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Abstract
We formulate the loop-free binary superoptimization task as a
stochastic search problem. The competing constraints of transfor-
mation correctness and performance improvement are encoded as
terms in a cost function, and a Markov Chain Monte Carlo sampler
is used to rapidly explore the space of all possible programs to find
one that is an optimization of a given target program. Although our
method sacrifices completeness, the scope of programs we are able
to consider, and the resulting quality of the programs that we pro-
duce, far exceed those of existing superoptimizers. Beginning from
binaries compiled by llvm -O0 for 64-bit x86, our prototype im-
plementation, STOKE, is able to produce programs which either
match or outperform the code produced by gcc -O3, icc -O3,
and in some cases, expert handwritten assembly.

Categories and Subject Descriptors D.1.2 [Automatic Program-
ming]: Program Synthesis; D.1.2 [Automatic Programming]: Pro-
gram Transformation; D.1.2 [Automatic Programming]: Program
Verification; D.3.4 [Processors]: Optimization

General Terms Performance, Verification

Keywords 64-bit; x86; x86-64; Binary; Markov Chain Monte
Carlo; MCMC; Stochastic Search; Superoptimization; SMT

1. Introduction
For many application domains there is considerable value in pro-
ducing the most performant code possible. Unfortunately, the tradi-
tional structure of a compiler’s optimization phase is often ill-suited
to this task. Attempting to factor the optimization problem into a
collection of small subproblems that can be solved independently,
although suitable for generating consistently good code, leads to
the well-known phase ordering problem. In many cases, the best
possible code can only be obtained through the simultaneous con-
sideration of mutually dependent issues such as instruction selec-
tion, register allocation, and target-dependent optimization.

Previous approaches to this problem have focused on the ex-
ploration of all possibilities within some limited class of programs.
In contrast to a traditional compiler, which uses performance con-
straints to drive the generation of a single program, these systems
consider multiple programs and then select the one that is best
able to satisfy those constraints. Solutions range from the explicit
enumeration of a class of programs that can be formed using a
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[r8:rdi] = rsi * [ecx:edx] + r8 + rdi

1 # gcc -O3 1 # STOKE
2 2
3 .L0: 3 .L0:
4 movq rsi, r9 4 shlq 32, rcx
5 movl ecx, ecx 5 movl edx, edx
6 shrq 32, rsi 6 xorq rdx, rcx
7 andl 0xffffffff, r9d 7 movq rcx, rax
8 movq rcx, rax 8 mulq rsi
9 movl edx, edx 9 addq r8, rdi
10 imulq r9, rax 10 adcq 0, rdx
11 imulq rdx, r9 11 addq rdi, rax
12 imulq rsi, rdx 12 adcq 0, rdx
13 imulq rsi, rcx 13 movq rdx, r8
14 addq rdx, rax 14 movq rax, rdi
15 jae .L2
16 movabsq 0x100000000, rdx
17 addq rdx, rcx
18 .L2:
19 movq rax, rsi
20 movq rax, rdx
21 shrq 32, rsi
22 salq 32, rdx
23 addq rsi, rcx
24 addq r9, rdx
25 adcq 0, rcx
26 addq r8, rdx
27 adcq 0, rcx
28 addq rdi, rdx
29 adcq 0, rcx
30 movq rcx, r8
31 movq rdx, rdi

Figure 1. Montgomery multiplication kernel from the OpenSSL
big number library, compiled by gcc -O3 (left) and STOKE
(right). The STOKE code is 16 lines shorter, 1.6x faster, and
slightly faster than expert handwritten assembly.

large executable hardware instruction set [2] to implicit enumer-
ation through symbolic theorem proving techniques of programs
over some restricted register transaction language [9, 11, 14].

An attractive feature of these systems is completeness: If a pro-
gram exists that meets the desired constraints, that program will
be found. Unfortunately, completeness also places limitations on
the space of programs that can realistically be considered. Because
of the huge number of programs involved, explicit enumeration-
based techniques are limited to programs of up to some fixed length
which is currently well below the threshold at which many interest-
ing optimizations take place. Implicit enumeration techniques can
overcome this limitation, but at the cost of expert-written rules for
shrinking the search space. The resulting optimizations are as good,
but no better, than the quality of the rules written by an expert.



We overcome these limitations by taking a different approach
based on incomplete search: the competing requirements of cor-
rectness and speed are defined as terms in a cost function over the
complex search space of all loop-free executable hardware instruc-
tion sequences, and the program optimization task is formulated as
a cost minimization problem. Although the resulting search space is
highly irregular and not amenable to exact optimization techniques,
the common approach of employing a Markov Chain Monte Carlo
(MCMC) sampler to explore the function and produce low-cost
samples is sufficient for producing high quality programs.

Although our technique sacrifices completeness by trading sys-
tematic enumeration for stochastic search, we nonetheless dramati-
cally increase the space of programs that our system is able to con-
sider while simultaneously improving the quality of the resulting
code. Consider the example shown in Figure 1, the Montgomery
multiplication kernel from the OpenSSL big number library for ar-
bitrary precision integer arithmetic. Beginning from a binary com-
piled by llvm -O0 (116 lines, not shown), we produce a code
sequence which is 16 lines shorter and 1.6 times faster than the one
produced by gcc -O3, and even slightly faster than the expert
handwritten assembly included in the OpenSSL repository. The
performance improvement results primarily from the use of a dif-
ferent assembly level algorithm than the one given in the original
code which is beyond the dataflow preserving algebraic transfor-
mations of a traditional compiler. The code is both automatically
discovered and verified to be equivalent to the original. To the best
of our knowledge, it is truly optimal: it is the fastest program for
this function written in the 64-bit x86 (x86-64) instruction set.

Our work makes a number of contributions that have not pre-
viously been demonstrated. The remainder of this paper explores
each in turn. Section 2 summarizes previous work in superopti-
mization and discusses its limitations. Section 3 presents a math-
ematical formalism for transforming the program optimization task
into a stochastic cost minimization problem. Section 4 discusses
how that theory is applied in a system for optimizing the run-
time performance of x86-64 binaries, and Section 5 describes our
prototype implementation, STOKE. Finally, Section 6 evaluates
STOKE on a set of benchmarks drawn from cryptography, linear
algebra, and low-level programming, and shows that STOKE is
able to produce code that either matches or outperforms the code
produced by production compilers.

2. Related Work
Previous approaches to superoptimization have focused on the ex-
ploration of all possibilities within some restricted class of pro-
grams. Although these systems have been demonstrated to be quite
effective within certain domains, their general applicability remains
limited. We discuss these limitations in the context of the Mont-
gomery multiplication kernel shown in Figure 1.

The structure of the code is as follows: Two 32-bit values, ecx
and edx, are concatenated and multiplied by the 64-bit value rsi to
produce a 128-bit product. Two more 64-bit values, rdi and r8 are
added to that product, and the result is split between two registers,
r8 and rdi. The primary source of optimization is best highlighted
by comparison. The code produced by gcc -O3, Figure 1 (left),
performs the 128-bit multiplication as four 64-bit multiplications
and then combines the results; the rewrite produced by STOKE,
Figure 1 (right), uses a hardware intrinsic which requires that the
inputs first be permuted and then moved to distinguished register
locations so that the multiplication may be performed in a single
step. The odd looking move on line 5 produces the non-obvious but
necessary side effect of zeroing the upper 32 bits of rdx.

Massalin’s original paper on superoptimization [14] describes a
system that explicitly enumerates sequences of code of increasing
length and selects the first such code identical to the input pro-

gram on a set of testcases. Massalin reports being able to optimize
instruction sequences of up to length 12. However to do so, it is
necessary to restrict the set of enumerable opcodes to between 10
and 15. In contrast, STOKE used a large subset of the nearly 400
x86-64 opcodes, some with over 20 variations, to produce the 11
instruction kernel shown in Figure 1. It is unlikely that Massalin’s
approach would scale to an instruction set of this magnitude.

Denali [11], and the more recent Equality Saturation technique
[18], attempt to gain scalability by only considering programs that
are known to be equal to the input program. Candidate programs
are explored through successive application of equality preserving
transformation axioms. Because these techniques are goal-directed,
they dramatically improve both the number of primitive instruc-
tions and the length of programs that can realistically be consid-
ered. However, both also rely heavily on expert knowledge. It is
unclear whether an expert would know a priori to encode an equal-
ity axiom defining the multiplication transformation shown in Fig-
ure 1, or more generally, whether a set of expert written rules could
ever cover the set of all interesting program optimizations. It is
nonetheless worth noting that these techniques can to a certain ex-
tent deal with loop optimizations, while other techniques, including
our own, are limited to loop-free code.

Bansal [2] describes a system that automatically enumerates
32-bit x86 superoptimizations and stores the results in a database
for later use. By exploiting symmetries between programs that
are equivalent up to register renaming, Bansal is able to scale
this method to optimizations that take input code sequences of
at most length 6 and produce code sequences of at most length
3. This approach has the dual benefit of hiding the high cost of
superoptimization by performing a search once and for all offline
and eliminating the dependence on expert knowledge. To some
extent, the low cost of performing a database query also allows
the system to overcome the low upper bound on instruction length
through the repeated application of the optimizer along a sliding
code window. However, the multiplication kernel shown in Figure 1
has the interesting property shared by many real world programs
that no sequence of short superoptimizations will transform the
code produced by gcc -O3 into the code produced by STOKE.
We follow Bansal’s approach in overall system architecture by
using testcases to help classify programs as promising or not and
submitting the most promising candidates to a verification engine
to prove or refute their correctness.

Sketching [17] and Brahma [9] address the closely related
component-based program synthesis problem. These systems rely
on either a declarative program specification, or a user-specified
partial program, and operate on statements in bit-vector calculi
rather than directly on hardware instructions. Liang [12] consid-
ers the task of learning programs from testcases alone, but at a
similarly high level of abstraction. Although useful for synthesiz-
ing non-trivial programs, the internal representations used by these
systems precludes them from reasoning directly about the runtime
performance of the code that they produce.

STOKE differs from previous approaches to superoptimization
by relying on incomplete stochastic search and making heavy use
of MCMC sampling to explore the extremely high dimensional,
irregular search space of loop-free assembly programs. For many
optimization problems of this form, MCMC sampling is the only
known general solution method which is also tractable. Success-
ful applications are many, and include protein alignment [16], code
breaking [6], and scene modeling and rendering in computer graph-
ics [5, 19].

3. Cost Minimization
To formulate the program optimization task as a cost minimization
problem, we first define a cost function with terms that balance the



hard constraints of correctness preservation and the soft constraints
of performance improvement. The primary advantage of this ap-
proach is that it removes the burden of reasoning directly about
the mutually-dependent optimization issues faced by a traditional
compiler. For instance, rather than considering the trade-offs be-
tween register allocation and instruction selection, we simply de-
fine a term which reflects the primary consequence of the decision:
expected runtime. We then utilize a cost minimization search pro-
cedure to produce a program that balances those trade-offs as effec-
tively as possible. We run the procedure for as long as is feasible,
and select the lowest-cost result which satisfies all of the hard con-
straints.

In formalizing this idea we use the following notation. We refer
to an input program as the target (T ) and a candidate compilation
as a rewrite (R), we say that a function f(X;Y ) takes inputsX and
is parameterized by Y , and finally, we define the indicator function
for boolean variables:

1{φ} =

{
1 φ = true

0 φ = false
(1)

3.1 Cost Function
At the highest level, a cost function should include both a correct-
ness term eq(·) and a performance term, perf(·). An optimization,
R′, is any rewrite for which the cost function obtains a minimum
value and the correctness term is zero.

c(R; T ) = eq(R; T ) + perf(R; T ) (2)

R′ = arg min
r

(
perf(r; T )

∣∣∣ eq(r; T ) = 0
)

(3)

The transformation correctness term, eq(·), measures the simi-
larity of two functions. The term is zero if and only if the two func-
tions are equal. For our purposes, two code sequences are regarded
as functions of registers and memory contents, and are equal if for
all machine states that agree on the live inputs with the respect to
the target, the two codes produce identical side effects on the live
outputs with respect to the target. Because program optimization is
undefined for ill-formed programs, it is unnecessary that eq(·) be
defined for a target or rewrite that produce some undefined behav-
ior. However nothing prevents us from doing so, and it would be
a straightforward extension to produce a definition of eq(·) which
preserved hardware exception behavior as well.

The performance improvement term, perf(·), quantifies the per-
formance improvement of a rewrite with respect to the target. De-
pending on the application, this term could reflect code size, ex-
pected runtime, number of disk accesses, power consumption, or
any other measure of resource usage. Crucially, the extent to which
this term accurately reflects the performance improvement of a
rewrite directly affects the quality of the results discovered by a
search procedure.

3.2 MCMC Sampling
In general, we expect cost functions of the form described above
to be highly irregular and not amenable to exact optimization tech-
niques. The common approach to solving this problem is to employ
the use of an MCMC sampler. Although a complete discussion of
MCMC sampling techniques is beyond the scope of this paper, we
summarize the main ideas here.

MCMC sampling is a technique for drawing elements from a
probability density function in direct proportion to its value: re-
gions of higher probability are sampled from more often than re-
gions of low probability. When applied to cost minimization, this
technique has the attractive property that in the limit the most fre-
quently occuring sample will be taken from the minimum (optimal)

value of the function. In practice, well before this limiting behav-
ior is observed, MCMC sampling functions as an intelligent hill
climbing method which is robust against irregular functions that
are dense with local minima. A common method (described by [8])
for transforming an arbitrary cost function, c(·), into a probability
density function is the following, where β is a constant and Z is a
partition function that normalizes the distribution:

p(R; T ) =
1

Z
exp

(
− β · c(R; T )

)
(4)

Although computing Z is in general intractable, the Metropolis-
Hastings algorithm for generating Markov chains is designed to ex-
plore density functions such as p(·) without the need to compute the
partition function [10, 15]. The basic idea is simple. The algorithm
maintains a current rewrite R and proposes a modified rewrite R∗
as the next step in the chain. The proposal R∗ is either accepted
or rejected. If the proposal is accepted, R∗ becomes the current
rewrite. Otherwise another proposal based on R is generated. The
algorithm iterates until its computational budget is exhausted, and
so long as the proposals are ergodic (capable of transforming any
point in the space to any other through some sequence of applica-
tions) the algorithm will in the limit produce a sequence of sam-
ples with the properties described above (i.e., in proportion to their
cost). This global property depends on the local acceptance criteria
of a proposal R → R∗, which is governed by the Metropolis-
Hastings acceptance probability, where q(R∗|R) is the proposal
distribution from which a new rewriteR∗ is sampled given the cur-
rent rewrite,R:

α(R→ R∗; T ) = min

(
1,
p(R∗; T )q(R|R∗)
p(R; T )q(R∗|R)

)
(5)

This proposal distribution is key to a successful application of
the algorithm. Empirically, the best results are obtained by a dis-
tribution which makes both local proposals that make minor mod-
ifications to R and global proposals that induce major changes. In
the event that the proposal distributions are symmetric, q(R∗|R) =
q(R|R∗), the acceptance probability can be reduced to the much
simpler Metropolis ratio, which can be computed directly from
c(·):

α(R→ R∗; T ) = min

(
1,
p(R∗; T )

p(R; T )

)

= min

(
1, exp

(
− β · c(R

∗; T )

c(R; T )

)) (6)

The important properties of the acceptance criteria are the fol-
lowing: If R∗ is better (has a higher probability/lower cost) than
R, the proposal is always accepted. If R∗ is worse (has a lower
probability/higher cost) thanR, the proposal may still be accepted
with a probability that decreases as a function of the ratio in value
betweenR∗ andR. This property prevents the search from becom-
ing trapped in local minima while remaining less likely to accept a
move that is much worse than available alternatives.

4. x86-64 Binary Optimization
Having discussed cost minimization in the abstract, we now turn
to the practical details of implementing cost minimization for op-
timizing the runtime performance of x86-64 binaries. As x86-64 is
one of the most complex ISAs currently available, we expect that
the discussion in this section should generalize well to other archi-
tectures.
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Figure 2. Histograms of validations per second (left), and testcase
evaluations per second (right), for the benchmarks discussed in
Section 6, The low validation throughput is insufficient for MCMC
sampling and motivates an approach based on testcases.

4.1 Transformation Correctness
For loop-free sequences of x86-64 assembly code, a natural choice
for implementing the transformation correctness term is a symbolic
validator such as the one used in [4]. For a candidate rewrite, the
term may be defined in terms of an invocation of the validator as:

eq(R; T ) = 1−
(
1{VALIDATE(T ,R)}

)
(7)

Unfortunately, the total number of validations that can currently
be performed per second, even for modestly sized codes, is low.
Figure 2 (left) suggests that for the benchmarks discussed in Sec-
tion 6 the number is well below 100. Because MCMC sampling
is effective only insofar as it is able to explore sufficiently large
numbers of proposals, the repeated computation of Equation 7 in
its inner-most loop would almost certainly drive that number well
below a useful threshold.

This observation motivates the definition of an approximation
to eq(·) based on testcases, τ . Intuitively, we execute the proposal
R∗ on a set of inputs and measure “how close” the output is to the
output of the target on those same inputs. For a given input, we
use the number of bits difference in live outputs (i.e., the Hamming
distance) to measure correctness. Besides being much faster than
using a theorem prover, this approximation of program equivalence
has the added advantage of producing a smoother landscape than
the 0/1 output of a symbolic equality test; it provides a useful notion
of “almost correct” that can help to guide the search.

eq′(R; T , τ) =
∑
t∈τ

reg(R; T , t) + mem(R; T , t)

+
∑
t∈τ

err(R; T , t)
(8)

In the above formula, reg(·) compares the side effects, val(·),
that both functions produce on live register outputs, ρ, with respect
to the target, and counts the number of bits that the results differ
by. These outputs can include general purpose, SSE, and condition
registers. mem(·) is defined analogously for live memory outputs,
µ. We use the population count function, POP(·), to count the
number of 1-bits in the 64-bit representation of an integer.

reg(R; T , t) =
∑
r∈ρ

POP
(

val(T , r)⊕ val(R, r)
)

(9)

mem(R; T , t) =
∑
m∈µ

POP
(

val(T ,m)⊕ val(R,m)
)

(10)

0 10 20 30 40 50 60 70

0

5

10

15

20

Predicted Runtime (unitless)

A
ct

ua
l R

un
tim

e 
(n

s)

Figure 3. Comparison of predicted and actual runtimes for the
benchmarks described in Section 6, along with rewrites generated
in the course of our experiments. The points are well correlated but
distinguished by outliers characterized by instruction level paral-
lelism and memory traffic at the micro-op level. The approximation
is sufficient for the benchmarks we consider.

err(·) is used to distinguish programs which exhibit undefined
behavior, by counting and then penalizing the number of segfaults,
sigsegv(·), floating point exceptions, sigfloat(·), and reads from
undefined memory or registers, undef(·), which occur during ex-
ecution of a rewrite. Note that sigsegv(·) is defined in terms of
the target, which determines the set of addresses which may be
successfully dereferenced by a rewrite for a particular testcase.
Rewrites are run in a sandbox to ensure that undefined behavior
can be detected safely. The extension to additional exceptional be-
havior would be straightforward.

err(R; T , t) = wsf · sigsegv(R; T , t)
+ wfp · sigfloat(R; t)

+ wur · undef(R; t)

(11)

The evaluation of eq′(·) may be accomplished either by JIT
compilation, or the use of a hardware emulator. In our experiments
we have chosen the latter. Figure 2 (right) shows the number of
testcase evaluations that our emulator is able to perform per second:
just under 500,000. This implementation allows us to define an
optimized method for computing eq(·) which achieves sufficient
throughput to be useful for MCMC sampling.

eq∗(R; T , τ) =

{
eq(R; T ) eq′(R; T , τ) = 0

eq′(R; T , τ) otherwise
(12)

In addition to performance, Equation 12 has the following de-
sirable properties. First, failed computations of eq(·) will produce
a counterexample testcase that may be used to refine τ as described
in [4]. The careful reader will note that refining τ affects the cost
function, c(·), and effectively changes the search space that it de-
fines. However in practice, the number of failed validations that are
required to produce a robust set of testcases that accurately pre-
dict success is quite low. Second, as discussed above, it smooths
the search space by allowing the transformation equality metric to
incrementally quantify the difference between two programs.

4.2 Performance Improvement
A straightforward method for computing the performance improve-
ment term is to JIT compile both target and rewrite and compare
their runtimes. Unfortunately, as with the transformation correct-
ness term, the amount of time required to both compile a function
and execute it sufficiently many times to eliminate transient per-
formance effects is prohibitively expensive to be used in the inner-



most loop of MCMC sampling. In our experiments, we adopt a
simple heuristic for approximating the runtime performance of a
function, which is based on a static approximation of the average
latencies of its instructions.

perf(R; T ) = H(R)−H(T )

H(f) =
∑

i∈inst(f)

LATENCY(i) (13)

Figure 3 shows a reasonably high correlation between the
heuristic and the actual runtimes of the benchmarks described in
Section 6, along with rewrites for those benchmarks which were
generated in the course of our experiments. Outliers are character-
ized by disproportionately high instruction level parallelism at the
micro-op level and the performance effects of inconsistent memory
access times. A more accurate model of the second order perfor-
mance effects introduced by a modern CISC processor is straight-
forward if tedious to construct and we expect would be necessary
for more complex programs. Nonetheless, the approximation is
largely sufficient for the benchmarks that we consider. Whatever
errors stem from this imprecision can be addressed by recomputing
perf(·) using the slower JIT compilation method as a postpro-
cessing step. In our experiments we record the top-n lowest cost
samples produced by MCMC sampling, rerank each based on their
actual runtimes, and return the best result.

4.3 MCMC Sampling
For x86-64 binary optimization, we represent candidate rewrites
as finite loop-free sequences of instructions, of length `, where a
distinguished token, UNUSED, allows for the representation of
programs that contain fewer than ` instructions. This simplifying
assumption is essential to the formulation of MCMC sampling dis-
cussed in Section 3.2, as it places a constant value on the dimen-
sionality of the search space. The interested reader may consult [1]
for a thorough treatment of why this is necessary. Our definition of
the proposal distribution, q(·), chooses among four possible moves:
the first two minor, and the last two major:

Opcode. With probability pc, an instruction is selected at ran-
dom, and its opcode is replaced by a random opcode. The new op-
code is drawn from an equivalence class of opcodes which require
the same number and type of operands as the old opcode. We con-
struct these classes from the set of arithmetic and fixed point SSE
opcodes.

Operand. With probability po, an instruction is selected at
random and one of its operands is replaced by a random operand
drawn from an equivalence class of operands with equivalent types
to the old operand. If the operand is an immediate, its value is drawn
from a set of predefined constants. We construct this set using the
range -16 to 16 and all subsequent powers of 2.

Swap. With probability ps, two lines of code are selected at
random and interchanged. Each line may correspond to either an
instruction or the UNUSED token.

Instruction. With probability pi, an instruction is selected at
random and replaced either by an unconstrained random instruc-
tion or the UNUSED token. A random instruction is constructed
by first selecting an opcode at random and then choosing random
operands of the appropriate types. The UNUSED token is pro-
posed with probability pu.

These definitions satisfy the ergodicity property described in
Section 3.2. Any program can be transformed into any other
through repeated application of Instruction moves. These defini-
tions also satisfy the symmetry property, and thus allow the com-
putation of acceptance probability using Equation 6. To see why,
note that the probabilities of performing all four move types are
equal to the probabilities of undoing the transformations they pro-

Expert

llvm -O0

gcc -O3

Random

Figure 4. Abstract depiction of the search space for the Mont-
gomery multiplication benchmark. O0 and O3 optimized codes oc-
cupy a densely connected part of the space which is easily tra-
versed. Expert code occupies an entirely different region of the
space which is reachable only by way of an extremely low prob-
ability path.

duce using a move of the same type. Opcode and operand moves
are constrained to sample from identical equivalence classes before
and after acceptance. Swap and instruction moves are similarly
unconstrained in both directions.

4.4 Separating Synthesis from Optimization
An early implementation of STOKE based on the above princi-
ples, was able to consistently transform llvm -O0 code into the
equivalent of gcc -O3 code. Unfortunately, it was unable to pro-
duce results which were competitive with expert hand-written code.
The reason is suggested by Figure 4, which gives an abstract depic-
tion of the search space for the Montgomery multiplication bench-
mark. For loop-free sequences of code, llvm -O0 and gcc -O3
codes differ primarily with respect to efficient use of the stack and
choices of individual instructions. Beyond these differences, the
resulting codes are algorithmically quite similar. This is because
compiler optimizers are generally designed to compose many small
local transformations: dead code elimination deletes one instruc-
tion, constant propagation changes one register to an immediate,
and strength reduction replaces a multiplication with an add. With
respect to the search space, such sequences of local optimizations
define a region of equivalent programs that are densely connected
by very short sequences of moves (often just one) that are easily tra-
versed by a local search method. Beginning from llvm -O0 code,
MCMC sampling will quickly identify local inefficiencies one by
one, improve each in turn, and hill climb its way to a gcc -O3
code.

The expert code discovered by STOKE occupies an entirely
different region of the search space. As noted earlier, it has the
property that no sequence of small equality preserving transforma-
tions connect it to either the llvm -O0 or the gcc -O3 code.
It represents a completely distinct algorithm for implementing the
Montgomery multiplication kernel at the assembly level, one which
requires that its input values be permuted and relocated to distin-
guished register locations to permit the use of hardware intrinsics.
The only method we know of for a local search procedure to trans-
form either code into the expert code is to traverse the extremely
low probability path that builds the expert code in place next to the
original, all the while increasing its cost, only to delete the original
code at the very end. Although MCMC sampling is guaranteed to
traverse this path in the limit, the likelihood of it doing so in any
reasonable amount of time is so low as to be useless in practice.
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Figure 5. Proposals evaluated per second versus testcases eval-
uated prior to early termination, during synthesis for the Mont-
gomery multiplication benchmark. Reducing the number of eval-
uated testcases produces an almost 3x improvement in proposal
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This observation motivates the division of cost minimization
into two phases:

• Synthesis A synthesis phase focused solely on correctness,
which attempts to locate regions of equivalent programs which
are distinct from the region occupied by the target.

• Optimization An optimization phase focused on speed, which
searches for the fastest program within each of those regions.

The two phases share the same search implementation; only the
starting point and the acceptance functions are different. Synthesis
begins with a random starting point (a sequence of randomly cho-
sen instructions), while optimization begins with a code sequence
known to be equivalent to the target. For proposals, synthesis ig-
nores the performance improvement term altogether and simply
uses Equation 12 as its cost function. Optimization uses both terms,
which allows it to measure improvement while also allowing it to
experiment with “shortcuts” that (temporarily) violate transforma-
tion correctness.

4.5 Optimized Acceptance Computation
The optimized method for computing eq∗(·) given in Equation 12
is sufficiently fast for MCMC sampling. However, its performance
can be further improved. As described so far, eq∗(·) is computed by
first running a proposal on testcases, summing the results, noting
the ratio in total cost with that of the current rewrite, and then
sampling a random variable to decide whether or not to accept the
proposal. Instead, by first sampling the random variable p, and then
computing the maximum value of the ratio that the algorithm will
accept given p, it is possible to terminate the evaluation of testcases
as soon as that bound is exceeded.

Specifically, because the formulation of the proposal distribu-
tion q(·) is symmetric we may compute the acceptance probability
α(·) of a proposal directly from c(·) as shown in Equation 6. By
first sampling p we can invert α(·) to solve for the maximum cost
rewrite c(·) that the algorithm will accept.

p < α(R→ R∗; T )

< min

(
1, exp

(
− β · c(R

∗; T )

c(R; T )

))

c(R∗; T , τ) < c(R; T , τ)− log(p)

β

(14)

Because the computation of eq′(·) is based on the iterative
evaluation of testcases, it is only necessary to do so for as long as
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Figure 6. Strict versus improved equality functions for a machine
state in which ax is live out. Strict assigns the maximum possible
cost to a rewrite which produces the correct value in the wrong
location. Improved assigns a cost of almost zero.

the running sum does not exceed this upper bound. Once it does, we
know that the proposal is guaranteed to be rejected, and no further
computation is necessary. Figure 5 shows the result of applying this
optimization during synthesis for the Montgomery multiplication
benchmark. As the value of the cost function decreases, so too do
the average number of testcases which must be evaluated prior to
early termination. This in turn produces a considerable increase
in the number of proposals evaluated per second, which at peak
exceeds 50,000.

4.6 Improved Equality Metric
A second and even more important improvement stems from the
observation that the definition of reg(·) given in Equation 9 is
unnecessarily strict. An illustrative example is shown in Figure 6.
Consider a simplified machine with four 4-bit registers, and a target
function that produces side effects in register al. The final machine
states produced by running the target and a candidate rewrite are
shown at the top of the figure. Because the rewrite produces the
inverse of the desired value in al, it is assigned the maximum
possible cost. This is unfortunate however, as the rewrite does
produce the correct value, only in the wrong place: dl. A substantial
improvement in performance is obtained by rewarding rewrites that
produce correct (or nearly correct) values in the wrong locations.
The improved cost function examines all registers of equivalent bit-
width, bw(·), selects the one that most closely matches the value of
the target register, and assigns an additional small penalty, wm, if
the selected register differs from the original.

reg′(R; T , τ) =
∑
r∈ρ

min
r′∈bw(r)

R(r, r′; τ)

R(r, r′; τ) = POP
(

val(T , r)⊕ val(R, r′)
)

+ wm · 1{r 6= r′}

(15)

For brevity, we note that it is possible to improve the definition
of memory equality analogously. Although we do so in our exper-
iments, the time required to compute this term does grow quadrat-
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Figure 7. Strict versus improved synthesis cost functions for the
Montgomery multiplication benchmark. In the amount of time (s)
required for the improved function to converge, the strict function
produces a result comparable to that of a purely random search.

ically with the size of the target function’s memory footprint. We
expect that for more complex programs, an alternate implementa-
tion will be necessary.

Figure 7 shows the results of using the improved definitions of
register and memory equality during synthesis for the Montgomery
multiplication benchmark. In the amount of time required for the
improved cost function to converge to a zero-cost rewrite, the strict
version obtains a minimum cost which was only slightly superior to
that obtained by a purely random search. The dramatic increase in
performance can be explained as an implicit parallelization of the
search procedure. By allowing a rewrite to place a correct value in
an arbitrary location, the improved cost function allows candidates
to simultaneously explore up to as many alternate computations as
can be fit within an instruction sequence of length `.

4.7 Why and When Synthesis Works
It is not intuitive that a randomized search procedure should synthe-
size a correct rewrite from such an enormous search space in such a
short amount of time. In our experience, the reason why is that syn-
thesis is effective precisely when it is possible to discover portions
of a correct rewrite incrementally, as opposed to all at once. Fig-
ure 8 plots the current best cost obtained during synthesis against
the percentage of instructions appearing in both that rewrite and
the final rewrite for the Montgomery multiplication benchmark. As
search proceeds, the percentage of correct code increases in inverse
proportion to the value of the cost function. While this is very en-
couraging and there are many programs that can be synthesized in
pieces, each of which increases the average number of correct bits
in the output, there are certainly interesting programs that do not
satisfy this property. In the limit, any code which performs a com-
plex computation that is reduced to a single boolean value poses a
problem for our technique. The discovery of partially correct com-
putations is useful as a guide for random search only insofar as it
in turn produces a partially correct result, which can be detected by
a cost function.

This observation motivates the desire for a cost function which
maximizes the signal produced by a partially correct rewrite. We
discussed a successful application of this principle in Section 4.6.
Nonetheless, there remains room for improvement. Consider a pro-
gram which rounds its inputs up to the next highest power of two.
This program has the interesting property of differing from the pro-
gram which simply returns zero in just one bit per testcase. The
improved cost function discussed above assigns a very low cost to
this constant zero function, which although nearly perfect is com-
pletely wrong, and exhibits no partially correct computations that
can be hill-climbed to a correct rewrite.
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Figure 8. Cost function versus percentage of instructions which
appear in the final zero-cost rewrite. Random search is an effective
method for performing synthesis insofar as it is able to discover
partially correct rewrites incrementally.

Fortunately, we note that even when synthesis fails, optimiza-
tion is still possible. It must simply proceed only from the region
occupied by the target as a starting point.

5. STOKE
STOKE is a prototype implementation of the concepts described
above. Its high-level design is shown in Figure 9. A user provides a
target binary which is created using a standard compiler (in our ex-
periments, llvm -O0); in the event that the target contains loops,
STOKE identifies loop-free subsequences of the code which it will
attempt to optimize instead. The user also provides an annotated
driver in which the target is called in an appropriate context. Based
on the user’s annotations, STOKE automatically generates random
inputs to the target, compiles the driver, and runs the code under
instrumentation to produce testcases. The target and testcases are
broadcast to a set of synthesis threads which after a fixed amount
of time report back validated candidate rewrites. In like fashion,
multiple threads perform optimization on both the target and those
rewrites. Finally, the set of rewrites with a final cost that is within
20% of the minimum result are re-ranked based on actual runtime,
and the best result is returned to the user.

5.1 Test Case Generation and Evaluation
STOKE automatically generates testcases using annotations pro-
vided by a user. Because STOKE operates on x86-64 assembly,
those inputs are limited to fixed-width bit strings, which unless
otherwise specified, are sampled uniformly at random. If the tar-
get uses an input to form a memory address, the user must anno-
tate that input with a range of values that guarantee that the re-
sulting addresses are legal given the context in which the target
is invoked. The compiled program is executed under instrumenta-
tion using Intel’s PinTool [13]. As each instruction is executed, the
tool records the state of all general purpose, SSE, and condition
registers, as well as dereferenced memory. The initial state of the
registers, along with the first values dereferenced from each mem-
ory address are used to form testcase inputs. Outputs are formed
analogously. By default, STOKE generates 32 testcases for each
target.

For each testcase, The set of addresses dereferenced by the tar-
get are used to define the sandbox in which candidate rewrites are
executed. Attempts to dereference invalid addresses are trapped and
replaced by instructions which produce a constant zero value. At-
tempts to read from registers in an undefined state and computa-
tions which produce floating point exceptions are handled analo-
gously.
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Figure 9. The high-level design of STOKE. A target binary created by a production compiler (1) and driver code (2) are run under
instrumentation (3) using automatically generated inputs to produce testcases. Synthesis threads (4) use the target and testcases to generate
candidate rewrites, which along with the target are refined by optimization threads (5). The results are ranked (6) and the rewrite with the
lowest cost is returned to the user (7).

wsf 1 pc 0.16 pu 0.16
wfp 1 po 0.5 β 0.1
wur 2 ps 0.16 ` 50
wm 3 pi 0.16

Figure 10. MCMC sampling parameters used by STOKE during
both synthesis and optimization phases.

5.2 Validation
STOKE uses a sound procedure for validating the equality of two
sequences of loop-free assembly which is similar to the one de-
scribed in [2]. Code sequences are converted into SMT formulae
in the quantifier free theory of bit-vector arithmetic used by the
STP [7] theorem prover, and used to produce a query which asks
whether both sequences produce the same side effects on live out-
puts when executed from the same initial machine state. For our
purposes, a machine state consists of general purpose, SSE, and
condition registers, and memory. Depending on type, registers are
modeled as between 8- and 128-bit vectors. Memory is modeled
as two vectors: a 64-bit address and an 8-bit value (x86-64 is byte
addressable).

STOKE first asserts the constraint that both sequences agree
on the initial machine state of the live inputs with respect to the
target. Next, it iterates over the instructions in the target, and for
each instruction asserts a constraint which encodes the transforma-
tion it produces on the machine state. These constraints are chained
together to produce a constraint on the final machine state of the
live outputs with respect to the target. Analogous constraints are
asserted for the rewrite. Finally, for all pairs of memory accesses
at addresses addr1 and addr2, STOKE asserts an additional con-
straint which relates their values: addr1 = addr2 ⇒ val1 =
val2. Using these constraints, STOKE performs an STP query
which asks whether there does not exist an initial machine state
which causes the two sequences to produce different values for the
live outputs with respect to the target. If the answer is “yes”, then
the sequences are determined to be equal. If the answer is “no”,
then the prover produces a counter example which is used to pro-
duce a new testcase.

STOKE makes two simplifying assumptions which are neces-
sary to keep validator runtimes tractable. First, it assumes that stack
addresses are represented exclusively as constant offsets from the
stack pointer. This allows STOKE to treat stack addresses as name-
able locations, and minimizes the number of expensive memory
constraints which must be asserted. This is essential for validat-

ing against llvm -O0 code, which exhibits heavy stack traffic.
Second, it treats 64-bit multiplication and division as uninterpreted
functions by asserting the constraint that the instructions produce
identical arbitrary values when executed on identical inputs. This
assumption is necessary irrespective of the compiler toolchain used
to produce the target. Whereas STP diverges when reasoning ex-
plicitly about two or more such operations, our benchmarks contain
as many as four per program.

5.3 Parallel Synthesis and Optimization
Synthesis and optimization are executed in parallel on a small clus-
ter consisting of 40 dual-core 1.8 GHz AMD Opterons. Both are
allocated computational budgets of 30 minutes. The MCMC sam-
pling parameters used by both phases are summarized in Figure 10.

6. Evaluation
In addition to the Montgomery multiplication kernel discussed pre-
viously, STOKE was evaluated on benchmarks drawn both from
the literature and real-world high-performance codes. The per-
formance improvements obtained for those kernels are summa-
rized in Figure 11 (top), while corresponding STOKE runtimes
are shown in Figure 11 (bottom). Beginning from binaries com-
piled using llvm -O0, STOKE consistently discovers rewrites
which match the performance of the code produced by gcc -O3
and icc -O3. In several cases, the performance exceeds both and
is comparable to expert handwritten assembly. As we explain be-
low, the improvement often results from the discovery of a com-
pletely distinct assembly level algorithm for implementing the tar-
get code. We close with a discussion of the benchmarks which high-
light STOKE’s limitations.

6.1 Hacker’s Delight
Hacker’s Delight [20], commonly referred to as “the bible of bit-
twiddling hacks”, is a collection of techniques for encoding oth-
erwise complex algorithms as small loop-free sequences of bit-
manipulating instructions. Gulwani [9] notes this as a source of
benchmarks for program synthesis and superoptimization, and
identifies a 25 program benchmark which ranges in complexity
from turning off the right-most bit in a word, to rounding up to the
next highest power of 2, or selecting the upper 32 bits from a 64-bit
multiplication. Our implementation of the benchmark uses the C
code found in the original text. For brevity, we discuss only the
programs for which STOKE discovers an algorithmically distinct
rewrite.
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Figure 11. (Top) Average speedup over llvm -O0 for benchmark kernels. Beginning from code produced by llvm -O0, STOKE
discovers rewrites which are comparable to code produced by gcc -O3 and icc -O3. In some cases, the rewrite outperforms both,
and are comparable to expert handwritten assembly. Kernels for which STOKE discovered an algorithmically distinct rewrite are annotated
with a star. (Bottom) Synthesis and optimization runtimes. Kernels for which synthesis timed out are annotated with a star.

Figure 12 shows the “Cycle Through 3 Values” benchmark,
which takes an input, x, and transforms it to the next value in the
sequence 〈a,b, c〉: a becomes b, b becomes c, and c becomes a.
Hacker’s Delight points out that the most natural implementation
of this function is a sequence of conditional assignments, but notes
that for an ISA without conditional move intrinsics the implemen-
tation shown is cheaper than one which uses branch instructions.
For x86-64, which has conditional move intrinsics, this is an in-
stance of premature optimization. Unfortunately, neither gcc nor
icc are able to detect this, and are forced to transcribe the code
as written. There are no sub-optimal subsequences in the resulting
code. Both are simply unable to reason about the semantics of the
function as a whole. We expect that equality-preserving superopti-
mizers would exhibit similar behavior for the same reason. STOKE
on the other hand, rediscovers the natural implementation from the
41 line llvm -O0 compilation. We note that although this rewrite
is only five lines long, it remains beyond the reach of superoptimiz-
ers based on brute force enumeration.

In similar fashion, for machines without 64-bit instructions, the
implementation that Hacker’s Delight recommends for the “Com-
pute the Higher Order Half of a 64-bit Product” multiplies two
32-bit inputs in four parts and aggregates the results. The compu-
tation resembles the Montgomery multiplication benchmark, and
STOKE discovers a rewrite which requires a single multiplication
using the appropriate 64-bit intrinsic.

STOKE additionally discovers a number of typical superopti-
mizer rewrites. These include using the popcnt intrinsic, which
counts the number of 1-bits in an integer, as an intermediate step in

the “Compute Parity” and “Determine if an Integer is a Power of
2” benchmarks.

6.2 SAXPY
SAXPY (Single-precision Alpha X Plus Y) is a level 1 vector
operation in the Basic Linear Algebra Subsystems Library [3].
The function makes heavy use of heap accesses and presents the
opportunity for optimization using vector intrinsics. To allow for
STOKE to discover this possibility, our implementation is unrolled
four times by hand, as shown in Figure 13. Despite heavy annota-
tion to indicate that the arrays pointed to by x and y are aligned
and do not alias each other, the production compilers either cannot
detect the possibility of a compilation using vector intrinsics, or are
precluded from doing so by some internal heuristic.

STOKE on the other hand, when given identical information,
is able to discover the natural implementation: the constant a is
broadcast four ways from a general purpose register into an SSE
register, and then multiplied by and added to the contents of x and
y, which are loaded into SSE registers four elements at a time.
The four way broadcast does not appear anywhere in either the
gcc -O3 code, or in the original 61 line llvm -O0 code. As
noted above, despite the simplicity, the length of the resulting code
is well beyond the reach of existing superoptimizers.

6.3 Limitations
Bansal [2] identifies the Linked List Traversal Benchmark for su-
peroptimizers shown in Figure 14. The code iterates over a list of
integers and multiplies each of the elements by two. The code is
unique with respect to the benchmarks discussed so far, as it con-



int p21(int x, int a, int b, int c) {
return ((-(x == c)) & (a ˆ c)) ˆ

((-(x == a)) & (b ˆ c)) ˆ c;
}

1 # gcc -O3 1 # STOKE
2 2
3 .L0: 3 .L0:
4 movl edx, eax 4 cmpl edi, ecx
5 xorl edx, edx 5 cmovel esi, ecx
6 xorl ecx, eax 6 xorl edi, esi
7 cmpl esi, edi 7 cmovel edx, ecx
8 sete dl 8 movq rcx, rax
9 negl edx
10 andl edx, eax
11 xorl edx, edx
12 xorl ecx, eax
13 cmpl ecx, edi
14 sete dl
15 xorl ecx, esi
16 negl edx
17 andl esi, edx
18 xorl edx, eax

Figure 12. Cycling Through 3 Values benchmark. STOKE sees
through the esoteric implementation which gcc -O3 translates
literally (left) and rediscovers the intuitive algorithm using condi-
tional move intrinsics (right).

tains a loop. As a result, STOKE is unable to optimize the func-
tion as a whole, but rather only its inner-most loop-free fragment.
STOKE discovers the same optimizations as Bansal’s superopti-
mizer, the elimination of stack traffic and a strength reduction from
multiplication to bit shifting. However it fails in like fashion to
eliminate the instructions which copy the head pointer from and
back to the stack on every iteration of the loop. The production
compilers on the other hand, are able to eliminate the memory traf-
fic by caching the pointer in a register prior to entering the loop.
As a result, the rewrite discovered by STOKE is slower than the
code produced by gcc -O3 (surprisingly, icc does not perform
strength reduction, and produces code which performs similarly).
This shortcoming could be addressed by extending our framework
to validate and propose modifications to code containing loops.

As shown in Figure 11 (bottom), STOKE is unable to synthe-
size a rewrite for three of the Hacker’s Delight Benchmarks. All
three benchmarks, despite being quite complex, have the interest-
ing property that they produce results which differ by only a single
bit from a simple yet completely incorrect alternative. The “Round
Up to the Next Highest Power of 2” benchmark is nearly indistin-
guishable from the function which always returns zero. The same
is true of the “Next Highest with Same Number of 1-bits”, and a
small transformation to the “Exchanging Two Fields” benchmark
with respect to the identity function. Nonetheless, for these three
benchmarks, using its optimization phase alone STOKE is still
able to discover rewrites which perform comparably to the produc-
tion compiler code, which we believe to be optimal. Unfortunately,
in general we do not expect this to be the case. A more sophisticated
cost function, as described in section 4.7, is surely necessary.

7. Conclusion and Future Work
We have shown a new approach to the loop-free binary superopti-
mization task which formulates program optimization as a stochas-
tic search problem. Compared to a traditional compiler, which fac-
tors optimization into a sequence of small independently solvable
subproblems, our framework is based on cost minimization and

void SAXPY(int* x, int* y, int a) {
x[i] = a * x[i] + y[i];
x[i+1] = a * x[i+1] + y[i+1];
x[i+2] = a * x[i+2] + y[i+2];
x[i+3] = a * x[i+3] + y[i+3];

}

1 # gcc -O3 1 # STOKE
2 2
3 .L0: 3 .L0:
4 movslq ecx,rcx 4 movd edi,xmm0
5 leaq (rsi,rcx,4),r8 5 shufps 0,xmm0,xmm0
6 leaq 1(rcx),r9 6 movups (rsi,rcx,4),xmm1
7 movl (r8),eax 7 pmullw xmm1,xmm0
8 imull edi,eax 8 movups (rdx,rcx,4),xmm1
9 addl (rdx,rcx,4),eax 9 paddw xmm1,xmm0
10 movl eax,(r8) 10 movups xmm0,(rsi,rcx,4)
11 leaq (rsi,r9,4),r8
12 movl (r8),eax
13 imull edi,eax
14 addl (rdx,r9,4),eax
15 leaq 2(rcx),r9
16 addq 3,rcx
17 movl eax,(r8)
18 leaq (rsi,r9,4),r8
19 movl (r8),eax
20 imull edi,eax
21 addl (rdx,r9,4),eax
22 movl eax,(r8)
23 leaq (rsi,rcx,4),rax
24 imull (rax),edi
25 addl (rdx,rcx,4),edi
26 movl edi,(rax)

Figure 13. SAXPY benchmark. Unlike gcc -O3 (top), STOKE
discovers a rewrite which uses SSE vector instructions (bottom).

while ( head != 0 ) {
head->val *= 2;
head = head->next;

}

1 # gcc -O3 1 # STOKE
2 2
3 movq -8(rsp), rdi 3 .L4:
4 .L4: 4 movq -8(rsp), rdi
5 sall (rdi) 5 sall (rdi)
6 movq 8(rdi), rdi 6 movq 8(rdi), rdi
7 .L6: 7 movq rdi, -8(rsp)
8 testq rdi, rdi 8 .L6:
9 jne .L4 9 movq -8(rsp), rdi

10 testq rdi, rdi
11 jne .L4

Figure 14. Linked List Traversal benchmark. STOKE discovers
the same rewrite (right) as Bansal’s superoptimizer, but fails to
cache the head pointer in a register, as in the gcc -O3 code (left).

considers the competing constraints of transformation correctness
and performance improvement simultaneously. We show that an
MCMC sampler can be used to rapidly explore cost functions of
this form and produce low cost samples which correspond to high
quality optimizations. Although our method sacrifices complete-
ness, the scope of programs which we are able to consider, and the
quality of the rewrites we produce, far exceed those of existing su-
peroptimizers.



Although our prototype implementation, STOKE, is in many
cases able to produce rewrites which are competitive with or out-
perform the code produced by production compilers, there remains
substantial room for improvement. In future work, we intend to pur-
sue both a validation and proposal mechanism for code containing
loops and a synthesis cost function which is robust against targets
with numerous deceptively attractive, albeit completely incorrect,
synthesis alternatives.
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