Nested Waiting-for Formulas

CS256/Spring 2008 — Lecture #10
Zohar Manna

qm dm—1 q1

interval interval oo interval gq
[M| M| M| e
p Pm Pm—1 ¥1 %0

Rule nwait (nested waiting-for)

For assertions p, qg, q1, - - - , gm and ©g, ©1,---,Pm

m

Jj=0
N2, ¢; — q; fori=0,1,...,m

N3. {goi}T{\/goj} fori=1,...,m

j<i

P = gmnWan-1 - a1 Waqo

10-1 10-2

Nested Waiting-for Formulas (Cont’d) Example: Program mux-petl (Fig. 3.4)

p;-interval pj-interval An example of a nested waiting-for formula is

1-bounded overtaking for MUX-PET1:

S S~ at-ty =

o P
T T where j < 4
J —at_mg W at_mg W -—at_mg W at_4y4
q3 q2 q1 q0

Premise N3 states that for each assertion ¢;, each tran- It states that when process P is at £3

sition 7 € 7 either preserves ; or . " .
¥ . i process P can enter its critical section at most
leads to some @, with j < 4.

once ahead of process P;.

Example: Program mux-petl (Fig. 3.4)
(Peterson’s Algorithm for mutual exclusion)

local yi,y>: boolean where y; =F,yo =F
s . integer wheres =1

¢o : loop forever do

¢1 : noncritical
P, - 62 : (yla 3) = (T7 1)
L f3: await (-ys) V (s # 1)
L4 . critical
L ls: y1:=F i
mg : loop forever do
[m1: noncritical 1
ma: (y2, s) = (T, 2)
P

m3: await (-y1) V (s #2)
mg . critical

mg: Yo = F
10-5

Concatenation of waiting-for formulas

Rule conc-w

P = agnW - - q1Wqo

Q@ = ™mW - Wrnrg

P = aqgnW ---WaWrmW -+ Wrg

With the following strengthenings all premises of rule
NWAIT become state-valid.
p: at_{3

p3: at_fl3z A —al_mg N at_mzAs=1
“P5 has priority over P;”

wp: at_fl3 A\ at_mg
p1. at_f3 A —at_mg A (at_mz — s = 2)
“Pq has priority over Py”

Y0 =qo: al_¥y

or equivalently,

p: at_{3

p3: at—l3 N at_m3z N s=1
wo: at_flz N at_mg

p1: at—L3 A (at—-mg 25 V (al_mz A s =2))

po = qo: at—ty

dm q1
[) [Ye
q0
’r‘n ... 7‘1
[) [Ve
q0 0

10-6
Collapsing of waiting-for formulas
Rule coLL-w
Fori>0
p=aguW - WagpiWagW - Waqo
p=agnW - WI(gr1Va)W - Wqo
qm s qi+1 q; T q1
[) [)) [Je
p q0
qm qi+1V 4 q1
[) [) [)e
p q0

Verification Diagrams (VDs)

‘Basic Verification Diagrams Property ¢

A visual summary of verification proofs
Diagram y
Verification Diagrams (VDs) allow a graphical
representation of a proof of a temporal

property.

To prove ¢ is P-valid, find diagram ¥ such that:

L(P) CLW) C L(»)

i.e., every P-computation o is a W-sequence

and every W-sequence o is a model of ¢ (satisfies o E¢).
L(P) C L(¥) proved by verification conditions.

L) C L(p) follows from well-formedness of

diagram.
10-9 10-10

Verification Diagram (VD) Verification conditions (VCs)

Directed labeled graph with VD provides a concise representation of sets of VCs:

e The verification condition associated with a node
e Nodes — labeled by assertions labeled by ¢ and a transition 7 is

@ = {p}7{eVerV...Ver}

VAR,
e Edges — labeled by names of transitions e°°

There is an implicit 7-edge connecting each p-node
to itself.

¢
(o =(¥2)

e Nonterminal node without outgoing edges

e Terminal Node (“goal”) — no edges depart | ‘ @ = {o} 7 {p}
from it
Note: No verification conditions for terminal node.
10-11 Definition: VD is P-valid iff all VCs 10-12

associated with nodes in the diagram
are P-state valid

Compound Nodes: Statecharts Conventions

e Departing edges

° (e O
T ~Y
e Arriving edges
D
(X =

10-13

Classes of Diagrams

e Proofs of invariance properties

Clq

are represented by INVARIANCE diagrams

e Proofs of precedence properties

P = gnWam-1 - a1 Waqo

are represented by WAIT diagrams

e Proofs of response properties

p=><q

are represented by CHAIN and
RANK diagrams (Vol. IIT)

10-15

Compound Nodes: Statecharts Conventions

e Common factors

)

10-14
Wait Diagrams
VDs with nodes ¢@m, ..., @g such that:
e weakly acyclic, i.e.,
NG
then i > j
® (p(is a terminal node
10-16

Claim (wait diagram):

A P-valid WAIT diagram establishes that
m
V oej = emWeopm_1 - ¢1 W @g
j=0

is P-valid.

If, in addition,

m

N1) p— V ¢
j=0

(N2) ¢; — q; for i=0,1,...,m

are P-state valid, then

P = amWam-1 - a1 Wao

is P-valid.

10-17

Example: Program mux-petl (Fig. 3.4)
(Peterson’s Algorithm for mutual exclusion)

local yi,y>: boolean where y; = F,yo =F
s . integer wheres=1

lo . loop forever do

£1 : noncritical
P lr: (y1,8) = (1, 1)
L t3: await (—yo) V (s # 1)
£4 . critical
| /5. Y1 =F |
mg : loop forever do
[m1: noncritical 1
ma: (y2, s) = (T, 2)
P

m3 . await (-y1) V (s # 2)

mg . critical

ms:. Yp = F i
10-19

Example: Program MUX-PET1 (Fig 3.4)

1-bounded overtaking from #3

P at_l3 =
p
—at— W at_ W (—at_— W at_¢
(aqsm4) - qf:n4 (aq1m4) aqo >

Proof is summarized in WAIT diagram
(Fig 3.8)

10-18

Example: Program MUX-PET1 (Con’t)

WAIT diagram (Fig. 3.8)
(1-bounded overtaking from £3)

Dat_lz =
P ap3

(ﬁat_m4) w at_m4 w (ﬂat_m4) w C(,t_€4

g3 q2 q1 q0
at_{3
Cgpgi at_m3zANs=1)
"
C o I at—_mg)
=
Gol i at—mo. 25V (at_m3z As= 2)/\

{3

C po - at_Lq)

10-20

Example: Program MUX-PET1 (Con't)

Associated VCs
e From ¢3

{p3} m3 {p3V 2}

/ /
.Lp.3. A ..o N at mg — ../.\/at,m4
pm3 @3 (10/2

{p3} m3 {p3}

for all non-mg transitions.
But since we are at_¢3, at_ms, check only £3.

10-21

Example: Program MUX-PET1 (Con't)
Therefore,
3

V @i = ©3 W2 W1 W pg
i=0
is valid over MUX-PET1.

In addition,

3
at_l3 — :
Y-r3 \/ ®j
P Jj=0
at_¥¢ — —at_m
%0 — 4 1 — 4
q0 q1
— at—_m — —at—m
®2 ~ 4 ¥3 - ~ 4

are P-state valid.

Therefore,
P at_€3 =
(mat—mag) W at—_ma W (mat_myg) W al_l4

is valid over MUX-PET1
10-23

{p3} €3 {©3} holds, since
at_mzA...As=1A...A((my2) V(s # 1))

—
=
3
Recall that by xo, at—_ms3 — yo.
e From o
{e2} ma {2V 1}
{p2} ma {¢2}
e From ¢4
{e1} L3 {1V w0}
{1} 03 {p1}
They are P-state valid
[not state-valid - require invariants xg, - - - , x4]
Therefore,
WAIT diagram is valid over MUX-PET1
10-22

Invariance Diagrams

VDs with no terminal nodes (cycles OK)

Claim (invariance diagram):

A P-valid INVARIANCE diagram establishes that
m m
Ve = OCV #)
Jj=1 Jj=1
is P-valid.

If, in addition,

m

1) 0 — \V o
j=1

m
120V ¢ — q
j=1

are P-state valid, then

is P-valid
10-24

Example: Program MUX-PET1 (Fig 3.4)
Also,

(1) at_lg A —y1 A -+ —

Establish | (y1 < at_¢3. 5)
N————

o
q
at_Lo.o N Ty Voo
—_— O
Y1 2

INVARIANCE diagram
valid for program MUX-PET1

V4
2 (12) at_Lg.o N =y V at_l3.5 N yi —

/\ 1 22
y1 < at_{3. 5
| S ———

Dat_fo.2 Nyt ’ ‘ po: at_€3.5 \y1 ’ q
\ A are state-valid
because
{p1}l2{p1V @2} {1} b2 {1}
Therefore
{2} s {2V o1} {p2} 5 {2} C(y; < at_f3 5)
q
Thus

is P-valid.
w1 Vo= O(e1 Ve2)

10-25 10-26
Example: Program MUX-PET1 (Fig. 3.4)
Establish ‘ O —(at_la A at—my) ‘
ms
‘ ©wo: nec1 A\ nces 1. nc1 N co ’
m2
4y
s 12 ©3. pc1 A c2 s
%5
‘ 2. c1 Anco | @4 c1 N\ pco ’
mo |

non-critical: neq: at_£g o
nco: at—mg. 2
critical: c1: at_€3 5N —yo
¢t at-m3 5 Ay
pre-critical: pecp: at_€z3 As=1Ayo
pco: at_m3z As =2 Ay

10-27

