
CS256/Spring 2008 — Lecture #14

Zohar Manna

14-1

Satisfiability over a
finite-state program

P -validity problem (of ϕ)

Given a finite-state program P

and formula ϕ,

is ϕ P -valid?

i.e. do all P -computations satisfy ϕ?

P -satisfiability problem (of ϕ)

Given a finite-state program P

and formula ϕ

is ϕ P -satisfiable?

i.e., does there exist a P -computation which satisfies ϕ?

To determine whether ϕ is P -valid,

it suffices to apply an algorithm for

deciding if there is a P -computation

that satisfies ¬ϕ.

14-2

The Idea

To check P -satisfiability of ϕ,

we combine the tableau Tϕ and the

transition graph GP into one product graph,

called the behavior graph B(P,ϕ),

and search for paths

(s0, A0), (s1, A1), (s2, A2), . . .

that satisfy the two requirements:

• σ q ϕ:

there exists a fulfilling path

π : A0, A1, . . .

in the tableau Tϕ such that ϕ ∈ A0.

• σ is a P -computation:

there exists a fair path

σ : s0, s1, . . .

in the transition graph GP .

14-3

State transition graph GP : Construction

• Place as nodes in GP all initial states s (s q Θ)

• Repeat

for some s ∈ GP , τ ∈ T ,

add all its τ -successors s′ to GP
if not already there,

and add edges between s and s′.

Until no new states or edges can be added.

If this procedure terminates, the system is

finite-state.

14-4

Example: Program mux-pet1 (Fig. 3.4)

(Peterson’s Algorithm for mutual exclusion)

local y1, y2: boolean where y1 = f, y2 = f
s : integer where s = 1

P1 ::

ℓ0 : loop forever do

ℓ1 : noncritical

ℓ2 : (y1, s) := (t, 1)

ℓ3 : await (¬y2) ∨ (s 6= 1)

ℓ4 : critical

ℓ5 : y1 := f


∣∣∣ ∣∣∣

P2 ::

m0 : loop forever do

m1 : noncritical

m2 : (y2, s) := (t, 2)

m3 : await (¬y1) ∨ (s 6= 2)

m4 : critical

m5 : y2 := f


14-5

Abstract state-transition graph for mux-pet1

m2 m3 m5

ℓ5

ℓ2

ℓ3

s = 1

9

s = 1

2

6

1

s = 2

3

s = 2

1

2

s = 2 s = 2
s = 2

9

s = 1

s = 1

3

at−m0..2 at−m3 at−m4,5

at−ℓ0..2

at−ℓ3

at−ℓ4,5 s = 1

6

We use y1 ⇔ at−ℓ3..5
y2 ⇔ at−m3..5

14-6

Some states have been lumped together:

a super-state labeled by i represents i states

mux-pet1 has 42 reachable states.

Based on this graph it is straightforward to check the

properties

ψ1 : 0 ¬(at−ℓ4 ∧ at−m4)

ψ2 : 0 (at−ℓ3 ∧ ¬at−m3 → s = 1)

ψ3 : 0 (at−m3 ∧ ¬at−ℓ3 → s = 2)

14-7

mux-pet1 Full state-transition graph (li,mj, s)

14-8

Definitions

• For atom A, state(A) is the conjunction of all state

formulas in A

(by Rsat, state(A) must be satisfiable)

• For A ∈ Tϕ,

δ(A) denotes the set of successors of A

in Tϕ

• atom A is consistent with state s

if s q state(A),

i.e. s satisfies all state formulas in A.

• ϑ: A0, A1, . . . path in Tϕ
σ: s0, s1, . . . computation of P

ϑ is a trail of Tϕ over σ if

Aj is consistent with sj, for all j ≥ 0

14-9

Behavior Graph

For finite-state program P and formula ϕ,

we construct the (P, ϕ)-behavior graph

B(P,ϕ) ≈ GP × T−ϕ (pruned)

such that

• nodes are labeled by (s,A)

where s is a state from GP and

A is an atom from Tϕ consistent with s.

• edges

There is an edge

s,A
τ−→ s′, A′

if and only if s′ ∈ τ(s) and A′ ∈ δ(A)

s
τ−→ s′ A −→ A′

in GP in Tϕ

• initial ϕ-node (s,A)

if s is an initial state (s q Θ)

and A is an initial ϕ-atom (ϕ ∈ A)

It is marked s,A 14-10

Algorithm behavior-graph

(constructing B(P,ϕ))

• Place in B all initial ϕ-nodes (s,A)

(s initial state of P ,

A initial ϕ-atom in T−ϕ
A consistent with s)

• Repeat until no new nodes or

new edges can be added:

Let (s,A) be a node in B
τ ∈ T a transition

(s′, A′) a pair s.t.

s′ is a τ -successor of s

A′ ∈ δ(A) in pruned T−ϕ
A′ consistent with s′

– Add (s′, A′) to B, if not already there

– Draw a τ -edge from (s,A) to (s′, A′),
if not already there

14-11

Example: Given FTS loop

Θ : x = 0

T = {τ, τI}
with τI (idling)

τ where ρτ : x
′ = (x+ 1)mod4

J : {τ}

Check P -satisfiability of ψ3: 1 0 (x 6= 3)

state-transition graph Gloop (Fig 5.9)

pruned T−ψ3
(Fig 5.8)

Behavior graph B(loop,ψ3)
(Fig 5.10)

14-12

Fig. 5.9. State-transition graph Gloop

14-13

Pruned tableau T−ψ3
(Fig. 5.8)

Eliminating
• mscs’s not reachable from an initial

ψ3-atom and

• non-fulfilling terminal mscs’s

Promising formulas:1 0 (x 6= 3) promising 0 (x 6= 3)

¬ 0 (x 6= 3) promising (x = 3)

A
++

7 : x 6= 3, 2 0 (x 6= 3), 2 ψ3, 0 (x 6= 3), ψ3

ψ3, ¬ 0 (x 6= 3), 2 ψ3, ¬ 2 0 (x 6= 3)

A−+
6 : x = 3, 2 0 (x 6= 3), 2 ψ3, ¬ 0 (x 6= 3), ψ3

A−+
4 : x = 3 A−−5 : x 6= 3

Two non-transient MSCS’s:

{A−+
4 , A−−5 } not fulfilling

{A++
7 } fulfilling

14-14

Behavior graph B(loop,ψ3)
(Fig 5.10)

−−

−−

−−

−+ −+

++

++

++

14-15

Example: Given FTS one:

Θ: x = 0

T : {τ1, τ2, τ3, τ4, τI}
with ρτ1 : x = 0 ∧ x′ = 1

ρτ2 : x = 1 ∧ x′ = 0
ρτ3 : x = 0 ∧ x′ = −1
ρτ4 : x = −1 ∧ x′ = 0

J : ∅
C : {τ1, τ3}

Transition graph Gone

x = 0 x = 1

x = −1 s3

s1 s2

τ2

τ3 τ4

τ1

14-16

We want to know whether

ϕ : 0 1 (x = 1)

is valid over one.

Check P -satisfiability of

¬ϕ : 1 0 (x 6= 1)︸ ︷︷ ︸
ψ

Φ+
ψ : {ψ, 2 ψ, 0 (x 6= 1), 2 0 (x 6= 1), x = 1}

basic formulas: {2 ψ, 2 0 (x 6= 1), x = 1}

Promising formulas:

ψ1 : ψ = 1 0 (x 6= 1) promising r1 : 0 (x 6= 1)

ψ2 : ¬ 0 (x 6= 1) promising r2 : x = 1

14-17

Pruned tableau T−ψ

A++
7 : x 6= 1, 2 0 (x 6= 1), 2 ψ, 0 (x 6= 1), ψ

ψ, ¬ 0 (x 6= 1), 2 ψ, ¬ 2 0 (x 6= 1)

A−+
6 : x = 1, 2 0 (x 6= 1), 2 ψ, ¬ 0 (x 6= 1), ψ

A−+
4 : x = 1 A−−5 : x 6= 1

14-18

Behavior graph B(one,1 0 (x6=1))

τI

τ1

τ2
s1, A

−−
5

x = 0
s2, A

−+
4

x = 1

τI
τ1

τ4

τ3
τI

τ3

τ4

τI

τ2

s1, A
++
7

x = 0

s2, A
−+
6

x = 1

s3, A
++
7

x = −1

s3, A
−−
5

x = −1
τI

τI

Two non-transient MSCS’s:

{(s2, A−+
4), (s1, A

−−
5), (s3, A

−−
5)}: not fulfilling,

{(s1, A++
7), (s3, A

++
7)}: fulfilling 14-19

Paths of B(P,ϕ)

Claim 5.9 (paths of B(P,ϕ))

The infinite sequence

π: (s0, A0)︸ ︷︷ ︸
ϕ-initial

, (s1, A1), . . .

is a path in B(P,ϕ)

iff

σπ: s0, s1, . . . is a run of P
(i.e. computation of P less fairness)

ϑπ: A0, A1, . . . is a trail of Tϕ over σπ
(i.e. Aj consistent with sj, for all j ≥ 0)

Example: In B(loop,ψ3)
(Fig. 5.10)

π:
(
(s0, A5), (s1, A5), (s2, A5), (s3, A4)

)ω
induces

σπ: (s0, s1, s2, s3)
ω run of loop

ϑπ: (A5, A5, A5, A4)
ω trail of Tψ3

over σπ

14-20

Proposition 5.10 (P -satisfiability by path)

P has a computation satisfying ϕ

iff

there is an infinite ϕ-initialized path π

in B(P,ϕ) s.t.

σπ is a P -computation (fair run of P)

ϑ is a fulfilling trail over σπ

Searching for “good” paths in B(P,ϕ)

— not practical.

14-21

Definitions

For behavior graph B(P,ϕ)

• node (s′, A′) is a τ -successor of (s,A)

if B(P,ϕ) contains τ -edge connecting

(s,A) to (s′, A′)

• transition τ is enabled on node (s,A)

if τ is enabled on state s

14-22

Definitions (Con’t)

For scs S ⊆ B(P,ϕ):

• Transition τ is taken in S if there exists
two nodes (s,A), (s′, A′) ∈ S s.t.

(s′, A′) is a τ -successor of (s,A)

• S is

{
just

compassionate

}
if every

{
just

compassionate

}

transition τ
{∈ J
∈ C

}
is either taken in S or

is disabled on
{

some node

all nodes

}
in S

• S is fair if it is both just and compassionate

• S is fulfilling if every promising formula ψ ∈ Φψ
is fulfilled by some atom A, s.t.

(s,A) ∈ S for some state s

• S is adequate if it is fair and fulfilling

14-23

Adequate scs’s

Proposition 5.11 (adequate scs and satisfiability)

Given a finite-state program P and temporal formula ϕ.

ϕ is P -satisfiable

iff

B(P,ϕ) has an adequate scs

Example: Consider loop and

ψ3: 1 0 (x 6= 3)

Is ψ3 loop-satisfiable?

Check the scs’s in B(loop,ψ3)
(Fig. 5.10)

14-24

Behavior graph B(loop,ψ3)
(Fig 5.10)

−−

−−

−−

−+ −+

++

++

++

14-25

Example (Con’t)

• { (s0, A
−−
5), (s1, A

−−
5), (s2, A

−−
5), (s3, A

−+
4) }

is fair but not fulfilling

• { (s0, A
++
7)}, {(s1, A++

7)}, {(s2, A++
7)}

each is fulfilling but not fair

Not just with respect to transition τ

• {(s3, A−+
6)}

is neither fair (unjust toward τ) nor

fulfilling (being transient)

No adequate subgraphs in B
(loop,ψ3)

Therefore, by proposition 5.11, loop has no

computation that satisfies ψ3: 1 0 (x 6= 3)

14-26

Example: Consider loop and

ϕ3: 0 1 (x = 3)

Is ϕ3 loop-satisfiable?

Promising formulas :1 (x = 3) promising (x = 3)

¬ 0 1 (x = 3) promising ¬ 1 (x = 3)

Pruned tableau Tϕ3 (Fig. 5.6)

A++
0 : x = 3 A−+

1 : x 6= 3

ϕ3, 1 (x = 3), 2 ϕ3, 2 1 (x = 3)

14-27

Behavior graph B
(loop,ϕ3)

(Fig. 5.11)

−+

−+

−+

++

14-28

S = { (s0, A
−+
1), (s1, A

−+
1), (s2, A

−+
1), (s3, A

++
0)}

is an adequate subgraph:

fair (τ taken in S)

fulfilling

Therefore, by proposition 5.11, program loop has a

computation satisfying ϕ3: 0 1 (x = 3)

The periodic computation σ: (x: 0, x: 1, x: 2, x: 3)ω

satisfies ϕ3

14-29

From Atom Tableau Tϕ
to ω-Automaton Aϕ

For temporal formula ϕ, construct the ω-automaton

Aϕ : 〈N, N0, E,︸ ︷︷ ︸
Same as
Tϕ

µ, F〉

where

• Node labeling µ:
For node n ∈ N labeled by atom A in Tϕ,

µ(n) = state(A).

• Acceptance condition F :

Muller:
F = {SCS S | S is fulfilling }

Street:
F = {(Pψ, Rψ) | ψ ∈ Φϕ promises r},
where

Pψ = { A | ¬ψ ∈ A }
Rψ = { A | r ∈ A }

14-30

Example: ϕ : 1 p

Tableau Tϕ:

�
?�

��6
�
�

�
�A+

1 : {p, 2 1 p, 1 p} -

�

�
? �
��6

�
�

�
�A−2 : {¬p, 2 1 p, 1 p}

@
@

@
@

@
@R

�
�

�
�

�
�	 ��

�
�

�
�A+

3 : {p,¬ 2 1 p, 1 p}

?
��

��
�
�

�
�A+

4 : {¬p,¬ 2 1 p,¬ 1 p}

14-31

Example: A1 p from T1 p

�
?�

��6
�
�

�
�n1 : p

-

�

�
? �
��6

�
�

�
�n2 : ¬p

@
@

@R

�
�

�	 ��

�
�

�
�n3 : p

?
��

��
�
�

�
�n4 : ¬p

FM = {{n1}, {n1, n2}, {n4}}

FS = {(P1 p, R1 p)}

= {({n4}, {n1, n3})}

≈ {({n4}, {n1})}
since no path can visit n3 infinitely often

14-32

Abstraction

Abstraction = a method to verify infinite-state systems.

Idea:

abstraction
↓

Program P −→ Abstract program PA

(infinite state) (finite state)

Property ϕ −→ Abstract property ϕA

P q ϕ? −→ PA q ϕA
↓

model checking

We want to ensure that

if PA q ϕA then P q ϕ.

14-33

Abstraction (Cont’d)

How do we obtain such an abstraction function?

• 1) Abstract the domain to a finite-state one (data

abstraction):

For variables ~x ranging over domain D, find an

abstract domain DA and an abstraction function

α : D → DA.

• 2) From the data abstraction it is possible to com-

pute an abstraction for the program and for the prop-

erty such that

if PA q ϕA then P q ϕ.

14-34

Example: Abstracting Bakery

Program mux-bak (infinite-state program)

P1 ::



loop forever do
ℓ0 : noncritical
ℓ1 : y1 := y2 + 1
ℓ2 : await y2 = 0 ∨ y1 ≤ y2
ℓ3 : critical
ℓ4 : y1 := 0




‖

P2 ::



loop forever do
m0 : noncritical
m1 : y2 := y1 + 1
m2 : await y1 = 0 ∨ y2 < y1
m3 : critical
m4 : y2 := 0




Abstract domain: the boolean algebra over

B = {b1, b2, b3 : boolean},
with b1 : y1 = 0

b2 : y2 = 0

b3 : y1 ≤ y2

14-35

Example: Abstracting Bakery (Cont’d)

Program mux-bak-abstr (finite-state program)

P1 ::



loop forever do
ℓ0 : noncritical
ℓ1 : (b1, b3) := (false, false)
ℓ2 : await b2 ∨ b3
ℓ3 : critical
ℓ4 : (b1, b3) := (true, true)




‖

P2 ::



loop forever do
m0 : noncritical
m1 : (b2, b3) := (false, true)
m2 : await b1 ∨ ¬b3
m3 : critical
m4 : (b2, b3) := (true, b1)





This program can now be checked for mutual exclusion,

bounded overtaking, response.

Show mux-bak-abstr q 0 ¬(at−ℓ3∧at−m3). Then

it follows that mux-bak q 0 ¬(at−ℓ3 ∧ at−m3).

14-36

