CS256/Spring 2008 — Lecture #13

Zohar Manna

Example: φ_0 : $\diamondsuit p$

Tableau T_{φ_0} :

13-1

Promising Formula

In $T_{\diamondsuit p}$, a path can start and stay forever in atom A_2 . But A_2 includes $\diamondsuit p$, i.e., A_2 promises that p will eventually happen, but it is never fulfilled in the path. We want to exclude these paths.

The idea is that if a path contains an atom that includes a <u>promising formula</u>, then the path should fulfill the promise.

A formula $\psi \in \Phi_{\varphi}$ is said to promise the formula r if ψ is one of the forms:

Example:

$$\begin{array}{c|c} \hline \varphi_1 \colon \ \Box \ p \ \land \ \diamondsuit \ \neg p \\ \\ \hline \varPhi_{\varphi_1} \colon \left\{ \begin{array}{c|c} \varphi_1, & \Box \ p, & \underline{\diamondsuit} \ \neg p, & \bigcirc \ \Box \ p, & \bigcirc \diamondsuit \ p, & p \\ \hline \neg \varphi_1, & \underline{\neg} \ \Box \ p, & \neg \diamondsuit \ \neg p, & \neg \bigcirc \ \Box \ p, & \neg \bigcirc \diamondsuit \ p, & \neg p \end{array} \right\}$$

13-2

Only 2 promising formulas in Φ_{φ}

$$\psi_1$$
: $\neg \square p$ promises r_1 : $\neg p$
 ψ_2 : $\diamondsuit \neg p$ promises r_2 : $\neg p$

Promise Fulfillment

Property:

Let σ be an arbitrary model of φ , and $\psi \in \Phi_{\varphi}$ a formula that promises r. If $(\sigma, j) \models \psi$ then $(\sigma, k) \models r$ for some $k \geq j$

Proof: Follows from the semantics of temporal formulas.

Claim: (promise fulfillment by models)

Let σ be an arbitrary model of φ ,

and $\psi \in \Phi_{\varphi}$ a formula that promises r.

Then σ contains infinitely many positions $j \geq 0$ such that

$$(\sigma, j) \models \neg \psi$$
 or $(\sigma, j) \models r$

Proof:

- 1. Assume σ contains infinitely many ψ -positions. Then σ must contain infinitely many r-positions, since ψ promises r.
- 2. Assume σ contains finitely many ψ -positions. Then it contains infinitely many $\neg \psi$ -positions.

13-5

Fulfilling Atoms

<u>Definition</u>: Atom A <u>fulfills</u> $\psi \in \Phi_{\varphi}$ (which promises r)

if $\neg \psi \in A$ or $r \in A$.

Example: In $T_{\diamondsuit p}$,

Only one promising formula:

$$\psi$$
: $\langle \rangle p$ promises $r: p$

 A_1^+ : $\{p, \bigcirc \diamondsuit p, \diamondsuit p\}$ fulfills $\diamondsuit p$ since $p \in A_1$

 A_3^+ : $\{p, \neg \bigcirc \diamondsuit p, \diamondsuit p\}$ fulfills $\diamondsuit p$ since $p \in A_3$

 A_4^+ : $\{\neg p, \neg \bigcirc \diamondsuit p, \neg \diamondsuit p\}$ fulfills $\diamondsuit p$ since $\neg \diamondsuit p \in A_4$

But

 $\begin{array}{ll} A_2^-: & \{\neg p, \ \bigcirc \ \diamondsuit \ p, \ \diamondsuit \ p\} \\ & \text{does not fulfill} \ \diamondsuit \ p \ \text{since} \ \diamondsuit \ p, \neg p \in A_2 \end{array}$

13-6

Tableau $T_{\bigotimes p}$

Fulfilling Paths

<u>Definition</u>: A path $\pi: A_0, A_1, \ldots$ is <u>fulfilling</u> if for every promising formula $\psi \in \Phi_{\varphi}$ it contains infinitely many A_i that fulfill ψ .

 $\underline{\mathtt{Example:}}\ \mathrm{In}\ T_{\bigotimes p},$

$$A_2^-, A_2^-, A_2^-, A_3^+, A_4^+, A_4^+, \dots$$

 $A_2^-, A_1^+, A_2^-, A_1^+, A_1^+, A_1^+, \dots$

are fulfilling paths, but

$$A_2^-, A_2^-, A_2^-, A_2^-, A_2^-, A_2^-, A_2^-, \dots$$

is not a fulfilling path.

Fig. 5.3: Tableau T_{φ_1} for formula φ_1 : $\square p \land \diamondsuit \neg p$

Example:

$$\varphi_1$$
: $\Box p \land \Diamond \neg p$

 T_{φ_1} in Fig 5.3

There are two promising formulas in Φ :

$$\psi_1 : \neg \Box p$$
 promises $r_1 : \neg p$
 $\psi_2 : \diamondsuit \neg p$ promises $r_2 : \neg p$

$$A_0^{++}$$
: { $\neg p$, $\neg \Box p$, $\diamondsuit \neg p$, ... }

$$A_1^{-+}$$
: { p , $\neg \Box p$, $\neg \diamondsuit \neg p$, ... } A_2^{++} : { $\neg p$, $\neg \Box p$, $\diamondsuit \neg p$, ... }

$$A_3^{--}$$
: { $p, \neg \Box p, & \Diamond \neg p, \dots$ }

$$A_3^{--}$$
: { p , $\neg \Box p$, $\diamondsuit \neg p$, ...}
 A_4^{++} : { $\neg p$, $\neg \Box p$, $\diamondsuit \neg p$, ...}

$$A_5^{++}$$
 : { p , $\Box p$, $\neg \diamondsuit \neg p$, ... }

$$A_6^{++}$$
: { $\neg p$, $\neg \Box p$, $\diamondsuit \neg p$, ... }

$$A_7^{+-}$$
: { p , $\Box p$, $\diamondsuit \neg p$, ...}

13-9 13-10

Example: (Cont'd)

- path $(A_7^{+-})^{\omega}$ not fulfilling.
- path $(A_2^{++})^{\omega}$ is fulfilling.
- path $(A_2^{++}, A_3^{--})^{\omega}$ is fulfilling.
- path A_4^{++} , $(A_5^{++})^{\omega}$ is fulfilling.
- For arbitrary m, path $\pi: (A_2^{++}, A_3^{--})^m, A_4^{++}, (A_5^{++})^\omega$ is fulfilling.

Models vs. fulfilling paths

Claim 2 (model \rightarrow fulfilling path):

If

$$\pi_{\sigma}: A_0, A_1, \ldots$$

is a path induced by a model σ of φ , then π_{σ} is fulfilling.

Claim 3 (fulfilling path \rightarrow model):

If

$$\pi_{\sigma}$$
: A_0, A_1, \ldots

is a fulfilling path in T_{φ} , then there exists a model σ of φ that induces π_{σ} .

13-11 13-12

Proposition 1 (satisfiability by path)

Formula φ is satisfiable

iff

the tableau T_{φ} contains a fulfilling path $\pi: A_0, A_1, A_2, \ldots$ such that $\varphi \in A_0$

Proof:

- (\Leftarrow) π : A_0, A_1, \ldots is a fulfilling path in T_{φ} with $\varphi \in A_0$ Then, by Claim 3, there exists model σ such that $\forall j \geq 0, \forall p \in \Phi_{\varphi} : (\sigma, j) \models p$ iff $p \in A_j$ Since $\varphi \in A_0$, $(\sigma, 0) \models \varphi$ and thus $\sigma \models \varphi$.
- (\Rightarrow) $\sigma \models \varphi$. Then by Claims 1, 2, there exists a fulfilling path π_{σ} in T_{φ} that is induced by σ . Since $(\sigma, 0) \models \varphi$, by the definition of induced, $\varphi \in A_0$.

13-13

Examples

In the examples below we use the following optimization: A path starting in A can only visit nodes that are reachable from A in T_{φ} . So we only need to consider nodes that are reachable from nodes labeled by atoms A such that $\varphi \in A$.

 $\boxed{ \varphi \colon \square \, p \land \neg \bigcirc p }$

$$\Phi_{\varphi} = \{ \varphi, \square p, \bigcirc \square p, p, \bigcirc p, \\
\neg \varphi, \neg \square p, \neg \bigcirc \square p, \neg p, \neg \bigcirc p \}$$

Basic formulas: $\{\bigcirc p, \bigcirc \square p, p\} \rightarrow 8$ atoms

There is only one atom such that $\varphi \in A$:

$$A: \{\neg \bigcirc p, \bigcirc \square p, p, \square p, \varphi\}$$

Any successor of A requires $\neg p$, $\square p$, but these cannot coexist in any atom.

So the part of T_{φ} reachable from A is A

So there is no fulfilling path (no path at all, as A does not have a successor).

Hence, φ is not satisfiable.

13-14

Example:

$$\varphi_1: \Box p \land \Diamond \neg p$$

 $\Phi_{\varphi_1} =$

$$\{ \varphi_1, \ \Box p, \ \diamondsuit \neg p, \ p, \ \bigcirc \Box p, \ \bigcirc \diamondsuit \neg p, \\ \neg \varphi_1, \ \underline{\neg} \underline{\Box} p, \ \neg \diamondsuit \neg p, \ \neg p, \ \neg \bigcirc \Box p, \ \neg \bigcirc \diamondsuit \neg p \ \}$$

 $\neg \square p$ and $\diamondsuit \neg p$ promise $\neg p$.

Basic formulas:

$$\{p, \bigcirc \Box p, \bigcirc \diamondsuit \neg p\} \rightarrow 8 \text{ atoms}$$

There is only one atom s.t. $\varphi_1 \in A$:

$$A_7: \{p, \bigcirc \square p, \bigcirc \Diamond \neg p, \square p, \Diamond \neg p, \varphi_1\}$$

Any successor of A_7 requires $\square p$, $\diamondsuit \neg p$, and therefore φ_1 .

So the only successor is A_7 itself, and the part of T_{φ_1} reachable from A_7 is

which has the infinite path $A_{\bf 7}^{\omega}$.

However, A_7^{+-} does not fulfill the promising formula $\bigcirc \neg p$, and thus A_7^{ω} is not a fulfilling path. Hence, φ_1 is not satisfiable.

Strongly Connected Subgraphs (SCS's)

<u>Definitions</u>

• A subgraph $S \subseteq T_{\varphi}$ is called strongly connected subgraph (SCS) if for every 2 distinct atoms $A, B \in S$, there exists a path from A to B which only passes through atoms of S

Note: a single-node subgraph is an SCS

• A single-node SCS is called <u>transient</u> ("bad") if it is not connected to itself

• A non-transient ("good") SCS S is <u>fulfilling</u> if <u>every</u> promising formula $\psi \in \Phi_{\varphi}$ is fulfilled by some atom $A \in S$, i.e.

$$\neg \psi \in A \quad \text{or} \quad r \in A$$

13-17

• SCS S is φ -reachable if there exist a path and $k \geq 0$

$$B_0, B_1, \ldots, B_k, \ldots$$

such that $\varphi \in B_0$ and $B_k \in S$.

Example: In $T_{\bigcirc p}$,

 $\{A_1^+\},\ \{A_1^+,\ A_2^-\},\ \{A_4^+\}\ {\rm are\ fulfilling}$

 $\{A_2^-\}$ is not fulfilling

All SCSs are $(\diamondsuit p)$ -reachable.

 A_3 is a transient SCS. All others are good SCSs.

Example: In T_{φ_1} (Fig. 5.3),

 $\{A_4\}$ transient SCS

 $\{A_5\}$ good SCS

 $\{A_7\}$ is the only φ_1 -reachable SCS

 $\{\underline{A_2^{++}, A_3^{--}}\} \{\underline{A_5^{++}}\}$ fulfilling SCS's

 $\{\underline{A_1^{-+}}\}\ \{\underline{A_7^{+-}}\}$ SCS's but not fulfilling

13-18

Tableau $T_{\bigotimes p}$

Why scs's?

In general a tableau may have infinitely many paths, so we cannot directly determine whether there are any fulfilling paths.

What needs to hold?

- When does a graph have an infinite path?
 - \rightarrow it must have a non-transient SCS.
- When is such an infinite path induced by a model of φ ?
 - \rightarrow SCS must be φ -reachable, i.e., reachable from a node labeled by A, s.t. $\varphi \in A$
 - \rightarrow SCS must be *fulfilling*, i.e., for every promising formula $\psi \in \varPhi_{\varphi}$ the SCS must have at least one atom that fulfills ψ .

Proposition (satisfiability by SCS)

Formula φ is satisfiable :#

iff

the tableau T_{φ} contains a φ -reachable fulfilling SCS

The number of SCS's in a graph is finite, but may be exponential in the size of the graph!

Example: φ_0 : $\diamondsuit p$

In
$$T_{\varphi_0}$$
, the fulfilling SCS's

are reachable from an initial node.

Thus, φ_0 : $\diamondsuit p$ is satisfiable.

Satisfying models:

$$p^{\omega}$$
 $(p, \neg p)^{\omega}$ $p, (\neg p)^{\omega}$.

 $\{A_1^+\}\ \{A_1^+, A_2^-\}\ \{A_4^+\}$

Maximal Strongly Connected Subgraphs (MSCS's)

<u>Definition:</u> An SCS is <u>maximal</u> (<u>MSCS</u>) if it is not properly contained in any larger SCS

Example: In T_{φ_1} (Fig. 5.3),

$$\underbrace{\{A_2\}\ \{A_3\}}_{\text{not MSCS}} \quad \underbrace{\{A_2, A_3\}}_{\text{MSCS}}$$

In fact, it is sufficient to determine whether there exists a fulfilling reachable MSCS in T_{φ} . The number of MSCS in T_{φ} is bounded by $|T_{\varphi}|$.

13-21

Decomposition into MSCS's

There exists an efficient algorithm [Hopcroft&Tarjan] to decompose T_{φ} into subgraphs G_1, \ldots, G_N such that

- each G_i is an MSCS (and therefore disjoint)
- $G_1 \cup \ldots \cup G_N = T_{\varphi}$
- whenever there is an edge from a node in G_i to a node in G_j then $i \leq j$.

Algorithm SAT

(check satisfiability of arbitrary temporal formula φ)

- construct T_{φ}
- construct $\underline{T_{\varphi}}$ by removing all atoms that are not reachable from φ -atom
- decompose T_{φ}^- into MSCS's U_1, \ldots, U_k
- check whether U_1, \ldots, U_k is fulfilling:
 - if some U_i is fulfilling: φ is satisfiable. A model is defined by the path leading from a φ -atom to U_i and staying in U_i forever from then on.
 - <u>if no U_i is fulfilling:</u> φ is not satisfiable.

Proposition (satisfiability and MSCS)

Formula φ is satisfiable

iff

The tableau T_{φ}^- contains a $\varphi\text{-reachable}$ fulfilling MSCS

Check validity of φ

Apply algorithm SAT to $\neg \varphi$

Algorithm reports success:

 $\neg \varphi$ is satisfiable = φ is not valid (the produced σ is a counterexample)

Algorithm reports failure:

 $\neg \varphi$ is unsatisfiable = φ is valid

13-25

13-27

$$\boxed{\varphi_1 \colon \Box p \ \land \ \diamondsuit \neg p}$$

Example: Check satisfiablility of

 T_{φ_1} (Fig 5.3)

 $T_{\varphi_1}^- = \{A_7^+^-\}$ MSCS of $T_{\varphi_1}^- = \{A_7^{+-}\}$ nonfulfilling $\Longrightarrow \varphi_1$ is unsatisfiable

Example:

$$\boxed{\psi_1 = \neg \varphi_1 : \neg (\Box p \land \Diamond \neg p)}$$

 T_{ψ_1} (Fig 5.3) $T_{\psi_1}^-$: all atoms

MSCS's:

$$\{A_0\}, \{A_4\}, \{A_6\}$$
 transient $\{A_1^{-+}\}, \{A_7^{+-}\}$ non-fulfilling $\{A_2^{++}, A_3^{--}\}, \{A_5^{++}\}$ fulfilling

 ψ_1 satisfiable

For
$$A_5^{++}$$
: A_5^{ω} model $\langle p: \mathsf{T} \rangle^{\omega}$
For $\{A_2^{++}, A_3^{--}\}$: $(A_2, A_3)^{\omega}$ model $(\langle p: \mathsf{F} \rangle \langle p: \mathsf{T} \rangle)^{\omega}$

each satisfies ψ_1

13-26

Fig. 5.3: Tableau T_{φ_1} for formula φ_1 : $\square p \land \stackrel{\frown}{\Diamond} \neg p$

Example: Check satisfiability of

$$\Phi_{\varphi_2}^+$$
: { $\square p_2$, $\bigcirc \square p_2$, p_2 , $at_{-\ell_2}$, $\Diamond at_{-\ell_3}$, $\bigcirc \Diamond at_{-\ell_3}$, $at_{-\ell_3}$, }

 φ_2 -reachable atoms

$$\{ \underbrace{\Box p_2}_{\widetilde{\varphi_2}}, \bigcirc \Box p_2, p_2, \underbrace{\varphi_2}_{\text{fixed}}$$

$$\underbrace{at_{-\ell_2, at_{-\ell_3}}, \bigcirc \diamondsuit at_{-\ell_3}, \bigcirc at_{-\ell_3}, \bigcirc at_{-\ell_3}, \neg \diamondsuit at_{-\ell_3}}_{\text{8 possibilities}} \}$$

One promising formula in Φ : $\Diamond at_{-\ell_3}$ (and $\neg \Box p_2$)

$$A_0^+: \{ \Box p_2, \quad \bigcirc \Box p_2, \quad p_2, \quad \neg at-\ell_2, \quad \neg at-\ell_3, \quad \neg \bigcirc \diamondsuit at-\ell_3, \quad \neg \diamondsuit at-\ell_3 \}$$

$$A_1^-: \{ \Box p_2, \quad \bigcirc \Box p_2, \quad p_2, \quad \neg at-\ell_2, \quad \neg at-\ell_3, \quad \bigcirc \diamondsuit at-\ell_3, \quad \diamondsuit at-\ell_3 \}$$

$$A_3^+$$
: { $\Box p_2$, $\bigcirc \Box p_2$, p_2 , $\neg at-\ell_2$, $at-\ell_3$, $\bigcirc \diamondsuit at-\ell_3$, $\diamondsuit at-\ell_3$,

$$A_3$$
: $\{ \Box p_2, \ \bigcirc \Box p_2, \ p_2, \ at-e_2, \ at-e_3, \ \bigcirc \lor at-e_3, \ \lor at-e_3 \}$

$$A_5^+$$
: { $\Box p_2$, $\bigcirc \Box p_2$, p_2 , at_ℓ_2 , at_ℓ_3 , $\neg \bigcirc \diamondsuit at_\ell_3$, $\diamondsuit at_\ell_3$ }

$$A_6^+$$
: $\{ \Box p_2, \bigcirc \Box p_2, p_2, at_{-\ell_2}, at_{-\ell_3}, \bigcirc \diamondsuit at_{-\ell_3}, \diamondsuit at_{-\ell_3} \}$

Example: (Cont'd)

Atom #8

$$\{ \underline{\square p_2}, \underline{\bigcirc \square p_2}, \underline{p_2}, at_{-\ell_2}, \\ \neg at_{-\ell_3}, \neg \underline{\bigcirc} \diamondsuit at_{-\ell_3}, \dots \}$$

is not considered since

$$\underbrace{\neg at-\ell_2 \lor \diamondsuit at-\ell_3}_{p_2} \quad \text{and} \quad at-\ell_2 \to \diamondsuit at-\ell_3$$
$$\neg at-\ell_3 \quad \text{and} \quad \neg \bigcirc \diamondsuit at-\ell_3 \to \neg \diamondsuit at-\ell_3$$

Tableau
$$T_{\varphi_2}$$
 (Fig 5.4) = $T_{\varphi_2}^-$

formula $\diamondsuit at - \ell_3$ promising $at - \ell_3$

Fig. 5.4. Tableau for
$$\varphi_2$$
: $\Box(\neg at - \ell_2 \lor \diamondsuit at - \ell_3)$

13-29

Decomposition to MSCS's

$$\{A_1^-, A_3^+, A_4^-, A_6^+\} \{A_2^+\} \{A_5^+\} \{A_0^+\}$$

fulfilling MSCS's:
$$\{A_0^+\}$$
, $\{A_1^-, A_3^+, A_4^-, A_6^+\}$ ($\{A_2\}$ and $\{A_5\}$ are transient)

 φ_2 is satisfiable

model (by A_0^{ω})

$$\langle at_{-}\ell_{2}: f, at_{-}\ell_{3}: f \rangle^{\omega}$$

Pruning the tableau

<u>Definition:</u> MSCS S is <u>terminal</u> if there are no edges leading from atoms of S to atoms outside S

Example: Consider
$$\psi_1 = \neg \varphi_1 : \neg (\Box p \land \Diamond \neg p)$$

In T_{ψ_1} (same as T_{φ_1} , Fig 5.3, except for initial nodes)
 $\{A_1\}$ $\{A_5\}$ $\{A_7\}$ are terminal MSCS's
 $\{A_6\}$ $\{A_2, A_3\}$ are not

After constructing T_{φ} , remove useless atoms:

- Remove an MSCS that is not φ -reachable.
- Remove a terminal MSCS that is not fulfilling.

Iterate until no further atoms can be removed.

Fig. 5.3: Tableau T_{ψ_1} for formula ψ_1 : $\neg (\Box p \land \diamondsuit \neg p)$.

Pruned Tableau $T_{\psi_1}^-$ for $\psi_1 : \neg(\Box p \land \diamondsuit \neg p)$

Fulfilling MSC's: $\{A_2^{++}, A_3^{-+}\}, \{A_5^{++}\}$ $\psi_1: \neg(\Box p \land \diamondsuit \neg p)$ is satisfiable.

13-33

Example:

8 atoms A_0, \ldots, A_7 (see list)

$$\{\underbrace{x=3,\ \bigcirc \diamondsuit(x=3),\ \bigcirc \varphi_3}_{\text{8 possibilities}},\ \dots\}$$

Promising formulas: $\Diamond(x=3)$ and $\neg \underline{\Box \Diamond(x=3)}$

$$A_0^{++}: \{x=3, \quad \bigcirc \diamondsuit(x=3), \quad \bigcirc \varphi_3, \quad \diamondsuit(x=3), \quad \varphi_3\}$$

$$A_1^{-+}: \{x\neq 3, \quad \bigcirc \diamondsuit(x=3), \quad \bigcirc \varphi_3, \quad \diamondsuit(x=3), \quad \varphi_3\}$$

$$A_2^{++}: \{x=3, \quad \neg \bigcirc \diamondsuit(x=3), \quad \bigcirc \varphi_3, \quad \diamondsuit(x=3), \quad \varphi_3\}$$

$$A_3^{++}: \{x\neq 3, \quad \neg \bigcirc \diamondsuit(x=3), \quad \bigcirc \varphi_3, \quad \neg \diamondsuit(x=3), \quad \neg \varphi_3\}$$

$$A_4^{+-}: \{x=3, \quad \bigcirc \diamondsuit(x=3), \quad \neg \bigcirc \varphi_3, \quad \diamondsuit(x=3), \quad \neg \varphi_3\}$$

$$A_5^{--}: \{x\neq 3, \quad \bigcirc \diamondsuit(x=3), \quad \neg \bigcirc \varphi_3, \quad \diamondsuit(x=3), \quad \neg \varphi_3\}$$

$$A_6^{+-}: \{x=3, \quad \neg \bigcirc \diamondsuit(x=3), \quad \neg \bigcirc \varphi_3, \quad \diamondsuit(x=3), \quad \neg \varphi_3\}$$

 A_7^{++} : $\{x \neq 3, \neg \bigcirc \diamondsuit(x=3), \neg \bigcirc \varphi_3, \neg \diamondsuit(x=3), \neg \varphi_3\}$

Fig. 5.6. Pruned tableau $T_{\varphi_3}^-$

The φ_3 -reachable MSCS's: $\{A_0^{++}, A_1^{-+}\}$

 $\{A_0^{++}, A_1^{-+}\}$ is fulfilling. Therefore, φ_3 is satisfiable.

Model (by
$$(A_0,A_1)^\omega$$
): $(\langle x\colon 3\rangle,\langle x\colon 0\rangle)^\omega$
$$\uparrow$$
 arbitrary $x\neq 3$