CS256/Spring 2008 - Lecture \#14 Zohar Manna

Satisfiability over a finite-state program

$$
\underline{P \text {-validity problem (of } \varphi \text {) }}
$$

Given a finite-state program P and formula φ, is φP-valid?
i.e. do all P-computations satisfy φ ?
$\underline{P \text {-satisfiability problem (of } \varphi \text {) }}$
Given a finite-state program P and formula φ
is φP-satisfiable?
i.e., does there exist a P-computation which satisfies φ ?

To determine whether φ is P-valid, it suffices to apply an algorithm for deciding if there is a P-computation that satisfies $\neg \varphi$.

The Idea

To check P-satisfiability of φ,
we combine the tableau T_{φ} and the
transition graph $\overline{G_{P}}$ into one product graph, called the behavior graph $\mathcal{B}_{(P, \varphi)}$, and search for paths

$$
\left(s_{0}, A_{0}\right),\left(s_{1}, A_{1}\right),\left(s_{2}, A_{2}\right), \ldots
$$

that satisfy the two requirements:

- $\quad \sigma \vDash \varphi$:
there exists a fulfilling path
$\pi: A_{0}, A_{1}, \ldots$
in the tableau T_{φ} such that $\varphi \in A_{0}$.
- $\quad \sigma$ is a P-computation:
there exists a fair path
$\sigma: s_{0}, s_{1}, \ldots$
in the transition graph G_{P}.

State transition graph G_{P} : Construction

- Place as nodes in G_{P} all initial states $s(s \mathbb{\vDash} \Theta)$
- Repeat
for some $s \in G_{P}, \tau \in \mathcal{T}$, add all its τ-successors s^{\prime} to G_{P} if not already there, and add edges between s and s^{\prime}.

Until no new states or edges can be added.

If this procedure terminates, the system is finite-state.

Example: Program mux-pet1 (Fig. 3.4) (Peterson's Algorithm for mutual exclusion)
local y_{1}, y_{2} : boolean where $y_{1}=\mathrm{F}, y_{2}=\mathrm{F}$ $s \quad:$ integer where $s=1$
ℓ_{0} : loop forever do

$$
P_{1}:: \quad\left[\begin{array}{ll}
\ell_{1}: & \text { noncritical } \\
\ell_{2}: & \left(y_{1}, s\right):=(\mathrm{T}, 1) \\
\ell_{3}: & \text { await }\left(\neg y_{2}\right) \vee(s \neq 1) \\
\ell_{4}: & \text { critical } \\
\ell_{5}: & y_{1}:=\mathrm{F}
\end{array}\right]
$$

$1 \mid$
m_{0} : loop forever do
$P_{2}:: \quad\left[\begin{array}{ll}m_{1}: & \text { noncritical } \\ m_{2}: & \left(y_{2}, s\right):=(\mathrm{T}, 2) \\ m_{3}: & \text { await }\left(\neg y_{1}\right) \vee(s \neq 2) \\ m_{4}: & \text { critical } \\ m_{5}: & y_{2}:=\mathrm{F}\end{array}\right]$

Abstract state-transition graph for MUX-PET1

We use $y_{1} \Leftrightarrow a t-\ell_{3 . .5}$
14-6
$y_{2} \Leftrightarrow a t_{-} m_{3 . .5}$

Some states have been lumped together: a superstate labeled by i represents i states
mUX-PET1 has 42 reachable states.

Based on this graph it is straightforward to check the properties

$$
\begin{aligned}
& \psi_{1}: \square \neg\left(a t_{-} \ell_{4} \wedge a t_{-} m_{4}\right) \\
& \psi_{2}: \square\left(a t-\ell_{3} \wedge \neg a t-m_{3} \rightarrow s=1\right) \\
& \psi_{3}: \square\left(a t _m_{3} \wedge \neg a t-\ell_{3} \rightarrow s=2\right)
\end{aligned}
$$

MUX-PET1 Full state-transition graph $\left(l_{i}, m_{j}, s\right)$

Definitions

- For atom $A, \operatorname{state}(A)$ is the conjunction of all state formulas in A
(by $R_{\text {sat }}$, state (A) must be satisfiable)
- For $A \in T_{\varphi}$,
$\delta(A)$ denotes the set of successors of A in T_{φ}
- atom A is consistent with state s
if $s \mathbb{\|} \operatorname{state}(A)$,
i.e. s satisfies all state formulas in A.
- $\vartheta: A_{0}, A_{1}, \ldots$ path in T_{φ}
$\sigma: s_{0}, s_{1}, \ldots$ computation of P
ϑ is a trail of T_{φ} over σ if
A_{j} is consistent with s_{j}, for all $j \geq 0$

Behavior Graph

For finite-state program P and formula φ,
we construct the (P, φ)-behavior graph
$\mathcal{B}_{(P, \varphi)} \approx G_{P} \times T_{\varphi}^{-}$(pruned)
such that

- nodes are labeled by (s, A)
where s is a state from G_{P} and
A is an atom from T_{φ} consistent with s.
- edges

There is an edge

if and only if $s^{\prime} \in \tau(s)$ and $A^{\prime} \in \delta(A)$

- initial φ-node (s, A)
if s is an initial state $(s \|=)$
and A is an initial φ-atom $(\varphi \in A)$

It is marked

Algorithm behavior-graph (constructing $\mathcal{B}_{(P, \varphi)}$)

- Place in \mathcal{B} all initial φ-nodes (s, A)
(s initial state of P,
A initial φ-atom in T_{φ}^{-}
A consistent with s)
- Repeat until no new nodes or new edges can be added:

Let (s, A) be a node in \mathcal{B}
$\tau \in \mathcal{T}$ a transition
(s^{\prime}, A^{\prime}) a pair s.t.
s^{\prime} is a τ-successor of s $A^{\prime} \in \delta(A)$ in pruned T_{φ}^{-} A^{\prime} consistent with s^{\prime}

- Add $\left(s^{\prime}, A^{\prime}\right)$ to \mathcal{B}, if not already there
- Draw a τ-edge from (s, A) to (s^{\prime}, A^{\prime}), if not already there

Example: Given FTS LOOP

$$
\begin{array}{ll}
\Theta: & x=0 \\
\mathcal{T}=\left\{\tau, \tau_{I}\right\} \\
\text { with } \left.\quad \tau_{I} \text { (idling }\right) \\
& \tau \text { where } \rho_{\tau}: x^{\prime}=(x+1) \bmod 4 \\
\mathcal{J}: \quad\{\tau\}
\end{array}
$$

Check P-satisfiability of $\psi_{3}: \diamond \square(x \neq 3)$
state-transition graph $G_{\text {LOOP }}($ Fig 5.9)
pruned $T_{\psi_{3}}^{-}(\operatorname{Fig} 5.8)$
Behavior graph $\mathcal{B}_{\left(\mathrm{LOOP}, \psi_{3}\right)}(\operatorname{Fig} 5.10)$

Fig. 5.9. State-transition graph $G_{\text {LOOP }}$

14-13

$\underline{\text { Pruned tableau } T_{\psi_{3}}^{-}}$(Fig. 5.8)

Eliminating

- MSCS's not reachable from an initial ψ_{3}-atom and
- non-fulfilling terminal MSCS's

Promising formulas:
$\diamond \square(x \neq 3)$ promising $\square(x \neq 3)$
$\neg \square(x \neq 3)$ promising $\quad(x=3)$

$$
\begin{array}{ll}
\left\{A_{4}^{-+}, A_{5}^{--}\right\} & \text {not fulfilling } \\
\left\{A_{7}^{+}\right\} & \text {fulfilling }
\end{array}
$$

Behavior graph $\mathcal{B}_{\left(\mathrm{LOOP}, \psi_{3}\right)}(\operatorname{Fig} 5.10)$

14-15

Example: Given FTS one:
$\Theta: \quad x=0$
$\mathcal{T}: \quad\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{I}\right\}$

$$
\text { with } \rho_{\tau_{1}}: \quad x=0 \wedge x^{\prime}=1
$$

$$
\rho_{\tau_{2}}: \quad x=1 \wedge x^{\prime}=0
$$

$$
\rho_{\tau_{3}}: \quad x=0 \wedge x^{\prime}=-1
$$

$$
\rho_{\tau_{4}}: \quad x=-1 \wedge x^{\prime}=0
$$

$\mathcal{J}: \emptyset$
$\mathcal{C}: \quad\left\{\tau_{1}, \tau_{3}\right\}$
Transition graph $G_{\text {ONE }}$

We want to know whether

$$
\varphi: \square \diamond(x=1)
$$

is valid over ONE.
Check P-satisfiability of

$\Phi_{\psi}^{+}:\{\psi, \bigcirc \psi, \square(x \neq 1), \bigcirc \square(x \neq 1), x=1\}$ basic formulas: $\{\bigcirc \psi, \bigcirc \square(x \neq 1), x=1\}$

Promising formulas:

$$
\begin{gathered}
\psi_{1}: \psi=\diamond \square(x \neq 1) \text { promising } r_{1}: \square(x \neq 1) \\
\psi_{2}: \neg \square(x \neq 1) \text { promising } r_{2}: x=1
\end{gathered}
$$

Behavior graph $\left.\mathcal{B}_{(\text {ONE, }} \diamond \square(x \neq 1)\right)$

Two non-transient MSCS's:
$\left\{\left(s_{2}, A_{4}^{-+}\right),\left(s_{1}, A_{5}^{--}\right),\left(s_{3}, A_{5}^{--}\right)\right\}$: not fulfilling,
$\left\{\left(s_{1}, A_{7}^{++}\right),\left(s_{3}, A_{7}^{++}\right)\right\}$: fulfilling

Paths of $\mathcal{B}_{(P, \varphi)}$

Claim 5.9 (paths of $\mathcal{B}_{(P, \varphi)}$)

The infinite sequence

$$
\pi: \underbrace{\left(s_{0}, A_{0}\right)}_{\varphi \text {-initial }},\left(s_{1}, A_{1}\right), \ldots
$$

is a path in $\mathcal{B}_{(P, \varphi)}$
jiff
$\sigma_{\pi}: s_{0}, s_{1}, \ldots$ is a run of P
(ie. computation of P less fairness)
$\vartheta_{\pi}: A_{0}, A_{1}, \ldots$ is a trail of T_{φ} over σ_{π}
(ie. A_{j} consistent with s_{j}, for all $j \geq 0$)

Example: In $\mathcal{B}_{\left(\text {LOOP }, \psi_{3}\right)}$ (Fig. 5.10)
$\pi:\left(\left(s_{0}, A_{5}\right),\left(s_{1}, A_{5}\right),\left(s_{2}, A_{5}\right),\left(s_{3}, A_{4}\right)\right)^{\omega}$ induces
$\sigma_{\pi}:\left(s_{0}, s_{1}, s_{2}, s_{3}\right)^{\omega}$ run of LOOP
$\vartheta_{\pi}:\left(A_{5}, A_{5}, A_{5}, A_{4}\right)^{\omega}$ trail of $T_{\psi_{3}}$ over σ_{π}

Proposition 5.10 (P-satisfiability by path)
P has a computation satisfying φ
iff
there is an infinite φ-initialized path π
in $\mathcal{B}_{(P, \varphi)}$ s.t.
σ_{π} is a $\underline{P \text {-computation (fair run of } P \text {) }}$
ϑ is a fulfilling trail over σ_{π}

Searching for "good" paths in $\mathcal{B}_{(P, \varphi)}$

- not practical.

Definitions

For behavior graph $\mathcal{B}_{(P, \varphi)}$

- node $\left(s^{\prime}, A^{\prime}\right)$ is a τ-successor of (s, A) if $\mathcal{B}_{(P, \varphi)}$ contains τ-edge connecting (s, A) to (s^{\prime}, A^{\prime})
- transition τ is enabled on node (s, A) if τ is enabled on state s

Definitions (Con't)

For $\operatorname{scs} S \subseteq \mathcal{B}_{(P, \varphi)}$:

- Transition τ is taken in S if there exists two nodes $(s, A),\left(s^{\prime}, A^{\prime}\right) \in S$ s.t.
(s^{\prime}, A^{\prime}) is a τ-successor of (s, A)
- S is $\left\{\begin{array}{l}\underline{\text { just }} \\ \text { compassionate }\end{array}\right\}$ if every $\left\{\begin{array}{l}\text { just } \\ \text { compassionate }\end{array}\right\}$
transition $\tau\left\{\begin{array}{l}\in \mathcal{J} \\ \in \mathcal{C}\end{array}\right\}$ is either taken in S or
is disabled on $\left\{\begin{array}{l}\text { some node } \\ \text { all nodes }\end{array}\right\}$ in S
- S is fair if it is both just and compassionate
- S is fulfilling if every promising formula $\psi \in \Phi_{\psi}$ is fulfilled by some atom A, s.t.
$(s, A) \in S$ for some state s
- S is adequate if it is fair and fulfiling

Adequate SCS's

Proposition 5.11 (adequate SCS and satisfiability)

Given a finite-state program P and temporal formula φ. φ is P-satisfiable iff
$\mathcal{B}_{(P, \varphi)}$ has an adequate SCS

Example: Consider LOOP and

$$
\psi_{3}: \diamond \square(x \neq 3)
$$

Is ψ_{3} LOOP-satisfiable?
Check the SCS's in $\mathcal{B}_{\left(\text {LOOP }, \psi_{3}\right)}$ (Fig. 5.10)

Behavior graph $\mathcal{B}_{\left(\text {LOOP }, \psi_{3}\right)}($ Fig 5.10)

14-25

Example (Con't)

- $\left\{\left(s_{0}, A_{5}^{--}\right),\left(s_{1}, A_{5}^{--}\right),\left(s_{2}, A_{5}^{--}\right),\left(s_{3}, A_{4}^{-+}\right)\right\}$ is fair but not fulfilling
- $\left\{\left(s_{0}, A_{7}^{++}\right)\right\},\left\{\left(s_{1}, A_{7}^{++}\right)\right\},\left\{\left(s_{2}, A_{7}^{++}\right)\right\}$
each is fulfilling but not fair
Not just with respect to transition τ
- $\left\{\left(s_{3}, A_{6}^{-+}\right)\right\}$
is neither fair (unjust toward τ) nor fulfilling (being transient)

No adequate subgraphs in $\mathcal{B}_{\left(\mathrm{LOOP}, \psi_{3}\right)}$
Therefore, by proposition 5.11 , LOOP has no computation that satisfies $\psi_{3}: \diamond \square(x \neq 3)$

Example: Consider LOOP and

$$
\varphi_{3}: \square \diamond(x=3)
$$

Is φ_{3} LOOP-satisfiable?

Promising formulas :

$$
\begin{aligned}
& \diamond(x=3) \text { promising } \quad(x=3) \\
& \neg \square \diamond(x=3) \text { promising } \\
& \neg \diamond(x=3)
\end{aligned}
$$

Pruned tableau $T_{\varphi_{3}}$ (Fig. 5.6)

$$
S=\left\{\left(s_{0}, A_{1}^{-+}\right),\left(s_{1}, A_{1}^{-+}\right),\left(s_{2}, A_{1}^{-+}\right),\left(s_{3}, A_{0}^{++}\right)\right\}
$$

is an adequate subgraph:
fair $\quad(\tau$ taken in $S)$ fulfilling

Therefore, by proposition 5.11, program LOOP has a computation satisfying $\varphi_{3}: \square \diamond(x=3)$

The periodic computation $\sigma:(x: 0, x: 1, x: 2, x: 3)^{\omega}$ satisfies φ_{3}

$\frac{\text { From Atom Tableau } T_{\varphi}}{\text { to } \omega \text {-Automaton } \mathcal{A}_{\varphi}}$

For temporal formula φ, construct the ω-automaton

$$
\mathcal{A}_{\varphi}: \underbrace{N, N_{0}, E,}_{\substack{\text { Same as } \\ T_{\varphi}}} \mu, \mathcal{F}\rangle
$$

where

- Node labeling μ :

For node $n \in N$ labeled by atom A in T_{φ},

$$
\mu(n)=\operatorname{state}(A)
$$

- Acceptance condition \mathcal{F} :

Muller:

$$
\mathcal{F}=\{\operatorname{SCS} S \mid S \text { is fulfilling }\}
$$

Street:

$$
\begin{aligned}
& \mathcal{F}=\left\{\left(P_{\psi}, R_{\psi}\right) \mid \psi \in \Phi_{\varphi} \text { promises } r\right\}, \\
& \text { where }
\end{aligned}
$$

$$
\begin{aligned}
& P_{\psi}=\{A \mid \neg \psi \in A\} \\
& R_{\psi}=\{A \mid r \in A\}
\end{aligned}
$$

Example: $\varphi: \diamond p$
Tableau T_{φ} :

Example: $\mathcal{A}_{\diamond p}$ from $T_{\diamond p}$

$\mathcal{F}_{M}=\left\{\left\{n_{1}\right\},\left\{n_{1}, n_{2}\right\},\left\{n_{4}\right\}\right\}$
$\mathcal{F}_{S}=\left\{\left(P_{\diamond_{p},} R_{\diamond p}\right)\right\}$
$=\left\{\left(\left\{n_{4}\right\},\left\{n_{1}, n_{3}\right\}\right)\right\}$
$\approx\left\{\left(\left\{n_{4}\right\},\left\{n_{1}\right\}\right)\right\}$
since no path can visit n_{3} infinitely often

Abstraction

Abstraction $=$ a method to verify infinite-state systems.

Idea:

We want to ensure that
if $P^{A} \vDash \varphi^{A}$ then $P \vDash \varphi$.

Abstraction (Cont'd)

How do we obtain such an abstraction function?

- 1) Abstract the domain to a finite-state one (data abstraction):
For variables \vec{x} ranging over domain D, find an abstract domain D^{A} and an abstraction function $\alpha: D \rightarrow D^{A}$.
- 2) From the data abstraction it is possible to compute an abstraction for the program and for the property such that
if $P^{A} \vDash \varphi^{A}$ then $P \vDash \varphi$.

Example: Abstracting Bakery

Program MUX-BAK (infinite-state program)

$$
\begin{aligned}
& P_{1}::\left[\begin{array}{l}
\text { loop forever do } \\
{\left[\begin{array}{l}
\ell_{0}: \text { noncritical } \\
\ell_{1}: y_{1}:=y_{2}+1 \\
\ell_{2}: \text { await } y_{2}=0 \vee y_{1} \leq y_{2} \\
\ell_{3}: \text { critical } \\
\ell_{4}: y_{1}:=0
\end{array}\right]}
\end{array}\right] \\
& P_{2}::\left[\begin{array}{l}
\text { loop forever do } \\
{\left[\begin{array}{l}
m_{0}: \text { noncritical } \\
m_{1}: y_{2}:=y_{1}+1 \\
m_{2}: \text { await } y_{1}=0 \vee y_{2}<y_{1} \\
m_{3}: \text { critical } \\
m_{4}: y_{2}:=0
\end{array}\right]}
\end{array}\right]
\end{aligned}
$$

Abstract domain: the boolean algebra over
$B=\left\{b_{1}, b_{2}, b_{3}\right.$: boolean $\}$,
with $b_{1}: y_{1}=0$

$$
\begin{aligned}
& b_{2}: y_{2}=0 \\
& b_{3}: y_{1} \leq y_{2}
\end{aligned}
$$

Example: Abstracting Bakery (Cont'd)

Program MUX-BAK-ABSTR (finite-state program)

$$
\begin{aligned}
& P_{1}::\left[\begin{array}{l}
\text { loop forever do } \\
{\left[\begin{array}{l}
\ell_{0}: \text { noncritical } \\
\ell_{1}:\left(b_{1}, b_{3}\right):=(\text { false, false }) \\
\ell_{2}: \text { await } b_{2} \vee b_{3} \\
\ell_{3}: \text { critical } \\
\ell_{4}:\left(b_{1}, b_{3}\right):=(\text { true, true })
\end{array}\right]}
\end{array}\right] \\
& \| \\
& P_{2}::\left[\begin{array}{l}
\text { loop forever do } \\
{\left[\begin{array}{l}
m_{0}: \text { noncritical } \\
m_{1}:\left(b_{2}, b_{3}\right):=(\text { false, true }) \\
m_{2}: \text { await } b_{1} \vee \neg b_{3} \\
m_{3}: \text { critical } \\
m_{4}:\left(b_{2}, b_{3}\right):=\left(\text { true }, b_{1}\right)
\end{array}\right]}
\end{array}\right]
\end{aligned}
$$

This program can now be checked for mutual exclusion, bounded overtaking, response.

Show MUX-BAK-ABSTR $\vDash \square \neg\left(a t_{-} \ell_{3} \wedge a t_{-} m_{3}\right)$. Then it follows that MUX-BAK $\vDash \square \neg\left(a t-\ell_{3} \wedge a t-m_{3}\right)$.

