CS256/Spring 2008 — Lecture #13 Zohar Manna Example: φ_0 : $\diamondsuit p$ Tableau T_{φ_0} : 13-1 # Promising Formula In $T_{\diamondsuit p}$, a path can start and stay forever in atom A_2 . But A_2 includes $\diamondsuit p$, i.e., A_2 promises that p will eventually happen, but it is never fulfilled in the path. We want to exclude these paths. The idea is that if a path contains an atom that includes a <u>promising formula</u>, then the path should fulfill the promise. A formula $\psi \in \Phi_{\varphi}$ is said to promise the formula r if ψ is one of the forms: # Example: $$\begin{array}{c|c} \hline \varphi_1 \colon \ \Box \ p \ \land \ \diamondsuit \ \neg p \\ \\ \hline \varPhi_{\varphi_1} \colon \left\{ \begin{array}{c|c} \varphi_1, & \Box \ p, & \underline{\diamondsuit} \ \neg p, & \bigcirc \ \Box \ p, & \bigcirc \diamondsuit \ p, & p \\ \hline \neg \varphi_1, & \underline{\neg} \ \Box \ p, & \neg \diamondsuit \ \neg p, & \neg \bigcirc \ \Box \ p, & \neg \bigcirc \diamondsuit \ p, & \neg p \end{array} \right\}$$ 13-2 Only 2 promising formulas in Φ_{φ} $$\psi_1$$: $\neg \square p$ promises r_1 : $\neg p$ ψ_2 : $\diamondsuit \neg p$ promises r_2 : $\neg p$ ### Promise Fulfillment # Property: Let σ be an arbitrary model of φ , and $\psi \in \Phi_{\varphi}$ a formula that promises r. If $(\sigma, j) \models \psi$ then $(\sigma, k) \models r$ for some $k \geq j$ **Proof:** Follows from the semantics of temporal formulas. Claim: (promise fulfillment by models) Let σ be an arbitrary model of φ , and $\psi \in \Phi_{\varphi}$ a formula that promises r. Then σ contains infinitely many positions $j \geq 0$ such that $$(\sigma, j) \models \neg \psi$$ or $(\sigma, j) \models r$ ### Proof: - 1. Assume σ contains infinitely many ψ -positions. Then σ must contain infinitely many r-positions, since ψ promises r. - 2. Assume σ contains finitely many ψ -positions. Then it contains infinitely many $\neg \psi$ -positions. 13-5 ### Fulfilling Atoms <u>Definition</u>: Atom A <u>fulfills</u> $\psi \in \Phi_{\varphi}$ (which promises r) if $\neg \psi \in A$ or $r \in A$. Example: In $T_{\diamondsuit p}$, Only one promising formula: $$\psi$$: $\langle \rangle p$ promises $r: p$ A_1^+ : $\{p, \bigcirc \diamondsuit p, \diamondsuit p\}$ fulfills $\diamondsuit p$ since $p \in A_1$ A_3^+ : $\{p, \neg \bigcirc \diamondsuit p, \diamondsuit p\}$ fulfills $\diamondsuit p$ since $p \in A_3$ A_4^+ : $\{\neg p, \neg \bigcirc \diamondsuit p, \neg \diamondsuit p\}$ fulfills $\diamondsuit p$ since $\neg \diamondsuit p \in A_4$ But $\begin{array}{ll} A_2^-: & \{\neg p, \ \bigcirc \ \diamondsuit \ p, \ \diamondsuit \ p\} \\ & \text{does not fulfill} \ \diamondsuit \ p \ \text{since} \ \diamondsuit \ p, \neg p \in A_2 \end{array}$ 13-6 # Tableau $T_{\bigotimes p}$ ### Fulfilling Paths <u>Definition</u>: A path $\pi: A_0, A_1, \ldots$ is <u>fulfilling</u> if for every promising formula $\psi \in \Phi_{\varphi}$ it contains infinitely many A_i that fulfill ψ . $\underline{\mathtt{Example:}}\ \mathrm{In}\ T_{\bigotimes p},$ $$A_2^-, A_2^-, A_2^-, A_3^+, A_4^+, A_4^+, \dots$$ $A_2^-, A_1^+, A_2^-, A_1^+, A_1^+, A_1^+, \dots$ are fulfilling paths, but $$A_2^-, A_2^-, A_2^-, A_2^-, A_2^-, A_2^-, A_2^-, \dots$$ is not a fulfilling path. Fig. 5.3: Tableau T_{φ_1} for formula φ_1 : $\square p \land \diamondsuit \neg p$ Example: $$\varphi_1$$: $\Box p \land \Diamond \neg p$ T_{φ_1} in Fig 5.3 There are two promising formulas in Φ : $$\psi_1 : \neg \Box p$$ promises $r_1 : \neg p$ $\psi_2 : \diamondsuit \neg p$ promises $r_2 : \neg p$ $$A_0^{++}$$: { $\neg p$, $\neg \Box p$, $\diamondsuit \neg p$, ... } $$A_1^{-+}$$: { p , $\neg \Box p$, $\neg \diamondsuit \neg p$, ... } A_2^{++} : { $\neg p$, $\neg \Box p$, $\diamondsuit \neg p$, ... } $$A_3^{--}$$: { $p, \neg \Box p, & \Diamond \neg p, \dots$ } $$A_3^{--}$$: { p , $\neg \Box p$, $\diamondsuit \neg p$, ...} A_4^{++} : { $\neg p$, $\neg \Box p$, $\diamondsuit \neg p$, ...} $$A_5^{++}$$: { p , $\Box p$, $\neg \diamondsuit \neg p$, ... } $$A_6^{++}$$: { $\neg p$, $\neg \Box p$, $\diamondsuit \neg p$, ... } $$A_7^{+-}$$: { p , $\Box p$, $\diamondsuit \neg p$, ...} 13-9 13-10 #### Example: (Cont'd) - path $(A_7^{+-})^{\omega}$ not fulfilling. - path $(A_2^{++})^{\omega}$ is fulfilling. - path $(A_2^{++}, A_3^{--})^{\omega}$ is fulfilling. - path A_4^{++} , $(A_5^{++})^{\omega}$ is fulfilling. - For arbitrary m, path $\pi: (A_2^{++}, A_3^{--})^m, A_4^{++}, (A_5^{++})^\omega$ is fulfilling. ### Models vs. fulfilling paths Claim 2 (model \rightarrow fulfilling path): If $$\pi_{\sigma}: A_0, A_1, \ldots$$ is a path induced by a model σ of φ , then π_{σ} is fulfilling. Claim 3 (fulfilling path \rightarrow model): If $$\pi_{\sigma}$$: A_0, A_1, \ldots is a fulfilling path in T_{φ} , then there exists a model σ of φ that induces π_{σ} . 13-11 13-12 # Proposition 1 (satisfiability by path) Formula φ is satisfiable iff the tableau T_{φ} contains a fulfilling path $\pi: A_0, A_1, A_2, \ldots$ such that $\varphi \in A_0$ Proof: - (\Leftarrow) π : A_0, A_1, \ldots is a fulfilling path in T_{φ} with $\varphi \in A_0$ Then, by Claim 3, there exists model σ such that $\forall j \geq 0, \forall p \in \Phi_{\varphi} : (\sigma, j) \models p$ iff $p \in A_j$ Since $\varphi \in A_0$, $(\sigma, 0) \models \varphi$ and thus $\sigma \models \varphi$. - (\Rightarrow) $\sigma \models \varphi$. Then by Claims 1, 2, there exists a fulfilling path π_{σ} in T_{φ} that is induced by σ . Since $(\sigma, 0) \models \varphi$, by the definition of induced, $\varphi \in A_0$. 13-13 ### Examples In the examples below we use the following optimization: A path starting in A can only visit nodes that are reachable from A in T_{φ} . So we only need to consider nodes that are reachable from nodes labeled by atoms A such that $\varphi \in A$. $\boxed{ \varphi \colon \square \, p \land \neg \bigcirc p }$ $$\Phi_{\varphi} = \{ \varphi, \square p, \bigcirc \square p, p, \bigcirc p, \\ \neg \varphi, \neg \square p, \neg \bigcirc \square p, \neg p, \neg \bigcirc p \}$$ Basic formulas: $\{\bigcirc p, \bigcirc \square p, p\} \rightarrow 8$ atoms There is only one atom such that $\varphi \in A$: $$A: \{\neg \bigcirc p, \bigcirc \square p, p, \square p, \varphi\}$$ Any successor of A requires $\neg p$, $\square p$, but these cannot coexist in any atom. So the part of T_{φ} reachable from A is A So there is no fulfilling path (no path at all, as A does not have a successor). Hence, φ is not satisfiable. 13-14 # Example: $$\varphi_1: \Box p \land \Diamond \neg p$$ $\Phi_{\varphi_1} =$ $$\{ \varphi_1, \ \Box p, \ \diamondsuit \neg p, \ p, \ \bigcirc \Box p, \ \bigcirc \diamondsuit \neg p, \\ \neg \varphi_1, \ \underline{\neg} \underline{\Box} p, \ \neg \diamondsuit \neg p, \ \neg p, \ \neg \bigcirc \Box p, \ \neg \bigcirc \diamondsuit \neg p \ \}$$ $\neg \square p$ and $\diamondsuit \neg p$ promise $\neg p$. Basic formulas: $$\{p, \bigcirc \Box p, \bigcirc \diamondsuit \neg p\} \rightarrow 8 \text{ atoms}$$ There is only one atom s.t. $\varphi_1 \in A$: $$A_7: \{p, \bigcirc \square p, \bigcirc \Diamond \neg p, \square p, \Diamond \neg p, \varphi_1\}$$ Any successor of A_7 requires $\square p$, $\diamondsuit \neg p$, and therefore φ_1 . So the only successor is A_7 itself, and the part of T_{φ_1} reachable from A_7 is which has the infinite path $A_{\bf 7}^{\omega}$. However, A_7^{+-} does not fulfill the promising formula $\bigcirc \neg p$, and thus A_7^{ω} is not a fulfilling path. Hence, φ_1 is not satisfiable. # Strongly Connected Subgraphs (SCS's) ### <u>Definitions</u> • A subgraph $S \subseteq T_{\varphi}$ is called strongly connected subgraph (SCS) if for every 2 distinct atoms $A, B \in S$, there exists a path from A to B which only passes through atoms of S Note: a single-node subgraph is an SCS • A single-node SCS is called <u>transient</u> ("bad") if it is not connected to itself • A non-transient ("good") SCS S is <u>fulfilling</u> if <u>every</u> promising formula $\psi \in \Phi_{\varphi}$ is fulfilled by some atom $A \in S$, i.e. $$\neg \psi \in A \quad \text{or} \quad r \in A$$ 13-17 • SCS S is φ -reachable if there exist a path and $k \geq 0$ $$B_0, B_1, \ldots, B_k, \ldots$$ such that $\varphi \in B_0$ and $B_k \in S$. Example: In $T_{\bigcirc p}$, $\{A_1^+\},\ \{A_1^+,\ A_2^-\},\ \{A_4^+\}\ {\rm are\ fulfilling}$ $\{A_2^-\}$ is not fulfilling All SCSs are $(\diamondsuit p)$ -reachable. A_3 is a transient SCS. All others are good SCSs. Example: In T_{φ_1} (Fig. 5.3), $\{A_4\}$ transient SCS $\{A_5\}$ good SCS $\{A_7\}$ is the only φ_1 -reachable SCS $\{\underline{A_2^{++}, A_3^{--}}\} \{\underline{A_5^{++}}\}$ fulfilling SCS's $\{\underline{A_1^{-+}}\}\ \{\underline{A_7^{+-}}\}$ SCS's but not fulfilling 13-18 # Tableau $T_{\bigotimes p}$ # Why scs's? In general a tableau may have infinitely many paths, so we cannot directly determine whether there are any fulfilling paths. What needs to hold? - When does a graph have an infinite path? - \rightarrow it must have a non-transient SCS. - When is such an infinite path induced by a model of φ ? - \rightarrow SCS must be φ -reachable, i.e., reachable from a node labeled by A, s.t. $\varphi \in A$ - \rightarrow SCS must be *fulfilling*, i.e., for every promising formula $\psi \in \varPhi_{\varphi}$ the SCS must have at least one atom that fulfills ψ . ### Proposition (satisfiability by SCS) Formula φ is satisfiable :# iff the tableau T_{φ} contains a φ -reachable fulfilling SCS The number of SCS's in a graph is finite, but may be exponential in the size of the graph! Example: φ_0 : $\diamondsuit p$ In $$T_{\varphi_0}$$, the fulfilling SCS's are reachable from an initial node. Thus, φ_0 : $\diamondsuit p$ is satisfiable. Satisfying models: $$p^{\omega}$$ $(p, \neg p)^{\omega}$ $p, (\neg p)^{\omega}$. $\{A_1^+\}\ \{A_1^+, A_2^-\}\ \{A_4^+\}$ ### Maximal Strongly Connected Subgraphs (MSCS's) <u>Definition:</u> An SCS is <u>maximal</u> (<u>MSCS</u>) if it is not properly contained in any larger SCS Example: In T_{φ_1} (Fig. 5.3), $$\underbrace{\{A_2\}\ \{A_3\}}_{\text{not MSCS}} \quad \underbrace{\{A_2, A_3\}}_{\text{MSCS}}$$ In fact, it is sufficient to determine whether there exists a fulfilling reachable MSCS in T_{φ} . The number of MSCS in T_{φ} is bounded by $|T_{\varphi}|$. 13-21 ### Decomposition into MSCS's There exists an efficient algorithm [Hopcroft&Tarjan] to decompose T_{φ} into subgraphs G_1, \ldots, G_N such that - each G_i is an MSCS (and therefore disjoint) - $G_1 \cup \ldots \cup G_N = T_{\varphi}$ - whenever there is an edge from a node in G_i to a node in G_j then $i \leq j$. # Algorithm SAT (check satisfiability of arbitrary temporal formula φ) - construct T_{φ} - construct $\underline{T_{\varphi}}$ by removing all atoms that are not reachable from φ -atom - decompose T_{φ}^- into MSCS's U_1, \ldots, U_k - check whether U_1, \ldots, U_k is fulfilling: - if some U_i is fulfilling: φ is satisfiable. A model is defined by the path leading from a φ -atom to U_i and staying in U_i forever from then on. - <u>if no U_i is fulfilling:</u> φ is not satisfiable. # Proposition (satisfiability and MSCS) Formula φ is satisfiable iff The tableau T_{φ}^- contains a $\varphi\text{-reachable}$ fulfilling MSCS # Check validity of φ Apply algorithm SAT to $\neg \varphi$ Algorithm reports success: $\neg \varphi$ is satisfiable = φ is not valid (the produced σ is a counterexample) Algorithm reports failure: $\neg \varphi$ is unsatisfiable = φ is valid 13-25 13-27 $$\boxed{\varphi_1 \colon \Box p \ \land \ \diamondsuit \neg p}$$ Example: Check satisfiablility of T_{φ_1} (Fig 5.3) $T_{\varphi_1}^- = \{A_7^+^-\}$ MSCS of $T_{\varphi_1}^- = \{A_7^{+-}\}$ nonfulfilling $\Longrightarrow \varphi_1$ is unsatisfiable # Example: $$\boxed{\psi_1 = \neg \varphi_1 : \neg (\Box p \land \Diamond \neg p)}$$ T_{ψ_1} (Fig 5.3) $T_{\psi_1}^-$: all atoms MSCS's: $$\{A_0\}, \{A_4\}, \{A_6\}$$ transient $\{A_1^{-+}\}, \{A_7^{+-}\}$ non-fulfilling $\{A_2^{++}, A_3^{--}\}, \{A_5^{++}\}$ fulfilling ψ_1 satisfiable For $$A_5^{++}$$: A_5^{ω} model $\langle p: \mathsf{T} \rangle^{\omega}$ For $\{A_2^{++}, A_3^{--}\}$: $(A_2, A_3)^{\omega}$ model $(\langle p: \mathsf{F} \rangle \langle p: \mathsf{T} \rangle)^{\omega}$ each satisfies ψ_1 13-26 # Fig. 5.3: Tableau T_{φ_1} for formula φ_1 : $\square p \land \stackrel{\frown}{\Diamond} \neg p$ # Example: Check satisfiability of $$\Phi_{\varphi_2}^+$$: { $\square p_2$, $\bigcirc \square p_2$, p_2 , $at_{-\ell_2}$, $\Diamond at_{-\ell_3}$, $\bigcirc \Diamond at_{-\ell_3}$, $at_{-\ell_3}$, } φ_2 -reachable atoms $$\{ \underbrace{\Box p_2}_{\widetilde{\varphi_2}}, \bigcirc \Box p_2, p_2, \underbrace{\varphi_2}_{\text{fixed}}$$ $$\underbrace{at_{-\ell_2, at_{-\ell_3}}, \bigcirc \diamondsuit at_{-\ell_3}, \bigcirc at_{-\ell_3}, \bigcirc at_{-\ell_3}, \neg \diamondsuit at_{-\ell_3}}_{\text{8 possibilities}} \}$$ One promising formula in Φ : $\Diamond at_{-\ell_3}$ (and $\neg \Box p_2$) $$A_0^+: \{ \Box p_2, \quad \bigcirc \Box p_2, \quad p_2, \quad \neg at-\ell_2, \quad \neg at-\ell_3, \quad \neg \bigcirc \diamondsuit at-\ell_3, \quad \neg \diamondsuit at-\ell_3 \}$$ $$A_1^-: \{ \Box p_2, \quad \bigcirc \Box p_2, \quad p_2, \quad \neg at-\ell_2, \quad \neg at-\ell_3, \quad \bigcirc \diamondsuit at-\ell_3, \quad \diamondsuit at-\ell_3 \}$$ $$A_3^+$$: { $\Box p_2$, $\bigcirc \Box p_2$, p_2 , $\neg at-\ell_2$, $at-\ell_3$, $\bigcirc \diamondsuit at-\ell_3$, $\diamondsuit at-\ell_3$, $$A_3$$: $\{ \Box p_2, \ \bigcirc \Box p_2, \ p_2, \ at-e_2, \ at-e_3, \ \bigcirc \lor at-e_3, \ \lor at-e_3 \}$ $$A_5^+$$: { $\Box p_2$, $\bigcirc \Box p_2$, p_2 , at_ℓ_2 , at_ℓ_3 , $\neg \bigcirc \diamondsuit at_\ell_3$, $\diamondsuit at_\ell_3$ } $$A_6^+$$: $\{ \Box p_2, \bigcirc \Box p_2, p_2, at_{-\ell_2}, at_{-\ell_3}, \bigcirc \diamondsuit at_{-\ell_3}, \diamondsuit at_{-\ell_3} \}$ # Example: (Cont'd) Atom #8 $$\{ \underline{\square p_2}, \underline{\bigcirc \square p_2}, \underline{p_2}, at_{-\ell_2}, \\ \neg at_{-\ell_3}, \neg \underline{\bigcirc} \diamondsuit at_{-\ell_3}, \dots \}$$ is not considered since $$\underbrace{\neg at-\ell_2 \lor \diamondsuit at-\ell_3}_{p_2} \quad \text{and} \quad at-\ell_2 \to \diamondsuit at-\ell_3$$ $$\neg at-\ell_3 \quad \text{and} \quad \neg \bigcirc \diamondsuit at-\ell_3 \to \neg \diamondsuit at-\ell_3$$ Tableau $$T_{\varphi_2}$$ (Fig 5.4) = $T_{\varphi_2}^-$ formula $\diamondsuit at - \ell_3$ promising $at - \ell_3$ Fig. 5.4. Tableau for $$\varphi_2$$: $\Box(\neg at - \ell_2 \lor \diamondsuit at - \ell_3)$ 13-29 Decomposition to MSCS's $$\{A_1^-, A_3^+, A_4^-, A_6^+\} \{A_2^+\} \{A_5^+\} \{A_0^+\}$$ fulfilling MSCS's: $$\{A_0^+\}$$, $\{A_1^-, A_3^+, A_4^-, A_6^+\}$ ($\{A_2\}$ and $\{A_5\}$ are transient) φ_2 is satisfiable model (by A_0^{ω}) $$\langle at_{-}\ell_{2}: f, at_{-}\ell_{3}: f \rangle^{\omega}$$ # Pruning the tableau <u>Definition:</u> MSCS S is <u>terminal</u> if there are no edges leading from atoms of S to atoms outside S Example: Consider $$\psi_1 = \neg \varphi_1 : \neg (\Box p \land \Diamond \neg p)$$ In T_{ψ_1} (same as T_{φ_1} , Fig 5.3, except for initial nodes) $\{A_1\}$ $\{A_5\}$ $\{A_7\}$ are terminal MSCS's $\{A_6\}$ $\{A_2, A_3\}$ are not After constructing T_{φ} , remove useless atoms: - Remove an MSCS that is not φ -reachable. - Remove a terminal MSCS that is not fulfilling. Iterate until no further atoms can be removed. Fig. 5.3: Tableau T_{ψ_1} for formula ψ_1 : $\neg (\Box p \land \diamondsuit \neg p)$. Pruned Tableau $T_{\psi_1}^-$ for $\psi_1 : \neg(\Box p \land \diamondsuit \neg p)$ Fulfilling MSC's: $\{A_2^{++}, A_3^{-+}\}, \{A_5^{++}\}$ $\psi_1: \neg(\Box p \land \diamondsuit \neg p)$ is satisfiable. 13-33 ### Example: 8 atoms A_0, \ldots, A_7 (see list) $$\{\underbrace{x=3,\ \bigcirc \diamondsuit(x=3),\ \bigcirc \varphi_3}_{\text{8 possibilities}},\ \dots\}$$ Promising formulas: $\Diamond(x=3)$ and $\neg \underline{\Box \Diamond(x=3)}$ $$A_0^{++}: \{x=3, \quad \bigcirc \diamondsuit(x=3), \quad \bigcirc \varphi_3, \quad \diamondsuit(x=3), \quad \varphi_3\}$$ $$A_1^{-+}: \{x\neq 3, \quad \bigcirc \diamondsuit(x=3), \quad \bigcirc \varphi_3, \quad \diamondsuit(x=3), \quad \varphi_3\}$$ $$A_2^{++}: \{x=3, \quad \neg \bigcirc \diamondsuit(x=3), \quad \bigcirc \varphi_3, \quad \diamondsuit(x=3), \quad \varphi_3\}$$ $$A_3^{++}: \{x\neq 3, \quad \neg \bigcirc \diamondsuit(x=3), \quad \bigcirc \varphi_3, \quad \neg \diamondsuit(x=3), \quad \neg \varphi_3\}$$ $$A_4^{+-}: \{x=3, \quad \bigcirc \diamondsuit(x=3), \quad \neg \bigcirc \varphi_3, \quad \diamondsuit(x=3), \quad \neg \varphi_3\}$$ $$A_5^{--}: \{x\neq 3, \quad \bigcirc \diamondsuit(x=3), \quad \neg \bigcirc \varphi_3, \quad \diamondsuit(x=3), \quad \neg \varphi_3\}$$ $$A_6^{+-}: \{x=3, \quad \neg \bigcirc \diamondsuit(x=3), \quad \neg \bigcirc \varphi_3, \quad \diamondsuit(x=3), \quad \neg \varphi_3\}$$ A_7^{++} : $\{x \neq 3, \neg \bigcirc \diamondsuit(x=3), \neg \bigcirc \varphi_3, \neg \diamondsuit(x=3), \neg \varphi_3\}$ Fig. 5.6. Pruned tableau $T_{\varphi_3}^-$ The φ_3 -reachable MSCS's: $\{A_0^{++}, A_1^{-+}\}$ $\{A_0^{++}, A_1^{-+}\}$ is fulfilling. Therefore, φ_3 is satisfiable. Model (by $$(A_0,A_1)^\omega$$): $(\langle x\colon 3\rangle,\langle x\colon 0\rangle)^\omega$ $$\uparrow$$ arbitrary $x\neq 3$