CS256/Spring 2008 — Lecture #14
Zohar Manna

The Idea

To check P-satisfiability of ¢,
we combine the tableau T, and the

transition graph G p into one product graph,

called the behavior graph B(P,ga)’

and search for paths

(s0,40), (s1,A1), (s2,A2), ...

that satisfy the two requirements:

o E:
there exists a fulfilling path
T Ao, Al; c
in the tableau T, such that ¢ € Ag.

o is a P-computation:
there exists a fair path
g 80,81,---

in the transition graph G p.

14-1

Satisfiability over a
finite-state program

P-validity problem (of)

Given a finite-state program P
and formula ¢,

is ¢ P-valid?

i.e. do all P-computations satisfy 7

P-satisfiability problem (of ¢)

Given a finite-state program P
and formula ¢
is ¢ P-satisfiable?

i.e., does there exist a P-computation which satisfies 7

To determine whether ¢ is P-valid,
it suffices to apply an algorithm for
deciding if there is a P-computation
that satisfies —¢.
14-2

State transition graph G p: Construction

e Place as nodes in G p all initial states s (s IE O)

o Repeat

for some s € Gp, T € 7T,
add all its 7-successors s’ to G'p
if not already there,
and add edges between s and s’

Until no new states or edges can be added.

If this procedure terminates, the system is
finite-state.

14-4

Example: Program mux-petl (Fig. 3.4)

(Peterson’s Algorithm for mutual exclusion)

local yi,y>: boolean where y; = F,yo =F
s . integer

where s =1

fo : loop forever do

4y
£y :
{3
Ly :
ls

noncritical

(y17 S) = (T7 1)
await (—ys) V (s # 1)
critical

Yy ‘= F

mg : loop forever do

noncritical

(y2, 8) == (1, 2)
await (—y1) V (s # 2)
critical

Y2 ;= F

14-5

Some states have been lumped together:

a super-state labeled by |7 | represents 7 states

MUX-PET1 has 42 reachable states.

Based on this graph it is straightforward to check the

properties

P10 O —(at_€a A at_my)

Yo i (at_l3 A—at_m3z —s=1)

Y3 [O(at_m3z A —at_f3z — s = 2)

Abstract state-transition graph for MUX-PET1

m2
at—_mqg. 2 ~ at_m

m3 >m5
3 at—maq 5

at_La 5

N

"
W

We use y1 < at_f3 5

Y2 & at_m3 5

MUX-PET1 Full state-transition graph (I;, m;, s)

a N
\7'6 3,2) + (0,4,2) » (0,5,2)
} '
—+ (1,3,2) »(1,4,2)» (1,5,2)
} '
R (2.3.2) > (2,4,2)> (2,5.2)
)
— i
+f (3.3.1) (3. 4.1)» (3.5.1)
— (3,3,2)
— (4,3,2)
L+ (5,3,2) /
14-8

Definitions

e For atom A, state(A) is the conjunction of all state
formulas in A
(by Rsqt, state(A) must be satisfiable)

o For A €Ty,
6(A) denotes the set of successors of A
in T,

e atom A is consistent with state s
if s [state(A),

l.e. s satisfies all state formulas in A.

o ¥ Ag, Aq,...pathin Ty
o $0,81,- .. computation of P

¥ is a trail of Ty, over o if
Aj is consistent with sj, for all j > 0

14-9

Algorithm behavior-graph
(constructing B P(p))

e Place in B all initial p-nodes (s, A)
(s initial state of P,
A initial p-atom in T
A consistent with s)

e Repeat until no new nodes or
new edges can be added:

Let (s, A) be a node in B
T € T a transition
(s, A) a pair s t.
s’ is a T-successor of s
A" € §(A) in pruned T,
A’ consistent with s’

— Add (', A”) to B, if not already there

— Draw a 1-edge from (s, A) to (s/, A”),
if not already there

14-11

Behavior Graph
For finite-state program P and formula ¢,
we construct the (P, ¢)-behavior graph

Bp, = GpxTj (pruned)

such that

e nodes are labeled by (s, A)

where s is a state from G p and
A is an atom from T, consistent with s.

e cdges

There is an edge

r
—

if and only if s’ € 7(s) and A’ € §(A)
=) @@
in Gp in Ty
e initial p-node (s, A)

if s is an initial state (s lE ©)
and A is an initial p-atom (¢ € A)

It is marked 14-10

Example: Given FTS LoOP
O:z=0
T =A{r7}
with 7, (idling)
7 where p,: ' = (z + 1)mod4
J: A7}

Check P-satisfiability of ‘ Y3 Oz # 3) ‘

state-transition graph G| qp (Fig 5.9)
pruned T, (Fig 5.8)
Behavior graph B(,00p,45) (Fig 5.10)

14-12

Fig. 5.9. State-transition graph Gr,oop

14-13

Behavior graph B(1,00p 45) (Fig 5.10)

14-15

Pruned tableau T, (Fig. 5.8)

Eliminating
e MSCS’s not reachable from an initial

1z-atom and
e non-fulfilling terminal MSCS’s

Promising formulas:
OO #3) promising [z # 3)
= (z # 3) promising (x = 3)

~
Y3, "0z # 3), Ovs, ~ OO # 3) %—>
[Ag_: r#3]

4z a=3 |

|
Agt e =3,00(#3), Ovs, -0 # 3), Ji3

/

R

— {
(477 2 #3, OO #3), Ovs, O #3),

Two non-transient MSCS’s:

{AZ+, Ag "} ot fulfilling e
(a3 1) fulfilling
Example: Given FTS ONE:
6. =0
T: {?rlv 7?277?3a7147'r[}
with pr @ z=0A2' =1
proi x=1A2'=0
pry: z=0A2' =-1
prg. x=—-1A2'=0
J: 0
C: {m,73}
Transition graph Gong
s, 5
z=0| | z=1
J T
T3 T4
xr = —1 83
14-16

We want to know whether

\«pi D<>(w=1)\

is valid over ONE.

Check P-satisfiability of

¢ OO #1)
b

of (g, O¢, O@#1), OO@#1), v =1}
basic formulas: {O v, O O(x # 1), z =1}

Promising formulas:

Y19 =C (£ 1) promising rp 0 [J(z # 1)
Py m[J(x # 1) promising ro: z =1

14-17

Behavior graph B(onEg,¢> O(e#1))

52, Ag

T2

73

Two non-transient MSCS’s:

{(52,A2+), (s1,Ag), (53, A5)}: not fulfilling,

{(s1, AT, (s3, AT)} fulfilling 1419

Pruned tableau TJ

Y, =0 #1), O%, ~OO(# 1) f)
(4,7 a=1 | (457 e#1 |

v
[Ag+: r=1 OO0 # 1), Ow,ﬂD(w#l)%

{
(A3 2 #£1, 00G@#1), Ov, O # 1),@>

14-18

Paths of B(PW)

Claim 5.9 (paths of B(wa))

The infinite sequence
. (507 AO)7 (517 Al)’ cee
(p-initial
is a path in B(P
if
on: 80,81,-..1s arun of P
(i.e. computation of P less fairness)

Vr: Ag, A1, ... Is a trail of Ty, over on
(i.e. Aj consistent with s;, for all j > 0)

Example: In B1,o0p,y,) (Fig. 5.10)

w
. ((SO»A5)’ (517A5)a (52’A5)7 (533A4))
induces
or: (s0,81,82,83)% run of LOOP

Ir: (As, As, As, Ag)? trail of Ty, over o

14-20

Proposition 5.10 (P-satisfiability by path) Definitions

P has a computation satisfying ¢ For behavior graph B
iff

there is an infinite @-initialized path o

(Pyp)

e node (s, A’) is a T-successor of (s, A)
0B t if B(Py contains T-edge connecting
(Pe) (57 A) to (S/a A/)
or is a P-computation (fair run of P)

¥ is a fulfilling trail over o e transition 7 is enabled on node (s, A)

if 7 is enabled on state s

Searching for “good” paths in Bp,)
— not practical.

14-21 14-22

Definitions (Con't) Adequate SCS’s

For 508 § € Bp): Proposition 5.11 (adequate SCS and satisfiability)

e Transition 7 is taken in S if there exists
two nodes (s, A), (s, A’) € S st.
(s, A" is a T-successor of (s, A)

Given a finite-state program P and temporal formula ¢.
p is P-satisfiable
iff

just just g
o Sis Just _ if every {J ' } B p,,y has an adequate SCs
compassionate compassionate

transition 7 {E ‘7} is either taken in S or)
ecC Example: Consider LOOP and

[Y3: OOz # 3)]

is disabled on {some node} inS

all nodes

e S is fair if it is both just and compassionate Is 13 LOOP-satisfiable?

heck the 'si Fig. 5.1
e S is fulfilling if every promising formula ¢ € @y, Check the sC8's in B(LOOP’%) (Fig, 5.10)
is fulfilled by some atom A, s.t.

(s, A) € S for some state s
e S is adequate if it is fair and fulfilling

14-23 14-24

Behavior graph B(1,00p,44) (Fig 5.10) Example (Con’t)

o {(s0,A457), (51,45 7), (s2,457), (s3,4,7)}
is fair but not fulfilling

o { (s0, AT}, {(s1, AT}, {(s2,4FT1)}

each is fulfilling but not fair
Not just with respect to transition 7

o {(s3,45)}

is neither fair (unjust toward)
fulfilling (being transient)

T - _ .
L 3 @ No adequate subgraphs in B(LOOP,)
““‘t“// —
TI

7 Therefore, by proposition 5.11, LOOP has no
computation that satisfies ¢3: < [J(z #= 3)

14-25 14-26

Example: Consider LOOP and Behavior graph B(LOOP#.B) (Fig. 5.11)

p3 OO@=3)

Is 3 LOOP-satisfiable?

Promising formulas :
O (x = 3) promising (x = 3) \d
-0 (@ =3) promising - (= 3) (/(s: EI‘S

Pruned tableau Ty5 (Fig. 5.6)

RN
w3, O =3), Oz, OO(x=3) —+
G2 40 JOT

14-27 14-28

S = { (so, AI+), (s1, AI+), (so, AI+), (s3, A(—)’_+)} From Atom Tableau T,
to w-Automaton Ay,

is an adequate subgraph:

For temporal formula ¢, construct the w-automaton

A¢: <N7 N07 Ea M, ‘F>
fair (7 takenin S) Same as
fulfilling Te
where
e Node labeling p:

For node N labeled by atom A in T,
Therefore, by proposition 5.11, program LOOP has a ne Y @

computation satisfying ¢3: [O (x = 3) u(n) = state(A).
The periodic computation o: (z:0,z:1,z:2,z:3)¥ e Acceptance condition F:
satisfies 3 Muller:
F = {SCS S| S is fulfilling }
Street:
F = {(Py, Ry) | ¢ € Dy promises r},
where

P, = {A|~deA)
R, = {A|reA}

14-29 14-30

Example: ¢ p

Tableau Ti,:
Example: .A<>p from Tep

N 'e
CgAjf:{p,o<>p,<>p}) (Agi{ﬁp,OOp,Op%

N

@;r : {p,ﬁOOp,Op}\

@Ii{ﬂpﬁOOpﬁOéD Fu = {n1}{n1.n2}, {na}}
Fs = A(PopRop}
= {({na}, {n1,731}
{({na}, {n11)}

since no path can visit n3 infinitely often

Q

14-31 14-32

Abstraction

Abstraction = a method to verify infinite-state systems.

Idea:
abstraction
1
Program P — Abstract program pA
(infinite state) (finite state)

Property ¢ — Abstract property ¢
PEe? — PAERA
1

model checking

We want to ensure that
if PAEpA then P Eg.

14-33

Example: Abstracting Bakery

Program MUX-BAK (infinite-state program)

[loop forever do
[{o : noncritical
Py biiypi=y2+1
lo await yo =0V y; < yo
{3 : critical
g :y1 =0

loop forever do
[mg : noncritical
Py myiy2 :=y1+1
mo > await y1 = 0V ys < y1
mg : critical
mg iy =0

Abstract domain: the boolean algebra over
B = {b1,b5,b3 : boolean},
with b1 @ y1 =0
bo: yo=0
b3 y1 <2
14-35

Abstraction (Cont’d)

How do we obtain such an abstraction function?

e 1) Abstract the domain to a finite-state one (data
abstraction):
For variables Z ranging over domain D, find an
abstract domain D4 and an abstraction function
a:D — DA

e 2) From the data abstraction it is possible to com-
pute an abstraction for the program and for the prop-
erty such that
if PAEpA then PEg.

14-34

Example: Abstracting Bakery (Cont’d)

Program MUX-BAK-ABSTR (finite-state program)

[loop forever do

[{o : noncritical

Py €1 @ (b1, b3) := (false, false)
L {> : await by V b3

£3 : critical

Ly @ (b1,b3) = (true, true)

loop forever do

[mgq : noncritical

mq . (b, b3) := (false, true)
myo : await by V —b3

m3 : critical

mag : (bp,b3) := (true, by)

Py

This program can now be checked for mutual exclusion,
bounded overtaking, response.

Show MUX-BAK-ABSTR E[] —(at_f¢3Aat_m3). Then
it follows that MUX-BAK F[] —(at—£3 A at—m3).

14-36

