CS256/Spring 2008 - Lecture \#12

Zohar Manna

Chapter 5
Algorithmic Verification (of General Formulas)

> Algorithmic Verification of Finite-state Systems

Given finite-state program P,
i.e., each $x \in V$ assumes only finitely many values in all P-computations.

```
Example: MUX-PET1 (Fig. 3.4) is finite-state
    s=1,2
    y1= T, F 
\pi}\mathrm{ can assume at most 36 different values.
```

We present an algorithm (decision procedure) for establishing properties specified by an arbitrary (quantifier-free) temporal formula.

12-1

Example: Program mux-pet1 (Fig. 3.4)
(Peterson's Algorithm for mutual exclusion)
local y_{1}, y_{2} : boolean where $y_{1}=\mathrm{F}, y_{2}=\mathrm{F}$ $s \quad:$ integer where $s=1$
ℓ_{0} : loop forever do
$P_{1}:: \quad\left[\begin{array}{ll}\ell_{1}: & \text { noncritical } \\ \ell_{2}: & \left(y_{1}, s\right):=(\mathrm{T}, 1) \\ \ell_{3}: & \text { await }\left(\neg y_{2}\right) \vee(s \neq 1) \\ \ell_{4}: & \text { critical } \\ \ell_{5}: & y_{1}:=\mathrm{F}\end{array}\right]$
m_{0} : loop forever do
$P_{2}:: \quad\left[\begin{array}{ll}m_{1}: & \text { noncritical } \\ m_{2}: & \left(y_{2}, s\right):=(\mathrm{T}, 2) \\ m_{3}: & \text { await }\left(\neg y_{1}\right) \vee(s \neq 2) \\ m_{4}: & \text { critical } \\ m_{5}: & y_{2}:=\mathrm{F}\end{array}\right]$

Overview
Given a temporal formula φ

1) $\frac{\text { Is } \varphi \text { satisfiable? }}{\text { i.e., is there a model } \sigma \text { such that } \sigma \vDash \varphi \text { ? }}$

Apply algorithm for φ :
YES: $\frac{\varphi \text { satisfiable }}{\text { produce a model } \sigma \text { satisfying } \varphi}$

NO: $\quad \varphi$ unsatisfiable there exists no model σ satisfying φ
2) Is φ valid? [Is $\neg \varphi$ unsatisfiable?]

Apply algorithm for $\neg \varphi$:
YES: $\quad \neg \varphi$ satisfiable $=\varphi$ not valid
 (counterexample)

NO: $\quad \neg \varphi$ unsatisfiable $=\underline{\varphi}$ is valid

Given a temporal formula φ and
a finite-state program P
3) Is φP-satisfiable?
i.e., is there a P-computation σ such that $\sigma \vDash \varphi$?

Apply algorithm for φ and P :
YES: φP-satisfiable
produce a P-computation σ
satisfying φ
NO: $\quad \varphi P$-unsatisfiable
there exists no such computation

Given a temporal formula φ and a finite-state program P
4) Is φP-valid? [Is $\neg \varphi P$-unsatisfiable?]

Apply algorithm for $\neg \varphi$ and P :
YES: $\quad \neg \varphi P$-satisfiable $=\varphi$ not P-valid (Computation produced is a counterexample)

NO: $\quad \neg \varphi P$-unsatisfiable $=\varphi$ is P-valid

$\underline{\text { Idea of algorithm }}$

Construct a directed graph ("tableau") T_{φ} that exactly embeds all models of φ,
i.e., σ is embedded in T_{φ} iff $\sigma \vDash \varphi$.
Embedding in a graph

In the simplest version, the nodes of the graph are labelled by assertions. A model

$$
\sigma: s_{0}, s_{1}, \ldots s_{i}, \ldots
$$

is embedded in the graph if there exists a path

$$
\pi: n_{0}, n_{1}, \ldots n_{i}, \ldots
$$

(where n_{0} is an initial node)
such that for all $i \geq 0$,
s_{i} satisfies the assertion A_{i} labeling node n_{i},
i.e., $s_{i} \|=A_{i}$.

Examples:

embeds all sequences that satisfy

$$
(x=0) \wedge \bigcirc \square(x>0)
$$

embeds all sequences that satisfy

$$
(x=0) \mathcal{W}(x=5)
$$

Example: Construct a graph that embeds
exactly all sequences that satisfy

$$
p \Rightarrow p \mathcal{W} q
$$

12-9

$\underline{\text { Temporal Tableau vs. } \omega \text {-Automata }}$

To be able to embed exactly all sequences that satisfy a formula like $p \Rightarrow p \mathcal{U} q$, we need some additional conditions on embeddings. The two most popular ways of doing this are:

1. ω-Automata:

Add Muller or Streett-like acceptance conditions and interpret the graph as an ω-automaton.
2. Temporal Tableau:

In addition to assertions, label the nodes with temporal formulas that determine not only what happens in the current state but also what must happen in the future (i.e., that make promises) and then exclude paths that don't fulfill their promises.

Now we will only use the temproal tableau and we will not further consider the ω-automata approach. We distinguish between 2 types of Temporal Tableaux:

Atom Tableau and Particle Tableau.

Tableau: Motivation

Note that $\square(p \wedge \neg q)$ is embedded in the graph (as it should be since $\square(p \wedge \neg q)$ implies $(p \Rightarrow p \mathcal{W} q)$.

How do we construct a graph that embeds all sequences that satisfy $p \Rightarrow p \mathcal{U} q$?
Now sequences that satisfy $\square(p \wedge \neg q)$ should be excluded.

12-10

Satisfiability of a temporal formula

We consider temporal formulas that consist of

T F
$\neg \vee \wedge$
(logical connectives)
$\bigcirc \diamond \square \mathcal{U} \quad \mathcal{W}$
(temporal operators)

Note: In this class we will only deal with future temporal operators. The book covers both past and future temporal operators.

Atom Tableau

Closure

The closure of a formula φ
Φ_{φ}
is the smallest set of formulas satisfying:

- $\varphi \in \Phi_{\varphi}$
- For every $\psi \in \Phi_{\varphi}$ and subformula ξ of ψ,

$$
\xi \in \Phi_{\varphi}
$$

- For every $\psi \in \Phi_{\varphi}$,

$$
\neg \psi \in \Phi_{\varphi}
$$

($\neg \neg \psi$ is considered identical to ψ)

- For every ψ of the form$\psi_{1}, \diamond \psi_{1}, \psi_{1} \mathcal{U} \psi_{2}, \psi_{1} \mathcal{W} \psi_{2}$,
if $\psi \in \Phi_{\varphi}$ then $\bigcirc \psi \in \Phi_{\varphi}$

Example:The closure of

$$
\varphi_{1}: \quad \square p \wedge \diamond \neg p
$$

is $\Phi_{\varphi_{1}}=\Phi_{\varphi_{1}}^{+} \cup \Phi_{\varphi_{1}}^{-}$:
$\{$$p, \quad \diamond \neg p, \quad p$,

$\neg \varphi_{1}, \neg \square$ \square $\square p, \neg \diamond \neg p, \neg p$, \qquad $\square p, \neg \bigcirc \diamond \neg p\}$

Example: The closure of

is $\Phi_{\varphi_{2}}=\Phi_{\varphi_{2}}^{+} \cup \Phi_{\varphi_{2}}^{-}$:
$\left\{\varphi_{2}, \quad \psi, \quad p, \quad p \mathcal{W} q, \quad q, \quad \bigcirc \varphi_{2}, \bigcirc(p \mathcal{W} q)\right.$,
$\left.\neg \varphi_{2}, \neg \psi, \neg p, \neg(p \mathcal{W} q), \neg q, \neg \bigcirc \varphi_{2}, \neg \bigcirc(p \mathcal{W} q)\right\}$

Definition: Formulas in Φ_{φ} are called the closure formulas of φ

Example: The closure of

$$
\varphi_{0}: \diamond p
$$

is $\Phi_{\varphi_{0}}:\{\diamond p, p, \bigcirc \diamond p, \neg \diamond p, \neg p, \neg \bigcirc \diamond p\}$.

Atoms (Motivation)

Atoms are maximal "consistent" subsets of closure formulas that may hold together at some position in the model.

How do we identify consistent subsets?
Intuition: Based on the "Expansion Congruences".
We decompose temporal formulas into what must hold current state, and/or what must hold in the next state.

$$
\begin{aligned}
& \square p \approx p \wedge \bigcirc \square p \\
& \diamond p \approx p \vee \bigcirc \diamond p \\
& p \mathcal{U} q \approx q \vee[p \wedge \bigcirc(p \mathcal{U} q)] \\
& p \mathcal{W} q \approx q \vee[p \wedge \bigcirc(p \mathcal{W} q)]
\end{aligned}
$$

intended meaning:
An α-formula holds at position j
iff
all $\kappa(\alpha)$-formulas hold at j

Example:

p holds at position j in σiff
both p and $\bigcirc \square p$ hold at j

For this purpose, we classify formulas as

- α-formulas (conjunctive flavor) and
- β-formulas (disjunctive flavor)
based on the top-level connective/operator of the formula.

Atoms

$\underline{\text { atom over } \varphi} \varphi(\underline{\text {-atom }})$ is a subset $A \subseteq \Phi_{\varphi}$ satisfying the following requirements:

- $R_{\text {sat }}: \operatorname{state}(A)$, the conjunction of all state formulas in A is satisfiable
- R_{\neg} : For every $\psi \in \Phi_{\varphi}$,

$$
\psi \in A \quad \text { iff } \quad \neg \psi \notin A
$$

- R_{α} : For every α-formula $\psi \in \Phi_{\varphi}$,

$$
\psi \in A \quad \text { iff } \quad \kappa(\psi) \subseteq A
$$

[e.g.,$p \in A$ iff both $p \in A$ and $\bigcirc \square p \in A]$

- R_{β} : For every β-formula $\psi \in \Phi_{\varphi}$,
$\psi \in A \quad$ iff $\quad \kappa_{1}(\psi) \in A$,
or $\kappa_{2}(\psi) \subseteq A$ (or both)
[e.g., $p \mathcal{U} q \in A$ iff $q \in A$ or $\{p, \bigcirc(p \mathcal{U} q)\} \subseteq A$]

Basic Formula

Definition: A formula is called basic if it is an atomic formula (i.e., no operators or connectives) or a formula of the form $\bigcirc \psi$

Example:

$\varphi \varphi_{0}: \diamond p$
basic formulas in $\Phi_{\varphi_{0}}$:

$$
p, \bigcirc \diamond p
$$

Example:

$\varphi_{1}: \square p \wedge \diamond \neg p$
basic formulas in $\Phi_{\varphi_{1}}$:
$p, \quad \square p, \quad \bigcirc \diamond \neg p$
Example:
$\varphi_{2}: \quad \square(\neg p \vee(p \mathcal{W} q))$
basic formulas in $\Phi_{\varphi_{2}}$:

$$
p, \quad q, \quad \bigcirc \varphi_{2}, \quad \bigcirc(p \mathcal{W} q)
$$

Note: Due to R_{\neg}, φ-atom must contain ψ or $\neg \psi$ for every ψ of Φ_{φ}. Thus the number of formulas in an atom is always half the number of formulas in the closure.

Example:

$$
\varphi_{1}: \quad \square p \wedge \diamond \neg p
$$

closure

$$
\Phi_{\varphi_{1}}: \quad\left\{\varphi_{1}, \square p, \diamond \neg p, \bigcirc \square p, \bigcirc \diamond \neg p, p\right.
$$

$A:\left\{\varphi_{1}, \square p, \diamond \neg p, \bigcirc \square p, \bigcirc \diamond \neg p, p\right\}$ is an atom
$B:\left\{\varphi_{1}\right.$,
$\square p$
 is not an atom since by α-table,$p \in B \quad$ iff $\quad\{p, \bigcirc \square p\} \subseteq B$

Why important?
In an atom, the positive/negative presence of the basic formulas uniquely determine the rest of the atom.
Thus, if a closure has b basic formulas, then there are 2^{b} distinct atoms.

Systematic Construction of Atoms

Suppose we know only the presence/absence of the basic formulas -
the full atom A can be constructed following the definition of atom

Example: $\varphi_{1}: \square p \wedge \diamond \neg p$
Suppose we know
$\bigcirc \square p, \bigcirc \diamond \neg p \in A \quad \neg p \in A$ (i.e., $p \notin A$)
The full atom can be constructed as follows

- $\neg p \in A \rightarrow$ place $\neg \square p$ in A
- $\neg p \in A \rightarrow$ place $\diamond \neg p$ in A
- $\neg \square p \in A \rightarrow$ place $\neg(\underbrace{\square p \wedge \diamond \neg p}_{\varphi_{1}})$ in A

Final atom A :
$\{\underbrace{\neg p, \bigcirc \square p, \bigcirc \diamond \neg p}_{\begin{array}{c}\text { chosen } \\ \text { independently }\end{array}}, \underbrace{\neg \square p, \diamond \neg p, \neg \varphi_{1}}_{\begin{array}{c}\text { follow from } \\ \text { the rules }\end{array}}\}$

Atom Construction

- let $p_{1}, p_{2}, \ldots, p_{b}$ be all basic formulas in Φ_{φ}
- construct all 2^{b} combinations

$$
\left\{\begin{array}{c}
p_{1} \\
\neg p_{1}
\end{array}\right\}, \ldots,\left\{\begin{array}{c}
p_{b} \\
\neg p_{b}
\end{array}\right\}
$$

- complete each combination into a full atom using the α-table and the β-table.

Example: $\varphi_{0}: \diamond p$
$\Phi_{\varphi_{0}}:\{\diamond p, p, \bigcirc \diamond p, \neg \diamond p, \neg p, \neg \bigcirc \diamond p\}$
Basic formulas: $\{p, \bigcirc \diamond p\}$
Atoms:

$$
\begin{aligned}
& A_{1}:\{\underline{p}, \bigcirc \diamond p, \diamond p\} \\
& A_{2}:\{\underline{p}, \bigcirc \diamond p, \diamond p\} \\
& A_{3}:\{\underline{p}, \neg \bigcirc \diamond p, \diamond p\} \\
& A_{4}:\{\underline{p}, \neg \bigcirc \diamond p, \neg \diamond p\}
\end{aligned}
$$

Example:

$$
\varphi_{2}: \quad \square(\neg p \vee(p \mathcal{W} q))
$$

$\Phi_{\varphi_{2}}$ has four basic formulas

$$
p, \quad q, \quad \bigcirc \varphi_{2}, \quad \bigcirc(p \mathcal{W} q)
$$

Two atoms are:
$\left\{\neg p, \neg q, \bigcirc \varphi_{2}, \bigcirc(p \mathcal{W} q), \neg(p \mathcal{W} q), \neg p \vee(p \mathcal{W} q), \varphi_{2}\right\}$
$\left\{\neg p, \quad q, \bigcirc \varphi_{2}, \bigcirc(p \mathcal{W} q), \quad p \mathcal{W} q, \neg p \vee(p \mathcal{W} q), \varphi_{2}\right\}$
chosen
independently
follow from the rules

Example:

Generate all atoms of

$$
\varphi_{1}: \square p \wedge \diamond \neg p
$$

basic formulas

$$
p \quad \bigcirc \square p \quad \bigcirc \diamond \neg p
$$

8 possible combinations $=8$ atoms

chosen independently
follow from the rules

$\underline{\text { Tableau Construction } T_{\varphi}}$

Given formula φ, construct directed graph T_{φ} (tableau of φ):

- create a node for each atom of φ and label the node with that atom.
- A node is initial if $\varphi \in A$.

A

- Create an edge:

Atom A_{1} is connected to atom A_{2} by directed edge,

If for every $\bigcirc \psi \in \Phi_{\varphi}$,

$$
\bigcirc \psi \in A_{1} \quad \text { iff } \quad \psi \in A_{2}
$$

Recall: $\neg \bigcirc \psi \approx \bigcirc \neg \psi$

Example:

$$
\varphi_{1}: \square p \wedge \diamond \neg p
$$

Tableau $T_{\varphi_{1}}($ Fig 5.3)

Since

$$
A_{2}:\{\ldots, \neg \bigcirc \square p, \bigcirc \diamond \neg p, \ldots\}
$$

all successors of A_{2} must have

$$
\{\ldots, \neg \square p, \diamond \neg p, \ldots\}
$$

$$
A_{2} \rightarrow A_{0}, A_{2}, A_{3}, A_{4}, A_{6}
$$

$A_{2} \nrightarrow A_{1}, A_{5}, A_{7}$

Example: $\varphi: \diamond p$
Tableau T_{φ} :

-

Fig. 5.3: Tableau $T_{\varphi_{1}}$ for formula $\varphi_{1}: \square p \wedge \diamond \neg p$

Example:
$\varphi_{2}: \quad \square(\neg p \vee(p \mathcal{W} q))$
Let A and B be the atoms:

$$
\begin{aligned}
& A:\left\{\neg p, \neg q, \bigcirc \varphi_{2}, \bigcirc(p \mathcal{W} q),\right. \\
& \\
& \left.\quad \neg(p \mathcal{W} q), \neg p \vee(p \mathcal{W} q), \varphi_{2}\right\} \\
& B:\left\{\neg p, q, \bigcirc \varphi_{2}, \bigcirc(p \mathcal{W} q),\right. \\
& \left.\quad p \mathcal{W} q, \neg p \vee(p \mathcal{W} q), \varphi_{2}\right\}
\end{aligned}
$$

The tableau is:

Example:

basic formulas: $\{p, \bigcirc \diamond p\}$

Atoms: $\quad A_{1}: \quad\{\underline{p}, \bigcirc \widehat{\bigcirc p}, \diamond p\}$
$A_{2}: \quad\{\neg p, \bigcirc \diamond p, \diamond p\}$
$A_{3}: \quad\{\underline{p}, \neg \bigcirc \diamond p, \diamond p\}$
$A_{4}: \quad\{\neg p, \neg \bigcirc \diamond p, \neg \diamond p\}$

Paths induced by models

Definition: An infinite path

$$
\pi: A_{0}, A_{1}, \ldots
$$

in the tableau T_{φ} is induced by a model

$$
\sigma: s_{0}, s_{1}, \ldots
$$

if for all $j \geq 0$ and for all $\psi \in \Phi_{\varphi}$:

$$
\begin{gathered}
s_{j} \quad \vDash \psi \quad \text { iff } \quad \psi \in A_{j} \\
(\sigma, j)
\end{gathered}
$$

Paths:

π_{1} is induced by σ_{1}
π_{2} is induced by σ_{2}

> Paths induced by models (Cont'd)

Claim 1 (model \rightarrow induced path):
Consider formula φ and its tableau T_{φ}.
For every model σ of φ (i.e., $\sigma \vDash \varphi$)
there exists an infinite path

$$
\pi_{\sigma}: A_{0}, A_{1}, \ldots
$$

in T_{φ} such that π_{σ} is induced by σ

Converse?
The converse of claim 1 is not true:
There may be a path π in T_{φ} that is not induced by any model σ of φ.

Example: In $T_{\diamond p}$,
path $\pi: A_{2}^{\omega}$ is not induced by model $\sigma:(\neg p)^{\omega}$, since $\neg p, \diamond p \in A_{2}$ should hold at all positions j, but there is no σ such that
$\diamond p$ at position 0 and
$\neg p$ at all positions $j \geq 0$.

