2.4)

mutual exclusion:

Vi, j € [1.M].i # j.—~(at_t3]i] A at_t3[5])
W

abbreviated as

i.e., the number of processes simultaneously residing at
£3 is always less than or equal to 1.

Note: —(at_£3[i] A at_£€3[j]) can be expressed as
at_£3[i] + at_t3[j] < 1. -

Parameterized Programs: Specification

The set of indices of processes that currently
reside at ¢;

o N; = |L

The number of processes currently residing
at 67,

Example: L; = {3,5} means ¢;[3],4;[5] €«

and we have N; = 2

[nvariant:
O(N; > 0)

Abbreviations:
Li1,i2,...,i;€ = L’il @) L,L'2 u ... u Lik
Li..j = L, U L’H—l ... U Lj
Ni17i2a"'7ik; = |Li177;27“'aik|
N;_ = |L;

9-10

Program MPx-SEM (Fig. 2.3)

in M: integer where M > 2
local y : array [1..M] of integer

where y[1] =1, y[j]=0for2<j< M

[4y: loop forever do
M ¢1: noncritical
1| Pl = > request y[j]
J=1 {3: critical

{4: release y[j O 1]



Program MPX-SEM-2 (Fig. 2.4)

local y: array [1..2] of integer where y[1] =1, y[2] =0

[4o[1]: loop forever do

¢1[1]: noncritical
P[] = {2[1]: request y[1]
£3[1]: critical

24[1]: release y[2]

[40[2]: loop forever do

£1[2]: noncritical
P[2] = /2[2]: request y[2]
£3[2]: critical

|_€4[2]: release y[1]

9-13

Example: Program MPX-SEM (Con't)

Then ¢ can be deducted by monotonicity:

<
w1 N pp — N3<1

©
since

M

N3 < Nzg = 1-3% y[j] < 1
Jj=1

©2 01

e Proof of (1(V7.y[j] > 0)
o1

B1:
A Y[l =1 A (V5.2< 5 < M.y[j] =0)
e}
— . | >
vy yEI]_O

Note: Vj.y[5] > 0 stands for V5.4 < 7 < M .y[j] > 0O

9-15

Parameterized Programs: Verification

Objective: prove {p}7[i]{p} in a uniform way
for all 4+ € [1..M]

Example: Program MpX-SEM (Fig 2.3) M > 2

Prove mutual exclusion:

D(Ns(pé 1)

The assertion ¢ is not inductive, therefore we prove the
invariance of

v1: Vj.yli]l > 0O

M
©2: <N3,4+ > y[i])= 1

=1

where N3 4 = Number of processes currently residing
at £3 or at £4

9-14

Example: Program MPX-SEM (Con't)

B2:
The only transitions that interfere
with @1 are 14, [i] and 7y, [i].

pe,li): move(La[i], £3[i]) A yli] >0 A
y' = update(y,i,yli]—1)
pe,lil: move(£q[i], £o[i]) A
y' = update(y,i Dy 1, y[i D 1]+1)

pe, 7] implies

yli]l >0 AyY'[i]l =ylil =1 A V5.5 % i.y'[5] = ylj]

Pe, [7] implies
Yioyll=yli®y1]+1 A
Vi(G # i@ 1) y'li] = yli]

We therefore have

¥iyli) > 0 A{ o } NI EL

9-16
P1 o)



M
e Proof of (] (N34 + (Z y[]]) =1)
j=1

P2

B1:
<w={fzo[1],...,eo[M]}A )
y[1] =1 A (Vj.2< 5 < M .y[j] =0)
G}

M
— N3g+ (Z y[J']) =1
j=1

¥2

B2: Verification conditions:

pe, (4] implies:
N34 =N3at1

(f:l y’[@']) = (iﬂ[ﬂ) -1

9-17

Parameterized Programs: Examples
Example: READERS-WRITERS (Fig 2.11)
(readers-writers with generalized semaphores)
where
request (y,c) = (awaity >c¢; y =y —c¢)
release (y,c) = (y:=y+c)

OVi,j € [1.M].i7# j.at_€g[i] — —(at_Lglj] V at_£3[5])
(4

e 71 and o are inductive

p1: y =20
w2 N3a+M-Ne7+y =M

e Therefore
Ng7>0 — (Neg7=1 A N34=0)
P1, P2
Thus,
O

9-19

pe, 7] implies:
N34 =Nza—1

(% y’[z‘]) = (im) +1

j=1
Therefore
Naa+ (3 ol —M{%[i]}
#»O\a™ " AU
&2
M
— Nsga+ (Z y'[l’]) =1
j=1

@5

9-18

Program READ-WRITE(Fig. 2.11)

in M: integer where M > 1
local y : integer where y = M

[4y: loop forever do
[¢1: noncritical

f9: request (y, 1)]
R: |f3: read

\ﬁ;: release (y,1) J

or

f5: request (y,M)]
W |fg: write

{37: release (y, M)




Example: The Dining Philosophers Problem Dining philosophers setup (Fig. 2.14)
(multiple resource allocation)
Fig 2.14

M philosophers are seated at a round table

Each philosopher alternates between a

“thinking” phase and “eating” phase

M chopsticks, one between every two
philosophers

A philosopher needs 2 chopsticks
(left & right) to eat

9-21 9-22

Program DINE (Fig. 2.15)
(A simple solution to the dining
philosophers problem)

Philosopher P; - process P[i] Program DINE (Fig. 2.15)
“thinking” phase - noncritical
“eating” phase - critical

For philosopher 7, in M: integer where M > 2

local ¢ : array [1..M] of integer where ¢ =1
e c[j] represents availability of left chopstick
(c[g] = 1 iff chopstick is available) [£o: loop forever do
[¢1: noncritical
M {3: request c[j]
|| P[] = f3: request c[j @ 1]
j=1 {4: critical

e c[i Dy 1] right chopstick

{5: release c[j]

fg: release c[j @y 1] |

O I O I O

Pj_1 c[s] i cli®m 1] Pigy,
9-23 9-24



Specification: Chopstick Exclusion

V5 € [1..M] . =(al—La[j] N at_La[j ©pr1])
P

Mutual exclusion between every two adjacent philoso-

phers

Proof:
e g and @1 are inductive

vo: Vje[1..M].c[j] > 0

p1: Vj€[1.M].at_ly gl5] +
at_£3 s[j & 1] +
cieml] =1
e Then,

at L4[5] + at _L4]j ®pr 1]
< al—Lg.6[j] + at—L3.5[7 Dpr 1]

=1l-cljopul] <1
¥1 %0

Chopstick Exclusion OK 9-25

Solution: One Philosopher Excluded
(keeping the symmetry)

e Two-room philosophers’ world (Fig 2.18)

Philosophers are “thinking” at the library
“eating” at the dining hall

When a philosopher finishes “eating”
he returns to the library to “think”
e Program DINE-EXCL (Fig 2.17)

Additional semaphore variable r
“door keeper” (initally r = M—1)

No more than M —1 philosophers are
admitted to the dining hall at the same time.

9-27

Problem: possible deadlock (“starvation”)

P[1] #5: request c[1]; ¢3: request c[2]
- T

P[M] ¥£5: request c[M]; {¢3: request c[1]
T

O I O I ©O

c[M] Py c[1] P c[2] P>

9-26

Two-room philosopher’s world (Fig. 2.18)

E Library




Program DINE-EXCL (Fig. 2.17)

in M: integer where M > 2
local ¢ : array [1..M] integer where c =1
r :integer where r = M — 1

[{y: loop forever do
[¢1: noncritical
{9: request r
M {3: request c[j]

|| P[j] = £y: request c[j Dy 1]
=1 {5: critical
lg: release c[j]
£7: release c[j @y 1]

| /g release r

9-29

Chapter 3

Precedence

9-31

Properties of DINE-EXCL:

e chopstick exclusion

A safety property (in text)

o starvation-free
progress (next book)

e accessibility £2[5] = <> €5[5]
progress (next hook)

9-30
Proving Precedence Properties
nested waiting-for formulas
are of the form
p = agnW (@m-1 - (@@ Wao)...)
also written
P = amWam-1 - oW ao]
for assertions p, qo,q1, - - - Gm.
Models that satisfy these formulas
dm dm—1 q1
interval interval e oo interval
[ ) | ) e
p q0
T 7
p-position qo-position

9-32



q;-interval

4q; q; T q;

e May be empty

eg. p = WapWaqaWaq

q3 q3 q3 q1 q1

p q0
e May extend to infinity
q3 q3 q3 q2 q2 q2
p
Note: The following is OK

q90

p

Intermediate Assertion ¢
Wl.p—epVvr “ weakens p A —r”

e, pA—-r —

W2. ¢ —¢q “p strengthens ¢”

9-35

Simple Precedence: p = g W r
%)

p T

can be reduced to first-order VCs by
verification rule WAIT:

Rule wait (general waiting-for)
For assertions p, q, 7, ¢

WL p — ¢oVr
W2, ¢ — ¢
W3, {e}T{pVvr}

p = qWr

Recall: To show P I {p} T {¢ V r},
we have to show that for every 7 € T

pr N — @ v

is P-state valid.

9-34

Example: Program mux-petl (Fig. 3.4)

We proved mutual exclusion

P1: O-(at—Ly N at_my)
Using invariants
x0: s=1Vs=2
X1: Y1 < atA3.5
X2 Y2 ¢ at-m3z s
x3: at—€3 N at—_mg — yo A s=1

x4: at_€y N at—_m3z — y1 A s=2




Example: Program mux-petl (Fig. 3.4)
(Peterson’s Algorithm for mutual exclusion)

local yi,y>: boolean where y; = F,yo =F
s . integer wheres =1

£o : loop forever do

¢1 : mnoncritical
P, - €2 . (ylu S) = (T7 1)
L t3: await (—yo) V (s % 1)
L4 . critical
L ls: y1:=F i
mg : loop forever do
[m1: noncritical 1
P ma: (y2, 8) = (T, 2)
2 m3:  await (—y1) V (s # 2)
mg . critical
ms: Y2 i=F |
9-37
W1:
at_€3 N at_mg o —
P
at_€3 N (at_mg.o V ---) V o
% 7
W2:
PVAN _ _ e — _
(at—mg. o V (at—_m3z A ---)) — =—at_mg
@ q
W3:
pr A\ at_€3 N (at_mg o V (at_m3z A s =2)) —
)

at’ 3 A (at’_m0._2 vV (at"_mz A s’ = 2)) Vv at’ Ly
——

/ /

© T

Check:

63, mo: OK

m3: disabled (with the help of the invariant
at_€3 g <> y1, we have y; = T).

9-39

We want to prove simple precedence

: t_l3 N at_ = —at_ W at_¢
o1 at_{l3 pa mo..2 aqm4 ar4

We try to find an assertion ¢ such that
W1 — W3 of rule WAIT hold

Let

p: at_lz A (at_mg oV (at_m3z A s = 2)) ‘

9-38

Proving precedence properties:

Systematic derivation of intermediate assertions

Recall:

Rule WAIT (general waiting-for)
For assertions p, q, 7, ¢

WL p — ¢oVr
W2, ¢ — ¢
W3, {e}T{pVr}

p = qWr

How to find 7



Escape Transition

Transition that leads to r-state.

9-41

Example: Postcondition

V = {z,y},

pr o =x+yAy ==z,
bP:x=y

Then post (T, ®) is given by

Elmo,yo:xOZyOAmZxO—Fyo/\y:xo,

P(VO) pr(VO,V)

which can be simplified to

V.zx=y+uy.

9-43

Forward propagation

Weaken p A =r until it becomes an assertion preserved
under all nonescape transitions.

Based on postcondition:

W (V) = post(r,p): IVO.o(VO) A pr(VO, V)

post (T, ) characterizes all states that are
T-successors of a p-state.

Forward Propagation: Algorithm

@, - characterizes all states that can be
reached from a (p A —r)-state without taking an escape
transition.

1. g = pA—T
2. Repeat
D41 = Pp, V post(t, Py,)
for any non-escape transition 7
Until
post(T,P;) — P¢ [may use invariants|
for all non-escape transitions

If this terminates (it may not), @; is a good assertion to
be used in rule WAIT.
Satisifies W1, W3, but check W2.



Backward propagation

Strengthen g until it becomes an assertion
preserved under all nonescape transitions.

Based on precondition:

pre(r,): YV . pr(V, V') — o(V)

pre(T, @) characterizes all states all of whose
T-successors satisfy .

pre(T, )

Backward Propagation: Algorithm

r - characterizes all states that can reach

a g-state without taking an escape transition

Iy 1 = Iy A pre(r, I,)
for any non-escape transition 7
Until
I’y — pre(r,I'y) [may use invariants
for all non-escape transitions 7

If this terminates (it may not), I" ¢ 1s a good assertion to
be used in rule WAIT.
Satisfies W2, W3, but check W1.

9-47

Example: Precondition

For Peterson’s Algorithm, consider
Ip: —atm
N

and calculate pre(ms, Ig):

vV atmsa A (my1 V 2)Aatma’ A — —atmy’ .
atmzg A (my1 Vs 7 2) Aalmg — Datmyg
pmz(V,V") Io(V")

P-equivalent to

at-mz — (y1 A s = 2).

9-46
Backward vs. Forward
Iy
Dy
q
If p=q W ris P-valid
b — I’ ¥
is P-state valid.
9-48



Example: Program mux-petl (Fig. 3.4)
(Peterson’s Algorithm for mutual exclusion)

local yi,y>: boolean where y; = F,yo =F
s . integer wheres =1

£o : loop forever do

¢1 : noncritical
P, - €2 . (ylu S) = (T7 1)
L t3: await (—yo) V (s % 1)
L4 . critical
L ls: y1:=F i
mg : loop forever do
[m1: noncritical 1
ma:  (y2, s) = (T, 2)
P>

m3: await (-y1) V (s #2)

mg . critical

ms: Yo .= F
9-49

Example: Forward Propagation (cont.)

1.€.,

‘at,£3 A (atomg o V (atmz As = 2))‘

@1 is preserved under all transitions except the escape
transition £3, so the process converges.

Example: Forward Propagation

tls N at = —at_ tl
at 43 ngHQ aqm4WaT4

Start with

Do atlz Aatmg.o.
P
and calculate post(ms, ®@g):
3(7%,49,19,5%) : (att3)° A (at-mg.2)° A
%Y @O(VO)

(at:m2)O A atms A ((atl3)0 — atlz) As =2 A---

pWLQ(VOvV)
P-equivalent to
U1 atlz NatmgzAs =2,
using the invariant @1 @ yq1 < atl3 5.
Thus,

®q: atlz ANatmg o V atlz ANatmzAs=2,
P9 151

9-50

Example: Backward Propagation

Start with
Iy ﬁat(;m4 .
We calculated pre(ms, I'y) above, which is P-equivalent
to
Ay oatmz — (y1 As=2).
Thus,

17 : —at x =2).
1 at-mag N atmz — (y1 As = 2)
Io Ay

Consider transition Tp,, and calculate pre(mo, I7):

YV atmo Aatms' Ay =yrAs =2 A
pm2
— —atmg’ A (atmz’ — (Y As =2)).
Iy

P-equivalent to

Aot atmp — yq.



Example: Backward Propagation (Cont’d)

Thus,
Is: —atmg A (atmz — s = 2) A (at,m2,3 — y1).

Considering transitions Tm, Tmg, and Tmg leads to the
following sequence:

I's: —atma A (atmz — s =2) A (atmq 3 — y1)
Iy —atmg A (atmz — s = 2) A (atomg. 3 — Y1)

I's : —atmg A (at-mz — s = 2) A (atmg. 35 — Y1)
By the control invariant at-mgq_s5, I'5 can be simplified
to

I's: —atmg N (atomz — s =2) A y1.

Example: Backward Propagation (Cont’d)

Calculating pre(¢s, I's),

YV atds Ayp =F A —
Pl
—atmg’ A (atmz’ — s’ =2) Ayf,

/
F5

gives
Ag . atls — F.
Propagating I's A Ag via 7y, gives
A7 atly — F.

Hence,

I'7 . —atmg A (atmz — s =2) A at,ég,,‘

using the invariant ¢q : y1 < atf3 g for simplifica-
tions. The assertion is preserved under all but the escape
transitions, ending the process.

9-54



