
9781138197541_C012 2017/10/13 16:43 Page 257 #1

12 S3D-Legion
An Exascale Software for Direct
Numerical Simulation of
Turbulent Combustion with
Complex Multicomponent
Chemistry

Sean Treichler, Michael Bauer, Ankit Bhagatwala,
Giulio Borghesi, Ramanan Sankaran, Hemanth Kolla,
Patrick S. McCormick, Elliott Slaughter, Wonchan Lee,
Alex Aiken, and Jacqueline Chen

CONTENTS

12.1 Introduction...258
12.1.1 Direct Numerical Simulation..258
12.1.2 Programming for HPC and Exascale..259
12.1.3 Contributions ..259

12.2 S3D ...260
12.2.1 Fortran+MPI Implementation...261
12.2.2 Hybrid OpenACC+MPI Implementation..261
12.2.3 Legion Implementation...262

12.3 Legion ...263
12.4 Singe ...263
12.5 Simulation Setup...264

12.5.1 RCCI Simulation ..264
12.5.2 Temporal Jet Simulation ...265

12.6 Combustion Results ..266
12.6.1 RCCI Simulation Results..266
12.6.2 Temporal Jet Simulation Results ..270

12.7 Performance..271
12.7.1 Performance Bottlenecks ..272
12.7.2 Weak Scaling ..274
12.7.3 Strong Scaling...274

12.8 Conclusions...275
Acknowledgments ...276
References ...276

257

9781138197541_C012 2017/10/13 16:43 Page 258 #2

258 Exascale Scienti�c Applications: Scalability and Performance Portability

12.1 INTRODUCTION

New methods are needed to explore novel fuels and design better engines that can substantially
increase combustion ef�ciency, extend the longevity of �nite fossil fuel reserves, and reduce carbon
dioxide (CO2) and other emissions. Government mandates to reduce petroleum use by 25% by 2020
and greenhouse gas emissions by 80% by 2050 are also exerting pressure on industry and will require
signi�cant retooling of all aspects of energy use in the United States. Achieving these aggressive
goals requires the automotive industry to signi�cantly shorten its design cycle. The transportation
sector alone accounts for two-thirds of the nation’s petroleum use and one-quarter of the nation’s
greenhouse gas emissions. Compounding these challenges, fuels are also evolving, adding another
layer of complexity and further highlighting the need for rapid development cycles. We believe the
optimal path to fast design cycles is through predictive modeling and simulation, enabled by recent
advances in supercomputing.

In the past quarter century, the continual growth of high-performance computing (HPC) has had a
major impact on the progress of science and engineering. It has accelerated the pace of research and
development in many important �elds including combustion science. For example, it has enabled
new fundamental insights into turbulent combustion, a key subprocess that requires accurate model-
ing for the design of practical combustion devices. Turbulent combustion poses daunting modeling
and computational challenges. The challenges arise due to (1) the large number of chemical species
needed to describe a practical fuel (more than 100 species), (2) the large dynamic range of length
and time scales (10−7–10−2 m and 10−9–10−2 seconds in an internal combustion engine), and (3) the
coupling of highly nonlinear Arrhenius chemistry and large turbulent �uctuations of species concen-
trations with pressure and temperature.

12.1.1 DIRECT NUMERICAL SIMULATION

To cope with these challenges, combustion scientists rely on a diverse set of simulation infrastructures
and modeling techniques. The multiscale nature of combustion demands a hierarchy of computational
�uid dynamics (CFD) methods ranging from �ne-grain �rst principles direct numerical simulation
(DNS) to coarse-grain large-eddy simulations (LES) and Reynolds averaged simulations (RANS).
In particular, statistics from DNS simulations are used to bootstrap coarse-grain simulations and
therefore DNS requires the most accuracy. In DNS, the instantaneous governing reactive Navier–
Stokes, energy, and species continuity equations are solved without averaging or �ltering; all relevant
�ow and combustion scales are resolved on the grid with accurate numerical methods.

Although DNS yields very high-�delity results, it also makes simulations computationally expen-
sive, especially because the Reynolds number scaling between the largest and smallest turbulent
scales is proportional to N9∕4, where N is the number of grid points and practical devices operate
at high Reynolds numbers for ef�ciency. A single simulation often takes longer than a month to
complete, can consume millions of node hours on today’s petascale supercomputers, and generates
upward of a petabyte of raw data. To date, these costs have constrained scientists to perform simula-
tions that are reduced in one or more ways:

∙ A reduction in the size of the physical volume being simulated decreases the number of
grid points required, but limits the Reynolds number and the size of the turbulent structures
that can be studied. It also limits the statistical sample size needed for model development
and validation.

∙ Existing studies have focused on simpler fuel chemistries such as dimethyl ether (DME) [1].
Future fuels of interest for internal combustion engines are generally much more compli-
cated. For example, the reduced primary reference fuel (PRF) mixture [2] we consider in
this work requires over 4× more computation and storage resources than DME, even after
reduction techniques have been applied [3].

9781138197541_C012 2017/10/13 16:43 Page 259 #3

S3D-Legion 259

∙ In studies that unavoidably require examining large structures with complicated chemistry,
experimental diagnostics have been performed with reduced spatial dimensionality, using
at most two-dimensional (2D) planar information in a probe volume [4,5]. Unfortunately,
turbulence is intrinsically three-dimensional (3D), so these studies are unable to accurately
capture the mixing effects of combustion in a turbulent environment.

12.1.2 PROGRAMMING FOR HPC AND EXASCALE

Simulation codes themselves are not steady-state either. A new DNS experiment often requires new
functionality to be incorporated into an existing code while maintaining good performance charac-
teristics. Within existing programming models, this process requires a good understanding of the
underlying science, the intricacies of the existing source code, and the performance characteristics
of the machine. Introducing new features mandates the optimization of both the new code as well
any old code impacted by the change. Under such conditions, the programming effort and cognitive
load placed on programmers explodes as the number of interacting features grows. The resulting
complexity coupled with the time necessary to implement, test, and optimize code changes for new
features can easily exceed the running time of the simulation itself.

The evolving architectures of modern supercomputers compound the problem of programmer pro-
ductivity. As machines integrate heterogeneous processors such as graphics processing units (GPUs)
and deep memory hierarchies, the programmer becomes responsible for deciding how to effectively
map applications onto a target architecture. The process of mapping requires programmers to decide
how computations are assigned to processors and how data are placed in caches and memories. Exist-
ing programming models force the programmer to implement these mapping decisions directly in
the source code. This entangles the functionality of the code with its mapping in a way that inhibits
either aspect of the code from being modi�ed without a complete understanding of the other. Even
worse, achieving performance portability across different architectures requires implementing two
or more different mappings in the same source code, which is commonly done with a preponderance
of conditional compilation directives and/or complete forks of the source tree.

12.1.3 CONTRIBUTIONS

In this work, we report a dramatic improvement on the state of the art by presenting the �rst 3D DNS
of the PRF mechanism that is able to resolve micrometer-scale turbulent �ame structures. The simu-
lation was run on two heterogeneous supercomputers, Piz Daint at CSCS [6] and Titan at ORNL [7],
obtaining over 80% of the maximum achievable performance. Our code is based on a port of S3D [8]
to the Legion programming model [9]. The port is signi�cantly simpli�ed by the ability of Legion
to interoperate with existing message passing interface (MPI) applications—everything outside of
the main simulation loop is left in its original MPI Fortran form. We leverage the novel mapping
interface provided by the Legion runtime to easily tune our code for the PRF mechanism and map
our code onto different architectures. The addition of the new PRF chemistry to our code was made
effortless by the singe domain-speci�c language (DSL) compiler [10], which generates optimized
Legion tasks for the main computational kernels.

We also present the DNS of a temporally evolving n-dodecane fuel jet surrounded on either side by
air. For this simulation, the stencil tasks of the S3D-Legion code were enhanced to support stretched
grids and to allow one-sided stencils at the domain boundaries. In addition, nonre�ecting out�ow
boundary conditions (BCs) [11] were added as additional tasks. The BC implementation is based
on the algorithm proposed by Sutherland and Kennedy [12] and can be readily extended to BCs for
in�ows and walls. Although this algorithm favors programmability over performance, most of the
BC-related tasks operate on a small subset of the grid and their impact on the simulation time is
negligible.

9781138197541_C012 2017/10/13 16:43 Page 260 #4

260 Exascale Scienti�c Applications: Scalability and Performance Portability

We believe that this work demonstrates a general approach and framework in which exascale
computers can be productively programmed via the construction of performance-portable programs.
By decoupling the speci�cation of programs from their mapping using Legion, we make it easier to
modify, tune, and port applications. The use of domain-speci�c compilers such as Singe, in conjunc-
tion with Legion, enables fast task implementations to be generated without requiring programmer
input. These innovations greatly reduce both the time and effort required by human programmers
to implement, maintain, and augment simulations. Furthermore, this approach often yields higher
performance than hand-tuned codes. In our case, the use of Legion with a DSL compiler has made
the 3D turbulent simulation of a complex PRF chemical mechanism, which is representative of other
large hydrocarbon fuels, feasible for the �rst time.

12.2 S3D

S3D [8] is a massively parallel direct numerical solver to simulate turbulent combustion in canonical
con�gurations and thereby gain fundamental insights into the physical and chemical interactions in
turbulent reacting �ows.

S3D solves the governing equations for reacting �ows, namely the conservation equations for
mass, momentum, total energy, and species written as

∂
∂t
ρ=−∇β ⋅ (ρuβ) (12.1)

∂
∂t
(ρuα) =−∇β ⋅ (ρuαuβ) +∇β ⋅ �βα −∇αp (12.2)

∂
∂t
(ρe) =−∇β ⋅

[

uβ(ρe0 + p)
]

+∇β ⋅ (τβα ⋅ uα)

−∇β ⋅qβ (12.3)
∂
∂t
(ρYi) =−∇β ⋅ (ρYiuβ) −∇β ⋅ (ρYiVβi) +Wiω̇i (12.4)

where the indices α and β indicate spatial dimensions (with repeated indices denoting summation)
and i indicates the species index. Additional terms include the mass density (ρ), the mass frac-
tion and molecular weights of each species (Yi, Wi), the �uid velocity (u), the total energy (e), and
pressure (p).

Species-speci�c heat capacities and enthalpies are needed to compute the thermodynamic rela-
tions between the internal energy and temperature. S3D uses NASA thermodynamic polynomials
with seven coef�cients and two temperature ranges for computing the detailed species thermody-
namic properties.
ω̇i is the molar production rate of species due to chemical reaction and is computed using a detailed

chemical kinetics model of the chemistry being simulated [13]. The complexity of these models
depends on the number of species and reactions, which varies considerably between mechanisms, as
shown in Table 12.1. For all but the simplest mechanisms, the computation of these production rates
is the most important and computationally intensive kernel in S3D.

The next major computational kernels are in the evaluation of the diffusive transport terms: the
stress tensor (�), thermal diffusive �ux (q), and species mass diffusion velocities (Vi). These quantities
are computed from the known conserved variables using constitutive relations that require continuum
models for molecular transport properties such as viscosity, thermal conductivity, multicomponent
species diffusivity, and thermal diffusivity. S3D uses detailed multi-component and mixture-averaged
models for the transport properties [14] that are also dependent on density, temperature, and local
mixture composition.

9781138197541_C012 2017/10/13 16:43 Page 261 #5

S3D-Legion 261

TABLE 12.1
Summary of S3D Chemical Mechanisms

Mechanism Reactions Species Unique QSSA Stiff

H2 15 9 9 – –

DME 175 39 30 9 22

Dodecane 268 53 35 18 22

Heptane 283 68 52 16 27

PRF 861 171 116 55 93

∗DME, dimethyl ether; PRF, primary reference fuel; QSSA, quasi-steady-
state approximation.

The �nal signi�cant computation kernel is used in the gradient operators (∇β), which use a 9-point
centered stencil to compute an explicit 8th order �nite difference approximation of the partial deriva-
tive in direction β. Although not captured in the equations above, the solution is �ltered periodically
using an explicit 10th order �nite difference �lter on an 11-point stencil for numerical stability [15].
Navier-Stokes characteristic boundary conditions (NSCBC) [11,12] were used to prescribe the out-
�ow BCs for the temporal jet simulation.

The solution is advanced through time integration using an explicit fourth order six-stage
Runge–Kutta scheme [16] with built-in error estimates. A single time step, therefore, consists of
six evaluations of the right-hand-side function (rhsf), each followed by three scaled accumulations
for integration.

12.2.1 FORTRAN+MPI IMPLEMENTATION

S3D is a complex piece of software that has evolved over the course of 30 years, during which time
it has been worked on by a number of different scientists and engineers. The original version of S3D
consists of approximately 200 K lines of Fortran and uses MPI [17] for communication between
threads.

Parallelism is achieved by running a separate MPI rank on each core and trusting the Fortran
compiler to vectorize loops to take advantage of the wider datapaths in today’s central processing
units (CPUs). This approach works well at smaller node counts and the simplicity of the source code
is appreciated by domain scientists when they wish to add features to the code base.

However, the limitations of this initial approach become evident at scale (see Figure 12.1), as
well as on machines with heterogeneous computational resources where there is no way for the pure
Fortran version to target the accelerators.

12.2.2 HYBRID OPENACC+MPI IMPLEMENTATION

A second version of S3D targets heterogeneous systems by combining MPI with OpenACC [18]
directives in a hybrid implementation [19]. This version was ported from the Fortran+MPI version
by a team of scientists and engineers from Cray, ORNL, NREL, and NVIDIA. By leveraging both
CPUs and GPUs, the MPI/OpenACC version of S3D is roughly two times faster than the Fortran/MPI
version for the heptane mechanism with 52 species, between a third and a half of the complex-
ity of the PRF mechanism used in this study. This implementation runs with a single MPI rank
per node and uses OpenMP to recover the parallelism available from the multiple CPU cores on
each node.

9781138197541_C012 2017/10/13 16:43 Page 262 #6

262 Exascale Scienti�c Applications: Scalability and Performance Portability

1 4 16 64 256 1,024 4,096 13,824
Nodes

0

10,000

20,000

30,000

40,000

50,000

60,000

Th
ro

ug
hp

ut
pe

rn
od

e(
Po

in
ts/

se
c)

Legion S3D
MPI Fortran S3D

FIGURE 12.1 Weak scaling of PRF on Titan.

The effort to port the original Fortran version to the hybrid OpenACC model was signi�cant. Over
2500 lines of directives were added to the code, each representing a decision by a person familiar with
both the application and the then-current hardware of whether a given loop body should be of�oaded
to the GPU and which arrays must be copied from CPU memory to GPU memory or vice-versa.
Because the directives apply to lexical constructs (speci�cally Fortran do loops), a large number of
loops were manually fused (or occasionally split) and entire function bodies were inlined into loops
when the compiler could not (or would not) perform the necessary inlining automatically.

The OpenACC implementation of S3D assumes a system with a single GPU per node. Systems
with multiple GPUs per node are already common (e.g., Keeneland [20]), and although the OpenACC
2.0 standard includes support for multiple accelerators, additional directives would be required for all
of�oaded loops. Furthermore, when newer GPUs are introduced with different performance charac-
teristics, the original decisions of which loops to fuse or split would need to be revisited. Any changes
would be structural modi�cations to the source code, requiring conditional compilation directives to
maintain support for versions targeted at different machines.

12.2.3 LEGION IMPLEMENTATION

The most recent version of S3D is an implementation in the Legion programming model [21]. The
Legion version runs inside of the original Fortran+MPI version, of�oading the main simulation loop
but using the existing Fortran code for everything else. The changes to the Fortran source consist of
a few calls to initialize the Legion runtime and the replacement of the Fortran integrates call with
one call into Legion code, all controlled by a single build option.

The Legion code consists of approximately 25,000 lines of C++ and CUDA source, representing
several person–months of effort. All of the mechanism-speci�c codes are generated by the Singe
DSL compiler (discussed in detail in Section 12.4). Approximately 1000 lines of the C++ source
are in a custom mapper class that allows the same Legion application code to run ef�ciently on sys-
tems with different types and ratios of CPUs and GPUs, different memory hierarchies, and different
interconnect networks.

9781138197541_C012 2017/10/13 16:43 Page 263 #7

S3D-Legion 263

12.3 LEGION

Legion is a task-based parallel programming model designed for high-performance computing on
systems with heterogeneous computational resources and deep memory hierarchies [21]. Like other
dynamically scheduled task-based execution models [22–24], Legion maintains a task graph in which
the nodes are tasks to be executed and edges are ordering constraints between the tasks. The Legion
runtime executes the tasks in the graph, guaranteeing that a given task does not start until all of its
predecessors in the graph have been completed. The Legion programming model differs from other
task-based models in the combination of two signi�cant features that are visible to the programmer.

First, the programmer does not directly construct the task graph. The programmer instead declares
what data each task uses and how each task uses it (e.g., reading or writing). The Legion runtime
uses this information to infer the necessary ordering constraints. Legion provides a logical region
abstraction that allows precise speci�cation of the data being used by a task. Logical regions may be
partitioned into subregions, and the runtime tracks subregion relationships, allowing it to correctly
and ef�ciently detect when two tasks may access the same data. Importantly, logical regions provide
a data model that decouples the description of data from how it is placed and laid out in the memory
hierarchy.

Second, the Legion application code does not specify on what processors tasks run or where in the
memory hierarchy logical regions are placed, neither does the runtime attempt to automatically make
these decisions. Instead, these decisions are made in a separate mapper object that encapsulates all
machine-speci�c decisions about program execution. The mapper is part of the application code and
implements an interface that responds to queries from the Legion runtime. When a task t is ready
to be mapped, the runtime provides information about the current locations of physical instances
of logical regions needed by t. Using this information, the mapper responds with the processor on
which t should run and where t’s physical instances should be placed. If the requested locations of
physical instances differ from the current locations, the runtime automatically adds the necessary
data movement tasks and dependencies to the task graph to ensure that t executes only after its data
have arrived.

A key property of Legion programs is that changing the mapping cannot change the program’s
input–output behavior; the Legion runtime understands the semantics of task dependencies and guar-
antees that every task executes on the right data, regardless of the mapping. Thus, Legion programs
truly constitute a machine-independent speci�cation of an application. This property of Legion is
crucial to achieving high productivity: unlike other task-based models and bulk synchronous models
such as MPI, task and data placement decisions are not baked directly into a Legion program. Map-
ping decisions that impact performance are completely isolated within mapper objects. In a Legion
application, it is easy to change the mapping to tune or port for new machines without compromising
correctness.

Like other dynamic runtime systems, Legion incurs runtime overhead to compute and manage the
task graph. The Legion runtime is highly optimized to keep this overhead off of the critical path of
execution by performing much of the dynamic analysis in parallel with the rest of the application [25].
However, any dynamic runtime has a minimum granularity of useful work that it can ef�ciently
support. For Legion, we �nd that the analysis overhead can be hidden if tasks take at least 500 μsec
to execute on average. Many of S3D’s operations are below this threshold, and exploiting �ne-grain
vector parallelism within Legion tasks requires an alternative static scheduling approach.

12.4 SINGE

As mentioned in Section 12.2.3, the mechanism-speci�c kernels (the reaction rate and transport coef-
�cient calculations) are both the most complicated and the most performance-critical kernels. Tuning
these kernels is essential for improving time to solution, but their size and complexity exceed the

9781138197541_C012 2017/10/13 16:43 Page 264 #8

264 Exascale Scienti�c Applications: Scalability and Performance Portability

optimization capabilities of general purpose compilers. Hand optimization can yield signi�cant ben-
e�ts for an individual mechanism, but the immense time investment must be repeated for each new
mechanism.

Our solution is Singe, a domain-speci�c language compiler for combustion chemistry kernels [10].
Singe takes as input a standard description of a chemical mechanism along with tables describing
the transport and thermodynamic properties of chemical species. From these speci�cations, Singe
synthesizes high-performance kernels for use in combustion simulations. Singe leverages domain-
speci�c optimizations, such as the quasi-steady-state approximation (QSSA) [26], which groups
similar reactions into a single computation, and special handling of stiff species [27], permitting
larger time steps.* It also applies advanced compiler optimizations such as warp specialization for
GPUs [28]. Singe then emits highly specialized variants of kernels for different architectures. Code
is specialized differently for the Fermi and Kepler GPU architectures, as well as for CPUs with dif-
ferent cache sizes and vector instruction sets (e.g., streaming SIMD extensions [SSE] vs. advanced
vector extensions [AVX]. SIMD is single instruction, multiple data [SIMD]). All of these kernel vari-
ants are registered with the Legion runtime and made available to the mapper, allowing it the runtime
option of mapping tasks to a CPU or a GPU.

The performance of kernels generated by Singe is excellent. In cases where the OpenACC com-
piler generated GPU code for these kernels, the Singe versions are two to �ve times faster, with the
largest speedups coming from sophisticated mechanisms, such as PRF, that have complicated com-
putations and huge working sets. However, the productivity improvement is even more dramatic.
Singe comes equipped with its own autotuning framework [10], which can optimize all the required
kernels for a new chemical mechanism in less than 24 hours without any human intervention or
direction. Instead of spending days or weeks hand-optimizing individual kernels that are thousands
of lines long, adding support for a new mechanism is now an automated process that frees combustion
scientists to engage in other useful work.

12.5 SIMULATION SETUP

The S3D-Legion code was used to simulate two separate scienti�c problems that are described
below. The �rst scienti�c problem was the simulation of reactivity controlled compression ignition
(RCCI) that was performed using all periodic boundaries and therefore did not require any special
BC. The second scienti�c problem simulated using the S3D-Legion is the temporal evolution of a
nonpremixed jet mixing layer, which required the application of out�ow BCs and nonuniform mesh
spacing through algebraic stretching. The setup of the simulation experiments for these two problems
is presented below.

12.5.1 RCCI SIMULATION

The �rst simulation case is part of a larger parametric study of the impact of turbulence on combustion
under RCCI conditions [29]. In RCCI, a mixture of fuels is used—iso-octane (i-C8H18) and n-heptane
(n-C7H16) in the case of PRF—to obtain reliable ignition while operating in a regime that minimizes
both particulate and NOx emissions and still provides very high (i.e., diesel-like) thermal ef�ciency.
Combustion phasing (ignition timing with respect to piston motion) and subsequent heat release rate
are strongly sensitive to turbulence—the uneven mixing due to turbulence causes behavior to deviate
signi�cantly from that of a perfectly homogeneous mixture. Thus, it is essential to be able to couple
turbulent simulations with detailed chemistry.

The physical volume of the DNS was chosen to be a cube 3 mm on a side, with the expectation that
a grid spacing of 2.6 μm would be suf�cient to resolve all the �ame structures that were generated.

* The number of QSSA and stiff species in PRF and the other chemical mechanisms we study are listed in Table 12.1.

9781138197541_C012 2017/10/13 16:43 Page 265 #9

S3D-Legion 265

This results in a grid size of 11523 (just over 1.5 billion grid points) with 123 conserved variables
per grid point (including two additional transported variables for model assessment discussed later
in this section). With guidance from 1D �ame simulations on the size of PRF �ame structures under
these conditions, this choice was conservative; we gave ourselves enough margin to re�ne the grid
spacing to as small as 2.1 μm (using nearly 3 billion grid points) if necessary. Our run needed to
simulate 3 ms of physical time using 2.5 ns time steps, requiring 1.2 million time steps to observe
interesting combustion effects.

As described earlier, the �ame structures that demand such high spatial resolution do not appear
until well into the simulation at a time when the �rst ignition kernel undergoes thermal explosion
and forms a �ame, so the simulation was initially started with a grid size of 5763. The factor of 2
increase in grid spacing also permitted a factor of 2 increase to 5 ns per time step for the �rst 2.7 ms
of the run, improving the time to solution. The computational resource usage is improved by the 2×
reduction in grid points in each dimensions and the reduced number of time steps required for an
overall reduction factor of 16 for the majority of our run.

S3D is formulated as a constant-volume simulation, and models compression of the cylinder with
an additional source term in each of the governing equations that adds mass in a way that does not
cause spurious pressure �uctuations [30,31]. To maximize the number of turbulent eddies in the
simulation domain, the simulation was set up with periodic BCs, which can cause the fraction of
volume associated with heat release to be higher than under realistic engine conditions. To address
this issue, the mass injection strategy was extended to not only account for volume changes due to
piston motion, but to also replicate the pressure history of a �red engine. This required the introduc-
tion of a global reduction (to compute the average rate of change of pressure over the entire volume)
to be incorporated into an application whose communication pattern previously consisted entirely of
nearest-neighbor exchanges.

These changes were initially implemented in the Fortran+MPI version of S3D by domain scien-
tists. As they all impact the main simulation loop, they had to be ported to the Legion application
code. The existing Fortran code served as an excellent reference, as it succinctly described the nec-
essary functionality without being obfuscated by directives and/or manual code transformations for
optimization reasons. Because Legion tasks are also unencumbered by mapping considerations, the
porting was a simple matter of translating Fortran code into the corresponding C++. The porting
(and veri�cation) effort required less than a programmer-week of work. Once the desired function-
ality was achieved, adding mapping policies for the new tasks required less than 10 lines of code in
the Legion S3D mapper and was tuned in less than an hour.

For this simulation, we also explored the use of the OpenACC version of S3D for performance
comparisons. This required the OpenACC code to be updated for both the PRF mechanisms and
the additional features described above. We estimated that at least another month of implementa-
tion work as well as an unknown amount of debugging and tuning would be required to reach a
production version of the OpenACC code. Our previous performance results demonstrated that the
Legion version outperforms the OpenACC version by 2–3× on the smaller DME and heptane mech-
anisms [9]. This led us to abandon the effort and collect performance data for the MPI and Legion
version of S3D only. We performed the RCCI production simulation entirely using the Legion version
of S3D.

12.5.2 TEMPORAL JET SIMULATION

The second simulation case addressed ignition and �ame propagation in a temporally evolving air/
n-dodecane jet at pressure (25 bar) and temperature (Tair = 960 K) conditions that are relevant to
low-temperature diesel engine combustion. The scope of this simulation was to investigate the effect
of low-temperature chemistry on the ignition of the jet and to better understand how burning kernels
develop into �ames propagating in a non-homogeneous mixture.

9781138197541_C012 2017/10/13 16:43 Page 266 #10

266 Exascale Scienti�c Applications: Scalability and Performance Portability

The physical volume of the DNS was a cuboid of 3.6 mm× 14 mm× 3 mm in the x, y, and z
directions. The computational grid was uniform and periodic in the x and z directions and stretched
along the inhomogeneous y direction, with a �ne mesh region that spanned a distance equal to 4.0
mm at the beginning of the simulation to 6.6 mm at the end of the simulation. The grid spacing
in the periodic directions and in the �ne mesh region was 2.9 micron. The grid size at the end of
the simulation was 1216× 2400× 1024 (3 billion grid nodes). The chemical mechanism used in
the simulation was the 35-species reduced n-dodecane one listed in Table 12.1 and the number of
conserved variables per grid point was 42. The variable count includes two auxiliary transported
variables, a mixture fraction and a cumulative scalar dissipation rate, which were used to better
understand the physics of the simulated problem. The run needed to simulate 1 ms of physical time
using 4 ns time steps to observe mixture ignition and the propagation of burning �ames throughout
the simulation domain.

The code used for the simulation described in 12.5.1 supported neither stretched grids nor open
BCs. To overcome these limitations, we rewrote the existing stencil tasks to support stretched grids
and one-sided stencils at the domain boundaries. We also implemented the necessary tasks to simulate
problems in which nonre�ecting out�ow BCs [11] are used. Our BCs implementation is based on
the algorithm proposed by Sutherland and Kennedy [12] and can be readily extended to other types
of BCs, such as walls and inlets. Most of the boundary-related tasks operate on a small subsets of the
grid associated with each computational node and their impact on the simulation time is negligible
(less than 1%).

The jet was initialized as a laminar jet of half-width equal to 0.25 mm with superposed turbulent
�uctuations. Chemical reactions were not activated until t= 0.28 ms, when the jet had become fully
turbulent. Early during the �ow development, the jet width remained small and a computational grid
with a �ne mesh region of 4.0 mm was used to save computational resources. We used the full three
billion nodes grid only after t= 0.65 ms, shortly before the jet extended beyond the re�ned region of
the starting computational grid.

Initially, the simulation was run on Titan using the MPI version of S3D because at that time
support for BCs and nonuniform grids was not implemented yet within the Legion version of the
code. We eventually adopted the modi�ed Legion version when the simulation reached t= 0.45 ms.
The per node problem size was 643 grid points for the smallest computational grid used during the
simulation and 64× 96× 64 grid points for the largest one. Both these problem sizes allowed an
all-GPU mapping of the simulation tasks, which turned out to be the optimal mapping strategy on
Titan for problems using the n-dodecane chemistry. Due to the lack of a ready-to-use n-dodecane
mechanism for the OpenACC version of S3D, no attempt was made in running this DNS simulation
with that code.

12.6 COMBUSTION RESULTS

12.6.1 RCCI SIMULATION RESULTS

Figure 12.2 shows the temporal evolution of normalized domain average species mass fractions of
several key species along with temperature and heat release for the 3D simulation. It can be seen that
n-heptane (n-C7H16) is consumed signi�cantly earlier in the cycle than iso-octane. After the low-
temperature heat release stage marked by the �rst peak in the heat release rate (HRR in Figure 12.2)
pro�le, the original n-heptane is almost entirely consumed, most of it having decomposed to CH2O,
C2H4, and other smaller molecules. Consumption of CH2O and production of OH appear to coin-
cide with the consumption of all remaining iso-octane (i-C8H18). This period also coincides with
the oxidation of CO. The generation of intermediate species such as CH2O and CO occurs primar-

9781138197541_C012 2017/10/13 16:43 Page 267 #11

S3D-Legion 267

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.25

0.5

0.75

1

Time (sec)

– ϕ/
ϕ m

ax

× 10−3

0

500

1000

1500

2000

2500
T(K),H

RR × 10 −8(J/m
3/sec)

i − C8H18

n − C7H16

T

CH2O

CO HRR

OH

FIGURE 12.2 Temporal evolution of normalized species concentrations (left axis) and temperature and heat
release rate (right axis) for the three-dimensional reactivity controlled compression ignition simulation. The
overbar ̄(.) denotes an average over the domain. The dashed line represents heat release rate.

ily through the breakdown of n-heptane. Because most of the heat released later in the simulation
(i.e., the high-temperature heat release) is driven by the oxidation of these intermediates, it follows
that combustion is driven by the staged consumption and oxidation of n-heptane and its intermediates
followed by a rapid decomposition and oxidation of iso-octane.

Compression ignition con�gurations generally ignite by generating a series of ignition fronts. One
of the most interesting aspects of the RCCI con�guration is the appearance of �ame fronts in con-
junction with spontaneous ignition fronts. Ignition fronts are completely reaction driven: individual
locations in the domain react and spontaneously ignite independently of their neighbors, down a
gradient of ignition delay imposed by spatial variations in reactivity, temperature, or composition. In
contrast, a �ame front is diffusion driven: individual locations in the domain react and propagate only
when heat and reactants diffuse into them from neighboring locations. Visually, �ame fronts appear
as thin, spindly structures, whereas ignition fronts appear as thick, blob-like structures. Figure 12.3
shows the overall heat release rate in the simulation volume at the time corresponding to approxi-
mately 50% of the total heat release. Figure 12.4 shows slices of the heat release rate in the simulation
domain taken at one of the midplanes. The three images correspond to time instances at which 30%,
50%, and 80% of the total heat release has taken place. Most of the heat release occurs through the
thin �ame fronts.

One of the methods for quantifying whether the mode of combustion in a given location is through
ignition or �ames is to compute a reaction-diffusion balance across the burning surface. Figure 12.5
shows a volume rendering of these surfaces at a time instance corresponding to approximately 50%
of the total combustion heat release. It can be seen that diffusion and reaction track each other
quite closely in space, though they are not collocated. Moreover, their magnitudes are roughly equal
throughout the domain. This suggests that most of the combustion in the simulation occurs through
the �ame propagation mode. Figure 12.6 shows pro�les of the diffusion rate and reaction rate of
one of the key intermediate species, OH, at the same time instant. The pro�le on the left shows that
the peak magnitudes of both reaction and diffusion are comparable, which is a key characteristic of
premixed �ames. The pro�le on the right shows a spontaneous ignition front, which is dominated by
reaction and hence the magnitude of the diffusion rate is negligible compared to that of the reaction
rate.

9781138197541_C012 2017/10/13 16:43 Page 268 #12

268 Exascale Scienti�c Applications: Scalability and Performance Portability

–1.0e + 11 –7.5e + 10 –5.0e + 10 –2.5e + 10 8.0e + 05

FIGURE 12.3 (See color insert.) Volume rendering of the heat release rate at the time corresponding to 50%
of total heat release. Values are in J/m3/sec.

The PRF mixture used in this study had a large fraction of n-heptane. Although both �ames and
ignition fronts are found to coexist in this simulation, more than 80% of the combustion heat release
occurs through the �ame propagation mode. This observation appears to be unique to fuel blends that
contain high reactivity fuels, such as n-heptane. This has broad implications for modeling of RCCI
combustion and this 3D dataset provides a unique benchmark for the development and validation of
models applicable to an engine operating in the mixed combustion modes under RCCI conditions.
Optical engine experiments provide complementary statistics but have insuf�cient resolution to dis-
cern �ames from spontaneous ignition fronts. This is the �rst study of the details of the underlying
�ame and ignition structure with fuel blending. The results suggest that by conducting future DNS
simulations, in conjunction with experiments and LES, it will be possible to �nd the optimal fuel
blend for different engine operating conditions.

9781138197541_C012 2017/10/13 16:43 Page 269 #13

S3D-Legion 269

2.5
1.3e + 12
9.8e + 11
6.5e + 11
3.2e + 11

0.0
2.0

1.5

y (
m

m
)

x (mm)
(a)

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0 2.5

0.0

1.3e + 12
9.8e + 11
6.5e + 11
3.2e + 11

y (
m

m
)

(b)

2.5

2.0

1.5

1.0

0.5

x (mm)

0.0
0.0 0.5 1.0 1.5 2.0 2.5

0.0

1.3e + 12
9.8e + 11
6.5e + 11
3.2e + 11

(c)

y (
m

m
)

1.5

2.5

2.0

1.0

0.5

0.0
x (mm)

0.0 0.5 1.0 1.5 2.0 2.5

FIGURE 12.4 Slices taken at the midplane of the simulation volume showing contours of heat release rate at
time instances corresponding to 30% (a), 50% (b), and 80% (c) of the total heat release. Values are in J/m3/sec.

diff_OH diff_OHRR_OH

(a) (b)

RR_OH

0.0e+00 1.5e+03 3.0e+03 4.5e+03 6.0e+03 0.0e+00 1.5e+03 3.0e+03 4.5e+03 6.0e+03 0.0e+00 1.5e+03 3.0e+03 4.5e+03 6.0e+03 0.0e+00 1.5e+03 3.0e+03 4.5e+03 6.0e+03

FIGURE 12.5 (See color insert.) Contours of diffusion rate and reaction rate of the OH radical for the full
simulation volume (a) and a zoomed in view of the same in the boxed region near a �ame kernel (b).

9781138197541_C012 2017/10/13 16:43 Page 270 #14

270 Exascale Scienti�c Applications: Scalability and Performance Portability

4.0 3.0

2.0

1.0

0.0

–1.0

3.0

2.0
Reaction Reaction

Diffusion Diffusion

1.0

0.0

–1.0

–2.0

–3.0

–4.0

0.00 0.02

(a) (b)

0.04 0.06
Distance along normal (mm)

Di
ff(

O
H

),
RR

(O
H

) (
kg

/m
3/

se
c)

 (×
10

3)

Di
ff(

O
H

),
RR

(O
H

) (
kg

/m
3/

se
c)

 (×
10

3)

Distance along normal (mm)
0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

FIGURE 12.6 Comparison of the diffusion rate and reaction rate of the OH radical along a �ame surface (a)
and an ignition front (b).

12.6.2 TEMPORAL JET SIMULATION RESULTS

Understanding the physics of ignition is very important for achieving high ef�ciency and low pollu-
tant emissions in modern diesel engines. Generally speaking, ignition in a nonpremixed �ow is the
result of a competition over time between heat production due to chemical reactions and heat dissi-
pation due to transport processes. Under turbulent conditions, the probability is small that two �ow
elements will be subjected to the same reacting and mixing histories and, as such, we should expect
that different �ow regions with the same composition will ignite at different times. Our simulation
reveals this fact to hold true for both low- and high-temperature ignition.

Characterizing the topology of the low- and high-temperature ignition kernels is very important
to optimize the mixture preparation phase in compression-ignition engines. Figure 12.7 shows the
scatterplots of temperature versus mixture fraction (ξ) at selected instants of time during the igni-
tion transient. It can be seen that the turbulent jet ignites �rst in those regions where ξ= 0.06 and
that ignition is followed by the rapid propagation of the burning kernels toward regions with fuel-rich
compositions. During this phase, most of the heat release rate is due to low-temperature reactions and
therefore the maximum increase in gas temperature remains below 400K. This increase in tempera-
ture, albeit modest, is suf�cient to initiate the second phase of the ignition transient by triggering the
high-temperature reactions pathway of n-dodecane, which in turn initiates the hot �ame ignition pro-
cess. High-temperature regions are seen developing �rst around ξ= 0.16: their subsequent ignition
results in several reaction fronts that propagate toward the �ow regions with leaner mixture com-
positions, leading eventually to the establishment of fully burning conditions throughout the entire
�ow.

In this study, low-temperature reactions play a key role in triggering autoignition by raising the
gas temperature just enough to activate the high-temperature reactions pathways. As their name sug-
gests, low-temperature reactions are non-negligible only when the ambient gas temperature is below
a fuel-dependent threshold, which is approximately Tg = 1000K for n-dodecane. Diesel engines used
to be operated above this threshold value to maximize their ef�ciencies: as such, low-temperature
combustion phenomena received little or no attention in most of the existing DNS studies on turbulent
autoignition. The situation has changed in recent years due to the emergence of the low-temperature
diesel combustion concept as a promising engine technology for abating pollutants emissions while
maintaining the high ef�ciency typical of traditional diesel engines. Unfortunately, investigating tur-

9781138197541_C012 2017/10/13 16:43 Page 271 #15

S3D-Legion 271

1850

2250

1450

Te
m

pe
ra

tu
re

 [K
]

1050

650

1850

2250

1450

Te
m

pe
ra

tu
re

 [K
]

1050

650

1850

2250

1450

Te
m

pe
ra

tu
re

 [K
]

1050

650

0 0.06
Mixture fraction [–]

0.12 0.18 0.24 0.30

0 0.06
Mixture fraction [–]

0.12 0.18 0.24 0.30

0 0.06
Mixture fraction [–]

0.12 0.18 0.24 0.30

1850

2250

1450

Te
m

pe
ra

tu
re

 [K
]

1050

650

1850

2250

1450

Te
m

pe
ra

tu
re

 [K
]

1050

650

1850

2250

1450

Te
m

pe
ra

tu
re

 [K
]

1050

650

0 0.06
Mixture fraction [–]

0.12 0.18 0.24 0.30

0 0.06
Mixture fraction [–]

0.12 0.18 0.24 0.30

0 0.06
Mixture fraction [–]

0.12 0.18 0.24 0.30

t = 0.10 msec t = 0.16 msec t = 0.22 msec

t = 0.44 msec

t = 0.57 msect = 0.53 msect = 0.50 msec

t = 0.32 msec t = 0.41 msec

1850

2250

1450

Te
m

pe
ra

tu
re

 [K
]

1050

650

1850

2250

1450

Te
m

pe
ra

tu
re

 [K
]

1050

650

1850

2250

1450

Te
m

pe
ra

tu
re

 [K
]

1050

650

0 0.06
Mixture fraction [–]

0.12 0.18 0.24 0.30

0 0.06
Mixture fraction [–]

0.12 0.18 0.24 0.30

0 0.06
Mixture fraction [–]

0.12 0.18 0.24 0.30

FIGURE 12.7 Scatterplots of temperature versus mixture fraction at selected instants of time during the igni-
tion and transient. Shading and size of the symbols are indicative of the number of samples in the computational
domain with that composition and temperature.

bulent �ow autoignition with DNS at conditions representative of low-temperature diesel combustion
has proven to be an extreme challenge due to the combination of long induction times, small length
scales, and large sizes of the chemical mechanisms required to capture the low-temperature reaction
pathways. This study constitutes a pioneering work that will shed light on the combustion physics
behind the next generations of clean, ef�cient engines.

12.7 PERFORMANCE

This section describes the performance characteristics of the RCCI science case described in Sec-
tion 12.5.1. Portions of the RCCI simulations were run on two different Cray machines: Titan at the
Oak Ridge Leadership Computing Facility (currently second on the Top500 list [32]) and Piz Daint
at the Swiss National Supercomputing Center (sixth in the Top500). Both systems rely on a Kepler
K20X GPU per node for the bulk of their computational power. Titan [7] has 18,688 nodes, pair-
ing the GPU with a 16-core Opteron CPU and a Gemini interconnect. Piz Daint [6] is a newer, but
smaller, machine, consisting of 5272 nodes each with an 8-core Sandy Bridge-EP CPU and a Cray
Aries interconnect.

9781138197541_C012 2017/10/13 16:43 Page 272 #16

272 Exascale Scienti�c Applications: Scalability and Performance Portability

12.7.1 PERFORMANCE BOTTLENECKS

With roughly 90% of the available �oating point operations per second (FLOPS) on the GPU, the
�rst priority is to make sure the GPU is fully utilized. Figure 12.8 breaks down the GPU utilization
on Titan by kernel, showing that the GPU is kept busy over 95% of the time. Due to all the internode
communication for the gradient operations, every time step requires the movement of a large amount
of data over the PCI-Express bus that links the CPU and GPU: 1.6 GB is moved from CPU to GPU
and 4.0 GB is moved back. The bus is bidirectional and can transfer approximately 6 GB/sec in each
direction; the CPU to GPU channel operates at 15% capacity, whereas the return link operates at
38% capacity. The Legion runtime automatically overlaps data transfers with kernels running on the
GPU, requiring no effort from the programmer.

Although ensuring that the GPU is nearly always busy is important, it is equally important that
the individual tasks make ef�cient use of the GPU. The roo�ine analysis used by Rossinelli et al.
[33] remains an excellent tool for this purpose. We measured the achievable memory bandwidth
of the K20X to be 159.6 GB/sec and the peak computational throughput to be 1121.9 GFLOPS.
The computational intensity of the top kernels from Figure 12.8 and their performance are shown
in comparison to the roo�ine in Figure 12.9. The two key kernels (getrates and stencil) are
both memory bound. The getrates kernel is bene�ting slightly from L1 cache hits for its register
spills, which is why it appears slightly above the roo�ine. The Singe-generated diffusion and
viscosity kernels are able to move their working sets into CUDA shared memory, eliminating the
external memory bottleneck (their arithmetic intensities would be reduced to 1.4 and 2.8 FLOPS/B
without this optimization), but are still unable to fully utilize the arithmetic potential of the GPU
because they saturate the available shared memory bandwidth. Finally, the temp and ydiffflux
kernels must iterate over all 116 species of the PRF mechanism, resulting in less ef�cient global
memory access patterns and reduced memory system performance. By considering each kernel’s

Getrates 44.4%

Stencil

21.4%

Viscosity

6.0%

Diffusion5.0%

Temp
4.9%

Ydiffflux

3.6%

Precalc

3.0%

Integrate

2.4%

9 Others

5.0%

Idle

4.4%

FIGURE 12.8 GPU usage by task on Titan.

9781138197541_C012 2017/10/13 16:43 Page 273 #17

S3D-Legion 273

Arithmetic intensity (FLOPS/B)

103

102

101

2–3 2–2 2–1 20 21 22 23 24 25 26 27 28

Pe
rfo

rm
an

ce
(G

FL
O

PS
/s

ec
)

Getrates

Stencil

Viscosity
Diffusion

Temp

Ydiffflux

FIGURE 12.9 Roo�ine analysis of key GPU kernels.

distance from the roo�ine and weighting by the average fraction of a time step spent in a kernel, we
determined that we are obtaining 80.4% of the achievable performance of the GPU.

Prior work on CFD [33] has shown that cache blocking on CPUs can be used to signi�cantly
improve the computational intensities of important kernels. Unfortunately, these techniques are not
available to us for two reasons. First, although the caches and shared memories on the Kepler K20X
are similar in capacity to those of modern CPUs, they service an order of magnitude more concurrent
threads that considerably reduces the space available to each thread. Second, the introduction of com-
plex chemistry to the system dramatically increases the working set of each thread. The computation
of the right hand side for a single grid point in the PRF mechanism requires approximately 2000
double-precision intermediate temporaries. The L1 cache on a modern CPU would only be able to
�t a handful of grid points, and even all the combined L2 caches in a CPU socket could support only
a few hundred—not nearly enough to compensate for the edge effects (e.g., warming up prefetch
engines and fetching stencil neighbors) in a cache-blocked formulation. Additionally, the chemistry,
transport, and enthalpy calculations make heavy use of constants for polynomial coef�cients. For
PRF, there are over 34,000 of these constants, increasing the working set by a further 272 KB.

The viscosity and diffusion kernels achieve the best computational intensities because Singe is
able to �t their working sets into on-chip memories. To handle large working sets, Singe uses a tech-
nique called warp specialization to extract task parallelism from a computation and distribute it across
the warps of a thread block [28]. For smaller mechanisms such as DME and heptane, Singe has been
able to use the same technique for the chemistry kernel [10]. However, for the PRF mechanism, the
chemistry kernel working set consists of all the forward and backward reaction rates (1722 doubles
per grid point), which exceeds the available on-chip memory and the resulting code is limited by
external memory bandwidth due to register spills.

Our discussion has focused on the Kepler GPU because nearly all tasks related to the main com-
putation are placed there by the Legion S3D mapper. Only a few tasks related to inter-node commu-
nication or interfacing with the Fortran application are performed on the CPU. By changing only a
few lines of code in the mapper, we explored many alternative mappings that use the computational
resources of the CPUs as well. Although we have found mapping strategies that use the CPUs to be
effective on other machines with other chemical mechanisms [9], the increased size of the PRF mech-

9781138197541_C012 2017/10/13 16:43 Page 274 #18

274 Exascale Scienti�c Applications: Scalability and Performance Portability

anism results in the need to move much more intermediate data between the CPU and GPU. In all
of the proposed mappings for the PRF mechanism, the PCI-Express bus became the bottleneck and
GPU utilization dropped. Although the CPU utilization increased, overall performance was reduced.

12.7.2 WEAK SCALING

We next measured weak scaling performance on both Titan and Piz Daint. We held the per node
problem size constant at 483 grid points, the size on which we had based our simulation plan. The
original Fortran+MPI version of S3D was run as a reference. The throughput achieved per node
(higher is better) is shown for Titan and Piz Daint in Figures 12.1 and 12.10 respectively. Perfect
weak scaling would be a �at line.

In addition to being signi�cantly faster than the Fortran baseline (3.95× faster on Piz Daint and
3.93× faster on Titan for a single node), the Legion version demonstrates greatly improved scalability.
Whereas the Fortran version drops below 50% ef�ciency beyond 2048 nodes on Titan,* the Legion
version is above 64% even out to 8192 nodes, where the performance difference has grown to a factor
of 7.2×. The asynchronous, task-based nature of the Legion programming model allows the Legion
runtime to dynamically discover considerable task parallelism and use it to hide communication
latency better than the MPI version that relies on manual overlap of communication and computation.
The improvement from the Gemini to the Aries interconnect is evident in the Piz Daint data, with
both the Fortran and Legion versions achieving parallel ef�ciencies of 82% at 4096 nodes. Note that
the Legion version must reduce network overhead by a factor of 4 compared to the Fortran version
to achieve the equivalent parallel ef�ciency.

12.7.3 STRONG SCALING

In an effort to further improve our time to solution, we explored the strong scaling properties of the
Legion implementation. Using the smaller 5763 grid size that we hoped to use for the majority of

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Nodes

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000


ro

ug
hp

ut
pe

rn
od

e
(P

oi
nt

s/
se

c)

Legion S3D
MPI Fortran S3D

FIGURE 12.10 Weak scaling of PRF on Piz Daint.

* All runs on Titan made use of a reranking script that attempts to optimize the assignment of MPI ranks to nodes to match
S3D’s speci�c communication pattern to the underlying network topology [34].

9781138197541_C012 2017/10/13 16:43 Page 275 #19

S3D-Legion 275

1296 1728 2596 3888
Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Seconds/time step

Time steps/node-hour

FIGURE 12.11 Strong scaling: PRF on Piz Daint for problem size of 5763 points.

the simulation, we ran at node counts of 1296, 1728, 2596, and 3888. (The S3D code requires that the
grid size divide evenly among the nodes, limiting the number of allowable node counts.) The results
were excellent. Figure 12.11 shows the wall clock time per time step as well as the throughput per
node (in timesteps/node-hour) as a measure of ef�ciency. Based on these results, we chose to run
nearly all of the simulation of the 5763 grid with 3888 nodes instead of the originally planned 1728
nodes, improving our simulation speed by a factor of 2 for only an 11% loss in ef�ciency.

12.8 CONCLUSIONS

We have presented the �rst 3-D DNS simulation of a PRF chemical mechanism at scale. Our results
represent a substantial improvement in both the kind of combustion chemistry that can be studied as
well as the time required to perform simulations. We reduced overall time to solution (including both
development time and actual run time) over the previous state of the art, making it feasible to perform
these computations in a reasonable amount of time and within existing computational budgets. Our
approach also demonstrates that it is computationally tractable to conduct simulations of realistic
chemical mechanisms such as PRF that had previously been possible only in reduced capacities,
thus advancing the state of the art for computational combustion science both quantitatively and
qualitatively.

Although our results have a signi�cant impact within the domain of turbulent combustion with
complex chemistry, our approach is more generally applicable. We have shown that by raising the
level of programming abstraction using a task-based programming model, we can both reduce pro-
gramming time and improve performance. Speci�cally, we have demonstrated the value of decou-
pling the speci�cation of an application from how it is mapped onto a target architecture. By isolating
correctness concerns from performance issues, we can develop performance-portable codes capable
of being easily modi�ed, tuned, and ported with a minimum amount of programmer effort.

9781138197541_C012 2017/10/13 16:43 Page 276 #20

276 Exascale Scienti�c Applications: Scalability and Performance Portability

In this work we have shown how the Legion programming model provides one approach to decou-
pling the speci�cation of a program from how it is mapped. In particular, Legion isolates the speci-
�cation of a program in the form of tasks and logical regions from how mapping decisions are made
through the mapping interface. This property allowed us to easily port our version of S3D to sev-
eral different architectures with minimal programmer effort and overhead. We further built on top of
the Legion abstractions by creating the even higher-level Singe DSL compiler capable of emitting
high-performance Legion tasks for a myriad array of chemical mechanisms and target architectures.
The result is a cohesive framework for combustion chemistry coupled with compressible reacting
�uid dynamics that addresses currently pressing problems while ensuring our code remains adapt-
able to upcoming machine architectures, and as yet unknown domain-speci�c variations, all the while
achieving much improved performance over existing techniques.

The challenges we encountered are not unique to computational combustion science. For many
current applications, time to solution is already dominated by programming effort, even for concep-
tually small extensions to existing codes. This situation will only become worse as both applications
and machines continue to grow in complexity. Consequently, there will be an increasing need to
develop performance-portable codes that can be easily recon�gured for new experiments and quickly
adapted to new machine architectures. Under these circumstances, providing high-productivity com-
puting environments such as Legion will be imperative to ensure that machines are ef�ciently utilized
and codes achieve high performance. Our work demonstrates that this goal is not just a dream, but
an achievable reality for actual production codes.

ACKNOWLEDGMENTS
This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Of�ce of Science of the U.S. Department of Energy
(DOE) under Contract No. DE-AC05-00OR22725, as well as computing resources at the Swiss
National Supercomputing Centre (CSCS). We thank the operations and user support staff at OLCF
and CSCS for their tireless assistance. We thank Dr. Jack C. Wells of ORNL and Dr. Thomas C.
Schulthess of CSCS for their support. This research was supported in part by the Director, Of�ce
of Advanced Scienti�c Computing Research, Of�ce of Science, of the US DOE through the ExaCT
Combustion Co-Design Center.

REFERENCES
1. G. Bansal, A. Mascarenhas, and J. H. Chen. Direct numerical simulation of autoignition in strati�ed

dimethyl-ether (dme)/air turbulent mixtures. Combustion and Flame, 162:688–702, 2015.
2. P. Gaffuri et al. A comprehensive modeling study of iso-octane oxidation. Combustion and Flame,

129:253–280, 2002.
3. T. Lu and C. K. Law. A directed relation graph method for mechanism reduction. Proceedings of the

Combustion Institute, 30(1):1333–1341, 2005.
4. M. B. Loung et al. A dns study of the ignition of lean prf/air mixtures with temperature inhomogeneities

under high pressure and intermediate temperature. Combustion Flame, 162:717–726, 2015.
5. M. B. Luong et al. Direct numerical simulations of the ignition of lean primary reference fuel/air mixtures

under hcci condition. Combustion and Flame, 160:2038–2047, 2013.
6. Piz Daint & Piz Dora - CSCS. http://www.cscs.ch/computers/piz_daint_piz_dora/, 2013.
7. Introducing Titan—The World’s #1 Open Science Supercomputer. https://www.olcf.ornl.gov/titan/,

2012.
8. J. H. Chen et al. Terascale direct numerical simulations of turbulent combustion using S3D. Computa-

tional Science and Discovery, 2:015001, 2009.

http://www.cscs.ch/computers/piz_daint_piz_dora/
https://www.olcf.ornl.gov/titan/

9781138197541_C012 2017/10/14 17:22 Page 277 #21

S3D-Legion 277

9. M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Structure slicing: Extending logical regions with
�elds. In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, New Orleans, LA, 845–856. Piscataway, NJ: IEEE Press, 2014.

10. M. Bauer et al. Singe: Leveraging warp specialization for high performance on GPUs. In Symposium on
Principles and Practice of Parallel Programming, February 2014.

11. T. J. Poinsot and S. K. Lele. Boundary-conditions for direct simulations of compressible viscous �ows.
Journal of Computational Physics, 101:104–129, 1 July 1992.

12. J. C. Sutherland and C. A. Kennedy. Improved boundary conditions for viscous, reacting, compressible
ows. Journal of Computational Physics, 191:502–524, 2 November 2003. A.

13. R. Kee et al. CHEMKIN-III: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chem-
ical and Plasma Kinetics. Report number UC-405 SAND96-8216, Livermore, CA: Sandia National
Laboratories. 1996.

14. R. B. Bird et al. Transport Phenomena. Hoboken, NJ: John Wiley & Sons, 1960.
15. C. A. Kennedy and M. H. Carpenter. Several new numerical methods for compressible shear- layer

simulations. Applied Numerical Mathematics, 14(4):397–433, June 1994.
16. M. H. Carpenter et al. Fourth-order Runge-Kutta schemes for �uid mechanics applications. Journal of

Scienti�c Computing, 25:157–194, October 2005.
17. M. Snir et al. MPI-The Complete Reference. Cambridge, MA: MIT Presss, 1998.
18. OpenACC Standard. http://www.openacc-standard.org.
19. J. Levesque et al. Hybridizing S3D into an exascale application using OpenACC: An approach for mov-

ing to multi-petaops and beyond. In SC’12 Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, pp. 15:1–15:11, Salt Lake City, UT: IEEE,
2012.

20. J. Vetter et al. Keeneland: Bringing heterogeneous GPU computing to the computational science com-
munity. Computing in Science Engineering, 13:90–95, 2011.

21. M. Bauer et al. Legion: Expressing locality and independence with logical regions. In Supercomputing
Conference (SC), 2012.

22. The Open Community Runtime Interface. https://xstackwiki.modelado.org/images/1/13/Ocr-v0.9-
spec.pdf, 2014.

23. C. Augonnet et al. StarPU: A uni�ed platform for task scheduling on heterogeneous multicore architec-
tures. Concurrency and Computation: Practice and Experience, 23:187–198, February 2011.

24. Q. Meng et al. Investigating applications portability with the uintah dag-based runtime system on petas-
cale supercomputers. In Supercomputing Conference (SC), pp. 96:1–96:12, New York, NY: ACM, 2013.

25. S. Treichler et al. Realm: An event-based low-level runtime for distributed memory architectures. In
Parallel Architectures and Compilation Techniques (PACT), 2014.

26. T. Lu and C. K. Law. Toward accommodating realistic fuel chemistry in large-scale computations.
Progress in Energy and Combustion Science, 35:192–215.

27. T. Lu et al. Dynamic stiffness removal for direct numerical simulations. Combustion and Flame,
156(8):1542–1551, 2009.

28. M. Bauer et al. CudaDMA: optimizing GPU memory bandwidth via warp specialization. In SC ’11
Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage
and Analysis, Seattle, WA, 2011.

29. S. L. Kokjohn et al. Fuel reactivity controlled compression ignition (rcci): A pathway to controlled high-
ef�ciency clean combustion. International Journal of Engine Research, 12:209–226, 2011.

30. Bhagatwala et al. Direct numerical simulations of hcci/saci with ethanol. Combustion Flame, 161:1826–
1841, 2014.

31. P. Domingo and L. Vervisch. Triple �ames and partially premixed combustion in autoignition of non-
premixed turbulent mixtures. In Symposium (International) on Combustion, Vol. 26, pp. 233–240. Else-
vier, 1996.

32. November 2014—top500 supercomputer sites. http://top500.org/lists/2014/11/, 2014.
33. D. Rossinelli et al. 11 pop/s simulations of cloud cavitation collapse. In Supercomputing Conference

(SC), pp. 3:1–3:13, New York, NY: ACM, 2013.
34. R. Sankaran et al. Genetic algorithm based task reordering to improve the performance of batch sched-

uled massively parallel scienti�c applications. Concurrency and Computation: Practice and Experience,
27(17):4763–4783, December 2015.

http://www.openacc-standard.org
https://xstackwiki.modelado.org/images/1/13/Ocr-v0.9-spec.pdf
https://xstackwiki.modelado.org/images/1/13/Ocr-v0.9-spec.pdf
http://top500.org/lists/2014/11/

