$\begin{array}{c} \mathbf{CS256}/\mathbf{Spring}\ \mathbf{2008} \begin{tabular}{ll} \mathbf{Lecture}\ \#\mathbf{11}\\ \mathbf{Zohar}\ \mathbf{Manna} \end{array}$

Beyond Temporal Logics

Temporal logic expresses properties of infinite sequences of states, but there are interesting properties that cannot be expressed, e.g.,

"p is true only (at most) at even positions."

Questions (foundational/practical):

- What other languages can we use to express properties of sequences (⇒ properties of programs)?
- How do their expressive powers compare?
- How do their computational complexities (for the decision problems) compare?

ω -languages

- \varSigma : nonempty finite set (alphabet) of characters
- Σ^* : set of all <u>finite</u> strings of characters in Σ <u>finite</u> word $w \in \Sigma^*$
- Σ^{ω} : set of all <u>infinite</u> strings of characters in Σ <u> ω -word</u> $w \in \Sigma^{\omega}$
- (finitary) language: $\mathcal{L} \subseteq \Sigma^*$
- ω -language: $\mathcal{L} \subseteq \Sigma^{\omega}$

States

 $\frac{\text{Propositional LTL}}{\text{from the following:}} (\text{PLTL}) \text{ formulas are constructed}$

- propositions p_1, p_2, \ldots, p_n .
- boolean/temporal operators.
- a state s ∈ {f,t}ⁿ
 i.e., every state s is a truth-value assignment to all n propositional variables.

```
Example:
```

If n = 3, then $s : \langle p_1 : t, p_2 : f, p_3 : t \rangle$ corresponds to state tft.

 $p_1 \leftrightarrow p_2$ denotes the set of states $\{fff, fft, ttf, ttf\}$

• $\underline{\text{alphabet}}_{i.e, 2^n \text{ strings, one string for every state.}}^n$

Note: T, F = formulas (syntax)
$$t, f =$$
truth values (semantics) 11-4

Models of PLTL $\mapsto \omega$ -languages

• A <u>model</u> of PLTL for the language with n propositions

 σ : s_0, s_1, s_2, \ldots

can be viewed as an infinite string $s_0s_1s_2...$, i.e.,

$$\sigma \in (\{f,t\}^n)^{\omega}$$

• A PLTL formula φ denotes an ω -language

$$\mathcal{L} = \{ \sigma \mid \sigma \models \varphi \} \subseteq (\{f, t\}^n)^{\omega}$$

Example: If n = 3, then $\varphi : \Box(p_1 \leftrightarrow p_2)$ denotes the ω -language $\mathcal{L}(\varphi) = \{fff, fft, ttf, ttt\}^{\omega}$

Other Languages to Talk about Infinite Sequences

- ω -regular expressions
- ω -automata

Regular Expressions

Syntax:

$$r ::= \emptyset | \varepsilon | a | r_1 r_2 | r_1 + r_2 | r^*$$
$$(\varepsilon = \text{empty word}, \quad a \in \Sigma)$$

<u>Semantics:</u>

A regular expression r (on alphabet $\varSigma)$ denotes a finitary language

$$\mathcal{L}(r) \subseteq \Sigma^*:$$

$$\mathcal{L}(\emptyset) = \emptyset$$

$$\mathcal{L}(\varepsilon) = \{\varepsilon\}$$

$$\mathcal{L}(a) = \{a\}$$

$$\mathcal{L}(r_1r_2) = \mathcal{L}(r_1) \cdot \mathcal{L}(r_2) =$$

$$\{xy \mid x \in \mathcal{L}(r_1), y \in \mathcal{L}(r_2)\}$$

$$\mathcal{L}(r_1 + r_2) = \mathcal{L}(r_1) \cup \mathcal{L}(r_2)$$

$$\mathcal{L}(r^*) = \mathcal{L}(r)^* = \{x_1x_2 \cdots x_n \mid n \ge 0, x_1, x_2, \dots, x_n \in \mathcal{L}(r)\}$$

ω -regular expressions

Syntax:

$$\omega r ::= r_1(s_1)^{\omega} + r_2(s_2)^{\omega} + \dots + r_n(s_n)^{\omega}$$

$$n \ge 1, \ r_i, s_i = \text{regular expressions}$$

<u>Semantics:</u>

$$\mathcal{L}(rs^{\omega}) = \{ xy_1y_2 \cdots \mid x \in \mathcal{L}(r), \\ y_1, y_2, \ldots \in \mathcal{L}(s) \setminus \{\varepsilon\} \}$$

 rs^{ω} denotes all infinite strings with an initial prefix in $\mathcal{L}(r)$, followed by a concatenation of infinitely many nonempty words in $\mathcal{L}(s)$.

ω -regular expressions (cont.)

Example:	
Take $A = \{a, b\}$. ω -r.e.'s denote?	What languages do the following
$aa \; b^\omega$	ω -word starting with two
	a's, followed by b 's
$a^* \; b^\omega$	all ω -words starting with a
	finite string of a 's, followed
	by b 's
$(a+b)^* b^{\omega}$	all ω -words with only finitely
	many a 's
$((a+b)^*b)^\omega$	all ω -words containing infinitely many b 's

PLTL (future) $\mapsto \omega$ -r.e.'s

Expressive Power

- Every PLTL formula has an equivalent ω -r.e.
- PLTL is strictly weaker than ω-r.e.'s:
 "p is true only (at most) at even positions."

- not expressible in PLTL (Pierre Wolper, 1983)

- ω -r.e.: $(T(\neg p))^{\omega}$

• ω -r.e.'s are equivalent to ω -automata.

Finite-State Automata

Finite alphabet Σ .

<u>Automaton</u> \mathcal{A} : $\langle N, N_0, E, \mu, F \rangle$, where

- N: nodes
- $N_0 \subseteq N$: initial nodes
- $E \subseteq N \times N$: edges
- $\mu: N \to \mathbf{2}^{\Sigma}$: node labeling function
- $F \subseteq N$: final nodes

Note: We label the nodes and not the edges.

Finite-State Automata (Cont'd)

Main question:

Given a string

 σ : $s_0 \dots s_k$

over Σ , is σ accepted by \mathcal{A} ?

• <u>path</u> A sequence of nodes

 π : n_0, \ldots, n_k

is a path of \mathcal{A} if

 $- n_0 \in N_0$

- for every $i: 0 \dots k-1, \langle n_i, n_{i+1} \rangle \in E$.

Finite-State Automata (Cont'd)

• <u>trail</u>

A path

 π : n_0, \ldots, n_k

of \mathcal{A} is a trail of a string

 σ : s_0, \ldots, s_k

in \mathcal{A} if for every $i: 0 \dots k$,

 $s_i \in \mu(n_i).$

• $\frac{\text{accepted}}{\text{A string}}$

 σ : $s_0 \dots s_k$

is accepted by \mathcal{A} if it has a trail

 $\pi: n_0, \ldots, n_k$

in \mathcal{A} such that

 $n_k \in F$.

11 - 14

Finite-State Automata (Cont'd)

• $\mathcal{L}(\mathcal{A})$

The set of all strings ("languages") accepted by \mathcal{A} .

• <u>deterministic</u>

An automaton \mathcal{A} is called <u>deterministic</u> if every string has exactly one (not necessarily accepting) trail in \mathcal{A} .

• <u>total</u>

An automaton \mathcal{A} is called <u>total</u> if every string has <u>at least</u> one (not necessarily accepting) trail in \mathcal{A} .

Finite-State Automata: Decision Problems

• <u>Emptiness</u>: Is any string accepted?

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \emptyset$$

• <u>Universality</u>: Are all strings accepted?

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

• <u>Inclusion</u>:

Are all strings accepted by \mathcal{A}_1 accepted by \mathcal{A}_2 ?

$$\mathcal{L}(\mathcal{A}_1) \stackrel{?}{\subseteq} \mathcal{L}(\mathcal{A}_2)$$

Finite-State Automata: Operations

• Complementation:
$$\overline{\mathcal{A}}$$

 $\mathcal{L}(\overline{\mathcal{A}}) = \Sigma^* - \mathcal{L}(\mathcal{A})$

• Product:
$$\mathcal{A}_1 \times \mathcal{A}_2$$

 $\mathcal{L}(\mathcal{A}_1 \times \mathcal{A}_2) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$

• Union:
$$\mathcal{A}_1 + \mathcal{A}_2$$

 $\mathcal{L}(\mathcal{A}_1 + \mathcal{A}_2) = \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$

Using complementation and product construction, we only need a decision procedure for emptiness to decide universality and inclusion:

• Universality:

$$\mathcal{L}(\mathcal{A}) = \Sigma^* \iff \mathcal{L}(\overline{\mathcal{A}}) = \emptyset$$

• <u>Inclusion</u>:

 $\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) \iff \mathcal{L}(\mathcal{A}_1 \times \overline{\mathcal{A}_2}) = \emptyset$

Finite-State Automata: Determinization

For every nondeterministic automaton \mathcal{A}_N , there exists a deterministic automaton \mathcal{A}_D such that

$$\mathcal{L}(\mathcal{A}_N) = \mathcal{L}(\mathcal{A}_D).$$

(May cause exponential blowup in size.)

ω -Automata

Finite-state automata over infinite strings.

Main question: Given an <u>infinite</u> sequence of <u>states</u>

 $\sigma: s_0, s_1, s_2, \ldots$

is σ accepted by \mathcal{A} ?

Additional references:

• Section 5 of Wolfgang Thomas: "Languages, Automata, and Logic". In G. Rozenberg and A. Salomaa (eds.), *Handbook of Formal Languages*, V. III. (Tech Report version available on the web), pp. 389–455, 1997.

Part I of Wolfgang Thomas: "Automata on Infinite Objects". In Jan van Leeuwen (ed.), *Handbook of Theoretical Computer Science*, vol. B, Elsevier, 1990, pp.133–165.

 Moshe Vardi and Pierre Wolper, "An Automata Theoretic Approach to Program Verification", Symposium on Logic in Computer Science, 1986, pp.322–331. ω -Automata (Motivation)

$$\begin{array}{c} \hline n_1: p_1 \\ \hline n_2: \neg p_1 \land p_2 \\ \hline \end{array}$$

 n_1 represents all states in which p_1 is true; i.e. tf and tt.

$$\mu(n_1) = \{tf, tt\}$$

 $n_{\sf 2}$ represents all states in which $p_{\sf 1}$ is false and $p_{\sf 2}$ is true.

$$\mu(n_2) = \{ft\}$$

ω -Automata (Definition)

Set of propositions: p_1, \ldots, p_n . Alphabet $\Sigma = \{t, f\}^n$.

<u>Automaton</u> \mathcal{A} : $\langle N, N_0, E, \mu, F \rangle$, where

- N: finite set of nodes
- $N_0 \subseteq N$: initial nodes
- $E \subseteq N \times N$: edges
- $\mu: N \to \mathbf{2}^{\Sigma}$: node labeling function (assertions)
- F: acceptance condition

Note: Most of the literature on ω -automata uses <u>edge labeling</u>, similarly to automata on finite strings. However, we use <u>node labeling</u> to ease the transition to diagrams. The two approaches are equally expressive and can easily be translated into each other.

ω -Automata: Trails

Definition: A path

 $\pi : n_0, n_1, \dots$

of \mathcal{A} is a <u>trail</u> of an infinite sequence of states

 σ : s_0, s_1, \ldots

if for every $i \geq 0$,

$$s_i \models \mu(n_i) \quad (\text{or } s_i \in \mu(n_i)).$$

• In general, \mathcal{A} is <u>nondeterministic</u> i.e., trail π is not necessarily unique for σ .

11 - 22

• \mathcal{A} is <u>deterministic</u> if for every σ , there is exactly one trail π of σ .

$Inf(\pi)$

 $\underbrace{ \begin{array}{c} \text{infinite sequence of states} \\ \downarrow \\ \underline{\text{infinite trail}} \\ \pi : n_0, n_1, n_2, \dots \end{array} }_{\text{infinite trail}} \sigma : n_0, n_1, n_2, \dots$

 $\operatorname{inf}(\pi)$:

The set of nodes appearing infinitely often in π .

<u>Observe</u>:

- $inf(\pi)$ is <u>nonempty</u> since the set of nodes of the automaton is finite.
- The nodes in $inf(\pi)$ form a <u>Strongly Connected</u> Subgraph (SCS) in \mathcal{A} .

<u>SCS</u> S: Every node in S is reachable from every other node in S.

 $\underline{\text{MSCS } S}: \text{ a } \underline{\text{maximal}} \text{ SCS};$

i.e., S is not contained in any larger SCS.

Definition: An infinite sequence of states σ is <u>accepted</u> by \mathcal{A} if it has a trail π such that $\inf(\pi)$ is accepted by the acceptance condition.

Automata

<u>Muller</u> acceptance condition ($\mathcal{P} = \text{powerset}$):

$$F = \mathcal{P}(\{n_1, n_2, n_3, n_4\}) - \{\{n_2\}, \{n_2, n_4\}\}$$

<u>Streett</u> acceptance condition:

$$F = \{(\overbrace{\{n_3, n_4\}}^{\text{eventually}}, \overbrace{\{n_1, n_3\}}^{\text{infinitely}})\}$$

11-26

Automata (Cont'd)

Automaton for $\Box \diamondsuit p \to \Box \diamondsuit q$ $\diamondsuit \Box \neg p \lor \Box \diamondsuit q$

Nondeterministic:

 $\underline{\text{Muller}}$ acceptance condition:

$$F = \{\{n_2\}, \{n_4\}, \{n_3, n_4\}\}$$

 $\underline{Streett}$ acceptance condition:

$$F = \{(\{n_2\}, \{n_4\})\}$$

Question: Why is $\{n_1, n_2\}$ not in F_M ?

Question: Why $n_1 : p \land \neg q$ and not $n_1 : p$?

11-29

11 - 30

$$\frac{p \Rightarrow q_m \mathcal{W} q_{m-1} \dots q_1 \mathcal{W} q_0}{F_M} = \mathcal{P}(\{n_1, \dots, n_{m+2}\})$$
$$F_S = \{(\emptyset, \{n_1, \dots, n_{m+2}\})\}$$

11-32

Existence of ω -Automaton

Theorem: For every PLTL formula φ , there exists an ω -automaton \mathcal{A}_{φ} such that $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A}_{\varphi}).$

Question: Does the converse also hold?

• Consider \mathcal{A} :

$$\begin{array}{c} \hline n_1: \ \mathbf{T} \\ \hline \\ F_M = \{\{n_1, n_2\}\} \end{array}$$

$$\mathcal{L}(\mathcal{A}) = \text{all sequences of form}$$

$$\frac{p}{\neg p} p p p p p p p p p p p p \dots$$

Is there a PLTL formula φ such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\varphi)$?

11 - 33

Existence of ω -Automaton (Cont'd)

• First attempt: $\bigcirc p \land \Box (p \leftrightarrow \bigcirc \neg p)$

- Not good because it only accepts

$$\underline{\neg p \quad p \quad \neg p \quad p \quad \neg p \dots}$$

- That is, it accepts $\mathcal{L}(\mathcal{A}_1)$, with \mathcal{A}_1 :

Existence of ω -Automaton (Cont'd)

• Second attempt: $\bigcirc p \land \square(p \equiv \bigcirc \bigcirc p)$

- Not good because it accepts only

 $\neg p \quad p \quad \neg p \quad p \quad \neg p \quad \dots$

and

$$p \quad p \quad p \quad p \quad p \quad p \quad \dots$$

- That is, it accepts $\mathcal{L}(\mathcal{A}_2)$, with \mathcal{A}_2 :

ω -Automaton Expressiblity

It was shown by Wolper (1982) that there does not exist a PLTL formula φ such that $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A})$ for the automaton \mathcal{A} shown above.

Theorem: ω -automata are strictly more expressive than PLTL.

Theorem: For every ω -automaton \mathcal{A} there exists an existentially quantified formula φ such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\varphi)$.

Note: $\neg k$ at position 0. Why?