CS256/Spring 2008 - Lecture #14Zohar Manna

Satisfiability over a finite-state program

 $P\text{-validity problem (of }\varphi)$

Given a finite-state program Pand formula φ ,

is φ *P*-valid?

i.e. do all $P\text{-}\mathrm{computations}$ satisfy $\varphi?$

 $P\text{-satisfiability problem (of }\varphi)$

Given a finite-state program P and formula φ

is φ *P*-satisfiable?

i.e., does there exist a $P\text{-}\mathrm{computation}$ which satisfies $\varphi?$

To determine whether φ is *P*-valid, <u>it suffices</u> to apply an algorithm for deciding if there is a *P*-computation that satisfies $\neg \varphi$.

<u>The Idea</u>

To check P-satisfiability of φ , we combine the <u>tableau</u> T_{φ} and the <u>transition graph</u> $\overline{G_P}$ into one product graph, called the <u>behavior graph</u> $\mathcal{B}_{(P,\varphi)}$, and search for paths

 $(s_0, A_0), (s_1, A_1), (s_2, A_2), \ldots$

that satisfy the two requirements:

• $\sigma \models \varphi$: there exists a <u>fulfilling path</u> $\pi : A_0, A_1, \dots$ in the tableau T_{φ} such that $\varphi \in A_0$.

 σ is a P-computation: there exists a <u>fair path</u>
 σ: s₀, s₁,... in the transition graph G_P.

State transition graph G_P : Construction

- Place as nodes in G_P all initial states $s \ (s \models \Theta)$
- Repeat

for some $s \in G_P, \ \tau \in \mathcal{T}$, add all its τ -successors s' to G_P if not already there, and add edges between s and s'.

Until no new states or edges can be added.

If this procedure terminates, the system is finite-state.

Example: Program mux-pet1 (Fig. 3.4) (Peterson's Algorithm for mutual exclusion)

local y_1, y_2 : boolean where $y_1 = F, y_2 = F$ s : integer where s = 1 ℓ_0 : loop forever do $\left[\begin{array}{ccc} \ell_1 : & \text{noncritical} \\ \ell_2 : & (y_1, s) := (T, 1) \\ \ell_3 : & \text{await} (\neg y_2) \lor (s \neq 1) \\ \ell_4 : & \text{critical} \\ \ell_5 : & y_1 := F \end{array}\right]$

$$m_{0}: \text{ loop forever do}$$

$$\begin{bmatrix} m_{1}: \text{ noncritical} \\ m_{2}: (y_{2}, s):=(T, 2) \\ m_{3}: \text{ await } (\neg y_{1}) \lor (s \neq 2) \\ m_{4}: \text{ critical} \\ m_{5}: y_{2}:= F \end{bmatrix}$$

 P_2 ::

14-5

Abstract state-transition graph for MUX-PET1

We use $y_1 \Leftrightarrow at_{-}\ell_{3..5}$ $y_2 \Leftrightarrow at_{-}m_{3..5}$

14-6

Some states have been lumped together: a super-state labeled by i represents i states

MUX-PET1 has 42 reachable states.

Based on this graph it is straightforward to check the properties

 $\psi_{1}: \Box \neg (at_{-}\ell_{4} \land at_{-}m_{4})$ $\psi_{2}: \Box (at_{-}\ell_{3} \land \neg at_{-}m_{3} \rightarrow s = 1)$ $\psi_{3}: \Box (at_{-}m_{3} \land \neg at_{-}\ell_{3} \rightarrow s = 2)$

MUX-PET1 Full state-transition graph (l_i, m_j, s)

Definitions

- For atom A, state(A) is the conjunction of all state formulas in A
 (by R_{sat}, state(A) must be satisfiable)
- For $A \in T_{\varphi}$, $\frac{\delta(A)}{\text{in } T_{\varphi}}$ denotes the set of successors of A
- atom A is <u>consistent</u> with state s if $s \models state(A)$,

i.e. s satisfies all state formulas in A.

θ: A₀, A₁,... path in T_φ
σ: s₀, s₁,... computation of P
θ is a <u>trail</u> of T_φ over σ if
A_j is consistent with s_j, for all j ≥ 0

Behavior Graph

For finite-state program P and formula φ , we construct the (P, φ) -behavior graph

 $\mathcal{B}_{(P,\varphi)} \approx G_P \times T_{\varphi}^{-} (\text{pruned})$

such that

- <u>nodes</u> are labeled by (s, A)
 where s is a state from G_P and
 A is an atom from T_φ <u>consistent</u> with s.
- edges

There is an edge

if and only if $s' \in \tau(s)$ and $A' \in \delta(A)$

• initial φ -node (s, A)

if s is an initial state $(s \models \Theta)$ and A is an initial φ -atom $(\varphi \in A)$ It is marked (s, A)

14-10

Algorithm behavior-graph (constructing $\mathcal{B}_{(P,\varphi)}$)

• Place in \mathcal{B} all initial φ -nodes (s, A)(s initial state of P, A initial φ -atom in T_{φ}^{-} A consistent with s)

• Repeat until no new nodes or new edges can be added:

Let
$$(s, A)$$
 be a node in \mathcal{B}
 $\tau \in \mathcal{T}$ a transition
 (s', A') a pair s.t.
 s' is a τ -successor of s
 $A' \in \delta(A)$ in pruned T_{φ}^{-}
 A' consistent with s'

- Add (s', A') to \mathcal{B} , if not already there
- Draw a τ -edge from (s, A) to (s', A'), if not already there

Example: Given FTS LOOP

$$\begin{array}{ll} \varThetalticolumn{3}{c} \Theta: \ x=0 \\ & \mathcal{T}=\{\tau,\tau_I\} \\ & \text{with} \quad \tau_I \ (\text{idling}) \\ & \quad \tau \ \text{where} \ \rho_\tau: \ x'=(x+1) \textit{mod}4 \\ & \mathcal{J}: \quad \{\tau\} \end{array}$$

Check *P*-satisfiability of ψ_3 : $\bigcirc \Box(x \neq 3)$

state-transition graph G_{LOOP} (Fig 5.9) pruned $T_{\psi_3}^-$ (Fig 5.8) Behavior graph $\mathcal{B}_{(\text{LOOP},\psi_3)}$ (Fig 5.10)

Fig. 5.9. State-transition graph G_{LOOP}

Pruned tableau $T_{\psi_3}^-$ (Fig. 5.8)

Eliminating

- MSCS's not reachable from an initial ψ_3 -atom and
- non-fulfilling terminal MSCS's

Promising formulas:

$$\bigcirc \square(x \neq 3)$$
 promising $\square(x \neq 3)$
 $\neg \square(x \neq 3)$ promising $(x = 3)$

Two non-transient MSCS's:

$$\{A_4^{-+}, A_5^{--}\} \quad \text{not fulfilling}$$

$$\{A_7^{++}\} \qquad \text{fulfilling}$$

$$14-14$$

Example: Given FTS ONE:

Transition graph G_{ONE}

We want to know whether

$$\varphi$$
: \Box \diamondsuit ($x = 1$)

is valid over ONE.

Check P-satisfiability of

$$\neg \varphi : \underbrace{\bigcirc \Box(x \neq 1)}_{\psi}$$

 $\Phi_{\psi}^{+}: \{\psi, \bigcirc \psi, \square(x \neq 1), \bigcirc \square(x \neq 1), x = 1\}$ basic formulas: $\{\bigcirc \psi, \bigcirc \square(x \neq 1), x = 1\}$

Promising formulas:

$$\psi_1 : \psi = \diamondsuit \square (x \neq 1) \text{ promising } r_1 : \square (x \neq 1)$$

$$\psi_2 : \neg \square (x \neq 1) \text{ promising } r_2 : x = 1$$

Pruned tableau T_{ψ}^{-}

Behavior graph $\mathcal{B}_{(ONE, \bigcirc \square(x \neq 1))}$

Two non-transient MSCS's:

 $\{(s_2, A_4^{-+}), (s_1, A_5^{--}), (s_3, A_5^{--})\}$: not fulfilling, $\{(s_1, A_7^{++}), (s_3, A_7^{++})\}$: fulfilling ¹⁴⁻¹⁹ Paths of $\mathcal{B}_{(P,\varphi)}$

Claim 5.9 (paths of $\mathcal{B}_{(P,\varphi)}$)

The infinite sequence

 $\pi: \underbrace{(s_0, A_0)}_{\varphi\text{-initial}}, (s_1, A_1), \dots$ is a path in $\mathcal{B}_{(P,\varphi)}$ iff $\sigma_{\pi}: s_0, s_1, \dots$ is a <u>run</u> of P(i.e. computation of P less fairness) $\vartheta_{\pi}: A_0, A_1, \dots$ is a <u>trail</u> of T_{φ} over σ_{π} (i.e. A_j consistent with s_j , for all $j \ge 0$)

Example: In
$$\mathcal{B}_{(LOOP,\psi_3)}$$
 (Fig. 5.10)
 π : $((s_0, A_5), (s_1, A_5), (s_2, A_5), (s_3, A_4))^{\omega}$
induces

$$\sigma_{\pi}$$
: $(s_0, s_1, s_2, s_3)^{\omega}$ run of LOOP
 ϑ_{π} : $(A_5, A_5, A_5, A_4)^{\omega}$ trail of T_{ψ_3} over σ_{π}

Proposition 5.10 (*P*-satisfiability by path)

 $\begin{array}{l} P \text{ has a computation satisfying } \varphi \\ \text{iff} \\ \text{there is an infinite } \varphi \text{-initialized path } \pi \\ \text{in } \mathcal{B}_{(P,\varphi)} \text{ s.t.} \\ \\ \sigma_{\pi} \text{ is a } \underline{P \text{-computation }} (\text{fair run of } P) \\ \vartheta \text{ is a } \underline{\text{fulfilling trail over }} \sigma_{\pi} \end{array}$

Searching for "good" paths in $\mathcal{B}_{(P,\varphi)}$

— not practical.

Definitions

For behavior graph $\mathcal{B}_{(P,\varphi)}$

- node (s', A') is a <u>τ-successor</u> of (s, A) if B_(P,φ) contains τ-edge connecting (s, A) to (s', A')
- transition τ is <u>enabled</u> on node (s, A)if τ is enabled on state s

Definitions (Con't)

For SCS $S \subseteq \mathcal{B}_{(P,\varphi)}$:

Transition τ is taken in S if there exists two nodes (s, A), (s', A') ∈ S s.t.
(s', A') is a τ-successor of (s, A)

•
$$S$$
 is $\left\{ \begin{array}{c} \underline{just} \\ \underline{compassionate} \end{array} \right\}$ if every $\left\{ \begin{array}{c} just \\ compassionate \end{array} \right\}$
transition $\tau \left\{ \begin{array}{c} \in \mathcal{J} \\ \in \mathcal{C} \end{array} \right\}$ is either taken in S or
is disabled on $\left\{ \begin{array}{c} some \ node \\ all \ nodes \end{array} \right\}$ in S

- S is <u>fair</u> if it is both just and compassionate
- S is <u>fulfilling</u> if every promising formula ψ ∈ Φ_ψ is fulfilled by some atom A, s.t.
 (s, A) ∈ S for some state s
- S is adequate if it is fair and fulfilling

Adequate SCS's

Proposition 5.11 (adequate SCS and satisfiability)

Given a finite-state program P and temporal formula φ . φ is P-satisfiable iff

 $\mathcal{B}_{(P,\varphi)}$ has an adequate SCS

Example: Consider LOOP and

$$\psi_3$$
: $\bigcirc \Box(x \neq 3)$

Is ψ_3 LOOP-satisfiable? Check the SCS's in $\mathcal{B}_{(LOOP,\psi_3)}$ (Fig. 5.10)

Example (Con't)

• { $(s_0, A_5^{--}), (s_1, A_5^{--}), (s_2, A_5^{--}), (s_3, A_4^{-+})$ } is fair but not fulfilling

• {
$$(s_0, A_7^{++})$$
 }, { (s_1, A_7^{++}) }, { (s_2, A_7^{++}) }

each is fulfilling but not fair Not just with respect to transition τ

• $\{(s_3, A_6^{-+})\}$

is neither fair (unjust toward τ) nor fulfilling (being transient)

No adequate subgraphs in $\mathcal{B}_{(\text{LOOP},\psi_3)}$ Therefore, by **proposition 5.11**, LOOP has no computation that satisfies ψ_3 : $\bigcirc \Box(x \neq 3)$

Example: Consider LOOP and

$$\varphi_3$$
: $\Box \diamondsuit (x = 3)$

Is φ_3 LOOP-satisfiable?

Promising formulas :

$$(x = 3)$$
 promising $(x = 3)$
 $\neg \Box \diamondsuit (x = 3)$ promising $\neg \diamondsuit (x = 3)$

Pruned tableau $T_{\varphi_{\textbf{3}}}$ (Fig. 5.6)

$$\varphi_{3}, \Diamond (x = 3), \bigcirc \varphi_{3}, \bigcirc \Diamond (x = 3)$$

$$A_{0}^{++}: x = 3$$

$$A_{1}^{-+}: x \neq 3$$

14-28

$$S = \{ (s_0, A_1^{-+}), (s_1, A_1^{-+}), (s_2, A_1^{-+}), (s_3, A_0^{++}) \}$$

is an adequate subgraph:

fair (au taken in S) fulfilling

Therefore, by proposition 5.11, program LOOP has a computation satisfying φ_3 : $\Box \diamondsuit (x = 3)$

The periodic computation σ : $(x:0, x:1, x:2, x:3)^{\omega}$ satisfies φ_3

$\frac{\text{From Atom Tableau } T_{\varphi}}{\text{to } \omega\text{-Automaton } \mathcal{A}_{\varphi}}$

For temporal formula φ , construct the ω -automaton

$$\mathcal{A}_{\varphi} : \langle \underbrace{N, N_{0}, E}_{\text{Same as}}, \mu, \mathcal{F} \rangle$$

where

• Node labeling μ : For node $n \in N$ labeled by atom A in T_{φ} ,

$$\mu(n) = state(A).$$

• Acceptance condition
$$\mathcal{F}$$
:

Muller:

$$\mathcal{F} = \{ \text{SCS } S \mid S \text{ is fulfilling } \}$$

Street:

$$\mathcal{F} = \{ (P_{\psi}, R_{\psi}) \mid \psi \in \Phi_{\varphi} \text{ promises } r \},$$

where

$$P_{\psi} = \{ A \mid \neg \psi \in A \}$$

$$R_{\psi} = \{ A \mid r \in A \}$$

14 - 30

$\texttt{Example:} \ \varphi : \ \diamondsuit p$

Tableau T_{φ} :

$$\mathcal{F}_M = \{\{n_1\}, \{n_1, n_2\}, \{n_4\}\}$$

$$\mathcal{F}_S = \{(P_{\diamondsuit p}, R_{\diamondsuit p})\}$$

$$= \{(\{n_4\}, \{n_1, n_3\})\}$$

$$\approx \{(\{n_4\}, \{n_1\})\}$$

since no path can visit n_3 infinitely often

Abstraction

Abstraction = a method to verify infinite-state systems.

Idea:

$\begin{array}{c} Program \ P\\ (infinite \ state) \end{array}$	$\stackrel{\text{abstraction}}{\longrightarrow}$	Abstract program P^A (finite state)
Property φ	\longrightarrow	Abstract property φ^A
$P \models \varphi?$	\longrightarrow	$P^{A} \models \varphi^{A}$ \downarrow model checking

We want to ensure that if $P^A \models \varphi^A$ then $P \models \varphi$.

Abstraction (Cont'd)

How do we obtain such an abstraction function?

- 1) Abstract the domain to a finite-state one (data abstraction): For variables \vec{x} ranging over domain D, find an <u>abstract domain</u> D^A and an abstraction function $\alpha : D \to D^A$.
- 2) From the data abstraction it is possible to compute an abstraction for the program and for the property such that
 if DA b a A then D b a

if $P^A \models \varphi^A$ then $P \models \varphi$.

Example: Abstracting Bakery

Program MUX-BAK (infinite-state program)

$$P_{1} :: \begin{bmatrix} \text{loop forever do} \\ \ell_{0} : \text{noncritical} \\ \ell_{1} : y_{1} := y_{2} + 1 \\ \ell_{2} : \text{await } y_{2} = 0 \lor y_{1} \le y_{2} \\ \ell_{3} : \text{critical} \\ \ell_{4} : y_{1} := 0 \end{bmatrix} \end{bmatrix}$$
$$\|$$
$$P_{2} :: \begin{bmatrix} \text{loop forever do} \\ m_{0} : \text{noncritical} \\ m_{1} : y_{2} := y_{1} + 1 \\ m_{2} : \text{await } y_{1} = 0 \lor y_{2} < y_{1} \\ m_{3} : \text{critical} \\ m_{4} : y_{2} := 0 \end{bmatrix}$$

Abstract domain: the boolean algebra over $B = \{b_1, b_2, b_3 : \text{boolean}\},\$ with $b_1 : y_1 = 0$ $b_2 : y_2 = 0$ $b_3 : y_1 \le y_2$ Example: Abstracting Bakery (Cont'd)

Program MUX-BAK-ABSTR (finite-state program)

 $P_{1} :: \begin{bmatrix} \text{loop forever do} \\ \ell_{0} : \text{noncritical} \\ \ell_{1} : (b_{1}, b_{3}) := (false, false) \\ \ell_{2} : \text{await } b_{2} \lor b_{3} \\ \ell_{3} : \text{critical} \\ \ell_{4} : (b_{1}, b_{3}) := (true, true) \end{bmatrix} \end{bmatrix}$ $\|$ $P_{2} :: \begin{bmatrix} \text{loop forever do} \\ m_{0} : \text{noncritical} \\ m_{1} : (b_{2}, b_{3}) := (false, true) \\ m_{2} : \text{await } b_{1} \lor \neg b_{3} \\ m_{3} : \text{critical} \\ m_{4} : (b_{2}, b_{3}) := (true, b_{1}) \end{bmatrix} \end{bmatrix}$

This program can now be checked for mutual exclusion, bounded overtaking, response.

Show MUX-BAK-ABSTR $\models \Box \neg (at_{-}\ell_{3} \land at_{-}m_{3})$. Then it follows that MUX-BAK $\models \Box \neg (at_{-}\ell_{3} \land at_{-}m_{3})$.