Chapter 2
Invariance: Applications
$S::\left[\begin{array}{c}\left.\ell_{0}: \begin{array}{l}\text { loop forever do } \\ {\left[\begin{array}{l}\ell_{1}: \text { noncritical } \\ \ell_{2}: \text { request } y \\ \ell_{3}: \text { critical } \\ \ell_{4}: \text { release } y\end{array}\right]}\end{array}\right]\end{array}\right]$
P^{3} : : [local y : integer where $y=1$; $[S||S|| S]$] (with some renaming of labels of the S 's.)
P^{4} : : [local y : integer where $\left.y=1 ;[S| | S| | S| | S]\right]$

$P^{n}:$?

Mutual exclusion:
$P^{3}: \square\left(\neg\left(a t_{-} \ell_{3} \wedge a t_{-} m_{3}\right) \wedge \neg\left(a t_{-} \ell_{3} \wedge a t_{-} k_{3}\right) \wedge\right.$ $\left.\neg\left(a t_{-} m_{3} \wedge a t_{-} k_{3}\right)\right)$
$P^{4}: \square(\neg(\ldots) \wedge \ldots \wedge \neg(\ldots))$
$P^{n}: ?$

We want to deal with these programs, i.e., programs with an arbitrary number of identical components, in a more uniform way.

Solution: parametrization

Syntax
Compound statements of variable size
cooperation: $\underset{j=1}{M} S[j]:[S[1]\|\ldots\| S[M]]$
Selection: $\quad \underset{j=1}{\mathrm{OR}} S[j]: \quad[S[1]$ or \ldots or $S[M]$]
$S[j]$ is a parameterized statement.
In what ways can j appear in S ?

- explicit variable in expression

$$
\ldots:=j+\ldots
$$

- explicit subscript in array x

$$
\ldots:=x[j]+\ldots \quad \text { or } \quad x[j]:=\ldots
$$

- implicit subscript of all local variables in $S[j]$
z stands for $z[j]$
- implicit subscript of all labels in $S[j]$
ℓ_{3} stands for $\ell_{3}[j]$

Example: Program PAR-SUM (Fig. 2.1)
(parallel sum of squares)
$M \geq 1$

$$
\begin{array}{ll}
\text { in } \quad & M \text { : integer where } M \geq 1 \\
& x: \text { array }[1 . . M] \text { of integer } \\
\text { out } z & : \text { integer where } z=0
\end{array}
$$

$$
\|_{j=1}^{M} P[j]::\left[\begin{array}{l}
\text { local } y: \text { integer } \\
\ell_{0}: y:=x[j] \\
\ell_{1}: z:=z+y \cdot y \\
\ell_{2}:
\end{array}\right]
$$

$z=x[1]^{2}+x[2]^{2}+\ldots+x[M]^{2}$

Program PAR-SUM-E (Fig. 2.2)
(Explicit subscripted parameterized statements of PAR-SUM)

$$
\begin{array}{ll}
\text { in } \quad M: \text { integer where } M \geq 1 \\
& x: \text { array }[1 . . M] \text { of integer } \\
\text { out } z & : \text { integer where } z=0
\end{array}
$$

$$
\|_{j=1}^{M} P[j]::\left[\begin{array}{l}
\text { local } y[j]: \text { integer } \\
\ell_{0}[j]: y[j]:=x[j] \\
\ell_{1}[j]: z:=z+y[j] \cdot y[j] \\
\ell_{2}[j]:
\end{array}\right]
$$

We write the short version, but we reason about this one.

Parameterized transition systems

The number M of processes is not fixed, so there is an unbounded number of transitions. To finitely represent these, we use parameterization of transition relations.

Example: PAR-SUM
The unbounded number of transitions associated with ℓ_{0} are represented by a single transition relation using parameter j :

$$
\begin{gathered}
\rho_{\ell_{0}}[j]: \quad \operatorname{move}\left(\ell_{0}[j], \ell_{1}[j]\right) \wedge \\
y^{\prime}[j]=x[j] \wedge \\
\\
\operatorname{pres}(\{x, z\})
\end{gathered}
$$

where $j=1 \ldots M$.

Array Operations

Arrays (explicit or implicit) are treated as variables that range over functions:
$[1 \ldots M] \mapsto$ integers

Representation of array operations in transition relations:

- Retrieval: $y[k]$
to retrieve the value of the k th element of array y
- Modification: update (y, k, e)
the resulting array agrees with y on all i, $i \neq k$, and $y[k]=e$

Properties of update

$$
\begin{aligned}
& \operatorname{update}(y, k, e)[k]=e \\
& \operatorname{update}(y, k, e)[j]=y[j] \text { for } j \neq k
\end{aligned}
$$

Example: PAR-SUM

The proper representation of the transition relation for $\ell_{0}[j]$ is

$$
\begin{aligned}
\rho_{0}[j]: & \operatorname{move}\left(\ell_{0}[j], \ell_{1}[j]\right) \wedge \\
& y^{\prime}=\operatorname{update}(y, j, x[j]) \wedge \\
& \operatorname{pres}(\{x, z\})
\end{aligned}
$$

Parameterized Programs: Specification

Notation:

$$
\text { - } L_{i}=\left\{j \mid \ell_{i}[j] \in \pi\right\} \quad \subseteq\{1, \ldots, M\}
$$

The set of indices of processes that currently reside at ℓ_{i}

- $N_{i}=\left|L_{i}\right|$

The number of processes currently residing at ℓ_{i}

Example: $L_{i}=\{3,5\}$ means $\ell_{i}[3], \ell_{i}[5] \in \pi$ and we have $N_{i}=2$
Invariant:

$$
\square\left(N_{i} \geq 0\right)
$$

Abbreviations:

$$
\begin{array}{ll}
L_{i_{1}, i_{2}, \ldots, i_{k}} & =L_{i_{1}} \cup L_{i_{2}} \cup \ldots \cup L_{i_{k}} \\
L_{i . . j} & =L_{i} \cup L_{i+1} \cup \ldots \cup L_{j} \\
N_{i_{1}, i_{2}, \ldots, i_{k}} & =\left|L_{i_{1}, i_{2}, \ldots, i_{k}}\right| \\
N_{i . . j} & =\left|L_{i . . j}\right|
\end{array}
$$

Program MPX-SEM (Fig. 2.3)
in $\quad M$: integer where $M \geq 2$
local y : array $[1 . . M$] of integer
where $y[1]=1, y[j]=0$ for $2 \leq j \leq M$

$$
\|_{j=1}^{M} P[j]::\left[\begin{array}{l}
\left.\ell_{0}: \begin{array}{l}
\text { loop forever do } \\
\\
{\left[\begin{array}{ll}
\ell_{1}: \text { noncritical } \\
\ell_{2}: & \text { request } y[j] \\
\ell_{3}: & \text { critical } \\
\ell_{4}: & \text { release } y\left[j \oplus_{M}\right.
\end{array}\right]}
\end{array}\right]
\end{array}\right]
$$

abbreviated as

$$
\square\left(N_{3} \leq 1\right)
$$

i.e., the number of processes simultaneously residing at ℓ_{3} is always less than or equal to 1 .

Note: $\neg\left(a t-\ell_{3}[i] \wedge a t-\ell_{3}[j]\right)$ can be expressed as $a t-\ell_{3}[i]+a t-\ell_{3}[j] \leq 1$.

Parameterized Programs: Verification

Program MPX-SEM-2 (Fig. 2.4)
local y : array $[1 . .2]$ of integer where $y[1]=1, y[2]=0$

$$
P[1]::\left[\begin{array}{c}
\ell_{0}[1]: \text { loop forever do } \\
{\left[\begin{array}{l}
\ell_{1}[1]: \text { noncritical } \\
\ell_{2}[1]: \text { request } y[1] \\
\ell_{3}[1]: \text { critical } \\
\ell_{4}[1]: \text { release } y[2]
\end{array}\right]}
\end{array}\right]
$$

$$
P[2]::\left[\begin{array}{c}
\left.\ell_{0}[2]: \begin{array}{l}
\text { loop forever do } \\
{\left[\begin{array}{l}
\ell_{1}[2]: \text { noncritical } \\
\ell_{2}[2]: \text { request } y[2] \\
\ell_{3}[2]: \text { critical } \\
\ell_{4}[2]: \text { release } y[1]
\end{array}\right]}
\end{array}\right]
\end{array}\right]
$$

Example: Program MPX-SEM (Con't)

Then φ can be deducted by monotonicity:

$$
\varphi_{1} \wedge \varphi_{2} \rightarrow \underbrace{N_{3} \leq 1}_{\varphi}
$$

since
$N_{3} \leq N_{3,4}=1-\sum_{j=1}^{M} y[j] \leq 1$

$$
\varphi_{2}
$$

- Proof of $\square(\underbrace{\forall j \cdot y[j] \geq 0}_{\varphi_{1}})$

B1:

$\underbrace{\ldots \wedge y[1]=1 \wedge(\forall j .2 \leq j \leq M \cdot y[j]=0)}_{\Theta}$

$$
\rightarrow \underbrace{\forall j \cdot y[j] \geq 0}_{\varphi_{1}}
$$

Note: $\forall j . y[j] \geq 0$ stands for $\forall j . i \leq j \leq M . y[j] \geq 0$

Objective: prove $\{\varphi\} \tau[i]\{\varphi\}$ in a uniform way for all $i \in[1 . . M]$

Example: Program MPX-SEM (Fig 2.3) $M \geq 2$
Prove mutual exclusion:

The assertion φ is not inductive, therefore we prove the invariance of

$$
\begin{array}{ll}
\varphi_{1}: & \forall j \cdot y[j] \geq 0 \\
\varphi_{2}: & \left(N_{3,4}+\sum_{j=1}^{M} y[j]\right)=1
\end{array}
$$

where $N_{3,4}=$ Number of processes currently residing at ℓ_{3} or at ℓ_{4}

Example: Program MPX-SEM (Con't)

B2:
The only transitions that interfere with φ_{1} are $\tau_{\ell_{2}}[i]$ and $\tau_{\ell_{4}}[i]$.

$$
\begin{aligned}
& \rho_{\ell_{2}}[i]: \operatorname{move}\left(\ell_{2}[i], \ell_{3}[i]\right) \wedge y[i]>0 \wedge \\
& \quad y^{\prime}=\operatorname{update}(y, i, y[i]-1) \\
& \rho_{\ell_{4}}[i]: \operatorname{move}\left(\ell_{4}[i], \ell_{0}[i]\right) \wedge \\
& \quad y^{\prime}=\operatorname{update}\left(y, i \oplus_{M} 1, y\left[i \oplus_{M} 1\right]+1\right) \\
& \rho_{\ell_{2}}[i] \text { implies } \\
& \quad y[i]>0 \wedge y^{\prime}[i]=y[i]-1 \wedge \forall j . j \neq i \cdot y^{\prime}[j]=y[j]
\end{aligned}
$$

$$
\rho_{\ell_{4}}[i] \text { implies }
$$

$$
y^{\prime}\left[i \oplus_{M} 1\right]=y\left[i \oplus_{M} 1\right]+1 \wedge
$$

$$
\forall j\left(j \neq i \oplus_{M} 1\right) y^{\prime}[j]=y[j]
$$

We therefore have
$\underbrace{\forall j \cdot y[j] \geq 0}_{\varphi_{1}} \wedge\left\{\begin{array}{l}\rho_{\ell_{2}}[i] \\ \rho_{\ell_{4}}[i]\end{array}\right\} \rightarrow \underbrace{\forall j \cdot y^{\prime}[j] \geq 0}_{\varphi_{1}^{\prime}} \quad 9-16$

- Proof of $\square \underbrace{\left(N_{3,4}+\left(\sum_{j=1}^{M} y[j]\right)=1\right)}_{\varphi_{2}}$

B1:

$$
\begin{aligned}
& \underbrace{\binom{\pi=\left\{\ell_{0}[1], \ldots, \ell_{0}[M]\right\} \wedge}{y[1]=1 \wedge(\forall j .2 \leq j \leq M \cdot y[j]=0)}}_{\Theta} \\
& \quad \rightarrow \underbrace{N_{3,4}+\left(\sum_{j=1}^{M} y[j]\right)=1}_{\varphi_{2}}
\end{aligned}
$$

B2: Verification conditions:
$\rho_{\ell_{2}}[i]$ implies:

$$
\begin{aligned}
& N_{3,4}^{\prime}=N_{3,4}+1 \\
& \left(\sum_{j=1}^{M} y^{\prime}[i]\right)=\left(\sum_{j=1}^{M} y[i]\right)-1
\end{aligned}
$$

9-17

Parameterized Programs: Examples

Example: READERS-WRITERS (Fig 2.11)
(readers-writers with generalized semaphores)
where
request $(y, c)=\langle$ await $y \geq c ; y:=y-c\rangle$
release $(y, c)=\langle y:=y+c\rangle$

- φ_{1} and φ_{2} are inductive
$\varphi_{1}: \quad y \geq 0$
$\varphi_{2}: \quad N_{3,4}+M \cdot N_{6,7}+y=M$
- Therefore

$$
\begin{gathered}
N_{6,7}>0 \rightarrow\left(N_{6,7}=1 \wedge N_{3,4}=0\right) \\
\varphi_{1}, \varphi_{2}
\end{gathered}
$$

in $\quad M$: integer where $M \geq 1$ local y : integer where $y=M$

Thus,ψ

Example: The Dining Philosophers Problem
(multiple resource allocation)
Fig 2.14

- M philosophers are seated at a round table
- Each philosopher alternates between a
"thinking" phase and "eating" phase
- M chopsticks, one between every two philosophers
- A philosopher needs 2 chopsticks (left \& right) to eat

Program DINE (Fig. 2.15)
(A simple solution to the dining philosophers problem)

Philosopher $P_{i} \quad-\quad$ process $P[i]$
"thinking" phase - noncritical
"eating" phase - critical

For philosopher j,

- $c[j]$ represents availability of left chopstick

$$
(c[j]=1 \text { iff chopstick is available })
$$

- $c\left[j \oplus_{M} 1\right] \ldots$ right chopstick

Program DINE (Fig. 2.15)
in $\quad M$: integer where $M \geq 2$ local c : array $[1 . . M]$ of integer where $c=1$

$$
\|_{j=1}^{M} P[j]::\left[\begin{array}{l}
\ell_{0}: \text { loop forever do } \\
{\left[\begin{array}{l}
\ell_{1}: \text { noncritical } \\
\ell_{2}: \text { request } c[j] \\
\ell_{3}: \text { request } c\left[j \oplus_{M} 1\right] \\
\ell_{4}: \text { critical } \\
\ell_{5}: \text { release } c[j] \\
\ell_{6}: \text { release } c\left[j \oplus_{M} 1\right]
\end{array}\right]}
\end{array}\right]
$$

$$
P_{j-1} \quad c[j]
$$

$$
P_{j}
$$

$c\left[j \oplus_{M} 1\right] \underset{9-23}{ } P_{j \oplus_{M}} 1$

Mutual exclusion between every two adjacent philosophers

Proof:

- φ_{0} and φ_{1} are inductive

$$
\begin{aligned}
& \varphi_{0}: \forall j \in[1 . . M] . c[j] \geq 0 \\
& \varphi_{1}: \forall j \in[1 . . M] . a t-\ell_{4 . .6}[j]+ \\
& a t-\ell_{3 . .5}\left[j \oplus_{M} 1\right]+ \\
& c\left[j \oplus_{M} 1\right]=1
\end{aligned}
$$

- Then,

$$
\begin{aligned}
& a t_{-} \ell_{4}[j]+a t_{-} \ell_{4}\left[j \oplus_{M} 1\right] \\
& \leq a t_{-} \ell_{4 \cdots 6}[j]+a t_{-} \ell_{3 \cdot .5}\left[j \oplus_{M} 1\right] \\
& =1-c\left[j \oplus_{M} 1\right] \leq 1 \\
& \varphi_{1}
\end{aligned}
$$

Chopstick Exclusion OK 9-25

Solution: One Philosopher Excluded
(keeping the symmetry)

- Two-room philosophers' world (Fig 2.18)

Philosophers are "thinking" at the library "eating" at the dining hall

When a philosopher finishes "eating" he returns to the library to "think"

- Program Dine-ExCl (Fig 2.17)

Additional semaphore variable r
"door keeper"
(initally $r=M-1$)
No more than $M-1$ philosophers are admitted to the dining hall at the same time.

- $\frac{\text { chopstick exclusion }}{\text { A safety property (in text) }}$
in $\quad M$: integer where $M \geq 2$
local c : array $[1 . . M$] integer where $c=1$
r : integer where $r=M-1$

$$
\|_{j=1}^{M} P[j]::\left[\begin{array}{l}
\ell_{0}: \text { loop forever do } \\
{\left[\begin{array}{l}
\ell_{1}: \text { noncritical } \\
\ell_{2}: \\
\text { request } r \\
\ell_{3}: \\
\text { request } c[j] \\
\ell_{4}: \\
\text { request } c\left[j \oplus_{M} 1\right] \\
\ell_{5}: \\
\text { critical } \\
\ell_{6}: \\
\ell_{7}: \\
\text { release } \text { release } c[j] \\
\ell_{8}: \\
\text { release } r
\end{array}\right]}
\end{array}\right]
$$

nested waiting-for formulas
are of the form

$$
p \Rightarrow q_{m} \mathcal{W}\left(q_{m-1} \cdots\left(q_{1} \mathcal{W} q_{0}\right) \ldots\right)
$$

also written

$$
p \Rightarrow q_{m} \mathcal{W} q_{m-1} \cdots q_{1} \mathcal{W} q_{0}
$$

Chapter 3
Precedence

- starvation-free progress (next book)
- accessibility $\ell_{2}[j] \Rightarrow \diamond \ell_{5}[j]$ progress (next book)
for assertions $p, q_{0}, q_{1}, \ldots, q_{m}$.

Models that satisfy these formulas

$\frac{\text { Simple Precedence: } p \Rightarrow q \mathcal{W} r}{\varphi}$

can be reduced to first-order VCs by verification rule WAIT:

Rule wait (general waiting-for)
For assertions p, q, r, φ
W1. $p \rightarrow \varphi \vee r$
W2. $\varphi \rightarrow q$
W3. $\{\varphi\} \mathcal{T}\{\varphi \vee r\}$

$$
p \Rightarrow q \mathcal{W} r
$$

Recall: To show $P \|\{\| \varphi\} \mathcal{T}\{\varphi \vee r\}$, we have to show that for every $\tau \in \mathcal{T}$

$$
\rho_{\tau} \wedge \varphi \rightarrow \varphi^{\prime} \vee r^{\prime}
$$

is P-state valid.

Example: Program mux-pet1 (Fig. 3.4)

We proved mutual exclusion

$$
\psi_{1}: \quad \square \neg\left(a t-\ell_{4} \wedge a t_{-} m_{4}\right)
$$

Using invariants

$$
\begin{array}{ll}
\chi_{0}: & s=1 \vee s=2 \\
\chi_{1}: & y_{1} \leftrightarrow a t_{-} \ell_{3 . .5} \\
\chi_{2}: & y_{2} \leftrightarrow a t-m_{3 . .5} \\
\chi_{3}: & a t_{-} \ell_{3} \wedge a t_{-} m_{4} \rightarrow y_{2} \wedge s=1 \\
\chi_{4}: & a t_{-} \ell_{4} \wedge a t_{-} m_{3} \rightarrow y_{1} \wedge s=2
\end{array}
$$

Example: Program mux-pet1 (Fig. 3.4)
(Peterson's Algorithm for mutual exclusion)
local y_{1}, y_{2} : boolean where $y_{1}=\mathrm{F}, y_{2}=\mathrm{F}$ $s \quad$: integer where $s=1$

ℓ_{0} : loop forever do

$P_{1}:: \quad\left[\begin{array}{ll}\ell_{1}: & \text { noncritical } \\ \ell_{2}: & \left(y_{1}, s\right):=(\mathrm{T}, 1) \\ \ell_{3}: & \text { await }\left(\neg y_{2}\right) \vee(s \neq 1) \\ \ell_{4}: & \text { critical } \\ \ell_{5}: & y_{1}:=\mathrm{F}\end{array}\right]$
m_{0} : loop forever do
$P_{2}:: \quad\left[\begin{array}{ll}m_{1}: & \text { noncritical } \\ m_{2}: & \left(y_{2}, s\right):=(\mathrm{T}, 2) \\ m_{3}: & \text { await }\left(\neg y_{1}\right) \vee(s \neq 2) \\ m_{4}: & \text { critical } \\ m_{5}: & y_{2}:=\mathrm{F}\end{array}\right]$
We want to prove simple precedence

$$
\psi_{2}: \underbrace{a t-\ell_{3} \wedge a t_{-} m_{0 . .2}}_{p} \Rightarrow \underbrace{\neg a t_{-} m_{4}}_{q} \mathcal{W} \underbrace{a t_{-} \ell_{4}}_{r}
$$

We try to find an assertion φ such that W1 - W3 of rule wait hold

Let

$$
\varphi: a t_{-} \ell_{3} \wedge\left(a t_{-} m_{0 . .2} \vee\left(a t_{-} m_{3} \wedge s=2\right)\right)
$$

W1:

W2:
$\underbrace{\cdots \wedge\left(a t_{-} m_{0 . .2} \vee\left(a t_{-} m_{3} \wedge \cdots\right)\right)}_{\varphi} \rightarrow \underbrace{\neg a t_{-} m_{4}}_{q}$
W3:
$\rho_{\tau} \wedge \underbrace{a t_{-} \ell_{3} \wedge\left(a t_{-} m_{0 . .2} \vee\left(a t_{-} m_{3} \wedge s=2\right)\right)}_{\varphi} \rightarrow$
$\underbrace{a t_{-}^{\prime} \ell_{3} \wedge\left(a t_{-}^{\prime} m_{0 . .2} \vee\left(a t_{-}^{\prime} m_{3} \wedge s^{\prime}=2\right)\right)}_{\varphi^{\prime}} \vee \underbrace{a t_{-}^{\prime} \ell_{4}}_{r^{\prime}}$

Check:

ℓ_{3}, m_{2} : OK
m_{3} : disabled (with the help of the invariant

$$
\left.a t-\ell_{3.5} \leftrightarrow y_{1} \text {, we have } y_{1}=\mathrm{T}\right) .
$$

Proving precedence properties:
Systematic derivation of intermediate assertions

Recall:
Rule wait (general waiting-for)
For assertions p, q, r, φ
W1. $p \rightarrow \varphi \vee r$
W2. $\varphi \rightarrow q$
W3. $\{\varphi\} \mathcal{T}\{\varphi \vee r\}$

$$
p \Rightarrow q \mathcal{W} r
$$

How to find φ ?

Escape Transition

Transition that leads to r-state.

$$
9-41
$$

$V=\{x, y\}$,
$\rho_{\tau}: x^{\prime}=x+y \wedge y^{\prime}=x$,
$\Phi: x=y$

Then $\operatorname{post}(\tau, \Phi)$ is given by
$\exists x^{0}, y^{0}: \underbrace{x^{0}=y^{0}}_{\Phi\left(V^{0}\right)} \wedge \underbrace{x=x^{0}+y^{0} \wedge y=x^{0}}_{\rho_{\tau}\left(V^{0}, V\right)}$,
which can be simplified to
$\Psi: x=y+y$.

Weaken $p \wedge \neg r$ until it becomes an assertion preserved under all nonescape transitions.

Based on postcondition:

$$
\Psi(V)=\operatorname{post}(\tau, \varphi): \quad \exists V^{0} \cdot \varphi\left(V^{0}\right) \wedge \rho_{\tau}\left(V^{0}, V\right)
$$

$\operatorname{post}(\tau, \varphi)$ characterizes all states that are τ-successors of a φ-state.

Forward Propagation: Algorithm
Φ_{t} - characterizes all states that can be
reached from a ($p \wedge \neg r$)-state without taking an escape transition.

1. $\Phi_{0}=p \wedge \neg r$
2. Repeat

$$
\Phi_{k+1}=\Phi_{k} \vee \operatorname{post}\left(\tau, \Phi_{k}\right)
$$

for any non-escape transition τ
Until
$\operatorname{post}\left(\tau, \Phi_{t}\right) \rightarrow \Phi_{t} \quad$ [may use invariants] for all non-escape transitions τ

If this terminates (it may not), Φ_{t} is a good assertion to be used in rule WAIT.
Satisifies W1, W3, but check W2.

Backward propagation

Strengthen q until it becomes an assertion preserved under all nonescape transitions.

Based on precondition:

$$
\operatorname{pre}(\tau, \varphi): \quad \forall V^{\prime} \cdot \rho_{\tau}\left(V, V^{\prime}\right) \rightarrow \varphi\left(V^{\prime}\right)
$$

$\operatorname{pre}(\tau, \varphi)$ characterizes all states all of whose τ-successors satisfy φ.

Backward Propagation: Algorithm

Γ_{f}-characterizes all states that can reach a q-state without taking an escape transition

1. $\Gamma_{0}=q$
2. Repeat
$\Gamma_{k+1}=\Gamma_{k} \wedge \operatorname{pre}\left(\tau, \Gamma_{k}\right)$
for any non-escape transition τ
Until
$\Gamma_{f} \rightarrow \operatorname{pre}\left(\tau, \Gamma_{f}\right) \quad$ [may use invariants] for all non-escape transitions τ

If this terminates (it may not), Γ_{f} is a good assertion to be used in rule wait.
Satisfies W2, W3, but check W1.

For Peterson's Algorithm, consider

$$
\Gamma_{0}: \underbrace{\neg a t _m_{4}}
$$

and calculate $\operatorname{pre}\left(m_{3}, \Gamma_{0}\right)$:
$\forall V^{\prime}: \underbrace{a t_{_} m_{3} \wedge\left(\neg y_{1} \vee s \neq 2\right) \wedge a t_{-} m_{4}^{\prime} \wedge \cdots}_{\rho_{m_{3}}\left(V, V^{\prime}\right)} \rightarrow \underbrace{\neg a t_{-} m_{4}{ }^{\prime}}_{\Gamma_{0}\left(V^{\prime}\right)}$.
P-equivalent to

$$
a t _m_{3} \rightarrow\left(y_{1} \wedge s=2\right)
$$

Backward vs. Forward

If $p \Rightarrow q \mathcal{W} r$ is P-valid

$$
\Phi_{t} \rightarrow \Gamma_{f}
$$

is P-state valid.

Example: Program mux-pet1 (Fig. 3.4)
(Peterson's Algorithm for mutual exclusion)
local y_{1}, y_{2} : boolean where $y_{1}=\mathrm{F}, y_{2}=\mathrm{F}$ $s \quad:$ integer where $s=1$
ℓ_{0} : loop forever do
$P_{1}:: \quad\left[\begin{array}{ll}\ell_{1}: & \text { noncritical } \\ \ell_{2}: & \left(y_{1}, s\right):=(\mathrm{T}, 1) \\ \ell_{3}: & \text { await }\left(\neg y_{2}\right) \vee(s \neq 1) \\ \ell_{4}: & \text { critical } \\ \ell_{5}: & y_{1}:=\mathrm{F}\end{array}\right]$
$1 \mid$
m_{0} : loop forever do
$P_{2}:: \quad\left[\begin{array}{ll}m_{1}: & \text { noncritical } \\ m_{2}: & \left(y_{2}, s\right):=(\mathrm{T}, 2) \\ m_{3}: & \text { await }\left(\neg y_{1}\right) \vee(s \neq 2) \\ m_{4}: & \text { critical } \\ m_{5}: & y_{2}:=\mathrm{F}\end{array}\right]$
9-49

Example: Forward Propagation

$$
\underbrace{a t_{-} \ell_{3} \wedge a t_{-} m_{0 . .2}}_{p} \Rightarrow \underbrace{\neg a t_{-} m_{4}}_{q} \mathcal{W} \underbrace{a t_{-} \ell_{4}}_{r}
$$

Start with

$$
\Phi_{0}: \underbrace{a t_{\ell} \ell_{3} \wedge a t m_{0 . .2}}_{p}
$$

and calculate $\operatorname{post}\left(m_{2}, \Phi_{0}\right)$:

$$
\begin{aligned}
& \exists \underbrace{\left(\pi^{0}, y_{1}^{0}, y_{2}^{0}, s^{0}\right)}_{V^{0}}: \underbrace{\left(a t_{-} \ell_{3}\right)^{0} \wedge\left(a t_{-} m_{0 . .2}\right)^{0}}_{\Phi_{0}\left(V^{0}\right)} \wedge \\
& \underbrace{\left(a t_{-} m_{2}\right)^{0} \wedge a t_{-} m_{3} \wedge\left(\left(a t_{3}\right)^{0} \leftrightarrow a t_{-} \ell_{3}\right) \wedge s=2 \wedge \cdots}_{\rho_{m_{2}}\left(V^{0}, V\right)}
\end{aligned}
$$

P-equivalent to

$$
\Psi_{1}: a t_{-} \ell_{3} \wedge a t_{-} m_{3} \wedge s=2
$$

using the invariant $\varphi_{1}: y_{1} \leftrightarrow a t _\ell_{3 . .5}$.
Thus,

$$
\Phi_{1}: \underbrace{a t_{-} \ell_{3} \wedge a t_{-} m_{0 . .2}}_{\Phi_{0}} \vee \underbrace{a t_{-} \ell_{3} \wedge a t_{-} m_{3} \wedge s=2}_{\Psi_{1}}
$$

9-50

Example: Backward Propagation

Start with

$$
\Gamma_{0}: \underbrace{\neg a t _m_{4}}_{q}
$$

We calculated $\operatorname{pre}\left(m_{3}, \Gamma_{0}\right)$ above, which is P-equivalent to

$$
\Delta_{1}: \text { at_m } m_{3} \rightarrow\left(y_{1} \wedge s=2\right)
$$

Thus,

$$
\Gamma_{1}: \underbrace{\neg a t_{-} m_{4}}_{\Gamma_{0}} \wedge \underbrace{a t_{_} m_{3} \rightarrow\left(y_{1} \wedge s=2\right)}_{\Delta_{1}} .
$$

Consider transition $\tau_{m_{2}}$, and calculate $\operatorname{pre}\left(m_{2}, \Gamma_{1}\right)$:

$$
\begin{aligned}
\forall V^{\prime} & : \underbrace{a t _m_{2} \wedge a t_{-} m_{3}^{\prime} \wedge y_{1}^{\prime}=y_{1} \wedge s^{\prime}=2 \wedge \cdots}_{\rho_{m_{2}}} \\
& \rightarrow \underbrace{{\neg a t _m_{4}}_{\prime} \wedge\left(a t_{-} m_{3}^{\prime}{ }_{2}^{\rightarrow}\left(y_{1}^{\prime} \wedge s^{\prime}=2\right)\right)}_{\Gamma_{1}^{\prime}}
\end{aligned}
$$

P-equivalent to

$$
\Delta_{2}: \text { at_m } m_{2} \rightarrow y_{1}
$$

Example: Backward Propagation (Cont'd)

Thus,
$\Gamma_{2}: \neg a t _m_{4} \wedge\left(a t_{-} m_{3} \rightarrow s=2\right) \wedge\left(a t_{-} m_{2,3} \rightarrow y_{1}\right)$.
Considering transitions $\tau_{m_{1}}, \tau_{m_{0}}$, and $\tau_{m_{5}}$ leads to the following sequence:

$$
\begin{aligned}
& \Gamma_{3}: \neg a t_{-} m_{4} \wedge\left(a t_{_} m_{3} \rightarrow s=2\right) \wedge\left(a t_{-} m_{1 . .3} \rightarrow y_{1}\right) \\
& \Gamma_{4}: \neg a t_{-} m_{4} \wedge\left(a t_{-} m_{3} \rightarrow s=2\right) \wedge\left(a t_{-} m_{0 . .3} \rightarrow y_{1}\right) \\
& \Gamma_{5}: \neg a t_{-} m_{4} \wedge\left(a t_{_} m_{3} \rightarrow s=2\right) \wedge\left(a t_{_} m_{0 . .3,5} \rightarrow y_{1}\right)
\end{aligned}
$$

By the control invariant at_mo..5,Γ_{5} can be simplified to

$$
\Gamma_{5}: \neg a t _m_{4} \wedge\left(a t _m_{3} \rightarrow s=2\right) \wedge y_{1}
$$

Example: Backward Propagation (Cont'd)

Calculating $\operatorname{pre}\left(\ell_{5}, \Gamma_{5}\right)$,

$$
\begin{aligned}
\forall V^{\prime} & : \underbrace{a t_{\ell} \ell_{5} \wedge y_{1}^{\prime}=\mathrm{F} \wedge \cdots}_{\rho_{\ell_{5}}} \rightarrow \\
& \underbrace{\neg a t_{-} m_{4}^{\prime} \wedge\left(a t_{2} m_{3}^{\prime} \rightarrow s^{\prime}=2\right) \wedge y_{1}^{\prime}}_{\Gamma_{5}^{\prime}}
\end{aligned}
$$

gives

$$
\Delta_{6}: a t_{-} \ell_{5} \rightarrow \mathrm{~F}
$$

Propagating $\Gamma_{5} \wedge \Delta_{6}$ via $\tau_{\ell_{4}}$ gives

$$
\Delta_{7}: a t_{-} \ell_{4} \rightarrow \mathrm{~F}
$$

Hence,

$$
\Gamma_{7}: \neg a t_{-} m_{4} \wedge\left(a t_{-} m_{3} \rightarrow s=2\right) \wedge a t_{-} \ell_{3}
$$

using the invariant $\varphi_{1}: y_{1} \leftrightarrow a t _\ell_{3 . .5}$ for simplifications. The assertion is preserved under all but the escape transitions, ending the process.

