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Abstract—Failures in large, complex systems can be difficult
to diagnose and expensive for both the system maintainers and
users. We present techniques for predicting failures when there is
sparse ground truth in sensor logs and usage modes of the system
evolve rapidly. We demonstrate our methods using real-world
logs from three different systems. Our method achieves over 80%
prediction accuracy for various amounts of lead time.

Index Terms—Time-Series, Deep Learning, Failures

I. INTRODUCTION

We consider the problem of predicting failures from
monitored measurements in complex heterogeneous systems.
Increasing scale and diversity of components in systems lead
to heterogeneity and complex behaviour. Diagnosing faulty
subsystems is difficult for operators because of the high dimen-
sional space of parameters and the need to minimize recovery
time. The time difference between a failure manifestation and
when an imminent failure is flagged is the lead time. As with
any system [23], the ability to predict failures with some lead
time can benefit users and operators by at least providing timely
warnings and in the best case allowing action to be taken to
avoid complete system failure. We present Prolego (i.e., predict
or forecast in Greek), an end-to-end methodology for making
such predictions using minimal domain knowledge.

While log-based failure prediction is not a new problem
[39, 55], our main contributions deal with three significant
difficulties that have not been adequately addressed in the
literature. First, the instability of a highly dynamical system
leads to frequent changes in its normal behaviour [20], which
is not an unusual feature of complex systems (e.g., consider the
power grid at different times of day and in different weather
conditions). Consequently, despite the availability of many
signals over a long duration, representative data available for a
specific usage pattern is limited for predictive modeling. Our
solution is to use frequent retraining on recent windows of
data, and we show that with parallel, distributed computations
we can achieve execution times for prediction that are short
enough to be useful in practice.

Second, be it computing platforms or cyberphysical systems
(CPS) and industrial control systems (ICS), there exist scenarios
where production failures for a specific system configuration
are relatively few. Also, for some systems, the operator logged
reports help to know the approximate parts of the day when
failures happened, not the exact failure times or the specific
faulty signals that cause a failure, giving rise to insufficient
ground truth. Moreover, automated distinction of unintended
versus intended anomalous conditions (e.g., due to manual

tuning or planned maintenance) from the data is difficult as they
often require assistance from human-in-the-loop experts [30].
Given this situation predicting failures in an unsupervised
manner is non-trivial. Prolego automates finer label generation
and uses history data judiciously to enhance prediction.

Third, forecasting failures with signals comprising of ir-
regularities some of which do not have temporal trends
is not always feasible. Some CPS-centric solutions adopt
simpler fault models involving manual fault injection or fewer
signals [35, 40], while cloud-centric solutions have relatively
fewer irregularities in signals [57]. Prolego examines density
of time-series considering signals from the entire system to
achieve useful lead times. Our study has the potential to enable
better autonomous control [13] in complex platforms that
experience various anomalous conditions.

Contributions: We make the following contributions:
1. Prolego first uses a small number of signals to automatically
label additional failures using a deep learning model from the
sparse ground truth, increasing our ground truth dataset.
2. A simple ranking scheme based on coefficient of variation is
used to determine which signals are most likely to be predictive
of failure. This ranking is done for multiple short time windows
to capture the different time-series patterns and a set of the
highest ranked signals is selected from these trials.
3. Prolego uses the selected signals to design a predictive model
that forecasts failures and estimates accuracy.
4. Prolego is evaluated on real-world datasets from three diverse
systems. Prolego achieves as high as 86.2% accuracy, has
improvements over 15% with baseline comparisons, and obtains
as much as 8-hours of lead time.
5. Prolego shows opportunities for lead time optimization using
a state-of-the-art programming model that improves feature
selection time from a high dimensional space.

II. BACKGROUND

Most systems archive logs that include monitored sensor
measurements and other derived parameters. A signal or
parameter is a physical quantity (e.g., voltage, current) of
a subsystem, with a specific unit of measurement. A signal
is a univariate time-series consisting of (timestamp, value)
pairs, that could as well include optional alarm-related fields
such as status and severity. The number of signals account
for the parameter space. Failures are unexpected anomalous
conditions caused by various subsystems malfunctioning, re-
quiring human intervention to recover. Partial non-catastrophic
failures or degraded performance [61] that do not require



Fig. 1: The figures show variations of 3 signals (Intensity, Rate, and Voltage), during different failure (FL) and normal (Nor)
windows, marked by FL1, FL2, FL3, Nor1, Nor2, and Nor3, respectively, as discussed in Section II

manual intervention for recovery is beyond the scope of this
work. For any specific time period, if a signal undergoes
substantial deviations in its measurements compared to what
is generally observed during healthy operational states, the
signal is considered anomalous. Normal times typically refer to
times of healthy operating conditions with no reported failures.
However, times with reported failures can have signals with
anomalous characteristics linked to some defects. Normal times
can also be intentional system off periods when user jobs
complete or operators deliberately shut down the system.

Challenges: While logs produce a wealth of data, this
data has limitations that make it difficult to directly apply
data mining methods. Several systems [28, 37, 56] face
similar hurdles, where threshold-based alarms do not suffice
for maintaining scheduled uptime. Generally, class imbalance
and noise across signals in a high dimensional space make
differentiation of anomalous trends through automated learning
models difficult. Some of the other challenges are:
• Sparse Ground Truth: Manual labeling is cumbersome in
most facilities [37, 57]. The exact start and end times of many
anomalies are unspecified, nor are they documented by the
operators post-recovery, apart from anomalies injected in a
controlled environment [26]. The corresponding coarse-level
time-window of a failure is noted; i.e., for 2 hours of failure in
a 8-hour window, one needs to decipher approximately which
2 hours (out of 8) correspond to failure via statistical learning.

Fig. 1c shows 2 windows with 4 to 5 hours of failure marked
by absence of data compared to normal times in Fig. 1d. In
these figures, the y-axis is the average signal value and the
x-axis is the bin number, where each time-series is split into a
number of bins and the average of the observations within each
bin is plotted; FL and Nor indicate failure and normal times,
respectively. Sparse ground truth with no expert curated data
makes failure prediction with high accuracy non-trivial. Prolego
circumvents this sparsity by creating finer labels for ground
truth classification (§ Sec. IV-A). Recent work on labeling [45,
57, 58] relies on engineers to label an anomaly, uses known
labels to create new labels assuming different source and target
domains, or employs positive-unlabeled learning with partial
labels for anomaly detection. In contrast, we use a data-driven

method to generate shorter fine-grained labels from longer
coarse-grained labels for the same domain.
• Irregularities: Besides the presence of missing values, the
sampling rate varies across signals giving rise to unsynchro-
nized data. The range of sampling intervals can be large (e.g.,
1 sec to 30 mins), which requires handling the sparse irregular
(unevenly spaced) and dense regular time-series together at
suitable time-granularity for multivariate analysis. Certain
signals are logged at regular rate (i.e., at regular intervals),
some only when there is any change, while others only if there
is a significant change of the sensed measurement. This
storage efficient logging gives rise to skipped measurements
that need not indicate faults. A device trip can result in missing
values in its related signal, while other signals can have missing
data for having no change in their values from past observations.

Figures 1b and 1d show raw data during normal times for two
signals of a particle accelerator [36], namely, beam intensity
(regular) and, beam rate (irregular), respectively. Since intensity
is a dense signal, each bin has 100 observations, while the
sparse rate signal has a bin size of 1. Figs. 1a and 1c versus
1b and 1d clearly show the smaller amount or lower values
of data seen during failure times. Similar traits are discernible
during certain normal times as well (e.g., window Nor2 in
Fig. 1d has values close to 0 for bin IDs 112 to 125) related
to intentional shutdown periods or short-lived signal drops
(implying degraded performance but not failure). Moreover,
signals associated with no faults can show non-stationary trends
similar to anomalies. Figs. 1e and 1f show one such signal
related to voltage supply. Voltage power trips lead to failure
resulting in missing data (Fig. 1e), yet during normal times this
signal did not contain too many data points either because this
device was turned off or there were no changes in observations
(Fig. 1f). Certain anomalous traits can lead to an unsteady
system instead of a failure, resulting in false positives during
prediction. Prolego examines signal sparsity to impute time-
series (e.g., backfill-based upsampling), whenever applicable,
and selects signals from multiple subspaces for model training
to address such irregularities (§ Sec. IV-B).
• Unstable System States: Even during healthy conditions
defining normal behaviour is difficult. A set of signal patterns



implying a stable operating condition for a specific timeframe
can stop being indicative of normalcy for another timeframe
when dissimilar applications with different configurations are
run on a system. Prolego uses frequent retraining of a subset of
signals chosen from recent history for prediction (§ Sec. IV-C).
• Failure Duration: The statistics of failure instances vary
across systems. The downtime or failure duration can range
between a few minutes to several hours. The duration of anoma-
lous conditions influence predictability and the achievable
lead time. Often short-lived anomalies causing brief signal
fluctuations appear similar to normal patterns. This makes
abrupt short-term failures hard to isolate during model training.
Prolego inspects different sample sizes to accommodate this
diverse duration of failures (§ Sec. V).

III. RELATED WORK

We briefly survey the extensive literature on log analysis
and anomaly detection methods.

Time-Series Analysis: Time-series logs have been studied
for anomaly detection [18, 21, 46, 51, 59], forecasting,
imputation [15, 41] and root cause analysis [24]. Some outlier
detection algorithms [12, 60] propose noise robust heuristics
on synthetic datasets. Several studies [44, 56] use some form
of RNN or CNN (Recurrent/Convolutional Neural Network)
model to diagnose anomalies. In contrast to these methods
we perform long-term forecasting on real production logs for
practical usage to design our predictor.

Fault Studies with System Logs: Prior solutions analyze
system faults and performance variations [47] for cyberphysical
systems [35], data centers [29], and supercomputers using
monitored performance (e.g., resource usage) and system logs.
Studies using cross-correlations [39], Principal Component
Analysis (PCA) [38], clustering [32, 45], or decision trees
generally require some feature engineering of the data to
be scalable compared to our ranking-based analysis. Studies
on anomaly detection [14, 37], root cause analysis [33,
53], prediction (e.g., service outage, storage error, workload
performance [16, 17, 55]), and application error diagnosis [54]
use methods such as hierarchical clustering, Bayesian networks,
random forests (RanFor), AdaBoost, autocorrelation, longest
common subsequence, item-set mining, graphical models, deep
learning, and sequential state switching. The main difference
between these solutions and our work is in making use of
limited ground truth for prediction in a high dimensional and
irregular data space with minimal supervision.

Complex Systems: Statistical methods and Machine Learn-
ing (ML) have been used in physical systems for subsystem
tuning, alignment, optics correction [22], radio-frequency (RF)
fault diagnosis [36], magnet monitoring, anomaly detection [10],
and event identification [23, 31]. Often used methods or
numerical measures are either supervised or not scalable with
a large number of parameters (e.g., support vector machine
(SVM), local outlier factor, Bayesian optimization, Monte-Carlo
estimation, correlation coefficients, dynamic time warping [9]).
Statistical models requiring less data are more popular; neural

networks are less explored. Some studies employ subsystem-
specific signals to assess a certain fault type or perform
detection and classification [48] instead of prediction. In
contrast to these, we do not pre-select parameters via manual
engineering efforts [10] or expert guidance (e.g., RF, Beam
Loss Monitor signals [36]) and use unlabeled continuous time-
series data as opposed to data that is discrete, labeled, simulated
or obtained through controlled system conditions [49].

IV. PROLEGO DESIGN

Figure 2 summarizes the three parts of Prolego. First, Prolego
builds a label generator to create fine-grained labels from low-
quality sparse ground truth based on an autoencoder model
using a small number of signals. Second, Prolego chooses a
subset of available signals based on temporal variations, studies
inter-signal correlations, and classifies signals for resampling,
to produce a transformed dataset suitable for forecasting. Third,
Prolego develops a predictor using an autoregressive model and
evaluates accuracy for different lead times. Finally, scalability
experiments are conducted (Optimizer) to assess potential
speedups in feature selection to improve lead times.

Fig. 2: Methodology

A. Label Generation

For systems that lack precise labels, having a method to
generate labels [57, 58] from the available imprecise coarse
ground truth can benefit model validation. For certain injected
faults or application-level failures [54], the anomalous times
may be relatively precise. However, there are systems with
insufficient information about the onset and termination of
failures, where imprecise failure windows are leveraged for
anomaly detection [52]. Such systems benefit from a data-driven
model to identify failure times other than the fixed coarse-level
ground truth, to validate inferred results with reference to
recorded failures during subsequent predictions.

Failure Detection (§ Algo. 1) summarizes the general idea of
label generation. A few high-level signals indicative of system
performance are identified and combined to form a unified
representative signal (MRep), followed by a split into failure and
normal times based on the known coarse-grained labels. These
times are further split into windows smaller than the coarse
labels (Win), if needed. Sample errors and dynamic thresholds
are estimated during model training (normal times) and testing
(failure times). For known ground truth, accuracy is computed,
else for unlabeled timeframes new labels are generated.

One or more reliable signals of a system often reflect
the overall system performance; Prolego uses them to create
fine-grained labels. Forming a representative signal (we use
normalized dot product) may not be always feasible in case



of subsystem fault modeling or partial failure analysis [61]. In
our context of anomalous incidents leading to crashes or halts
affecting the high-level system behaviour, aggregating indicator
signals [38] helps to assess system health. The combined signal
strength is used to train a detector that infers failure and normal
times for time-granularity lower than the available ground truth.

Algorithm 1 Detection and Label Generation
Require: Coarse Ground Truth, System Logs
Ensure: Finer Labeled Samples ▷ Accuracy, Generated Labels

1: procedure FAILURE DETECTION(Coarse Labels, System Logs)
2: MRep ← Representative signal for a target system
3: [MAnomaly

Rep , MNormal
Rep ] ← Coarse Labels

4: [MAnom
Win , MNormal

Win ] ← Win ▷ |Windows| < Coarse Labels
5: Threshtrain ← Modeldetect(MNormal

Rep ∥MNormal
Win ) ▷ Training

6: PredTest ← Modeldetect(MAnomaly
Rep ∥MAnom

Win ) ▷ Testing
7: SError ← Test Sample Error (OrigTest, PredTest)
8: Accdetect ∥ New Labels [Li] ← [(SError>Threshtrain)?, Validate

with Ground Truth] ▷ Detection accuracy or new labels
9: LabelCorrect← Manual Validation([Li], Failure Durations)

10: procedure TEST SAMPLE ERROR(OrigTest, PredTest)
11: OrigTest=[..tsj ..], PredTest=[..tsj′ ..] ▷ Test values
12: FVal ← Opt[tsj ∈ OrigTest] ▷ Anomalous Values
13: for (tsj ∈ OrigTest) and (tsj′ ∈ PredTest) do
14: if (tsj ← FVal) and (tsj′ > tsj) then ▷ Penalize
15: errorj ← (||tsj′ − tsj ||) ∗ Pf ▷ 1< Pf ≤ N
16: else
17: errorj ← (||tsj′ − tsj ||)
18: SError ← Mean (

∑
errorj)

19: return SError ▷ Assess Failure

We observe that failure times are usually characterized by
anomalous values such as zeroes or magnitudes higher or
lower than normal times, i.e., dips and spikes. Such traits are
common in a variety of systems (e.g., burst of disk swapping
implying a crippled database server [38], or decreased storage
signal strength due to a data stream outage [16]). Based on
this observation a reconstruction error function is formulated
to identify failure times. Test sample error (#10, § Algo. 1)
illustrates the basic strategy of error computation between the
true and predicted values of a specific test sample. Anomalous
values are identified first (FVal). If the original value is an
anomalous value observed during failures (e.g., 0 or max value),
and the predicted value deviates from the anomalous value,
the penalty is Pf times higher as opposed to just the absolute
difference, to indicate times with poorer system performance
(generally Pf ≈1.5 to 1.9 works).

Fig. 3: Detector Model
We use a reconstruction error model where the ability to

reconstruct a test sample is expected to be poorer if the test data

looks too different from the training data. The intuition is to
penalize instances during model testing, when predicted values
deviate significantly from the original, guided by the statistical
nature of failures. Figure 3 gives an overview of our detector,
which is a sequential model with 3 layers each of 1D-CNN
and 1D-CNN Transpose with dropouts, serving as the encoder
and decoder respectively, using the Adam optimizer, and mse
loss function. As an autoencoder model helps to assess the
reconstruction loss, we employ an encoder-decoder architecture.
Dropout layers help in regularization and better training.
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Fig. 4: Train and Test Sample
Figure 4 shows the true and predicted values corresponding

to a specific train (4a) and test sample (4b) of size 8 hours,
respectively. As seen, the predicted values are not too distant
from their true values. For minimum values in the true set their
corresponding predicted values clearly deviate with magnitude
greater than the minimum. Based on this observation we define
the reconstruction error metric for test sample score calculation
to distinguish anomalous times from normal.

B. Feature Selection

As with many ML-based methods [31, 58] suitable feature
selection from a large parameter space helps to discard signals
that are noisy, redundant or irrelevant for prediction. To decide
which features to use and how many, Prolego uses Coefficient
of Variation or COV for signal ranking. COV is the ratio of
standard deviation to mean of the specified data. This choice
is guided by the following factors:
1. COV is a dimensionless quantity that captures time-series
dispersion irrespective of the dissimilarity in signal scales
and measurement units. In feature selection, wrapper (e.g.,
SVM [43]) methods known to be computationally expensive
integrate feature selection and learning together. The COV-
based filter is algorithmically simple separating feature se-
lection from the predictor for flexible model updates. Many
dimensionality reduction methods (e.g., PCA [60], RanFor [37])
require standardized data or target variables, some of which are
more suitable for regular or stationary time-series, compared
to irregular signals. Also, COV has better interpretability over
embedded methods (e.g., regularization [34] to pick variables
during training). Analyzing higher-ranked signals over different
time intervals helps to identify potential cause and effect
relationships across signals.
2. Time-series can be retained without any transformation (e.g.,
interpolation) saving sampling overheads and noise-induced



effects on data. An empty signal implies either it is turned off
or has no fluctuation compared to signals undergoing drifts
(slowly emerging variations), hence it is fine to have such
signals ranked low. Signals with missing data due to faults
usually contain data prior to failure, showing some variability.
We notice the mean values to be similar to the mode for certain
time periods; which indicates unless there is a fault, some
signals do not deviate much. This makes function of mean a
suitable choice for signal selection. Moreover, analyzing COV
for multiple time-granularity shows evidence of the change in
the system’s usage pattern with changing applications.
3. Sparse signals can have COV scores different from their
transformed (interpolated) counterparts, impacting their ranks.
This does not adversely affect the outcome provided the chosen
set of features used in training can differentiate between failure
and normal times. Recent work on saliency [25] showing better
feature selection by decoupling time-steps from features for
time-series data has a similar motivation.

Algorithm 2 Feature Selection
Require: Tk in Dj, TotM ▷ Windows in Duration j, Signal List
Ensure: TFk

[S1...SN ], Mj
List ▷ Shortlisted Features

1: procedure SELECT FEATURES(Dj, TotM) ▷ Feature selection
2: noisy ← ∅; δ ← difference in adjoining COV scores
3: for each Tk ∈ Dj do ▷ 1 ≤ k ≤W ; 1 to W periods
4: [. . .Sj . . . ] ← Rank signals based on COV
5: [Sdenoise] ← [Sj] \ noisy; noisy ← ∃sig ∈ |COV |high
6: [SN ] ← [Sdenoise], where (δ > θ) ▷ Pick top N signals
7: [TFk

[S1...SN ]] ← ([SN ]) ▷ Chosen signals in Tk

8: Mj
List ← TFk

[S1...SN ], if |Dj | = 1 ▷ Single window
9: if |Dk

j | ≥ 2 then ▷ Multiple windows in Dj

10: jointMDj ← (∩ [TFk
[S1...SN ]]) ▷ Common signals

11: disjointMDj ← [(∪ [TFk
[S1...SN ]]) \ jointMDj ]

12: getSignals ← ∀ Signals ∈ disjointMDj , where (δ > α)

13: Mj
List ← (jointMDj∪ getSignals)

14: return Mj
List ▷ Chosen signals in Dj

Select Features (§ Algo. 2) shows Prolego’s feature selection
approach. For a specific time-window, signals are ranked in
decreasing order of their COV scores. Signals with very high
COV can be potential noise, hence Prolego eliminates them. A
suitable signal count N is automatically determined based on
the distribution of COV scores, by examining the successive
drop in COV magnitudes (δ). Signals with δ > threshold (θ) are
selected; very small δ indicates a relatively steady signal. For
feature selection in duration D, we pick the common signals
(#10) from all the sample windows (TF) in that duration. From
signals uncommon across windows (#11), we limit to those
whose δ is > threshold (α) (#12). θ and α are adaptively
derived from the spread of the COV scores. The intuition is
to select parameters locally before forming an ensemble over
any spectrum of time. Past studies [19] have used COV for
performance analyses; we use COV to eliminate signals across
multiple subspaces in a simple yet effective manner.

To determine the number of features (N) to be considered for
prediction, we examine the relevance of the top-ranked signals
during failures correlating them with the available ground truth.

Table I illustrates a few sample cases of failures with associated
signals and failure causes, for a particle accelerator system. For
fan (#2) and magnet power supply faults (#4), many relevant
subsystems showed up within the top 72 signals. For degraded
voltage controllers leading to power trips (#6) the affected RF
phase signals show similar behaviour during certain normal
times as well. Most relevant signals show up before the COV
drops to a certain point; Prolego utilizes this finding to bound
the number of signals. For e.g., in Fig. 5, the first 3 signals of
time period TB are noisy (e.g., 1041 is an outlier). δ drops to
0.01 after the first 80 signals when the COV scores stabilize.

TABLE I. Impact of Subsystem Faults
# Top N Few Affected Signals Comments on Faults
1 100 Timing, Supply Temp., LOSS,

TORR, EnergyJitter
Power Supply Failure

2 72 SCR Fan Temp FLT, FBCK,
BRATIO

SCR Temp. Fault; Fan As-
sembly Unit Replaced

3 81 SCR FAN STATE, Reset,
BVLT, DQ V

Procedural Error, RF System
Trip

4 62 Magnet-related Signals,
Water-Temp, Forward Power

Magnet Power Supply
Ground Faulted

5 58 Phase Control, Amplitude,
Protection System

Software Fault on L2 Phase
of RF System

6 69 RF-based Phase Signals, Inter-
lock Reset, TGT Fault

Degraded Voltage Controller;
Volt. power < than expected
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For the studied systems, we consult operator-logged com-
ments about various subsystem faults and failures to identify
signals related to or affected by the failure cause, wherever
feasible. We find that some highly ranked signals relate to
common subsystems that are affected no matter what subsystem
faulted based on our direct interaction with domain experts. To
inspect how the ranked signals relate to each other, the signals
are classified based on their COV scores across 4 groups, as
shown in Table II. Figure 6 shows that:
1. Often cause-related signals have lower COV (G1) than
affected signals (G3). The latter show deviations for a variety
of fault conditions. Failure times have similar average number
of signals per day in G1 and G3. For normal times, the number
of signals across G3 and G4 do not clearly stand out, implying
lack of major temporal variations.
2. Signals in G2 are often those affected by the faulty subsystem.
Using too few signals from a single group alone may not be
helpful in capturing the system state for predicting failures.

TABLE II. Groups
Id# COV Magnitude
G1 ≤ 1
G2 > 1, and ≤ 10
G3 > 10, and ≤ 100
G4 > 100

TABLE III. Types
Signal Type #Values/Hour
Sparse < 500
Medium
Sparse

≥ 500, and ≤
1000

Dense > 1000

Feature selection methods incurring high feature engineering
costs [53] with minor accuracy changes often depict that no



single model consistently outperforms in a highly unstable
environment. Prolego chooses signals that approximate system
state suitable for inexpensive dynamic retraining.

C. Failure Prediction

To assess if there is an imminent failure, Prolego takes into
account the following factors:
1. Prolego considers the top-ranked signals of training data to
design the predictor, as test data may not be available during
training. For the same reason, the rescaling parameters of
training data are applied to the test data. Prolego does not use
the well known RMSE metric (root mean squared error) [42],
since using the real (i.e., original) values of future time-steps
makes use of information that is not available for a scenario
with incoming real-time logs.
2. The test times are strictly ahead of the training times. The
test data contains both failure and normal times in increasing
order of time to assess the model’s efficacy.
3. As data imbalance exists, for certain datasets appending
normal times to training history over a moving window
helps. However, with moderate recent history (e.g., >1
week), Prolego excludes the old history (e.g., past month), to
limit the range of training data within close temporal proximity.

Normal Days → [5-7, 11-16, 18, 20-23, 25-30]
Failure Days → [8, 9, 10, 17, 19, 24, 31]

TABLE IV. Train:Test Pairs
# Train Test
1 [5, 6, 7] [8, 9, 10, 11, 12, 13, 14, 15, 16]
2 [11, 12, 13, 14, 15, 16] [17, 18]
3 [11, 12, 13, 14, 15, 16, 18] [19, 20, 21, 22, 23]
4 [20, 21, 22, 23] [24, 25, 26, 27, 28, 29, 30]
5 [25, 26, 27, 28, 29, 30] [31] . . . Next month

Data Splitting: With limited training data, forward chaining
is employed to form train-test pairs following the temporal
order of samples, referred to as Data Split (§ Algo. 3). Table IV
shows an illustrative example of data splitting by forming train-
test pairs from 7 failure and 20 normal days, respectively, for a
month. Training set 3 uses forward chaining by appending the
18th day to training set 2 increasing the history size from 1 day
to 7 days. However, for training sets 2, 4 and 5, with at least
4 days each, forward chaining is not used to remain within
recent history. This ensures prediction from most recent history
as opposed to longer history that may reduce the model’s
forecasting power. The time period between two subsequent
failures is considered for training, in the absence of which
the previous non-empty training set (e.g., previous month) is
chosen, to form non-overlapping train-test splits.

Feature Selection for Training: For each train-test pair,
GetSignalsToTrain (#7, § Algo. 3) chooses a set of signals for
sample training (#3). Algo. 2 fetches the top signals of all the
training times (#10). The maximum of α values used across
the sample training times forms the new threshold. The key
insight is that thresholds have to be dynamically picked from
a union of subspaces to include signals of interest. For each
training set, signals common to all times, and signals with

δ higher than a threshold from the remaining disjoint set of
signals are used for training (#11-13), similar to Algo. 2.

Predict Failure (§ Algo. 3) summarizes the major steps of
prediction. The selected signals for training are extracted as per
the data split and classified as sparse, medium sparse, and dense
based on their temporal density, as shown in Table III. This
density-based grouping helps to examine suitable resampling
methods for various time-series types, to convert variable-length
signals to fixed-size ones. Signals are resampled to form a
regular 2D matrix and this processed data (ProcessData) is
fed to the predictor as per train-test pairs (#4-5). The predictor
predicts values of signals (future time-steps) from which sample
scores are computed, and compared with thresholds to decide if
samples are anomalous (#6). The rationale is that the predicted
samples of anomalous versus normal times would be dissimilar
generating different scores, which can help identify failures.

Algorithm 3 Failure Prediction
Require: MData, TotM ▷ System Data, Total Signals
Ensure: Failure or Normal samples ▷ Failure or Not

1: procedure PREDICT FAILURE(MData, TotM)
2: TrainL, TestL ← Data Split(MData) ▷ Train, Test pairs
3: MLtr ← GetSignalsToTrain(TrainL, TotM) ▷ Features to train
4: M’ ← ProcessData(MData, MLtr, TrainL, TestL) ▷ Pre-process
5: TestSample

Scores ← FPredict(M’) ▷ Prediction
6: Failure ∥ Normal ← (TestSample

Scores > γtr)? ▷ Threshold

7: procedure GETSIGNALSTOTRAIN(TrainL, TotM)
8: [Si] ← TrainL; 1≤ i ≤ Y; [Dj] ← Si ▷ Duration in Si
9: for each Si ∈ TrainL do ▷ Each training set

10: [Mj
List] ← Select Features(Dj, TotM) ∀ Dj ∈ Si

11: commoni ← (
⋂

Mj
List), disjointi ← (

⊎
Mj

List)
12: AddMi ← ∀ Signals ∈ disjointi, if (δ > max[αDj ])
13: MLSi ← (commoni ∪ AddMi) ▷ Shortlisted Signals
14: MLtr ← [

⋃Y
i=1 MLSi ] ▷ Append MLSi to the list

15: return MLtr

Figure 7 gives an overview of the predictor, which is an
autoregressive model performing many to many forecasts, with
two 1D-CNN layers, a Maxpool, and three dense layers using
the Adam optimizer, and mse loss function. Such a multivariate
CNN model helps to predict values of multiple signals at
each time-step. Sample scores in the form of weighted sum
and variance are compared to the threshold (formed from the
training samples) to flag failures.

Fig. 7: Prediction Model

GAN-based models [18, 27] often require sufficient high
quality training data not available in some settings. Our
input is a 2D matrix, so a CNN benefits from the spatio-
temporal arrangement of data in face of limited moderate
quality training data and ground truth. Subsystem associations
are not leveraged for prediction as establishing multi-component



TABLE V. Data Details (FI: Failure Instances)
System Domain #Signals #FI Mean Fail-

ure Span
Train
Size

Test
Size

Normal
(%)

#Features

X-ray
Laser

Beam
Physics

2036 208 1.6 hrs 1929K 6163K 75.1 108-112

Spark
Cluster

Distributed
System

2283 7 35 mins 27K 18K 52.2 85-99

Oil Plant Petroleum
Industry

8 36 15 mins 257K 180K 64.3 4-5

TABLE VI. Evaluation Metrics
Metrics Formula Definition
FP Rate (%) FP/(FP+TN) (FPR) FP=A normal sample inferred as

anomalous (False Positive)
FN Rate (%) FN/(TP+FN) (FNR) FN=An anomalous sample inferred

as normal (False Negative)
Accuracy (%) (TP+TN)/

(FP+FN+TP+TN)
Accuracy=Fraction of correct predic-
tions, Errors=(1-Accuracy)

F1 Score (%) TP/(TP+FP+FN
2

) Harmonic mean of Precision+Recall

interaction needs dedicated studies [21, 38], especially for non-
traditional platforms where the heterogeneity in subsystems
is more, and domain insights may be needed. In real-life
environments, where subsystem signal correlations are not
yet fully understood, Prolego is still applicable.

V. EVALUATION

System Environment: We use a shared high performance
computing (HPC) cluster of 160 nodes with CPU-only and
multi-GPU nodes for experimental evaluation. Most of our
experiments are run with 8 to 12 CPUs and 3 GPUs per task,
across 3 to 6 nodes. Across all the systems, a suitably chosen
sample size determines the lead time.

Datasets and Baseline Comparison: We evaluate real-
world datasets from three different domains, namely, an X-
ray laser, an Apache Spark cluster [8], and an oil plant [6],
as shown in Table V. The mean failure duration of failure
instances (FI) across the systems are 1.6 hrs, 35, and 15 mins,
respectively. Column Features indicate the number of signals
used for training after feature selection. Prolego [7] is compared
with two baseline methods, both of which have shown recent
success with time-series prediction [37, 44]: a) Random
Forest (RanFor) [53], a commonly used supervised model
for prediction, and b) Long Short-Term Memory (LSTM) [46],
a recurrent neural network (RNN) model often used for time-
series forecasting. Table VI shows the evaluation metrics used.

Fig. 8: Signal CDFs
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Fig. 9: Detection

X-ray Laser: The LCLS [4] X-ray laser system is a large-
scale particle accelerator, a CPS generating high energy beams
for scientific experiments. Various environmental aberrations,
dynamic changes in parameter configurations, and subsystem
faults (e.g., magnet, RF, water system) of this complex system
result in anomalous signals. Some faults degrade performance
(i.e., lower the beam intensity without completely losing
signal strength), others recover automatically from temporary
fluctuations, while the rest lead to beam downtime. We use
production logs that contain sensor data from across the entire
system as continuous time-series of normal and anomalous

times. Fig. 8 shows the distribution of 2 signals over the same
timeframe through CDF (cumulative distribution function) plots.
The Intensity (a) and Amplitude (b) signals show a heavy tail,
and a non-uniform distribution, respectively. Several signals
with non-stationary mean exhibit changing trends over time.
For predictive modeling, capturing trends at suitable time-scales
helps. Accordingly, we choose sample sizes for our analysis.
We study failures, i.e., downtimes, based on the available coarse
ground truth in terms of 8-hour windows of a day. For instance,
a specific water system fails between 8:00 and 16:00 hours
leading to 1-hr downtime. The actual time of the onset and
completion of anomaly during those 8 hours is not labeled.
First, Prolego generates finer labels from such 8-hour windows.

We leverage two well monitored signals related to beam
intensity for labeling; similar customary signals, not requiring
much domain knowledge are observed in complex systems for
daily maintenance activities. The intensity signals are dense
time-series corresponding to two physically nearby regions of
the system that quantify the system performance adequately,
hence we choose these signals over others. The detector is
run with 8-hr sample size to check the model’s accuracy as
validation with ground truth is feasible. Normal data is used
for training, and failure data for testing. 8-hr windows are
split to 1-hr windows to estimate which hours within a 8-
hr window are anomalous. Labeling multiple 1-hr samples is
fine-grained enough to deduce labels for 4-hr samples later
used in prediction. In this case, the test data contains a mix
of anomalous and normal samples. Manual verification of
generated labels via direct consultation with experts showed
the presence of sparse or lower magnitude of data compared to
normal times (as in Fig. 1a vs. 1b), supporting the hypothesis
that the classification as an anomalous sample is correct.
Prolego verifies the generated fine-grained labels w.r.t. the
recorded failure durations. Figure 9 shows that for 8-hr periods,
Prolego’s mean success rate is as high as 92.3%, and for 1-hr
89.9%. The detection and labeling times for 80 to 90 samples
are over 2 hours using CPU, and 30 to 50 mins using GPUs.
Detection of anomalous times is an offline computation, and
so these runtimes are acceptable.

After selecting signals for training, experiments are con-
ducted for two cases, a) 8 hours of lead time with 16 hours
of history (16:8) and b) 4 hours of lead time with 4 hours of
history (4:4). We could not obtain better accuracy for more
than 8 hours lead time. The 4-hour sample size is chosen as it
is adequate for operators to respond in case of any imminent
failure. Table. VII shows the results across all the methods
for different lead times. Prolego obtains 84.2%, and 81.4%
accuracy for 8-hour, and 4-hour lead times, respectively, with



TABLE VII. Prediction Results
Methods X-Ray Laser Spark Cluster Oil Plant

Accuracy F1 FPR FNR Accuracy F1 FPR FNR Accuracy F1 FPR FNR

8-hr 4-hr 8-hr 4-hr 8-hr 8-hr 10-min 5-min 10-min 5-min 10-min 10-min 15-min 15-min 15-min 15-min

RanFor 63.1 63.7 65.5 62.4 42.8 31.03 61.9 69.6 65.2 71.2 45.0 31.8 72.4 77.7 41.6 17.6
LSTM 71.9 72.5 70.3 73.04 31.25 24.02 71.4 62.5 68.4 68.6 22.7 35.03 68.9 58.3 35.1 30.2

Prolego 84.2 81.4 84.7 81.08 20.6 10.7 80.9 82.1 73.3 85.7 11.5 19.2 86.2 90.47 18.7 5.1

over 80% F1-score. Presence of anomalous times with short-
term failures (e.g., 6 mins, <1-hr) and similarity of certain train-
test samples are possible causes for the errors. We calculate
the false positives and false negatives based on the available
ground truth that accounts for these errors. The FPR and FNR
for 8-hour samples are comparatively 2× lower with Prolego.
The number of normal samples in the test set is generally
higher than anomalous samples, that could lead to higher false
positive rate. One potential reason for errors is that once the
system recovers from a failure, its operating condition can be
statistically different due to a change in the user experiment.

1-hour labeled samples obtained from prior labeling phase
is used to deduce labels for 4-hour samples. If ≥75% of the 1-
hour samples are labeled as anomalous, and the corresponding
4-hour sample is predicted as anomalous, we do not count it
as an error. We examined the predicted failures with reference
to the 4-hour samples. If a failure duration is 7 hours, and the
related 4-hour sample is predicted as normal, it is treated as an
error. As Table VII gives a coarse-grained measure of accuracy
for the case of 4-hour sample based on the deduced labels and
known ground truth, the false positive or false negative rates
are not explicitly computed further.

Spark Cluster: This dataset contains operating system
(OS) and application-level signals related to stream processing
applications running on a Apache Spark cluster [26]. Anomalies
are injected in the traces by generating bursty input causing
memory pressure, eventually crashing jobs. Timeframes related
to such crashes or failures serve as our ground truth data. During
anomalous times the observations rise and fall relatively more
both in frequency and magnitude over normal periods. Normal
times are used for training, with sample sizes 10- and 20-mins,
respectively. The average fraction of normal times in relation to
the anomalous times are below 60%, hence shorter sample sizes
are chosen. Our labeling method has 85.3 to 86.9% accuracy
which is at least 10% more than other methods. As ground truth
is available for a specific range of values and our approach
performs relatively better, we skip the comparative results of
labeling for brevity. Some of the signals that have insufficient
distinct observational range needed for feature selection are
omitted. Since the amount of training data corresponding to a
single usage pattern is limited, we choose moderate windows
of 10-min and 5-min for prediction. Table. VII shows that
the F1-scores are higher and errors are generally lower with
Prolego. Since the sample size is not long enough, some short-
lived dips and spikes are predicted as anomalies leading to
few errors. We omit the FPR and FNR of 5-min samples as
additional details about the distributed system may be needed

for ascertaining correctness.
Oil Plant: Oil wells are equipped with valves and sensors

such as beam pumps and hydraulic systems [50]. Anomalous
events such as oil flow blockage, flow instability, valve faults
can disrupt productivity by causing slugging. This dataset has
8 monitored signals related to pressure and temperature of
different subsystems. Deviation of expected sediment flow
rate, spurious valve closure, and presence of hydrates are some
unwanted failures that waste resources. We study real anomalies
related to flow instability and control valve problems. This
dataset is densely labeled (i.e., each row is labeled as to whether
it relates to an anomaly). Hence, we do not need to generate
additional labels. Yet, we run our detector to assess its efficiency
and found that ≈83% of the samples are correctly detected.
The source of errors in this case is lack of sufficient range in
the anomalous windows. Since our approach is designed for
collective contextual anomalies, if too few observations are
part of the anomalous segment it may be missed. Often the
pressure and temperature signals of a transducer are used to
assess the health of the oil plant. In this case anomalies are
characterized by lack of periodicity in the signals.

A subset of these 8 signals based on Algo. 2 is used for
prediction. Normal data is used for training, using 15-min
samples. This sample size is chosen based on the range of the
anomalous segments and the temporal trends observed in the
signals. Table VII shows that the error rates of Prolego are lower
by at least 2× compared to other methods. As the number of
dimensions are relatively lower in this system, RanFor performs
better than the other systems. Lack of adequate trends in signals
is a potential source of misprediction.

Across all the datasets, the average per sample training time
is 4 to 10 mins (±2.3) for prediction. This is the mean runtime
for learning one sample of a train-test pair. Per sample inference
time is below 0.5 millisecs, with a pre-trained model available.
We monitor the validation and training losses to prevent model
overfitting. For all analyzed lead times the training times are
on the order of few minutes, with sub-second inference time.

Acceptable Errors: Abrupt subsystem faults leading to
rapid failures can make prediction infeasible. For such cases
false negatives are acceptable. Operators prefer early warnings
even if there is no failure to monitor degrading subsystems, for
which false positives are acceptable. For e.g., 8 false positives of
which 5 are related to magnet problems and 3 to manual energy
change, causing system instabilities, can direct the operators
to monitor magnet subsystem or parameter tuning adjustments.
Many physical systems do not have any preemptive measures
in place for failures; thus false alarms do not waste resources.



Some form of forewarning is helpful in most complex systems
as the cost of errors are not high. Despite few errors, Prolego
can help plan user experiments or maintenance activities as
opposed to not having any assessment about future failures.

Performance Optimization: Among the phases of our sys-
tem, actual inference time is minimal (<1 sec) and requires few
hardware resources. The timeliness of the COV computation
and prediction, which are done more frequently over shorter
time-windows determines how much lead time can be retained.
As an estimate, COV-based ranking and feature selection from
1200 signals for 8-hour samples take ≈30 hours of time
on CPUs. Known models (e.g., MaxVar [34] or PCA [38]
with added costs of normalization, model training for feature
elimination etc.) have similar or higher time complexity.

Fig. 10: Online Prediction
The stage that requires the most acceleration is the online

feature selection, because depending on the number of signals
(can be O(103) to O(106) in some systems) or sample size, it is
easily possible for this stage to consume all of the lead time for
prediction. For instance, to predict a failure in the next 4 hours,
taking 15 mins for feature selection, training, and inference
leaves 3.75 hours of actual lead time. Signal preparation and
prediction time must be minimized to maximize lead time for
operators, as shown in Figure 10. For continuous forecasting,
the feature selection phase can benefit from acceleration via
moderate scaling (e.g., variance operation on a DataFrame for
2500 signals across 3 to 12 nodes), though once a trained
model is available single node inference can suffice.
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Fig. 11: Performance Optimization

Extensively used Pandas and NumPy operations can be
accelerated with Dask or Numba [2, 5] libraries. These libraries
by default do not use multiple cores even for single-node
computations. Prolego uses the recently developed Legate
system [11] that transparently scales computations, to accelerate
Pandas mean and variance operations across multiple cores
over multi-GPU nodes. Legate [1] is a programming model
that enables scalable computations. Prolego compares the COV
computation time with and without Legate to assess runtime
gains. Our experiments show reduced signal selection time
before prediction, providing evidence that predictive models
and runtime systems together can enable timely maintenance.

Figure 11 shows the performance of Legate Pandas [3]
(pLP) and standard Pandas (sP) operations for different parallel

configurations, number of signals, and time durations. For
sP, experiments are run sequentially on a single node. We
experiment with the number of tasks, job arrays, cores, and
Legate-specific parameters (e.g., #gpus), to improve execution
times for pLP. In plots 11a (Speedup) and 11b (Scaling), the
y-axis is the COV calculation time. Fig. 11a shows that for a
fixed input size of 14 signals, pLP can be 6× faster than sP,
where the x-axis indicates different parallel settings. With an
increase in the number of signals, pLP can achieve 2× to 6×
(e.g., 229 secs down to 37 secs) speedup over sP, as seen in
Fig. 11b. In Fig. 11c (Selection), the y-axis is the aggregate
runtime of ranking and selection of 12 signals from 164, and
the x-axis is the number of days in a training set. pLP is at
least 2× faster than sP, lowering the signal selection time
for 14 days by ≈18 mins. Less than 17 cores per task were
needed to improve the execution time. Improved runtimes from
limited optimizations on a small scale suggests the viability of
forecasting speedup through enhanced performance of various
NumPy or Pandas operations across thousands of signals. A
single node can potentially become a bottleneck with bandwidth
constrained storage I/O, or higher number of signals. Such
distributed runtime scalability can render timely support during
online complex system monitoring.

Fig. 12: System Monitoring
Prolego Application: Modern complex systems comprising

heterogeneous IoT, sensor-enabled dissimilar subsystems are
often monitored with a virtual machine (VM)-based distributed
control system for database (e.g., HDF5) archival. Community
efforts include efficient live data streaming from device
controllers. Figure 12 shows that data from the logging interface
b⃝ can be fed to a predictor a⃝, like Prolego, for timely data
analysis. Alternately, specific cluster nodes can be directly
configured to stream or archive signals from 10s to 1000s of
Input/Output controllers (IOCs) for rapid access. Prolego-like
frameworks can complement CPSs/ICSs for better reliability.

Discussion: We find that a few minutes (<1 hour) of lead
time is insufficient for hardware fault repair in many systems
but user experiments can be gracefully stopped. A few hours
of lead time is helpful in coordinating onsite recovery. For
software controlled repair not requiring onsite activity, 10 to 15
minutes of lead time suffice. Besides alerting operators, warning
users of future failures is also helpful. Obtained sub-second
inference time is fast enough to give operators warning of
potential failures that will occur on the scale of minutes to hours
in the future. Dynamic retraining cost over short time windows
(e.g., 1 or 2 weeks) is reasonable, as feature selection and
model training time is usually below 30 minutes with Prolego.



Efficient imputation of irregular real-world multivariates besides
simulated univariates [15, 41] and availability of adequate
recent history can further enhance prediction efforts.

VI. CONCLUSION

This paper presents Prolego, a methodology to predict
failures from complex systems. Prolego obtains 5 minutes
to a few hours of lead time with over 80% prediction accuracy.
Prolego achieves sub-second inference time during prediction
making it viable for online monitoring. We show insights to
signal deviations during normal and anomalous times to assess
the impact of failures on time-series logs. Prolego demonstrates
the potential of performance optimization via scalable feature
selection to improve lead times in practice.
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