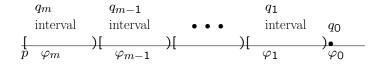
$CS256/Spring\ 2008-Lecture\ \#10$

Zohar Manna

Nested Waiting-for Formulas



Rule nwait (nested waiting-for)

For assertions p, q_0, q_1, \ldots, q_m and $\varphi_0, \varphi_1, \ldots, \varphi_m$

N1.
$$p \rightarrow \bigvee_{j=0}^{m} \varphi_j$$

N2.
$$\varphi_i \rightarrow q_i$$
 for $i = 0, 1, \dots, m$

N3.
$$\{\varphi_i\}\mathcal{T}\left\{\bigvee_{j\leq i}\varphi_j\right\}$$
 for $i=1,\ldots,m$

$$p \Rightarrow q_m \mathcal{W} q_{m-1} \cdots q_1 \mathcal{W} q_0$$

10-1

10-2

Nested Waiting-for Formulas (Cont'd)

 φ_i -interval

 φ_i -interval

where j < i

Premise N3 states that for each assertion φ_i , each transition $\tau \in \mathcal{T}$ either preserves φ_i or leads to some φ_j , with j < i.

Example: Program mux-pet1 (Fig. 3.4)

An example of a nested waiting-for formula is 1-bounded overtaking for MUX-PET1:

It states that when process P_1 is at ℓ_3 , process P_2 can enter its critical section at most once ahead of process P_1 .

Example: Program mux-pet1 (Fig. 3.4)

(Peterson's Algorithm for mutual exclusion)

 $\begin{array}{ccc} \text{local} & y_1,y_2\text{:} & \text{boolean} & \text{where} \ y_1 = \text{F}, y_2 = \text{F} \\ s & \text{:} & \text{integer} & \text{where} \ s = 1 \end{array}$

 ℓ_0 : loop forever do

$$\ell_1$$
: noncritical ℓ_2 : $(y_1, s) := (T, 1)$ ℓ_3 : await $(\neg y_2) \lor (s \neq 1)$ ℓ_4 : critical ℓ_5 : $y_1 := F$

 m_0 : loop forever do

$$P_2::$$

$$\begin{bmatrix} m_1: & \text{noncritical} \\ m_2: & (y_2, s) := (\mathbb{T}, 2) \\ m_3: & \text{await } (\neg y_1) \lor (s \neq 2) \\ m_4: & \text{critical} \\ m_5: & y_2 := \mathbb{F} \end{bmatrix}$$

10-5

With the following strengthenings all premises of rule NWAIT become state-valid.

$$p: at_{-\ell_3}$$

$$\varphi_3$$
: $at_-\ell_3 \wedge \underline{\neg at_-m_4} \wedge at_-m_3 \wedge s = 1$ " P_2 has priority over P_1 "

$$\varphi_2$$
: $at_-\ell_3 \wedge at_-m_4$

$$\varphi_1$$
: $at_-\ell_3 \wedge \underline{\neg at_-m_4} \wedge (at_-m_3 \rightarrow s = 2)$ " P_1 has priority over P_2 " $\varphi_0 = q_0$: $at_-\ell_4$

or equivalently,

$$p$$
: $at_{-\ell_3}$

$$\varphi_3$$
: $at_-\ell_3 \wedge at_-m_3 \wedge s = 1$

$$\varphi_2$$
: $at_-\ell_3 \wedge at_-m_4$

$$\varphi_1$$
: $at_{-}\ell_3 \wedge (at_{-}m_{0..2,5} \vee (at_{-}m_3 \wedge s = 2))$

$$\varphi_0 = q_0$$
: $at_-\ell_4$

10-6

Concatenation of waiting-for formulas

Rule CONC-W

$$p \Rightarrow q_m \mathcal{W} \cdots q_1 \mathcal{W} q_0$$

$$q_0 \Rightarrow r_n \mathcal{W} \cdots \mathcal{W} r_0$$

$$p \Rightarrow q_m \mathcal{W} \cdots \mathcal{W} q_1 \mathcal{W} r_n \mathcal{W} \cdots \mathcal{W} r_0$$

Concatenation of waiting-for formulas

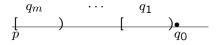
Collapsing of waiting-for formulas

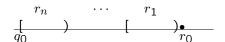
Rule COLL-W

For i > 0

$$p \Rightarrow q_m \mathcal{W} \cdots \mathcal{W} q_{i+1} \mathcal{W} q_i \mathcal{W} \cdots \mathcal{W} q_0$$

$$p \Rightarrow q_m \mathcal{W} \cdots \mathcal{W} (q_{i+1} \vee q_i) \mathcal{W} \cdots \mathcal{W} q_0$$





$$(q_m \quad \cdots \quad q_{i+1} \lor q_i \quad \cdots \quad q_1)$$

Basic Verification Diagrams

A visual summary of verification proofs

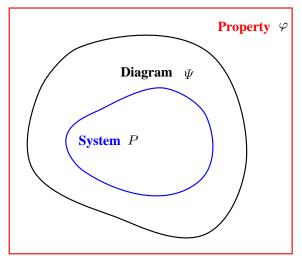
Verification Diagrams (VDs) allow a graphical representation of a proof of a temporal property.

To prove φ is P-valid, find diagram Ψ such that:

$$\mathcal{L}(P) \subseteq \mathcal{L}(\Psi) \subseteq \mathcal{L}(\varphi)$$

i.e., every P-computation σ is a Ψ -sequence and every Ψ -sequence σ is a model of φ (satisfies $\sigma \models \varphi$).

10-9



 $\mathcal{L}(P) \subset \mathcal{L}(\Psi)$ proved by verification conditions.

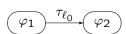
 $\mathcal{L}(\Psi)\subseteq\mathcal{L}(\varphi)$ follows from well-formedness of diagram.

<u>Verification Diagram</u> (VD)

Directed labeled graph with

• <u>Nodes</u> – labeled by assertions

• Edges – labeled by names of transitions



• <u>Terminal Node</u> ("goal") – no edges depart

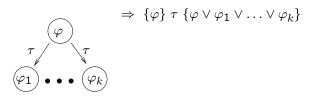
from it

10-11

Verification conditions (VCs)

VD provides a concise representation of sets of VCs:

• The verification condition associated with a node labeled by φ and a transition τ is



There is an implicit τ -edge connecting each φ -node to itself.

• Nonterminal node without outgoing edges

$$\widehat{\left(\varphi\right)} \ \Rightarrow \ \left\{\varphi\right\} \tau \ \left\{\varphi\right\}$$

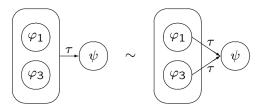
Note: No verification conditions for terminal node.

<u>Definition</u>: VD is <u>P-valid</u> iff all VCs associated with nodes in the diagram are <u>P-state valid</u>

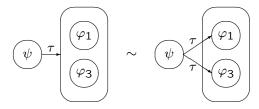
Compound Nodes: Statecharts Conventions

Compound Nodes: Statecharts Conventions

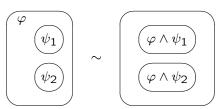
• Departing edges



• Arriving edges



• Common factors



10-13

Classes of Diagrams

• Proofs of invariance properties

 $\hfill \square \ q$ are represented by invariance diagrams

• Proofs of precedence properties

 $p \; \Rightarrow \; q_m \; \mathcal{W} \; q_{m-1} \; \cdots \; q_1 \; \mathcal{W} \; q_0$ are represented by WAIT diagrams

• Proofs of response properties

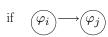
$$p \Rightarrow \Diamond q$$

are represented by $\underline{\text{CHAIN}}$ and RANK diagrams (Vol. III)

Wait Diagrams

VDs with nodes $\varphi_m, \ldots, \varphi_0$ such that:

• weakly acyclic, i.e.,



then $i \geq j$

• φ_0 is a terminal node

10-15

Claim (wait diagram):

A P-valid WAIT diagram establishes that

$$\bigvee_{j=0}^{m} \varphi_j \Rightarrow \varphi_m \, \mathcal{W} \, \varphi_{m-1} \, \cdots \, \varphi_1 \, \mathcal{W} \, \varphi_0$$

is P-valid.

If, in addition,

$$(N1) \quad p \rightarrow \bigvee_{j=0}^{m} \varphi_j$$

(N2)
$$\varphi_i \rightarrow q_i$$
 for $i = 0, 1, \dots, m$

are P-state valid, then

$$p \Rightarrow q_m \mathcal{W} q_{m-1} \cdots q_1 \mathcal{W} q_0$$

is P-valid.

Example: Program MUX-PET1 (Fig 3.4)

1-bounded overtaking from ℓ_3

$$\psi \colon \underbrace{at_{-}\ell_{3}}_{p} \Rightarrow \underbrace{\left(\underbrace{\neg at_{-}m_{4}}_{q_{3}}\right) \mathcal{W}}_{q_{2}} \underbrace{at_{-}m_{4}}_{q_{1}} \mathcal{W} \underbrace{\left(\underbrace{\neg at_{-}m_{4}}_{q_{1}}\right) \mathcal{W}}_{q_{0}} \underbrace{at_{-}\ell_{4}}_{q_{0}}$$

Proof is summarized in WAIT diagram

(Fig 3.8)

10-18

10-17

Example: Program mux-pet1 (Fig. 3.4)

(Peterson's Algorithm for mutual exclusion)

 $\begin{array}{ccc} \text{local} & y_1,y_2\text{:} & \text{boolean} & \text{where} \ y_1=\text{f},y_2=\text{f} \\ s & \text{:} & \text{integer} & \text{where} \ s=1 \end{array}$

 ℓ_0 : loop forever do

 $P_1::$ $\begin{bmatrix} \ell_1: & \text{noncritical} \\ \ell_2: & (y_1,s):=(\mathtt{T},\ 1) \\ \ell_3: & \text{await}\ (\lnot y_2)\lor(s
eq 1) \\ \ell_4: & \text{critical} \\ \ell_5: & y_1:=\mathtt{F} \end{bmatrix}$

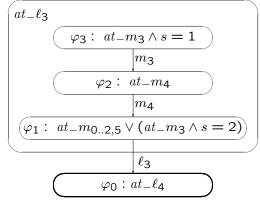
 m_0 : loop forever do

 $P_2::$ $m_1:$ noncritical $m_2:$ $(y_2, s):=(T, 2)$ $m_3:$ await $(\neg y_1) \lor (s \neq 2)$ $m_4:$ critical $m_5:$ $y_2:=$ F

Example: Program MUX-PET1 (Con't)

WAIT diagram (Fig. 3.8) (1-bounded overtaking from ℓ_3)

$$\psi \colon \underbrace{at_{-}\ell_{3}}_{p} \Rightarrow \underbrace{\left(\underbrace{\neg at_{-}m_{4}}_{q_{3}} \right) \mathcal{W}}_{q_{2}} \underbrace{at_{-}m_{4}}_{q_{2}} \mathcal{W} \underbrace{\left(\underbrace{\neg at_{-}m_{4}}_{q_{1}} \right) \mathcal{W}}_{q_{1}} \underbrace{at_{-}\ell_{4}}_{q_{0}}$$



10-20

Example: Program MUX-PET1 (Con't)

Associated VCs

• From φ_3

$$\{\varphi_3\}$$
 m_3 $\{\varphi_3 \lor \varphi_2\}$

$$\underbrace{\cdots}_{\varphi_{3}} \wedge \underbrace{\cdots}_{\rho_{m_{3}}} \wedge \underbrace{t'_{-m_{4}}}_{\varphi_{3}} \rightarrow \underbrace{\cdots}_{\varphi_{3}'} \vee \underbrace{at'_{-m_{4}}}_{\varphi_{2}'}$$

$$\{\varphi_3\} \overline{m_3} \{\varphi_3\}$$

for all non- m_3 transitions.

But since we are $at-\ell_3$, $at-m_3$, check only ℓ_3 .

10-21

Example: Program MUX-PET1 (Con't) Therefore,

$$\bigvee_{i=0}^{3} \varphi_i \Rightarrow \varphi_3 \mathcal{W} \varphi_2 \mathcal{W} \varphi_1 \mathcal{W} \varphi_0$$

is valid over MUX-PET1.

In addition,

$$\underbrace{at_{-}\ell_{3}}_{p} \to \bigvee_{j=0}^{3} \varphi_{j}$$

$$\varphi_{0} \to \underbrace{at_{-}\ell_{4}}_{q_{0}} \qquad \varphi_{1} \to \underbrace{\neg at_{-}m_{4}}_{q_{1}}$$

$$\varphi_{2} \to \underbrace{at_{-}m_{4}}_{q_{2}} \qquad \varphi_{3} \to \underbrace{\neg at_{-}m_{4}}_{q_{3}}$$

are P-state valid.

Therefore,

$$\psi$$
: $at_-\ell_3 \Rightarrow (\neg at_-m_4) \mathcal{W} at_-m_4 \mathcal{W} (\neg at_-m_4) \mathcal{W} at_-\ell_4$ is valid over MUX-PET1

$$\{\varphi_3\}$$
 ℓ_3 $\{\varphi_3\}$ holds, since
$$\underbrace{at_{-}m_3 \wedge \ldots \wedge s = 1}_{\varphi_3} \wedge \underbrace{\ldots \wedge ((\neg y_2) \vee (s \neq 1))}_{\rho_{\ell_3}} \rightarrow \underbrace{\ldots}_{\varphi_3'}$$

Recall that by χ_2 , $at-m_3 \rightarrow y_2$.

- From φ_2 $\{\varphi_2\} \ m_4 \ \{\varphi_2 \lor \varphi_1\}$ $\{\varphi_2\} \ \overline{m_4} \ \{\varphi_2\}$
- From φ_1 $\{\varphi_1\} \ \ell_3 \ \{\varphi_1 \lor \varphi_0\}$ $\{\varphi_1\} \ \overline{\ell_3} \ \{\varphi_1\}$

They are P-state valid [not state-valid - require invariants χ_0, \ldots, χ_4]

Therefore,

WAIT diagram is valid over MUX-PET1

10-22

Invariance Diagrams

VDs with no terminal nodes (cycles OK)

Claim (invariance diagram):

A P-valid invariance diagram establishes that

$$\bigvee_{j=1}^{m} \varphi_j \Rightarrow \Box(\bigvee_{j=1}^{m} \varphi_j)$$

is P-valid.

If, in addition,

(I1)
$$\Theta \rightarrow \bigvee_{j=1}^{m} \varphi_j$$

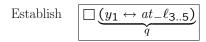
$$(I2) \bigvee_{j=1}^{m} \varphi_j \to q$$

are P-state valid, then

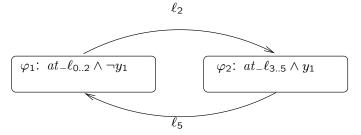
 $\square q$

is P-valid

Example: Program MUX-PET1 (Fig 3.4)



INVARIANCE diagram valid for program MUX-PET1



because

$$\{\varphi_1\}\,\ell_2\,\{\varphi_1\vee\varphi_2\} \qquad \qquad \{\varphi_1\}\,\overline{\ell_2}\,\{\varphi_1\}$$

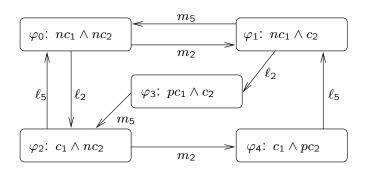
$$\{\varphi_2\} \ell_5 \{\varphi_2 \vee \varphi_1\} \qquad \{\varphi_2\} \overline{\ell_5} \{\varphi_2\}$$

Thus

$$\varphi_1 \lor \varphi_2 \Rightarrow \Box(\varphi_1 \lor \varphi_2)$$

Example: Program MUX-PET1 (Fig. 3.4)

Establish
$$\Box \neg (at_{-}\ell_{4} \wedge at_{-}m_{4})$$



non-critical: nc_1 : $at_{-}\ell_{0..2}$

 nc_2 : $at_-m_{0..2}$

critical: c_1 : $at_{-\ell_{3..5}} \land \neg y_2$

 c_2 : $at_-m_{3..5} \wedge \neg y_1$

pre-critical: pc_1 : $at_-\ell_3 \wedge s = 1 \wedge y_2$

 pc_2 : $at_-m_3 \wedge s = 2 \wedge y_1$

Also,

$$(I1) \underbrace{at_{-}\ell_{0} \wedge \neg y_{1} \wedge \cdots}_{\Theta} \rightarrow \underbrace{at_{-}\ell_{0..2} \wedge \neg y_{1}}_{\varphi_{1}} \vee \underbrace{\cdots}_{\varphi_{2}}$$

(I2)
$$\underbrace{at-\ell_{0..2} \land \neg y_{1}}_{\varphi_{1}} \lor \underbrace{at-\ell_{3..5} \land y_{1}}_{\varphi_{2}} \rightarrow \underbrace{y_{1} \leftrightarrow at-\ell_{3..5}}_{q}$$

are state-valid

Therefore

$$\boxed{ \boxed{ \underbrace{(y_1 \leftrightarrow at_-\ell_{3..5})}_{q}} }$$

is P-valid.

10-26