
Simplifying Loop Invariant Generation Using
Splitter Predicates?

Rahul Sharma, Isil Dillig, Thomas Dillig, and Alex Aiken

Department of Computer Science
Stanford University

{sharmar,isil,tdillig,aiken}@cs.stanford.edu

Abstract. We present a novel static analysis technique that substan-
tially improves the quality of invariants inferred by standard loop invari-
ant generation techniques. Our technique decomposes multi-phase loops,
which require disjunctive invariants, into a semantically equivalent se-
quence of single-phase loops, each of which requires simple, conjunctive
invariants. We define splitter predicates which are used to identify phase
transitions in loops, and we present an algorithm to find useful split-
ter predicates that enable the phase-reducing transformation. We show
experimentally on a set of representative benchmarks from the litera-
ture and real code examples that our technique substantially increases
the quality of invariants inferred by standard invariant generation tech-
niques. Our technique is conceptually simple, easy to implement, and
can be integrated into any automatic loop invariant generator.

Keywords: Static analysis, invariant generation, decomposition of multi-
phase loops

1 Introduction

A key problem in any automatic software verification system is the inference of
loop invariants. A consistent theme in the literature is that most loops found in
practice require only simple quantifier-free conjunctive invariants (i.e., invariants
that are conjunctions of elementary facts) and that such invariants are relatively
easy to infer using standard techniques such as [8,28,23].

However, some loops in real programs fundamentally require disjunctive in-
variants (i.e., an invariant with at least one disjunction). While relatively rare,
obtaining accurate invariants for such loops is still important for successful veri-
fication, as imprecision in the analysis of even a small part of a program tends to
spread, often reducing analysis precision for much of, or even the entire, program.
As a result, a number of previous efforts have proposed techniques for inferring
disjunctive invariants [19,5,20,18,1]. While there is considerable diversity in the
approaches taken, the proposed disjunctive invariant generation techniques are
considerably more involved than the more straightforward conjunctive case.

? This work was supported by NSF grants CNS-050955 and CCF-0702681.

To illustrate the problem of disjunctive invariant generation, consider Fig. 1(a),
which is the motivating example of [19]. To prove the validity of the assertion,
the following disjunctive invariant is required:

(x ≤ 50 ∧ y = 50) ∨ (50 ≤ x ≤ 100 ∧ y = x) . (1)

Abstract interpretation-based techniques that generate only conjunctive invari-
ants fail on this example. For instance, the widely-used abstract interpretation-
based tool Interproc works over convex abstract domains [21] and computes
invariants that are conjunctions of linear inequalities. For this loop, Interproc
computes the post-condition 50y ≥ 2599 and cannot verify the assertion y = 100
tested in the last line of Fig. 1(a). Techniques such as [17] can infer disjunctive
invariants, but for this example do so in a brute-force manner, performing 50 re-
finement iterations. Similarly, predicate abstraction techniques such as Slam [2]
and Blast [3] generate a sequence of predicates of the form x = 1, x = 2, . . .
during abstraction refinement and require 100 refinement iterations. Some much
more elaborate techniques using interpolants [22] and probabilistic inference [19]
can verify the correctness of this program without counting to the loop bound,
but it is difficult to give an intuitive characterization of the class of loops for
which these techniques can infer useful disjunctive invariants.

x=0;y=50;

while(x<100)

{

x=x+1;

if(x>50)

y=y+1;

}

assert(y==100);

(a) Example from [19].

x=0;y=50;

while(x<=49)

{

x=x+1;

}

while(x<100 && x>49)

{

x=x+1;

y=y+1;

}

assert(y==100);

(b) The example after splitting.

Fig. 1. Loop (a) requires a disjunctive invariant, but the equivalent program (b) re-
quires only conjunctive invariants.

While Fig. 1(a) is a synthetic example, it is representative of the loops found
in practice that require disjunctive invariants. Specifically, this example has two
important properties:

(a) The need for a disjunctive invariant arises from a particular conditional or
conditionals in the loop body; in this case, the statement if (x > 50). Not
all conditionals imply that a disjunctive invariant is needed, but conditionals
whose predicate is related to how many iterations the loop has executed, as
in Fig. 1(a), usually do. For example, one of the more common patterns in
practice is that the conditional causes the loop to do something different in

its base (the first or first few iterations) and inductive cases (all subsequent
iterations).

(b) The conditionals in question exhibit a fixed number of phase transitions
during execution. A phase is a sequence of iterations in which the conditional,
if it is evaluated, always evaluates to the same value, either true or false. A
phase transition occurs when the conditional evaluates to b in one iteration,
and the next time it is evaluated, it evaluates to ¬b. In Fig. 1, the conditional
test x > 50 has two phases and one phase transition: it is false for iterations
1-50, and true for iterations 51-100.

In principle, there are many loops requiring disjunctive invariants that do
not satisfy conditions (a) and (b). However, it is our experience that the vast
majority of loops arising in practice that require a disjunctive invariant do so
because of conditionals with a fixed number of phases. For example, we have
manually inspected the 95 loops found in OpenSSH, and found that exactly 9 of
these loops require disjunctive invariants. Furthermore, of these 9 loops, all but
one1 satisfies conditions (a) and (b) above. Throughout this paper, we refer to
loops satisfying conditions (a) and (b) as multi-phase loops.

The observation that multi-phase loops constitute a large majority of the
loops that are not amenable to reasoning by standard invariant generation tech-
niques motivates our approach: Rather than developing techniques to directly
infer disjunctive invariants, we employ static analysis to identify phase transi-
tions of multi-phase loops by computing splitter predicates. We then perform
a program transformation that converts such multi-phase loops requiring dis-
junctive invariants to a semantically equivalent sequence of single-phase loops,
each of which requires only conjunctive invariants. In general, if a loop has a
conditional with k phases, it can be split into k successive loops without the
conditional test.

As an example, consider again the loop from Fig. 1. Here, we can eliminate
the phase transition by splitting the loop into two loops, one for each phase, as
shown in Fig. 1(b). The resulting two loops have no conditionals and require
only simple conjunctive invariants. Recall that the invariant for Fig. 1(a) is (x ≤
50 ∧ y = 50) ∨ (50 ≤ x ≤ 100 ∧ y = x). Here, the first disjunct, x ≤ 50 ∧ y = 50,
corresponds to the invariant of the first loop from Fig. 1(b), and the second
disjunct, 50 ≤ x ≤ 100 ∧ y = x, is the invariant of the second loop in Fig. 1(b).
Furthermore, Interproc, which fails to verify the assertion for Fig. 1(a), easily
discovers the loop invariants needed to prove the assertion for Fig. 1(b).

As this example illustrates, our approach effectively reduces the problem of
inferring disjunctive invariants for a complex, multi-phase loop to the better
understood problem of inferring conjunctive invariants for a sequence of single-
phase loops. This strategy explicitly separates the task of identifying phase tran-
sitions from the inference of loop invariants, and allows standard invariant gen-
eration techniques to be successful for programs which previously might only be
verified using much more sophisticated methods. Our technique is conceptually

1 This loop alternates its behavior from iteration to iteration.

simple, easy to implement, and improves the quality of invariants discovered by
a large class of invariant generation techniques.

1.1 An Overview of the Technique

Consider a loop while(P){E[C]} where E is an expression with one hole [·] for
the predicate of an if statement, and C is the predicate plugged into the hole. For
example, in Fig. 1(a), P = x < 100, E = x++; if([·]) y++;, and C = x > 50.
We are interested in finding a predicate Q with two properties:

(a) Q should be a splitter predicate, which informally means that it can be used
to divide the loop into two loops that execute one after the other.

(b) When Q (resp. ¬Q) is true on entry into the loop body, a particular condi-
tional test C in the loop should be guaranteed to be true (resp. false).

If Q has both of these properties, which we formalize in Sect. 3, then the following
semantic equivalence holds:

while(P){E[C]} ≡ while(P ∧ ¬Q){E[false]}; while(P ∧Q){E[true]} . (2)

If we can find such a splitter predicate Q, then we can decompose the original
loop into two loops, one in which the conditional’s predicate is always false
and the other in which it is always true. Constant folding then eliminates the
conditionals, resulting in simpler loops.

Note that a predicate satisfying conditions (a) and (b) above identifies the
loop iteration in which a phase transition occurs for C: When Q becomes true,
the first of the split loops terminates, and this corresponds to the first iteration
in which C evaluates to true in the original loop. Furthermore, observe that the
the splitter predicate is, in general, different from the conditional test C. For
example, Q = x > 49 satisfies (2) for the program of Fig. 1(a).

It is straightforward to generalize (2) to transform loops with if conditions
having any fixed number k of phase transitions into the composition of k loops.
In this paper, we discuss only the case where the predicate of an if statement
has at most one phase transition; besides being simpler to present, this case is
also the only one we have thus far encountered in practice.

This paper makes the following contributions:

– We present a static analysis technique to decompose multi-phase loops re-
quiring disjunctive invariants into a sequence of simpler single-phase loops,
whose invariants can be inferred using standard techniques.

– We define phase splitter predicates, which are key to identifying phase tran-
sitions of multi-phase loops, and we present an algorithm for computing
them.

– The proposed technique is simple to implement and relies only on SMT
solvers already used in many verification systems.

– Our evaluation on a combination of representative examples from the liter-
ature and loops taken from real programs shows that our technique allows

standard conjunctive invariant generation techniques to produce results com-
parable to some of the recently proposed advanced techniques for disjunctive
invariant generation.

The rest of the paper is organized as follows: Section 2 presents a simple
language for the formal development; Section 3 defines splitter and phase splitter
predicates. Section 4 gives an algorithm for computing phase splitter predicates.
Section 5 describes our prototype implementation, and Section 6 describes our
experimental results. Section 7 surveys related work, and Section 8 concludes.

2 Language

Figure 2 gives the syntax of a simple imperative language we use for the formal
development. We assume a family of integer-valued program variables x, y, z, . . . ,
a set of primitive relational operators (RelOp), and binary arithmetic operators
(BinOp). We distinguish between a normal statement s and a statement with
one hole h; the unique hole [·] in h indicates where a predicate can be inserted to
complete the statement. If h is a statement with one hole and C is a predicate,
then h[C] is the statement (with no holes) formed by replacing the [·] in h by C.
We omit the formal definition of the replacement operation, which is standard.

s ∈ Statement ::= skip | x := e | assert(P)
| s; s
| while(P){s}
| if(P) {s} else {s}

P ∈ Predicate ::= true | false | e RelOp e | ¬P | P1 ∨ P2 | P1 ∧ P2

e ∈ Iexpr ::= int | x | x BinOp y

h ∈ StatementWithOneHole ::= | h; s | s;h
| if([·]) {s} else {s}
| if(P) {h} else {s}
| if(P) {s} else {h}

Fig. 2. The syntax of the language we use for the formal development

Figure 3 gives the small-step operational semantics for the language of Fig. 2.
An environment E is a function from program variables to integers. Integer values
are denoted by v. In each step we take a reducible expression, execute one step
of computation, and possibly update E. Each transition maps an environment,
statement pair 〈E, s〉 to a new pair 〈E′, s′〉. The operational rules are standard;
we note only that the rules for statement sequences always reduce the first
statement 〈E, s1; s2〉→〈E′, s′1; s2〉 until the first statement evaluates to skip,
at which point the rule 〈E, skip; s〉→〈E, s〉 is applied to transfer control to the
remainder of the statement sequence.

Definition 1. (Semantic Equivalence) Two statements s1 and s2 are seman-
tically equivalent, denoted s1 ≡ s2, if

∀E1, E2 (〈E1, s1〉→∗〈E2, skip〉)⇔ (〈E1, s2〉→∗〈E2, skip〉)

〈E, skip; s〉→〈E, s〉

〈E, x := v〉→〈E[x 7→ v], skip〉

〈E, x := y〉→〈E[x 7→ E(y)], skip〉
v = E(x) BinOp E(y)

〈E, z := x BinOp y〉→〈E[z 7→ v], skip〉
E(P) = false

〈E, assert(P)〉→ABORT

E(P) = true

〈E, assert(P)〉→〈E, skip〉

〈E, s1〉→〈E1, s
′
1〉

〈E, s1; s2〉→〈E1, s′1; s2〉

E(P) = true

〈E, if(P) {st} else {sf}〉→〈E, st〉
E(P) = false

〈E, if(P) {st} else {sf}〉→〈E, sf 〉
E(P) = true

〈E, while(P){s}〉→〈E, s; while(P){s}〉
E(P) = false

〈E, while(P){s}〉→〈E, skip〉

Fig. 3. The small-step operational semantics of the language from Fig. 2

3 Splitter Predicates

As discussed in Sect. 1, a key idea that allows our technique to identify phase
transitions in loops is the concept of splitter predicates, which we define next.

Definition 2. (Splitter Predicate) A predicate Q is a splitter predicate for a
loop while(P){B} if

while(P){B} ≡ while(P ∧ ¬Q){B}; while(P ∧Q){B}

According to this definition, a predicate Q is a splitter predicate for a loop
L if L can be decomposed as the sequence of two loops L1;L2 where ¬Q always
holds at the head of L1 and Q always holds at the head of L2. Thus, if Q is a
splitter predicate, then Q’s observed truth value changes at most once during
the execution of L.

The following theorem describes how to verify whether a given predicate Q is
a splitter predicate for a loop L by issuing a single query to a constraint solver:

Theorem 1. For a loop L = while(P){B}, if Q satisfies the Hoare triple

{P ∧Q}B {Q ∨ ¬P}

then Q is a splitter predicate for L.

Proof. We claim the following:

while(P){B} (a)
≡ while(P){while(P ∧ ¬Q){B}; while(P ∧Q){B}} (b)
≡ while(P ∧ ¬Q){B}; while(P ∧Q){B} (c)

For any predicate Q (whether Q is a splitter predicate or not), it is easily verified
that loop (a) is equivalent to loop (b). Intuitively, loop (b) expresses that the

truth-value of Q may in general change any number of times in the original
loop. For the second step, if the outer loop executes its body either 0 or 1 times
(i.e., Q’s truth value changes at most once) then it is easy to check that (b) is
equivalent to (c). Thus, it suffices to prove that the outer loop of (b) executes
either 0 or 1 times if {P ∧Q}B {Q ∨ ¬P}. There are two cases:

– If ¬P holds on entry to the outer loop, the outer loop executes its body 0
times.

– If P holds on entry to the outer loop, the outer loop’s body is executed at
least once. Clearly ¬P ∨Q is a post-condition of the first inner loop. There
are two cases on entry to the second inner loop:

• If ¬P holds, the second inner loop terminates without executing its body
and then the outer loop terminates after one iteration.

• Otherwise P holds, and therefore from the post-condition of the first
inner loop we know Q also holds on entry to the second inner loop.
Applying the assumption {P ∧Q}B {Q ∨ ¬P}, we conclude that Q is
an invariant of the second inner loop whenever the second inner loop
executes at least once. Since Q cannot become false, the second inner
loop terminates only when ¬P holds, and therefore the outer loop exits
after completing one iteration.

Since the outer loop executes its body 0 or 1 times in all cases, (b) ≡ (c), and
therefore (a) ≡ (c). Therefore, Q is a splitter predicate. ut

Observe that not every splitter predicate is useful for the purpose of decom-
posing a loop into phases, because not every splitter identifies the phase transi-
tion associated with a conditional in the loop body. For example, in Fig. 1(a),
x > 60 is a splitter predicate, as x > 60 is initially false, but stays true once it
becomes true. On the other hand, x > 60 is not a useful splitter because it does
not exactly split the loop into the two phases of the conditional test x > 50. We
require a class of splitter predicates that satisfy a stronger condition:

Definition 3. (Phase Splitter Predicate) A splitter predicate Q that satis-
fies the additional requirement

while(P){E[C]} ≡ while(P ∧ ¬Q){E[false]}; while(P ∧Q){E[true]}

is called a phase splitter predicate.

According to this definition, a phase splitter predicate Q for a loop L decom-
poses the loop into two loops L1;L2, where both L1 and L2 have fewer branches
in the loop body. Since a phase splitter predicate eliminates a conditional C in
the original loop body, there is a relationship between the phase splitter for loop
L and the conditional C. We now make this relationship precise.

Definition 4. Consider a loop while(P){B[C]}. We define B, the code that
executes before the hole in B, by structural induction on B.

if([·]) {s} else {s} = skip

if(P) {h} else {s} = assert(P);h

if(P) {s} else {h} = assert(¬P);h

h; s = h

s;h = s;h

Note that if we allow holes inside if statements of nested loops, then the
notion of code that executes before the hole is no longer straightforward. This
is the primary reason for disallowing holes inside nested loops in the definition
of StatementWithOneHole in Fig. 2.

Recall that our goal is to find a splitter predicate Q such that (i) if Q holds at
the loop head, then the conditional C inside one if statement always evaluates
to true, and (ii) if ¬Q holds at the loop head, then the conditional C inside the
same if statement always evaluates to false. The following lemma states the
relationship between a predicate Q at the loop head and the conditional C in
an if statement:

Lemma 1. Let Q be any predicate. Then,

If {Q}B {C}, then while(P ∧Q){B[C]} ≡ while(P ∧Q){B[true]}
If {Q}B {¬C}, then while(P ∧Q){B[C]} ≡ while(P ∧Q){B[false]}

Proof. The proof of this lemma is given in the full version of the paper available
at http://www.stanford.edu/~isil/cav2011-full.pdf. ut

Just as Thm. 1 showed that we could use constraint solving techniques to de-
termine whether Q is a splitter predicate, Lemma 1 shows that solving another
constraint problem determines whether Q causes a conditional to have only one
phase within the loop. Because we split the original loop into two loops, we
must solve two constraint problems, one for each of the split loops, to ensure
that the conditional in both loops can be eliminated. This leads us to the fol-
lowing theorem, which reduces the problem of checking phase splitter predicates
to a constraint solving problem:

Theorem 2. Consider a loop L = while(P){B[C]} and let Q be a predicate
such that

{Q} B {C} (3)

{¬Q} B {¬C} (4)

{P ∧Q} B[C] {Q ∨ ¬P} (5)

Then Q is a phase splitter predicate.

Proof. By (5) and Thm. 1, Q is a splitter predicate for L. Hence L ≡ L1;L2

where L1 = while(P ∧ ¬Q){B[C]} and L2 = while(P ∧Q){B[C]}. By (4)
and Lemma 1, L1 ≡ while(P ∧ ¬Q){B[false]}. By (3) and Lemma 1, L2 ≡
while(P ∧Q){B[true]}. Hence Q is a phase splitter predicate. ut

4 Algorithm for Splitting

In Thm. 2 of the previous section, we showed how to check whether a predicate
is a phase splitter, but we have not yet answered the question of how to find
candidate splitter predicates. In this section, we discuss an algorithm for finding
candidate phase splitter predicates and transforming a multi-phase loop into a
sequence of simpler loops.

phase split(L)
1: foreach conditional test C in L = while(P){B[C]} do
2: Q = WP(B,C)
3: if ({¬Q}B {¬C}) ∧ ({P ∧Q}B[C] {Q ∨ ¬P}) then
4: L1 = while(P ∧ ¬Q){B[false]}
5: L2 = while(P ∧Q){B[true]}
6: B1 = phase split(L1)
7: B2 = phase split(L2)
8: return B1;B2

9: endif

10: done

11: return L

Fig. 4. Phase splitting algorithm

Our algorithm considers loops in an inside-out fashion, starting with the in-
nermost nested loops first. The pseudo-code for splitting a single loop is given in
Fig. 4; in the figure, WP denotes a standard precondition computation. This pre-
condition should be as weak as possible, and ideally it is the weakest precondition
(hence WP) although in practice we must settle for a decidable approximation.
Here, we repeatedly consider each if statement in the body of the outermost
loop and attempt to find a splitter predicate for the if’s conditional test. Given
the conditional C of some if statement, we first compute the precondition Q
of C with respect to B. Since Q is a precondition, it must satisfy condition (3)
of Thm. 2. In our implementation we use a constraint solver to compute a pre-
condition that is as weak as possible (see Sect. 5). We then explicitly check the
other two conditions (4) and (5) of Thm. 2 to guarantee that we do not split the
loop unless Q is a phase splitter predicate. If Q is indeed a predicate identifying
phase transitions, then L is split into two loops L1 and L2 in lines 5 and 6 of
Fig. 4. Since it may be possible to further decompose L1 or L2 into even simpler
loops with fewer phases, we recursively invoke the phase split algorithm, which
transforms L1 (resp. L2) into a sequence of loops B1 (resp. B2). The final result
of splitting L is then given by the sequence B1;B2.

Observe that the algorithm in Fig. 4 considers conditionals in the loop body
in an arbitrary order. The reader might wonder whether the order in which
conditionals are considered matters, as one order might yield a better decompo-
sition than another. Fortunately, it turns out that the order in which we test the
conditionals in the algorithm is irrelevant, because if C is a splitter predicate
of the original loop, then it is guaranteed to remain a splitter predicate of the
transformed loop. The following theorem makes this statement precise:

Theorem 3. If Q is a splitter predicate of while(P){B} satisfying the hypoth-
esis of Thm. 1 and P ′ ⇒ P , then Q is a splitter predicate of while(P ′){B}.
Proof. We show {P ′ ∧Q}B {¬P ′ ∨Q}. It then follows from Thm. 1 that Q is a
splitter predicate for while(P ′){B}. We reason as follows:

(P ′ ⇒ P)⇒ (Q ∨ ¬P ⇒ Q ∨ ¬P ′)
(P ′ ⇒ P)⇒ (P ′ ∧Q⇒ P ∧Q)
{P ∧Q} B {Q ∨ ¬P}

Using Hoare’s consequence rule we obtain {P ′ ∧Q}B {Q ∨ ¬P ′}. Hence Q is a
splitter predicate for while(P ′){B}. ut

Because the loop predicates in split loops are only stronger than the loop
predicate of the original loop, Theorem 3 shows that if we have two splitters Q1

and Q2, then if we split on Q1, Q2 remains a splitter predicate for each of the
new loops. Furthermore, it is easy to see from Thm. 2, that Q2 still causes the
same conditional(s) to be eliminated whether we split on Q1 first or not. Thus,
choosing one phase splitter predicate Q over another phase splitter predicate Q′

cannot make further splitting by Q′ illegal or vice versa.
As mentioned above, loops are split beginning with innermost loops and

proceeding to outermost loops. The reason for selecting this order is that the
weakest precondition of a code fragment containing a loop requires computing
loop invariants. Thus, when splitting an outer loop, the weakest precondition
computation may be required to compute loop invariants for any inner loops.
By splitting the innermost loops first, the weakest precondition computation
deals only with loops that have already been simplified as much as possible,
making it easier to infer better invariants using standard techniques.

4.1 Revisiting the Running Example

We now illustrate the execution of our algorithm on the example from Fig. 1(a).

1. For this loop, we have:
P = x ≤ 99

B = x++;if([·])y++
C = x > 50

B = x++

2. A candidate phase splitter predicateQ is computed asQ = WP(x > 50, x++).
Using a weakest precondition computation engine, we obtain Q = x > 49 as
a candidate phase splitter predicate.

3. Now, we check whether the candidate predicate Q satisfies condition (4) of
Thm. 2 by querying the validity of the formula (¬x > 49 ∧ x′ = x + 1) ⇒
¬x′ > 50, which is indeed valid.

4. Finally, we verify that candidate Q is a phase splitter predicate by checking
the validity of the following constraint:

(x > 49∧x ≤ 99∧x′ = x+ 1∧ (x′ > 50⇒ y′ = y+ 1))⇒ x′ > 49∨¬x′ ≤ 99

This formula is valid, allowing us to perform the phase splitting transforma-
tion, which yields the decomposition shown in Fig. 1(b).

5 Implementation

We have implemented a prototype version of the algorithm described in this
paper using the SAIL program analysis front-end [10] and the Mistral SMT
solver [11,13] for a subset of the C programming language. The weakest precon-
dition computation step in the algorithm is implemented by using the quantifier
elimination capabilities of Mistral. More specifically, to compute the weak-
est precondition of C with respect to code fragment B, we first convert B to
single static assignment (SSA) form [9]. We then generate a constraint φs for
any statement s in the following way: For each basic statement s (e.g., an as-
signment or assertion), we generate the corresponding atomic constraint in the
constraint language, and a sequence s1; s2 is converted to the constraint φs1∧φs2
where φs1 and φs2 are the constraints derived from statements s1 and s2 respec-
tively. For an if statement, if(C) then s1 else s2, we generate the constraint
(C ∧ φs1)∨ (¬C ∧ φs2).2 To generate weakest preconditions for nested loops, we
use a constraint obtained with the help of an invariant generation tool. Finally,
we compute the weakest precondition of C with respect to B by computing the
constraint φB and then by existentially quantifying and eliminating all inter-
mediate variables (i.e., variables with version number greater than one in SSA
form).

6 Experiments

We evaluate our technique by comparing the quality of the loop invariants ob-
tained from two publicly available invariant generation tools, Interproc [25]
and InvGen [20], before and after decomposing multi-phase loops into a se-
quence of single-phase loops. Interproc is an abstract interpretation-based tool
that implements the interval, octagon, and polyhedra abstract domains using the
Apron [21] and Fixpoint[15] libraries. In contrast to Interproc, InvGen is
a template-based invariant generator (see Sect. 7), which employs non-linear
constraint solving to find valid instantiations for the unknown parameters of
user-specified template invariants. Table 1 summarizes the results of our exper-
iments on a set of challenging benchmarks, consisting of representative exam-
ples from the literature. All of our experimental benchmarks are available from
http://www.stanford.edu/~isil/ invariant-benchmarks.txt. For generat-
ing invariants on each of these benchmarks, we used the polyhedra abstract
domain of Interproc and the default templates provided by InvGen.

We now briefly describe the benchmark programs from Table 1. All of the
benchmarks contain one or more assertions. The benchmark popl07 is the pro-
gram in Fig. 1 and the motivating example of [19]; cav06 and tacas08 are the
motivating examples from [14] and [16] respectively. The next four benchmarks
are programs from the test suite of InvGen. The program spam also occurs as

2 For soundness it is important that the negation here result in an overapproximation;
for example, bracketing constraints [12] can be used.

Table 1. Comparison of the invariants generated by Interproc and InvGen on some
benchmark programs before and after applying our technique.

File LOC Interproc InvGen

Before split After split Q Before split After split Q

time(s) Proof? time(s) Proof? time(s) Proof? time(s) Proof?

popl07 13 0.014 N 0.014 Y + 0.425 N 0.215 Y +

cav06 22 0.020 N 0.030 Y + 0.318 N 0.28 Y +

tacas08 30 0.018 N 0.021 Y + 0.344 Y 0.298 Y =

svd* 48 0.016 Y 0.014 Y + 0.784 Y 0.794 Y +

heapsort* 45 0.022 Y 0.036 Y + 0.976 Y 1.55 Y +

mergesort* 73 0.048 N 0.09 N || 4.813 Y 12.138 Y +

spam* 55 0.024 Y 0.029 Y + 0.0521 Y 0.0397 Y +

ex1 23 0.090 N 0.027 Y + 416.985 N 0.621 Y +

ex2 21 0.011 N 0.011 Y + 123.945 N 0.553 Y +

svd1 49 0.016 N 0.014 Y + 0.456 N 0.784 Y +

heapsort1 46 0.022 N 0.036 Y + 2.291 Y 1.278 Y +

mergesort1 74 0.048 N 0.090 Y || 4.924 Y 11.431 Y +

spam1 56 0.024 N 0.029 Y + 0.46 Y 0.759 Y +

SpamAssassin-loop in [24]. The next benchmark, ex1, is an interesting varia-
tion of cav06, and ex2 is an example illustrating that splitting can be carried
out in any order to obtain equivalent results in the presence of multiple split-
ter predicates. The programs svd1, heapsort1, and spam1 have code similar to
svd, heapsort, and spam but require stronger assertions to be proved; similarly,
mergesort1 differs only in having weaker assertions than mergesort.

The entries in the table marked Y indicate that a given tool was able to prove
the assertions correct for the benchmark and N indicates that the tool could not
prove at least one assertion. The column labeled “Before Split” shows whether a
given tool was able to prove the assertions without using our technique, and the
column labeled “After Split” describes whether the same tool could prove the
same assertions on the loops decomposed by our technique. The column labeled
“Q” compares the quality of the invariants obtained before and after using our
technique. An entry labeled + in this column means that the tool generates bet-
ter, i.e., logically stronger, invariants on the loops transformed by our technique,
a || indicates that the invariants are incomparable (there are several invariants
and some are stronger and some are weaker), and an = indicates that the in-
ferred invariants were logically equivalent. Benchmarks marked with * indicate
that the original benchmark code used a feature which is not part of the input
language of Interproc; we manually modified these benchmarks before using
them as input to Interproc. The time taken for computing phase splitter pred-
icates was negligible; our algorithm took no longer than 90 milliseconds on any
benchmark from Table 1.

The results shown in Table 1 demonstrate that our technique substantially
improves the quality of the invariants generated by both Interproc and In-
vGen and allows them to verify assertions they could not verify previously.

Consider only the first 9 programs (those above the double line); we discuss the
4 variations separately below. The invariants discovered by Interproc improve
(i.e., are logically strengthened) in 8 out the 9 benchmarks. On mergesort the
invariants discovered by Interproc are incomparable before and after splitting
due to the non-monotonicity of the widening operator [7,8]. On the same set of
9 benchmarks, InvGen discovers logically stronger invariants on 8 benchmarks
after splitting, and obtains a logically equivalent invariant on one benchmark.

Table 1 shows not only that there is an improvement in the quality of in-
variants after splitting, but also that Interproc and InvGen can prove many
assertions after splitting that they could not previously verify. More specifically,
in 6 of the first 9 benchmarks, Interproc fails to prove at least one assertion
in the original program, but can verify all assertions in these programs after
splitting. Similarly, InvGen cannot verify 4 of the 9 original benchmarks, but it
can prove all the assertions in these programs after our transformation. Recall
that five of the benchmarks (tacas08 through spam) are included in InvGen’s
test suite; thus, it is not surprising that InvGen can verify the assertions in
programs on which it was developed. We note that InvGen was unable to verify
the four programs that were not taken from its test suite, but was able to verify
all four of them after performing our transformation.

Observe that there are some benchmarks in Table 1 where the tools are able
to prove the assertions both before and after splitting, but yield strictly stronger
invariants after splitting. To demonstrate that this extra precision is useful, we
created variants svd1, heapsort1, and spam1 of svd, heapsort, and spam with
stronger assertions (shown below the double line). Notice that Interproc can
verify these three benchmarks after splitting, but is unable to do so before.

Also observe that for mergesort1 Interproc is unable to prove the asser-
tions both before and after splitting, despite yielding new facts after splitting. We
demonstrate that these new invariants are again useful by designing mergesort1

with weaker assertions. As shown below the double line in Table 1, Interproc
can take advantage of these new facts obtained through splitting.

7 Related Work

Techniques for Multi-Phase Loops There is an existing body of work whose
goal is to improve the quality of invariants for multi-phase loops [27,15,14,1,18].
For example, Mauborgne and Rival address this problem in [27]. In contrast
to our technique, their method is not fully automatic; it critically depends on
user input for partitioning directives. The techniques described in [15,14] also
attempt to improve the quality of invariants for multi-phase loops by guiding a
static analysis to compute a fix-point on one phase of the loop before considering
the next phase. Since our algorithm for identifying phases is independent of the
particular abstract domain used for inferring invariants, our approach can recover
precision irrespective of the abstract domain used for invariant generation.

Two recent works [18,1] take a similar approach to the one we present: split-
ting a loop to produce multiple loops with simpler invariants. These approaches

first enumerate all the paths through a loop body and then they either search
for all the possible sequences in which these paths can execute [18] or they elim-
inate the infeasible path sequences [1]. Since the number of paths is, in general,
best case exponential in the number of conditionals in the loop body, both tech-
niques have to rely on heuristics to keep the number of paths under consideration
tractable. In contrast to both [18] and [1], our approach is less eager: we delay
the worst-case exponential search to an SMT solver; if the solver can prove the
properties of splitter predicates without reasoning about all the paths, we take
advantage of that fact. Our approach is also much simpler and easier to imple-
ment, does not use heuristics, and yields some new insight into the nature of the
problem (e.g., the independence of splitter predicates).

Direct Techniques for Inferring Disjunctive Invariants Many different
approaches have been developed for directly inferring disjunctive invariants, and
some of these techniques are capable of discovering precise invariants for some
of our benchmarks without decomposing the loop into phases. These approaches
include (i) template-based techniques, such as [6,20,4], (ii) techniques based on
predicate abstraction such as [2,3,22,16,5], and (iii) techniques based on proba-
bilistic inference [19]. While some of these approaches are, in principle, capable
of discovering precise invariants in loops exhibiting multiple phases, they are
significantly more complicated, less efficient, and less widely-used than standard
abstract interpretation-based techniques for generating conjunctive numeric in-
variants such as [8,28,26]. We discuss each of these three classes in more detail
below.

Template-Based Techniques Given an input template (i.e., parametrized
form of invariant) provided by the user, template-based techniques find values for
the parameters such that these instantiated templates correspond to inductive
invariants [6,20,4]. While these techniques can, in principle, find precise invari-
ants for multi-phase loops if the user provides appropriate disjunctive templates,
they suffer from two drawbacks: First, they are not fully automatic since they
require the user to specify the shape of the desired invariant. Second, since many
template-based techniques require solving non-linear constraints, their applica-
bility is limited by the lack of efficient algorithms for solving such constraints.

Predicate Abstraction Techniques Techniques based on the basic form
of counterexample guided abstraction refinement such as [2,3], are, in princi-
ple, capable of inferring disjunctive invariants. However, these techniques often
diverge or take a very large number of refinement steps. More sophisticated in-
variant generation techniques based on predicate abstraction are considered in
[22,16,5]. The basic idea underlying [22] is to use interpolants to generate coun-
terexamples. To guarantee convergence, this technique restricts the language of
the interpolants to some finite language L, and can therefore only find invariants
in this restricted language. Hence, a poor choice of language degrades its perfor-
mance. The technique described in [16] uses counterexample guided abstraction
refinement to tune widening strategies in an abstract interpretation framework.
While this technique can sometimes be helpful for generating more precise in-
variants for multi-phase loops, it is difficult to characterize the class of loops

for which this technique will generate useful invariants. The technique presented
in [5] combines counterexample-guided abstraction refinement with template-
based invariant generation techniques. More specifically, the counterexamples
produced in this technique are not finite program paths, but full-fledged pro-
grams called path programs. The algorithm in [5] then employs template-based
techniques to infer invariants of the path program, which are used to refine the
analysis. While this technique is capable of finding disjunctive invariants, it is
not directly helpful for multi-phase loops.

Probabilistic Techniques Gulwani and Jojic formulate the problem of in-
variant generation as probabilistic inference, and use machine learning techniques
to infer invariants [19]. Their technique is capable of inferring the disjunctive in-
variant from Fig. 1. However, this technique is not guaranteed to converge, and
it is difficult to characterize the class of loops for which it succeeds. Furthermore,
this approach is significantly more involved than our algorithm for splitting loops
with multiple phases.

8 Conclusion

We have proposed a static analysis technique to identify phase transitions in
loops and decompose multi-phase loops into a sequence of simpler loops with
fewer phases. We have demonstrated that standard invariant generation tools
benefit substantially from the technique proposed in this paper, raising their
level of precision to that of recently proposed methods for disjunctive invariant
generation. Our technique is conceptually simple, easy to implement, and can
be integrated into any invariant generation technique.

Acknowledgments

We thank the anonymous reviewers for their comments and for bringing related
work to our attention. We would like to thank Denis Gopan, Francesco Logozzo,
and Sumit Gulwani for their helpful pointers to benchmarks and invariant gen-
eration tools. We also thank Bertrand Jeannet for his guidance with the usage
of Interproc and Ashutosh Gupta for his help with InvGen. Finally we would
like to thank Yannick Moy for pointing out an error in the definition of B in an
earlier version of this paper.

References

1. Balakrishnan, G., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Refining the con-
trol structure of loops using static analysis. In: EMSOFT. pp. 49–58 (2009)

2. Ball, T., Rajamani, S.K.: The slam project: debugging system software via static
analysis. In: POPL. pp. 1–3 (2002)

3. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
blast. STTT 9(5-6), 505–525 (2007)

4. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis
for combined theories. In: VMCAI. pp. 378–394 (2007)

5. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
PLDI. pp. 300–309 (2007)

6. Colón, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using
non-linear constraint solving. In: CAV. pp. 420–432 (2003)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL. pp.
238–252 (1977)

8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL. pp. 84–96 (1978)

9. Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, F.: Efficiently computing
static single assignment form and the control dependence graph. TOPLAS 13(4),
451–490 (1991)

10. Dillig, I., Dillig, T., Aiken, A.: SAIL: Static Analysis Intermediate Language with
a Two-Level Representation. Stanford University Technical Report (2009)

11. Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: A complete and practical tech-
nique for solving linear inequalities over integers. In: CAV. pp. 233–247 (2009)

12. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. weak updates. In:
ESOP. pp. 246–266 (2010)

13. Dillig, I., Dillig, T., Aiken, A.: Small formulas for large programs: On-line constraint
simplification in scalable static analysis. In: SAS. pp. 236–252 (2010)

14. Gopan, D., Reps, T.W.: Lookahead widening. In: CAV. pp. 452–466 (2006)
15. Gopan, D., Reps, T.W.: Guided static analysis. In: SAS. pp. 349–365 (2007)
16. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically refin-

ing abstract interpretations. In: TACAS. pp. 443–458 (2008)
17. Gulavani, B.S., Rajamani, S.K.: Counterexample driven refinement for abstract

interpretation. In: TACAS. pp. 474–488 (2006)
18. Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and progress invariants

for bound analysis. In: PLDI. pp. 375–385 (2009)
19. Gulwani, S., Jojic, N.: Program verification as probabilistic inference. In: POPL.

pp. 277–289 (2007)
20. Gupta, A., Rybalchenko, A.: Invgen: An efficient invariant generator. In: CAV. pp.

634–640 (2009)
21. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static

analysis. In: CAV. pp. 661–667 (2009)
22. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-

ment. In: TACAS. pp. 459–473 (2006)
23. Karr, M.: Affine relationships among variables of a program. Acta Inf. 6, 133–151

(1976)
24. Ku, K., Hart, T.E., Chechik, M., Lie, D.: A buffer overflow benchmark for software

model checkers. In: ASE. pp. 389–392 (2007)
25. Lalire, G., Argoud, M., Jeannet, B.: The Interproc Analyzer. http://pop-

art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html
26. Laviron, V., Logozzo, F.: Subpolyhedra: A (more) scalable approach to infer linear

inequalities. In: VMCAI. pp. 229–244 (2009)
27. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static

analyzers. In: ESOP. pp. 5–20 (2005)
28. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation

19(1), 31–100 (2006)

	Simplifying Loop Invariant Generation UsingSplitter Predicates

