CS256/Spring 2008 - Lecture \#11
Zohar Manna

Beyond Temporal Logics

Temporal logic expresses properties of infinite sequences of states, but there are interesting properties that cannot be expressed, e.g.,
" p is true only (at most) at even positions."

Questions (foundational/practical):

- What other languages can we use to express properties of sequences (\Rightarrow properties of programs)?
- How do their expressive powers compare?
- How do their computational complexities (for the decision problems) compare?

States

Propositional LTL (PLTL) formulas are constructed from the following:

- propositions $p_{1}, p_{2}, \ldots, p_{n}$.
- boolean/temporal operators.
- a state $s \in\{f, t\}^{n}$
i.e., every state s is a truth-value assignment to all n propositional variables.

Example:

If $n=3$, then
$s:\left\langle p_{1}: t, p_{2}: f, p_{3}: t\right\rangle$
corresponds to state $t f t$.
$p_{1} \leftrightarrow p_{2}$ denotes the set of states
$\{f f f, f f t, t t f, t t t\}$

- alphabet $\Sigma=\{f, t\}^{n}$

Note: $\mathrm{T}, \mathrm{F}=$ formulas (syntax)

Models of PLTL $\mapsto \omega$-languages

- A model of PLTL for the language with n propositions

$$
\sigma: s_{0}, s_{1}, s_{2}, \ldots
$$

can be viewed as an infinite string $s_{0} s_{1} s_{2} \ldots$, i.e.,

$$
\sigma \in\left(\{f, t\}^{n}\right)^{\omega}
$$

- A PLTL formula φ denotes an ω-language

$$
\mathcal{L}=\{\sigma \mid \sigma \vDash \varphi\} \subseteq\left(\{f, t\}^{n}\right)^{\omega}
$$

Example:

If $n=3$, then

$$
\begin{aligned}
& \varphi: \square\left(p_{1} \leftrightarrow p_{2}\right) \text { denotes the } \omega \text {-language } \\
& \qquad \mathcal{L}(\varphi)=\{f f f, f f t, t t f, t t t\}^{\omega}
\end{aligned}
$$

Other Languages to Talk about Infinite Sequences

- ω-regular expressions
- ω-automata

ω-regular expressions (cont.)

Example:

Take $A=\{a, b\}$. What languages do the following ω-r.e.'s denote?

$$
\begin{array}{ll}
a a b^{\omega} & \begin{array}{l}
\omega \text {-word starting with two } \\
a \text { 's, followed by } b \text { 's }
\end{array} \\
a^{*} b^{\omega} & \begin{array}{l}
\text { all } \omega \text {-words starting with a } \\
\text { finite string of } a \text { 's, followed } \\
\text { by } b \text { 's }
\end{array} \\
(a+b)^{*} b^{\omega} & \begin{array}{l}
\text { all } \omega \text {-words with only finitely } \\
\text { many } a \text { 's }
\end{array} \\
\left((a+b)^{*} b\right)^{\omega} & \begin{array}{l}
\text { all } \omega \text {-words containing } \\
\text { infinitely many } b \text { 's }
\end{array}
\end{array}
$$

PLTL (future) $\mapsto \omega$-r.e.'s

```
```

Example:

```
```

Example:
p is an abbreviation for tt +tf
p is an abbreviation for tt +tf
q is an abbreviation for tt + ft
q is an abbreviation for tt + ft
T}\mathrm{ is an abbreviation for }tt+tf+ft+f
T}\mathrm{ is an abbreviation for }tt+tf+ft+f
\Downarrow
\Downarrow
\squarep: \quad p
\squarep: \quad p

$$
\mathrm{T}^{*} q \mathrm{~T}^{\omega}
$$

 \diamondq: }\quad\mp@subsup{\textrm{T}}{}{*}q\mp@subsup{\textrm{T}}{}{\omega
 \diamondq: }\quad\mp@subsup{\textrm{T}}{}{*}q\mp@subsup{\textrm{T}}{}{\omega
 p\mathcal{Uq: }\quad\mp@subsup{p}{}{*}q\mp@subsup{T}{}{\omega}
 p\mathcal{Uq: }\quad\mp@subsup{p}{}{*}q\mp@subsup{T}{}{\omega}
 $$
p \mathcal{U} q: \quad p^{*} q \mathrm{~T}^{\omega}
$$

 p=>\squareq:
 p=>\squareq:
 $$
p \Rightarrow \square q:
$$

$$
(\neg p)^{*} q^{\omega}+(\neg p)^{\omega}
$$

 \square>p:
 \square>p:
 \diamond
    ```
```

 \diamond
    ```
```

```
\[
p^{\omega}
\]
```


Expressive Power

- Every PLTL formula has an equivalent ω-r.e.
- PLTL is strictly weaker than ω-r.e.'s:
" p is true only (at most) at even positions."
- not expressible in PLTL (Pierre Wolper, 1983)
- ω-r.e.: $(\mathrm{T}(\neg p))^{\omega}$
- ω-r.e.'s are equivalent to ω-automata.

Finite-State Automata

Finite alphabet Σ.

Automaton $\mathcal{A}:\left\langle N, N_{0}, E, \mu, F\right\rangle$, where

- N : nodes
- $N_{0} \subseteq N$: initial nodes
- $E \subseteq N \times N$: edges
- $\mu: N \rightarrow 2^{\Sigma}$: node labeling function
- $F \subseteq N$: final nodes

Note: We label the nodes and not the edges.

Finite-State Automata (Cont'd)

Finite-State Automata (Cont'd)

Main question:
Given a string

$$
\sigma: s_{0} \ldots s_{k}
$$

over Σ, is σ accepted by \mathcal{A} ?

- path

A sequence of nodes

$$
\pi: n_{0}, \ldots, n_{k}
$$

is a path of \mathcal{A} if
$-n_{0} \in N_{0}$

- for every $i: 0 \ldots k-1,\left\langle n_{i}, n_{i+1}\right\rangle \in E$.

11-13

Finite-State Automata (Cont'd)

- $\mathcal{L}(\mathcal{A})$

The set of all strings ("languages") accepted by \mathcal{A}.

- deterministic

An automaton \mathcal{A} is called deterministic if every string has exactly one (not necessarily accepting) trail in \mathcal{A}.

- total

An automaton \mathcal{A} is called total if every string has at least one (not necessarily accepting) trail in \mathcal{A}.

- trail

A path

$$
\pi: n_{0}, \ldots, n_{k}
$$

of \mathcal{A} is a trail of a string

$$
\sigma: s_{0}, \ldots, s_{k}
$$

in \mathcal{A} if for every $i: 0 \ldots k$,

$$
s_{i} \in \mu\left(n_{i}\right)
$$

- accepted

A string

$$
\sigma: s_{0} \ldots s_{k}
$$

is accepted by \mathcal{A} if it has a trail

$$
\pi: n_{0}, \ldots, n_{k}
$$

in \mathcal{A} such that

$$
n_{k} \in F
$$

Finite-State Automata: Decision Problems

- Emptiness:

Is any string accepted?

$$
\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \varnothing
$$

- Universality:

Are all strings accepted?

$$
\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^{*}
$$

- Inclusion:

Are all strings accepted by \mathcal{A}_{1} accepted by \mathcal{A}_{2} ?

$$
\mathcal{L}\left(\mathcal{A}_{1}\right) \stackrel{?}{\subseteq} \mathcal{L}\left(\mathcal{A}_{2}\right)
$$

Finite-State Automata:
 Operations

- Complementation: $\overline{\mathcal{A}}$

$$
\mathcal{L}(\overline{\mathcal{A}})=\Sigma^{*}-\mathcal{L}(\mathcal{A})
$$

- Product: $\mathcal{A}_{1} \times \mathcal{A}_{2}$

$$
\mathcal{L}\left(\mathcal{A}_{1} \times \mathcal{A}_{2}\right)=\mathcal{L}\left(\mathcal{A}_{1}\right) \cap \mathcal{L}\left(\mathcal{A}_{2}\right)
$$

- Union: $\mathcal{A}_{1}+\mathcal{A}_{2}$

$$
\mathcal{L}\left(\mathcal{A}_{1}+\mathcal{A}_{2}\right)=\mathcal{L}\left(\mathcal{A}_{1}\right) \cup \mathcal{L}\left(\mathcal{A}_{2}\right)
$$

Using complementation and product construction, we only need a decision procedure for emptiness to decide universality and inclusion:

- Universality:

$$
\mathcal{L}(\mathcal{A})=\Sigma^{*} \Longleftrightarrow \mathcal{L}(\overline{\mathcal{A}})=\varnothing
$$

- Inclusion:

$$
\mathcal{L}\left(\mathcal{A}_{1}\right) \subseteq \mathcal{L}\left(\mathcal{A}_{2}\right) \Longleftrightarrow \mathcal{L}\left(\mathcal{A}_{1} \times \overline{\mathcal{A}_{2}}\right)=\varnothing
$$

Finite-State Automata: Determinization

For every nondeterministic automaton \mathcal{A}_{N}, there exists a deterministic automaton \mathcal{A}_{D} such that

$$
\mathcal{L}\left(\mathcal{A}_{N}\right)=\mathcal{L}\left(\mathcal{A}_{D}\right)
$$

(May cause exponential blowup in size.)

11-18

ω-Automata

Finite-state automata over infinite strings.

Main question:

Given an infinite sequence of states

$$
\sigma: s_{0}, s_{1}, s_{2}, \ldots
$$

is σ accepted by \mathcal{A} ?
Additional references:

- Section 5 of Wolfgang Thomas: "Languages, Automata, and Logic". In G. Rozenberg and A. Salomaa (eds.), Handbook of Formal Languages, V. III. (Tech Report version available on the web), pp. 389-455, 1997.
- Part I of Wolfgang Thomas: "Automata on Infinite Objects". In Jan van Leeuwen (ed.), Handbook of Theoretical Computer Science, vol. B, Elsevier, 1990, pp.133-165.
- Moshe Vardi and Pierre Wolper, "An Automata

Theoretic Approach to Program Verification", Symposium on Logic in Computer Science, 1988 11-19,
n_{1} represents all states in which p_{1} is true;
i.e. $t f$ and $t t$.

$$
\mu\left(n_{1}\right)=\{t f, t t\}
$$

n_{2} represents all states in which p_{1} is false and p_{2} is true.

$$
\mu\left(n_{2}\right)=\{f t\}
$$

ω-Automata (Definition)

Set of propositions: p_{1}, \ldots, p_{n}.
Alphabet $\Sigma=\{t, f\}^{n}$.
Automaton $\mathcal{A}:\left\langle N, N_{0}, E, \mu, F\right\rangle$, where

- N : finite set of nodes
- $N_{0} \subseteq N$: initial nodes
- $E \subseteq N \times N$: edges
- $\mu: N \rightarrow 2^{\Sigma}$: node labeling function (assertions)
- F : acceptance condition

Note: Most of the literature on ω-automata uses edge labeling, similarly to automata on finite strings. However, we use node labeling to ease the transition to diagrams. The two approaches are equally expressive and can easily be translated into each other.

$$
\begin{gathered}
\operatorname{Inf}(\pi) \\
\frac{\text { infinite sequence of states }}{\downarrow} \sigma: s_{0}, s_{1}, s_{2}, \ldots \\
\text { infinite trail } \pi: n_{0}, n_{1}, n_{2}, \ldots
\end{gathered}
$$

$\underline{\underline{\inf (\pi)}:}$| The set of nodes appearing |
| :--- |
| infinitely often in π. |

Observe:

- $\inf (\boldsymbol{\pi})$ is nonempty since the set of nodes of the automaton is finite.
- The nodes in $\inf (\pi)$ form a Strongly Connected Subgraph (SCS) in \mathcal{A}.

SCS S : Every node in S is reachable from every other node in S.
MSCS S: a maximal SCS;
i.e., S is not contained in any larger SCS.

Definition: An infinite sequence of states σ is accepted by \mathcal{A} if it has a trail π such that $\inf (\pi)$ is accepted by the acceptance condition.

- In general, \mathcal{A} is nondeterministic i.e., trail π is not necessarily unique for σ.
- \mathcal{A} is deterministic if for every σ, there is exactly one trail π of σ.

ω-Automata: Acceptance Conditions

\mathcal{A} :

Name
Büchi
Muller

Type of acceptance condition

acceptance
$F \subseteq N$ a set of nodes
$F \subseteq 2^{N}$ a set of subsets of

To accept
$\mathcal{L}(\square \diamond p)$
with \mathcal{A}

$$
F=\left\{n_{2}\right\}
$$

$$
F=\left\{\left\{n_{1}, n_{2}\right\},\left\{n_{2}\right\}\right\}
$$

To accept no deterministic $\mathcal{L}(\diamond \square p) \quad \begin{gathered}\text { Büchi automaton } \\ \text { accepts this }\end{gathered}$
with \mathcal{A} language

$$
F=\left\{\left\{n_{2}\right\}\right\}
$$

ω-Automata: Acceptance Conditions (Cont'd)

Name
$\underline{\text { Streett Rabin }}$

$$
F \subseteq 2^{N} \times 2^{N}
$$

Type of acceptance condition
$\left\{\left(P_{1}, R_{1}\right), \ldots,\left(P_{n}, R_{n}\right)\right\}$
where each P_{i}, R_{i} is a set of nodes

	for every $i:[1 . . n]$	for some $i:[1 . . n]$
Condition	$\inf (\pi) \subseteq P_{i} \underline{\text { or }}$	$\inf (\pi) \subseteq P_{i} \underline{\text { and }}$
for	$\inf (\pi) \cap R_{i} \neq \varnothing$	$\inf (\pi) \cap R_{i} \neq \varnothing$
acceptance		
To accept		$F=$
$\mathcal{L}(\square \diamond p)$		
with \mathcal{A}	$F=\left\{\left(\varnothing,\left\{n_{2}\right\}\right)\right\}$	$\left\{\left(\left\{n_{1}, n_{2}\right\},\left\{n_{2}\right\}\right)\right\}$

$$
\begin{aligned}
& \text { To accept } \\
& \underset{\mathcal{L}(\diamond \square p)}{\text { with } \mathcal{A}} \quad F=\left\{\left(\left\{n_{2}\right\}, \varnothing\right)\right\} \quad F=\left\{\left(\left\{n_{2}\right\},\left\{n_{2}\right\}\right)\right\}
\end{aligned}
$$

Automata (Cont'd)

Automaton for \qquad

Nondeterministic:

Muller acceptance condition:

$$
F=\left\{\left\{n_{2}\right\},\left\{n_{4}\right\},\left\{n_{3}, n_{4}\right\}\right\}
$$

Streett acceptance condition:

$$
F=\left\{\left(\left\{n_{2}\right\},\left\{n_{4}\right\}\right)\right\}
$$

Automata

Automaton for $\square \diamond p \rightarrow \square \diamond q$
(if p happens infinitely often, then q happens infinitely often)
$\diamond \square \neg p \vee \square \diamond q$
Deterministic:

Muller acceptance condition ($\mathcal{P}=$ powerset):

$$
F=\mathcal{P}\left(\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}\right)-\left\{\left\{n_{2}\right\},\left\{n_{2}, n_{4}\right\}\right\}
$$

Streett acceptance condition:

$$
F=\{(\overbrace{\left\{n_{3}, n_{4}\right\}}^{\begin{array}{c}
\text { eventually } \\
\text { always } \neg p
\end{array}}, \overbrace{\left\{n_{1}, n_{3}\right\}})\}
$$

11-26

More Examples: Muller/Streett

Question: Why is $\left\{n_{1}, n_{2}\right\}$ not in F_{M} ?

More Examples: Muller/Streett

$F_{M}=\left\{\left\{n_{1}\right\},\left\{n_{3}\right\}\right\}$

$$
F_{S}=\left\{\left(\left\{n_{1}, n_{3}\right\}, \varnothing\right)\right\} \quad F_{S}=\left\{\left(\left\{n_{3}\right\}, \varnothing\right)\right\}
$$

Question: Why $n_{1}: p \wedge \neg q$ and not $n_{1}: p$?

More Examples: Muller/Streett

$$
\begin{aligned}
p & \Rightarrow q_{m} \mathcal{W} q_{m-1} \ldots q_{1} \mathcal{W} q_{0} \\
F_{M} & =\mathcal{P}\left(\left\{n_{1}, \ldots, n_{m+2}\right\}\right) \\
F_{S} & =\left\{\left(\varnothing,\left\{n_{1}, \ldots, n_{m+2}\right\}\right)\right\}
\end{aligned}
$$

More Examples: Muller/Streett

$F_{M}=\left\{\left\{n_{1}\right\},\left\{n_{3}\right\}\right\}$
$\begin{aligned} F_{M}= & \mathcal{P}\left(\left\{n_{1}, n_{2}, n_{3}\right\}\right) \\ & -\left\{n_{1}, n_{2}\right\}\end{aligned}$
$F_{S}=\left\{\left(\left\{n_{1}, n_{3}\right\}, \varnothing\right)\right\}$

$$
F_{S}=\left\{\left(\varnothing,\left\{n_{1}, n_{2}, n_{3}\right\}\right)\right\}
$$

Existence of ω-Automaton

Theorem: For every PLTL formula φ, there exists an ω-automaton \mathcal{A}_{φ} such that $\mathcal{L}(\varphi)=\mathcal{L}\left(\mathcal{A}_{\varphi}\right)$.

Question: Does the converse also hold?

- Consider \mathcal{A} :

$$
F_{M}=\left\{\left\{n_{1}, n_{2}\right\}\right\}
$$

$\mathcal{L}(\mathcal{A})=$ all sequences of form

$$
\begin{array}{ccccccccc}
\stackrel{p}{\neg p} & p & \ldots \\
\hline
\end{array}
$$

Is there a PLTL formula φ such that $\mathcal{L}(\mathcal{A})=\mathcal{L}(\varphi)$?

Existence of ω-Automaton (Cont'd)

- Second attempt: $\bigcirc p \wedge \square(p \equiv \bigcirc \bigcirc p)$

- Not good because it accepts only

$$
\begin{array}{llllll}
\neg p & p & \neg p & p & \neg p & \ldots \\
\hline
\end{array}
$$

and

$$
\begin{array}{llllll}
p & p & p & p & p & \ldots \\
\hline
\end{array}
$$

- That is, it accepts $\mathcal{L}\left(\mathcal{A}_{2}\right)$, with \mathcal{A}_{2} :

$$
F_{M}=\left\{\left\{n_{1}, n_{2}\right\},\left\{n_{3}\right\}\right\}
$$

ω-Automaton Expressiblity

It was shown by Wolper (1982) that there does not exist a PLTL formula φ such that $\mathcal{L}(\varphi)=\mathcal{L}(\mathcal{A})$ for the automaton \mathcal{A} shown above.

Theorem: ω-automata are strictly more expressive than PLTL.

Theorem: For every ω-automaton \mathcal{A} there exists an existentially quantified formula φ such that $\mathcal{L}(\mathcal{A})=\mathcal{L}(\varphi)$.

k is a flexible, auxiliary boolean variable:
its value may be different in different positions.
Note: $\neg k$ at position 0 . Why?

