CS256/Spring 2008 - Lecture \#16

Zohar Manna

References for further reading:

- Volume III of Manna \& Pnueli, Chapter 1
- Zohar Manna and Amir Pnueli. "Completing the Temporal Picture." In Theoretical Computer Science Journal, 83(1), 1991, pp. 97-130.

References are available from Zohar Manna's web page, http://theory.stanford.edu/~zm/; look at the class web site for a link to the initial chapters of Volume III.

16-1

$\frac{\text { Response under Justice }}{(\text { Chapter 1) }}$

Progress Properties

We will consider deductive methods to prove response properties (which are also applicable to obligation and guarantee properties since these are subclasses)

Response properties are those properties that can be expressed by a formula of the formula of the form

$$
\diamond p
$$

for a past formula p.

Volume III
Progress

Progress properties:
Temporal logic plays a more prominent role and fairness becomes important.

Property hierarchy:

$\underline{\text { Response formulas }}$

The verification rules presented assume that the response property is expressed by a response formula

$$
p \Rightarrow \diamond q
$$

for past formulas p and q.

Note:

- Response formula expresses a response property because of the equivalence

$$
p \Rightarrow \diamond q \quad \sim \quad \square \diamond((\neg p) \mathcal{B} q)
$$

- Every response property can be expressed by a response formula due to the equivalence

$$
\square \diamond q \quad \sim \quad \mathrm{~T} \Rightarrow \diamond q
$$

Overview

We consider the simple case where p, q are assertions.

The proof of a response property

$$
p \Rightarrow \diamond q
$$

often relies on the identification of one or more so-called helpful transitions. We consider three cases:

1. Rule Resp-J
(single-step response under justice)
A single helpful transition τ_{h} suffices to establish the property

Overview (Cont'd)

3. Rule well-J
(well-founded response under justice)
The number of helpful transitions required to establish the property is unbounded

2. Rule CHAIN-J

(chain rule under justice)
A fixed number of helpful transitions
(independent of the value of variables)
suffices to establish the property

In all cases we will be able to use verification diagrams to represent the proof.

In practice, verification diagrams are often the preferred way to prove progress properties, because they represent the temporal structure of the program relative to the property.
$\frac{\text { Single-step rule (Motivation) }}{p \Rightarrow \diamond q}$
$p \Rightarrow \diamond q$

Justice requirement: it is not the case that a just transition is continuously enabled but never taken.

Single-step rule (Cont'd)

In practice, this rule is not very useful:
Very few properties rely on just a single helpful transition.

This leads to the CHAIN rule, where we have several intermediate properties.

Single-step rule

For assertions p, q, φ, and helpful transition $\tau_{h} \in \mathcal{J}$,

$$
\begin{array}{ll}
\text { J1. } & p \rightarrow q \vee \varphi \\
\text { J2. } & \{\varphi\} \mathcal{T}\{q \vee \varphi\} \\
\text { J3. } & \{\varphi\} \tau_{h}\{q\} \\
\text { J4. } & \varphi \rightarrow \operatorname{En}\left(\tau_{h}\right) \\
\hline & p \Rightarrow \diamond q
\end{array}
$$

Premise J2 requires all transitions to preserve φ (or establish q, in which case we are done).

Premise J4 ensures that the helpful transition τ_{h} will be continuously enabled.

It ensures, by the justice requirement, that τ_{h} will eventually be taken.

Premise J3 guarantees that it will establish q.

Useful rules

- Monotonicity:

$$
\begin{aligned}
p \Rightarrow q \quad & q \Rightarrow \diamond r \quad r \Rightarrow t \\
& p \Rightarrow \diamond t
\end{aligned}
$$

- Reflexivity:

$$
p \Rightarrow \diamond p
$$

- Transitivity:
$\frac{p \Rightarrow \forall q \Rightarrow \diamond r}{p \Rightarrow \diamond r}$
- Case analysis:
$\frac{p \Rightarrow \diamond r \quad q \Rightarrow \diamond r}{(p \vee q) \Rightarrow \diamond r}$

For state s_{j} : let φ_{i} be the intermediate formula with the smallest i such that $s_{j} \vDash \varphi_{i}$. Then i is the rank of s_{j}.

It is our task to find the intermediate assertions
$\varphi_{m}, \ldots, \varphi_{1}$.
Premise J2 ensures that all transitions either preserve the current assertion or move down to a lower-ranked assertion.

Premise J4 ensures that the helpful transition $\tau_{h_{i}}$ is enabled for φ_{i}, which makes it impossible to stay in φ_{i} forever, by the justice requirement.

Premise J3 guarantees that the helpful transition moves down to a strictly lower-ranked assertion.

Since premises J2-J4 hold for every $1 \leq i \leq m$, this ensures that $\varphi_{0}=q$ will be reached eventually.

Chain rule

For assertions $p, q=\varphi_{0}$ and $\varphi_{1}, \ldots, \varphi_{m}$ and helpful transitions $\tau_{h_{1}}, \ldots, \tau_{h_{m}} \in \mathcal{J}$

J1. $p \rightarrow \bigvee_{j=0}^{m} \varphi_{j}$
J2. $\quad\left\{\varphi_{i}\right\} \mathcal{T}\left\{\bigvee_{j \leq i} \varphi_{j}\right\}$
$\left.\begin{array}{ll}\text { J3. } & \left\{\varphi_{i}\right\} \tau_{h_{i}}\left\{\bigvee_{j<i} \varphi_{j}\right\} \\ \text { J4. } & \varphi_{i} \rightarrow \operatorname{En}\left(\tau_{h_{i}}\right)\end{array}\right\}$ for $i=1, \ldots, m$

$$
p \Rightarrow \diamond q
$$

J2: rank never increases
J3: rank decreases

Verification Diagrams

Nodes: labeled by assertions φ_{i}
Terminal node $\varphi 0$

Edges: labeled by transitions

> single-lined
(represents a regular transition)
double-lined
(represents a helpful transition)

Chain diagram
well-formedness conditions:

- weakly acyclic in \longrightarrow :
if $\varphi_{i} \longrightarrow \varphi_{j}$ then $i \geq j$
- acyclic in \Longrightarrow :
if $\varphi_{i} \Longrightarrow \varphi_{j}$ then $i>j$
- every nonterminal node has a double edge departing from it
- no transition can label both a single and a double edge departing from the same node.

16-17

Chain diagram verification conditions (Cont'd)
2. double τ-edges

$$
\{\varphi\} \tau\left\{\varphi_{1} \vee \ldots \vee \varphi_{n}\right\}
$$

3. enabling condition

4. single τ-edges

$$
\{\varphi\} \tau\left\{\varphi \vee \varphi_{1} \vee \ldots \vee \varphi_{n}\right\}
$$

nonterminal node with no outgoing τ-edges:

Note: No Verification Condition for terminal node.

16-18

A chain diagram is $\underline{P \text {-valid }}$
if all the verification conditions associated with the diagram are P-valid.

Claim: A P-valid chain diagram establishes that

$$
\bigvee_{j=0}^{m} \varphi_{j} \Rightarrow \diamond \varphi_{0}
$$

is P-valid.
With $\quad p \rightarrow \bigvee_{j=0}^{m} \varphi_{j} \quad$ and $\quad \varphi_{0} \rightarrow q$,
we can conclude the P-validity of

$$
p \Rightarrow \diamond q
$$

Example: Program mux-pet1 (Fig. 3.4)

(Peterson's Algorithm for mutual exclusion)
local y_{1}, y_{2} : boolean where $y_{1}=\mathrm{F}, y_{2}=\mathrm{F}$ $s \quad$: integer where $s=1$

ℓ_{0} : loop forever do

$P_{1}:: \quad\left[\begin{array}{ll}\ell_{1}: & \text { noncritical } \\ \ell_{2}: & \left(y_{1}, s\right):=(\mathrm{T}, 1) \\ \ell_{3}: & \text { await }\left(\neg y_{2}\right) \vee(s \neq 1) \\ \ell_{4}: & \text { critical } \\ \ell_{5}: & y_{1}:=\mathrm{F}\end{array}\right]$
m_{0} : loop forever do
$P_{2}:: \quad\left[\begin{array}{ll}m_{1}: & \text { noncritical } \\ m_{2}: & \left(y_{2}, s\right):=(\mathrm{T}, 2) \\ m_{3}: & \text { await }\left(\neg y_{1}\right) \vee(s \neq 2) \\ m_{4}: & \text { critical } \\ m_{5}: & y_{2}:=\mathrm{F}\end{array}\right]$

Example (Cont'd)

We now want to establish accessibility, expressed by

$$
a t-\ell_{3} \Rightarrow \diamond a t-\ell_{4}
$$

Since the two properties seem similar we would like to transform the wait diagram into a CHAIN diagram. This requires a double edge departing from every node. The edges labeled by m_{3} and m_{4} can be converted into double edges immediately since we have

$$
\varphi_{3} \rightarrow E n\left(m_{3}\right) \quad \text { and } \quad \varphi_{2} \rightarrow \operatorname{En}\left(m_{4}\right)
$$

However, $\varphi_{1} \nrightarrow E n\left(\ell_{3}\right)$, so we have to do some more work on φ_{1}.

In Chapter 3 of the SAFETY book we established 1-bounded overtaking, expressed by
$a t-\ell_{3} \Rightarrow \neg a t-m_{4} \mathcal{W} a t-m_{4} \mathcal{W} \neg a t-m_{4} \mathcal{W} a t-\ell_{4}$ for MUX-PET1 with the following WAIT-diagram

16-22

Example (Cont'd)

The problem with

$$
\varphi_{1}:\left(a t_{-} m_{0 . .2,5} \vee\left(a t_{-} m_{3} \wedge s=2\right)\right) \wedge a t_{-} \ell_{3}
$$

is the disjunct $a t-m_{5}$, because

$$
a t_{-} m_{5} \rightarrow \neg E n\left(\ell_{3}\right)
$$

Therefore we separate this disjunct and create two new assertions

$$
\varphi_{1}^{\prime}: \quad a t_{-} m_{5} \wedge a t_{-} \ell_{3}
$$

$$
\varphi_{1}^{\prime \prime}: \quad\left(a t_{-} m_{0 . .2} \vee\left(a t_{-} m_{3} \wedge s=2\right)\right) \wedge a t_{-} \ell_{3}
$$

As helpful transition for φ_{1}^{\prime} we identify m_{5}. Clearly

$$
\varphi_{1}^{\prime} \rightarrow E n\left(m_{5}\right)
$$

and m_{5} leads from φ_{1}^{\prime} to $\varphi_{1}^{\prime \prime}$. Now we have

$$
\varphi_{1}^{\prime \prime} \rightarrow E n\left(\ell_{3}\right)
$$

and ℓ_{3} leads from φ_{1}^{\prime} to φ_{0}, as required.

With some rearrangement of assertion numbers, and simplification of $\varphi_{1}^{\prime \prime}$,
this leads to the following chain diagram.

$$
\frac{\text { Chain diagram for program MUX-PET1 }}{a t-\ell_{3} \Rightarrow \diamond a t-\ell_{4}}
$$

$\underline{\text { Ranking functions: Motivation }}$

In the CHAIN-J rule we used the index of the intermediate assertions as a measure of the distance from the goal. From an intermediate assertion φ_{n} it takes at most n helpful transitions to reach the goal.

We can generalize this idea of measuring the distance from the goal and define a distance function on the state space, and require that helpful transitions reduce the distance and all other transitions do not increase the distance. This ensures that the goal will eventually be reached.

We will measure the distance with ranking functions which map states into a well-founded domain.

Example (Cont'd)

In practice one would not construct a deductive proof like this to prove accessibility (or any property) of MUXPET1:

MUX-PET1 is a finite-state program (due to the invariant $\chi_{1}: s=1 \vee s=2$) and therefore fully automatic algorithmic methods are available.

However, the proof by verification diagram does give insight in why the property holds and the possible flows of the program to reach the goal.
$16-26$

Well-founded domains

Well-founded domain

$$
(A, \prec)
$$

where A is a set and
\prec is a well-founded order
i.e., there does not exist an infinitely
descending sequence $a_{0} \succ \overline{a_{1} \succ a_{2}} \ldots$
Note: A well-founded order is transitive and irreflexive.
Examples:
$(\mathbb{N},<) \quad$ is well-founded:

$$
n>n-1>n-2>\ldots>0
$$

$(\mathbb{Z},<)$ is not well-founded:

$$
n>n-1>\ldots>0>-1>-2 \ldots
$$

$(\mathbb{Z}, \mid<1)$ with $x|>| y$ iff $|x|>|y|$ is well-founded: $-7|>|-3|>|2|>|-1|>| 0$
(Rationals in $[0,1],<$) is not well-founded:
$1>\frac{1}{2}>\frac{1}{4}>\frac{1}{8}>\frac{1}{16}>\ldots$

Well-founded domains (A_{1}, \prec_{1}) and (A_{2}, \prec_{2}) can be combined into their

$$
\text { lexicographic product }\left(A_{1} \times A_{2}, \prec\right)
$$

where

$$
\left(a_{1}, a_{2}\right) \prec\left(b_{1}, b_{2}\right) \quad a_{i}, b_{i} \in A_{i}
$$

iff

$$
a_{1} \prec_{1} b_{1} \text { or }\left(a_{1}=b_{1} \text { and } a_{2} \prec_{2} b_{2}\right) .
$$

$\left(A_{1} \times A_{2}, \prec\right)$ is also a well-founded domain.

In general, well-founded domains

$$
\left(A_{1}, \prec_{1}\right), \ldots,\left(A_{n}, \prec_{n}\right)
$$

can be combined into their lexicographic product $\left(A_{1} \times \cdots \times A_{n}, \prec\right)$ where

$$
\left(a_{1}, \ldots, a_{n}\right) \prec\left(b_{1}, \ldots, b_{n}\right) \quad a_{i}, b_{i} \in A_{i}
$$

iff for some $j, 1 \leq j \leq n$,

$$
a_{1}=b_{1}, \ldots, a_{j-1}=b_{j-1}, a_{j} \prec_{j} b_{j}
$$

$\left(A_{1} \times \cdots \times A_{n}, \prec\right)$ is also a well-founded domain.

$\underline{\text { Motivation (Cont'd) }}$

Using CHAIN diagrams to prove this, we would need a separate diagram for each value of N :

which does not seem practical.

Rule WELL-J

For assertions $p, q=\varphi_{0}$ and $\varphi_{1}, \ldots, \varphi_{m}$, helpful transitions $\tau_{h_{1}}, \ldots \tau_{h_{m}} \in \mathcal{J}$, a well-founded domain (\mathcal{A}, \prec), and ranking functions $\delta_{0}, \ldots, \delta_{m}: \Sigma \rightarrow \mathcal{A}$

JW1. $p \rightarrow \bigvee_{j=0}^{m} \varphi_{j}$
$\left.\begin{array}{l}\text { JW2. } \rho_{\tau} \wedge \varphi_{i} \rightarrow\left[\begin{array}{c}\bigvee_{j=0}^{m}\left(\varphi_{j}^{\prime} \wedge \delta_{i} \succ \delta_{j}^{\prime}\right) \\ \vee\left(\varphi_{i}^{\prime} \wedge \delta_{i}=\delta_{i}^{\prime}\right) \\ \text { for every } \tau \in \mathcal{T}\end{array}\right. \\ \text { JW3. } \quad \rho_{\tau_{h_{i}}} \wedge \varphi_{i} \rightarrow \bigvee_{j=0}^{m}\left(\varphi_{j}^{\prime} \wedge \delta_{i} \succ \delta_{j}^{\prime}\right) \\ \text { JW4. } \varphi_{i} \rightarrow \operatorname{En}\left(\tau_{h_{i}}\right)\end{array}\right\}(*)$

$$
p \Rightarrow \diamond q
$$

$(*)$ for $i=1, \ldots, m$

$$
16-33
$$

Premise JW4:

Same as in the CHAIN-J rule. It ensures that the helpful transition will eventually be taken, by the justice requirement.

Since (A, \prec) is well-founded there can only be a finite number of those steps, ensuring that eventually φ_{0} is reached.

Premise JW2:
In the CHAIN rule we required that all transitions resulted in a move down to a lower-ranked assertion or stay in the same assertion.
Progress towards the goal was measured by the assertion index.

Here, progress is measured by the value of the ranking function, so if a transition reduces the ranking function it may go to any assertion. If it cannot reduce the ranking function it should stay in the same assertion to keep the identity of the helpful transition.

Premise JW3:
The helpful transition is required to reduce the ranking function.

RANK diagrams
RANK diagrams: Verification conditions

Nodes: labeled by assertions and ranking functions

$$
\varphi_{i}, \delta_{i}
$$

Terminal Nodes:

Well-formedness constraint:

- Every nonterminal node $\varphi_{i}, i>0$, has a double edge departing from it.
- No transition can label both a single and a double edge departing from the same node.

$$
\{\varphi \wedge \delta=u\} \tau\left\{\left(\varphi_{1} \wedge u \succ \delta_{1}\right)\right.
$$

16-38

Claim: A P-valid rank diagram establishes that

$$
\bigvee_{j=0}^{m} \varphi_{j} \Rightarrow \diamond \varphi_{0}
$$

is P-valid.
With $\quad p \rightarrow \bigvee_{j=0}^{m} \varphi_{j} \quad$ and $\quad \varphi_{0} \rightarrow q$,
we can conclude the P-validity of

$$
p \Rightarrow \diamond q
$$

Example: Program N

Verification diagram for program N

$$
\begin{gathered}
\text { and property } \\
\underbrace{a t-\ell_{0}}_{p} \Rightarrow \diamond \underbrace{a t-\ell_{3}}_{q}
\end{gathered}
$$

16-41

Example: Program INC
local $y, i n c$: integer where $y \geq 0 \wedge i n c=1$
$\left[\begin{array}{ll}\ell_{0}: & \text { while } y>0 \text { do } \\ & \ell_{1}: y:=y+i n c \\ \ell_{2}: & \end{array}\right] \|\left[\begin{array}{ll}m_{0}: & \text { inc }:=0 \\ m_{1}: & \text { inc }:=-1 \\ m_{2}: & \end{array}\right]$

We want to prove for program INC

$$
a t_{-} \ell_{0} \Rightarrow \diamond a t-\ell_{2}
$$

Invariants:

$$
\begin{aligned}
& a t_{-} m_{0} \rightarrow \text { inc }=1 \\
& a t_{-} m_{1} \rightarrow \text { inc }=0 \\
& a t_{-} m_{2} \rightarrow \text { inc }=-1
\end{aligned}
$$

While at m_{0} and at m_{1} no progress is made by traversing the loop $\ell_{0}-\ell_{1}$. Progress is made only by moving to m_{2}.

While at m_{2}, progress is made by executing ℓ_{0} and ℓ_{1}, so the loop is made explicit in the diagram.

Example (Cont'd): Verification conditions

- $\underbrace{a t-\ell_{0}}_{p} \rightarrow \underbrace{a t-\ell_{0}}_{\varphi_{3}} \vee \varphi_{2} \vee \varphi_{1} \vee \varphi_{0}$

Four double lines:

- $\varphi_{1} \Rightarrow \varphi_{2}$:

$$
\begin{aligned}
& \underbrace{a t-\ell_{2} \wedge a t_{-}^{\prime} \ell_{1} \wedge i^{\prime}=i-1}_{\rho_{\ell_{2}}} \wedge \ldots \\
& \cdots \wedge \underbrace{a t-\ell_{2}}_{\varphi_{1}} \wedge u=\underbrace{(i, 1)}_{\delta_{1}} \rightarrow \\
& \underbrace{a t_{-}^{\prime} \ell_{1}}_{\varphi_{2}^{\prime}} \wedge(\underbrace{(i, 1)}_{\delta_{1}} \succ \underbrace{\left(i^{\prime}, 2\right)}_{\delta_{2}^{\prime}})
\end{aligned}
$$

- $\underbrace{a t-\ell_{2}}_{\varphi_{1}} \rightarrow \underbrace{a t-\ell_{2}}_{\operatorname{En}\left(\ell_{2}\right)}$

16-42

RANK diagram for program INC representing the proof of

$$
a t_{-} \ell_{0} \Rightarrow \diamond a t_{-} \ell_{2}
$$

