From Invariant Checking to Invariant Inference
Using Randomized Search

Rahul Sharma and Alex Aiken

Stanford University, USA

{sharmar, aiken}@cs.stanford.edu

Abstract. We describe a general framework c21 for generating an in-
variant inference procedure from an invariant checking procedure. Given
a checker and a language of possible invariants, C21 generates an inference
procedure that iteratively invokes two phases. The search phase uses ran-
domized search to discover candidate invariants and the validate phase
uses the checker to either prove or refute that the candidate is an actual
invariant. To demonstrate the applicability of C21, we use it to generate
inference procedures that prove safety properties of numerical programs,
prove non-termination of numerical programs, prove functional specifi-
cations of array manipulating programs, prove safety properties of string
manipulating programs, and prove functional specifications of heap ma-
nipulating programs that use linked list data structures.

1 Introduction

In traditional program verification, a human annotates the loops of a given pro-
gram with invariants and a decision procedure checks these invariants by proving
some verification conditions (VCs). We explore whether decision procedures can
also be used to infer the loop invariants; doing so helps automate one of the
core problems in verification (discovering appropriate invariants) and relieves
programmers from a significant annotation burden.

The idea of using decision procedures for invariant inference is not new [28,
16]. However, this approach has been applied previously only in domains with
some special structure, e.g., when the VCs belong to theories that admit quan-
tifier elimination, such as linear rational arithmetic (Farkas’ lemma) or linear
integer arithmetic (Cooper’s method). For general inference tasks, such theory-
specific techniques do not apply, and the use of decision procedures for such tasks
has been restricted to invariant checking: to prove or refute a given manually
provided candidate invariant.

We describe a general framework €21 that, given a procedure for checking
invariants, uses that checker to produce an invariant inference engine for a given
language of possible invariants. We apply C2I to various classes of invariants; we
use it to generate inference procedures that prove safety properties of numer-
ical programs, prove non-termination of numerical programs, prove functional
specifications of array manipulating programs, prove safety properties of string

manipulating programs, and prove functional specifications of heap manipulat-
ing programs that use linked list data structures. The two main characteristics
of €21 are

— The decision procedure is only used to check a program annotated with can-
didate invariants (in contrast to approaches that use the decision procedure
directly to infer an invariant).

— (21 uses a randomized search algorithm to search for candidate invariants.
Empirically, the search technique is effective for generating good candidates
for various classes of invariants.

The use of a decision procedure as a checker for candidate invariants is also not
novel [34, 36,45, 46,42, 20, 19]. The main contribution of this paper is a general
and effective search procedure that makes a framework like 21 feasible. The
use of randomized search is motivated by its recent success in program synthe-
sis [44, 2] and recognizing that invariant inference is also a synthesis task. More
specifically, our contributions are:

— We describe a framework €21 that iteratively invokes randomized search and
a decision procedure to perform invariant inference. The randomized search
combines random walks with hill climbing and is an instantiation of the
well-known Metropolis Hastings MCMC sampler [11].

— We empirically demonstrate the generality of our search algorithm. We use
randomized search for finding numerical invariants, recurrent sets [27], uni-
versally quantified invariants over arrays, invariants over string operators,
and invariants involving reachability predicates for linked list manipulating
programs. These studies show that invariant inference is amenable to ran-
domized search.

— Even though we expect the general inference engines based on randomized
search to be significantly inferior in performance to the domain-specific in-
variant inference approaches, our experiments show that randomized search
has competitive performance with the more specialized techniques.

— Randomized search is effective only when done efficiently. We describe op-
timizations that allow us to obtain practical randomized search algorithms
for invariant inference.

The rest of the paper is organized as follows. We describe our search algorithm
in Section 2. Next, we describe inference of numerical invariants in Section 3,
universally quantified invariants over arrays in Section 4, string invariants in
Section 5, and invariants over linked lists in Section 6. Finally, we discuss related
work in Section 7 and conclude in Section 8.

2 Preliminaries

An imperative program annotated with invariants can be verified by checking
some verification conditions (VCs), which must be discharged by a decision pro-
cedure. As an example, consider the following program:

assume P;while B do S od;assert @)

The loop has a pre-condition P. The entry to the loop is guarded by the predicate
B and S is the loop body (which, for the moment, we assume to be loop-free).
We assert that the states obtained after execution of the loop satisfy Q. Given
a loop invariant I, we can prove that the assertion holds if the following three
VCs are valid:

P=1; {IANB}S{I}; IA-B=Q (1)

In this paper, we explore finding such an invariant I by randomized search. Given
a candidate invariant, a decision procedure checks the conditions of Eqn. 1. Since
there are three conditions for a predicate to be an invariant, there are three
queries that need to be discharged to check a candidate. Each query, if it fails,
generates a different kind of counterexample; we discuss these next.

Let C be a candidate invariant. The first condition states that for any in-
variant I, any state that satisfies P also satisfies I. However, if P A =C' has a
satisfying assignment g, then P(g) is true and C(g) is false and hence g proves
C is not an invariant. We call any state that must be satisfied by an actual
invariant, such as g, a good state. Now consider the second condition of Eqn. 1.
A pair (s,t) satisfies the property that s satisfies B and if the execution of S
is started in state s then S can terminate in state ¢. Since an actual invari-
ant I is inductive, it should satisfy I(s) = I(t). Hence, a pair (s,t) satisfying
C(s) A—C(t) proves C' is not an invariant. Finally, consider the third condition.
A satisfying assignment b of C' A =B A =@ proves C' is inadequate to discharge
the post-condition. For an adequate invariant I, I(b) should be false. We call
a state that must not be satisfied by an adequate invariant, such as b, a bad
state. Hence, given an incorrect candidate invariant and a decision procedure
that can produce counterexamples, the decision procedure can produce either a
good state, a pair, or a bad state as a counterexample to refute the candidate.

Problems other than invariant inference can also be reduced to finding some
unknown predicates to satisfy some VCs [21]. Consider the following problem:
prove that the loop while B do S od fails to terminate if executed with input
i. One can obtain such a proof by demonstrating a recurrent set [9,27] I which
makes the following VCs valid.

I(i); {IABYS{I}; I=B 2)

Our inference algorithm consumes VCs with some unknown predicates. We use
the term invariant for any such unknown predicate that we want to infer. In the
rest of this section, we focus on the case when we need to infer a single predicate.
The development here generalizes easily to inferring multiple predicates.

2.1 Metropolis Hastings

We denote the verification conditions by V', the unknown invariant by I, a can-
didate invariant by C, the set of predicates that satisfy V' by Z (more than one
predicate can satisfy V'), and the set of all possible candidate invariants by S.
We view inference as a cost minimization problem. For each predicate P € S
we assign a non-negative cost ¢y (P) where the subscript indicates that the cost

depends on the VCs. Suppose the cost function is designed to obey C' € 7 &
cy(C) = 0. Then by minimizing ¢y we can find an invariant. In general, ¢y
is highly irregular and not amenable to exact optimization techniques. In this
paper, we use a MCMC sampler to minimize cy .

Search(J: Initial candidate)
Returns: A candidate C' with ¢y (C) = 0.

1 Ci=J
while ¢y (C) # 0 do
m := SampleMove(rand())
¢’ :=m(C)
co :=cv(C), cn == cv (C)
if ¢, < co or e V(en—c0) 5 % then
C:=C
8: endif
9: end while
10: return C

Fig. 1. Metropolis Hastings for cost minimization.

The basic idea of a Metropolis Hastings sampler is given in Figure 1. The
algorithm maintains a current candidate C. It also has a set of moves. A move,
m: S — S, mutates a candidate to a different candidate. The goal of the search
is to sample candidates with low cost. By applying a randomly chosen move, the
search transitions from a candidate C' to a new candidate C’. If C’ has lower
cost than C' we keep it and C’ becomes the current candidate. If C’ has higher
cost than C, then with some probability we still keep C’. Otherwise, we undo
this move and apply another randomly selected move to C. Using these random
mutations, combined with the use of the cost function, the search moves towards
low cost candidates. We continue proposing moves until the search converges:
the cost reduces to zero.

The algorithm in Figure 1, when instantiated with a suitable proposal mech-
anism (SampleMove) and a cost function (cy), can be used for a variety of
optimization tasks. If the proposal mechanism is designed to be symmetric and
ergodic then Figure 1 has interesting theoretical guarantees.

A proposal mechanism is symmetric if the probability of proposing a transi-
tion from C7 to Cy is equal to the probability of proposing a transition from Co
to C1. Note that the cost is not involved here: whether the proposal is accepted
or rejected is a different matter. Symmetry just talks about the probability that
a particular transition is proposed from the available transitions.

A proposal mechanism is ergodic if there is a non-zero probability of reaching
every possible candidate Cs starting from any arbitrary candidate C;. That
is, there is a sequence of moves, mi,ma, ..., my, such that the probability of
sampling each m; is non-zero and Cy = my(...(m1(C1)...). This property is

desirable because it says that it is not impossible to reach Z starting from a
bad initial guess. If the proposal mechanism is symmetric and ergodic then the
following theorem holds [4]:

Theorem 1. In the limit, the algorithm in Figure 1 samples candidates in in-
verse proportion to their cost.

Intuitively, this theorem says that the candidates with lower cost are sampled
more frequently. A corollary of this theorem is that the search always converges.
The proof of this theorem relies on the fact that the search space S should be
finite dimensional. Note that MCMC sampling has been shown to be effective
in practice for extremely large search spaces and, with good cost functions, is
empirically known to converge well before the limit is reached [4]. Hence, we
design our search space of invariants to be a large but finite dimensional space
that contains most useful invariants by using templates. For example, our search
space of disjunctive numerical invariants restricts the boolean structure of the
invariants to be a DNF formula with ten disjuncts where each disjunct is a
conjunction of ten linear inequalities. This very large search space is more than
sufficient to express all the invariants in our numerical benchmarks.

Theorem 1 has limitations. The guarantee is only asymptotic and convergence
could require more than the remaining lifetime of the universe. However, if the
cost function is arbitrary then it is unlikely that any better guarantee can be
made. In practice, for a wide range of cost functions with domains ranging from
protein alignment [40] to superoptimization [44], MCMC sampling has been
demonstrated to converge in reasonable time. Empirically, cost functions that
provide feedback to the search have been found to be useful [44]. If the search
makes a move that takes it closer to the answer then it should be rewarded with
a decrease in cost. Similarly, if the search transitions to something worse then
the cost should increase. We next present our cost function.

2.2 Cost Function

Consider the VCs of Eqn. 1. One natural choice for the cost function is
ev (C) =1 — Validate(V[C/I])

where Validate(X) is 1 if predicate X is valid and 0 otherwise. We substitute
the candidate C' for the unknown predicate I in the VCs and if the VCs are
valid then the cost is zero and otherwise the cost is one. This cost function has
the advantage that a candidate with cost zero is an invariant. However, this cost
function is a poor choice for two reasons:

1. Validation is slow. A decision procedure takes several milliseconds in the
best case to discharge a query. For a random search to be effective we need
to be able to explore a large number of proposals quickly.

2. This cost function does not give any incremental feedback. The cost of all
incorrect candidates is one, although some candidates are clearly closer to
the correct invariant than others.

Empirically, search based on this cost function times out on even the simplest
of our benchmarks. Instead of using a decision procedure in the inner loop of
the search, we use a set of concrete program states that allows us to quickly
identify incorrect candidates. As we shall see, concrete states also give us a
straightforward way to measure how close a candidate is to a true invariant.

Recall from the discussion of Eqn. 1 that there are three different kinds of
interesting concrete states. Assume we have a set of good states G, a set of bad
states B, and a set of pairs Z. The data elements encode constraints that a
true invariant must satisfy. A good candidate C' is should satisfy the following
constraints:

1. It should separate all the good states from all the bad states: Vg € G.Vb €
B.~(C(g) < C(b)).

2. Tt should contain all good states: Vg € G.C(g).

3. It should exclude all bad states: Vb € B.~C(b).

4. Tt should satisfy all pairs: V(s,t) € Z.C(s) = C(t).

For most classes of predicates it is easy to check whether a candidate satisfies
these constraints for given sets G, B, and Z without using decision procedures.
For every violated constraint, we assign a penalty cost. In general, we can as-
sign different weights to different constraints, but for simplicity, we weight them
equally. The reader may notice that the first constraint is subsumed by con-
straints 2 and 3. However, we keep it as a separate constraint as it encodes the
amount of data that justifies a candidate. If a move causes a candidate to sat-
isfy a bad state (which it did not satisfy before) then intuitively the increase in
cost should be higher if the initial candidate satisfied many good states than if
it satisfied only one good state. The third constraint penalizes equally in both
scenarios (the cost increases by 1) and in such situations the first constraint is
useful. The result is a cost function that does not require decision procedure
calls, is fast to evaluate, and can give incremental credit to the search: the can-
didates that violate more constraints are assigned a higher cost than those that
violate only a few constraints.

ev(C) =X geq 2oven (FC(9) ¥ 2C(b) + C(g) x C(b)) + 3)
> gec 7C(9) + 24ep C(0) + X5 1yez C(s) x ~C(t)

In evaluating this expression, we interpret false as zero and true as one.

This cost function has one serious limitation: Even if a candidate has zero
cost, still the candidate might not be an invariant. Once a zero cost candidate
C is found, we check whether C is an invariant using a decision procedure;
note this decision procedure call is made only if C satisfies all the constraints
and therefore has at least some chance of actually being an invariant. If C' is
not an invariant one of the three parts of Eqn. 1 will fail and if the decision
procedure can produce counterexamples then the counterexample will also be
one of three possible kinds. If the candidate violates the first condition of Eqn. 1
then the counterexample is a good state and we add it to G. If the candidate
violates the second condition then the counter example is a pair that we add to

Z, and finally if the candidate violates the third condition then we get a bad
state that we add to B. We then search again for a candidate with zero cost
according to the updated data. Thus our inference procedure can be thought
of as a counterexample guided inductive synthesis (CEGIS) procedure [49], in
particular, as an ICE learner [20]. Note that a pair (s,t) can also contribute to
G or B. If s € G then t can be added to G. Similarly, if t € B then s can be
added to B. If a state is in both G and B then we abort the search. Such a state
is both a certificate of the invalidity of the VCs and of a bug in the program.

Not all decision procedures can produce counterexamples; in fact, in many
more expressive domains of interest (e.g., the theory of arrays) generating coun-
terexamples is impossible in general. In such situations the data we need can also
be obtained by running the program. Consider the program point 7 where the
invariant is supposed to hold. Good states are generated by running the program
with inputs that satisfy the pre-conditions and collecting the states that reach
1. Next, we start the execution of the program from 7 with an arbitrary state
o; i.e., we start the execution of the program “in the middle”. If an assertion
violation happens during the execution then all the states reaching 7, including
o, during this execution are bad states. Otherwise, including the case when the
program does not terminate (the loop is halted after a user-specified number
of iterations), the successive states reaching 7 can be added as pairs. Note that
successive states reaching the loop head are always pairs and may also be pairs
of good states, bad states, or even neither.

The cost function of Eqn. 3 easily generalizes to the case when we have mul-
tiple unknown predicates. Suppose there are n unknown predicates Iy, Io, ... I,
in the VCs. We associate a set of good states G; and bad states B; with every
predicate I;. For pairs, we observe that VCs in our benchmarks have at most
one unknown predicate symbol to the right of the implication and one unknown
predicate symbol to the left (both occurring positively), implying that commonly
n? sets of pairs suffices: a set of pairs Z; ; is associated with every pair of un-
known predicates I; and I;. A candidate Cy,. .., C), satisfies the set of pairs Z; ;
if V(s,t) € Z; ;.C;(s) = C;(t). For the pair (s,t) € Z; ;, if s € G; then we add
t to G; and if t € B; then we add s to B;. Each of G;, B;, and Z; ; induces
constraints and a candidate is penalized by each constraint it fails to satisfy.

In subsequent sections we use the cost function in Eqn. 3 and the search
algorithm in Figure 1, irrespective of the type of program (numeric, array, string,
or list) under consideration. What differs is the instantiation of ¢21 with different
decision procedures and search spaces of invariants. Since a proposal mechanism
dictates how a search space is traversed, different search spaces require different
proposal mechanisms. In general, when C2I is instantiated with a search space,
the user must provide a proposal mechanism and a function ewval that evaluates
a predicate in the search space on a concrete state, returning true or false. The
function ewvalis used to evaluate the cost function; for the search spaces discussed
in this paper, the implementation of eval is straightforward and we omit it. We
discuss the proposal mechanisms for each of the search spaces in some detail in
the subsequent sections.

3 Numerical Invariants

We describe the proposal mechanism for inferring numerical invariants. Suppose
Z1,Ta,...,%, are the variables of the program, all of type Z. A program state
o is a valuation of these variables: o € Z". For each unknown predicate of the
given VCs, the search space S is formulas of the following form:

a B n
VA (Sobm <)
i=1j=1

k=1

Hence, predicates in S are boolean combinations of linear inequalities. We refer
to w’s as coefficients and d’s as constants. The possible values that w’s and d’s
can take are restricted to a finite bag of coefficients W = {wy, ws, ..., wyw |} and
a finite bag of constants D = {d1,ds,...,d|p|} respectively. These bags contain
all of the statically occurring constants in the program as well as their sums and
differences, which has sufficed in our experience. If needed, heuristics to mine
relevant constants from concrete states, as described in [46], can be used.

For our experiments, for the benchmarks that require conjunctive invariants
we set @« = 1 and 8 = 10 and for those that require disjunctive invariants we set
a = B = 10. This search space, S, is sufficiently large to contain invariants for
all of our benchmarks.

3.1 Proposal Mechanism

We use y ~ Y to denote that y is selected uniformly at random from the set Y
and [a : b] to denote the set of integers in the range {a,a+1,...,b—1,b}. Unless
stated otherwise, all random choices are derived from uniform distributions.
Before a move we make the following random selections: ¢ ~ [1: af, j ~ [1: 3],
and k ~ [1 : n] .We have the following three moves, each of which is selected
with probability %:

— Coefficient move: select [~ [1 : |W|] and update w,g"J) to W.

— Constant move: select m ~ [1 : |D|] and update d7) to D,,.

— Inequality move: With probability 1 — p, apply constant move to d(*7) and
coefficient move to w™?) for all h € [1: n]. Otherwise (with probability p)
remove the inequality by replacing it with true.

These moves are motivated by the fact that prior empirical studies of MCMC
have found that a proposal mechanism that has a bias towards simple solutions
and a good mixture of moves that make minor and major changes to a candidate
leads to good results [44]. This proposal mechanism is symmetric and ergodic.
Combining this proposal mechanism with the cost function in Eqn. 3 and the
procedure in Figure 1 provides us a search procedure for numerical invariants.
We call this procedure MCMC in the empirical evaluation of Section 3.3. The user
can also restrict the constituent inequalities of the candidate invariants to a given
abstract domain. This variation is called Templ in the evaluation in Section 3.3.

Table 1. Inference of numerical invariants for proving safety properties.

[Program [z3-H|ICE| [46][[28][MCMC[Templ]| [Program [Z3-H|ICE[[46]] [28]MCMC|Templ]|
cgrl [25] [0.0 [0.0]0.2][0.1]0.0] 0.0 | [ex7[32] [0.0]0.0[04] ? [0.0] 0.0
cgr2 [25] [0.0[73] 7 [7 [1.5] 1.2 | |ext4[32] [0.0]0.0/02] ? [0.0] 0.0
figl1 [25] [0.0 (0.1 ? | ? | 0.9 14 array [5] | 0.0 (0.3]0.2| 7 |0.2| 0.3
wl [25] 00]00[02]01]00] 00 | [£fi11[5] |0.0|0.0/0.4]0.1][0.0] 0.0
fig3 [22] [0.0 [0.0[0.1]0.1]0.0] 0.0 | [ext1[5] [0.0]0.6/0.2]0.1[0.0] 0.0
£ig9 [22] | 0.0 [0.0[0.2[0.1[0.0 | 0.0 | [trex01l [5][0.0 [0.0]0.4]0.1] 0.0 0.0
tacas [33]| TO[1.4[05[0.1[0.5| 0.0 | |monniaux |5.14[0.0/1.0[0.2]0.0 | 0.0
ex23[32] | 7 [142] ? [7 J01] 0.1 nested |00[?[1.0[0.0]03] 2.1

3.2 Example

We now give a simple example to illustrate the moves. Suppose we have two
variables x1 and zo, o = = 1, the initial candidate is C =0 x1 + 0% x5 <0,
W ={0,1}, and D = {0,1}. Then a coefficient move leaves C' unchanged with
probability 0.5 and mutates it to 1 xx1 + 0x 2o <0 or 0 xx1; + 1 *x 25 < 0 with
probability 0.25 each. A constant move leaves C' unchanged with probability 0.5
and mutates it to 0 x 7 + 0 * zo < 1 with probability 0.5. A predicate move
(for p = 0) leaves C' unchanged with probability 0.125 and mutates it to z1 < 0,
220<0,0<1, 21 <1,29 <1, 27+22 <0, 0r z1 +x2 < 1 with probability 0.125
each.

3.3 Evaluation

We start with no data: G = B = Z = (). The initial candidate invariant J is
the predicate in & that has all the coefficients and the constants set to zero:
Vi,j,k.w,(cm) = 0Ad®) = 0. The cost is evaluated using Eqn. 3 and when a
candidate with cost zero is found then the decision procedure Z3 [38] is called.
If Z3 proves that the candidate is indeed an invariant then we are done. Other-
wise, Z3 provides a counterexample that is incorporated in the data and the
search is restarted with J as the initial candidate. A round consists of one
search-and-validate iteration: finding a predicate with zero cost and asking Z3
to prove/refute it.

For each benchmark in Table 1, the problem is to find an invariant strong
enough to discharge assertions in the program. The Z3-H column shows the time
taken by Z3-HORN [30]. Z3-HORN is a decision procedure inside Z3 for solv-
ing VCs with unknown predicates. ICE shows the search-and-validate approach
of [20]. The next column evaluates a geometric machine learning algorithm [46]
to search for candidate invariants and the next column is INVGEN [28] a symbolic
invariant inference engine that uses concrete data for constraint simplification.
Columns ICE, [46], and [28] have been copied verbatim from [20] and the reader
is referred to [20] for details. The MCMC column shows for MCMC search the to-
tal time of all the rounds including the time for both search and validation.The

Table 2. Results on non-termination benchmarks.

Program|Z3-H[MCMC|Templ|
termi [0.01]0.02] 0.01
term?2 TO [0.04| 0.05
term3 TO [0.04| 0.06
term4 |0.01]0.04| 0.06
term5 [0.01]0.01| 0.02
term6 TO [0.12| 0.07

Templ column shows the time when we manually provide abstract domains (oc-
tagons/octahedra) to the search. All of our experiments were performed on a
2.2 GHz Intel i7 with 4GB of memory. The experiments we compare to in Ta-
ble 1 and in the rest of the paper were performed on a variety of machines.
Our goal in reporting performance numbers is not to make precise comparisons,
but only to show that €21 has competitive performance with other techniques.
Indeed, we observe that the time measurements of the €21 searches in Table 1
are competitive with previous techniques.

We consider the benchmarks for proving non-termination from TNT [27] and
LooOPER in Table 2. Since these papers do not include performance results, we
compare randomized search with Z3-HORN. In Table 2, Z3-HORN is fast on
half of the benchmarks and times out after thirty minutes on the other half.
This observation suggests the sensitivity of symbolic inference engines to the
search heuristics and the usefulness of Theorem 1. Randomized search, with an
asymptotic convergence guarantee, successfully handles all the benchmarks in
less than a second.

4 Arrays

We consider the inference of universally quantified invariants over arrays. A
program state for an array manipulating program contains the values of all the
numerical variables and the arrays in scope. Given an invariant, existing decision
procedures are robust enough to check that it indeed is an actual invariant, but
generally fail to find concrete counterexamples to refute incorrect candidates.
This situation is a real concern, because if our technique is to be generally
applicable then it must deal with the possibility that the decision procedures
might not always be able to produce counterexamples to drive the search. As
outlined in Section 2.2, the good states, the bad states, and the pairs required
for search can also be obtained from program executions.

We use an approach similar to [46,19] to generate data. Let X} denote all
states in which all numerical variables are assigned values < k, all arrays have
sizes < k, and all elements of these arrays are also < k. We generate all states in
Yo, then X7, and so on. To generate data, we run the loop with these states (see
Section 2.2). To refute a candidate invariant, states from these runs are returned
to the search. For our benchmarks, we did not need to enumerate beyond X

Table 3. Results on array manipulating programs

Program| [15] [23-H[ARMC|Dual [MCMC[Templ| [Program |[15][Z3-H| ARMC |Dual[MCMC|Templ]
init |0.01]0.06|0.15|0.72 [0.02] 0.01 | [d-swap [0.16]1.37] 4.4 [TO[TO] 0.51
init-nc|0.02{0.08{0.48| 6.60 |0.15| 0.02 strcpy [0.07/0.05|0.15{0.62]0.02| 0.01
init-p |0.01]0.03|0.14|2.60 |0.01| 0.01 | [strlen [0.02/0.07]0.02[0.20]0.01] 0.01
init-e [0.04| TO|TO | TO | TO| TO memcpy |0.04/0.20|16.30{0.20|0.03| 0.01
2darray|0.04/0.18] ? | TO [0.41] 0.02 | [find 0.02[0.01]0.08 [0.38]0.30] 0.02
copy |0.01]0.04|0.20|1.40 |0.80| 0.02 | [find-n [0.02/0.01]0.08 [0.39]0.95] 0.01
copy-p |0.01]0.04/0.21|1.80 [0.13] 0.01 | [append [0.02[0.04|1.76 [1.50[TO | 0.12
copy-o (0.04| TO| ? |4.50| TO | 0.50 merge 0.09/0.04| ? |1.50| TO | 0.41
reverse|0.03]0.12]2.28|8.50 |3.48| 0.03 | [alloc-f [0.02[0.02]0.09 [0.69[0.10] 0.01
swap |0.12]0.41) 3.0 |40.60] TO [0.21 | [alloc-nf[0.03[0.03]0.13[0.42]0.14] 0.07

(at most 150 states) before an invariant was discovered. Note that [46, 19] test
only on reachable states. We additionally test on unreachable states to obtain
bad states and pairs. Better testing approaches are certainly possible [29].

We now define a search space of invariants to simulate the fluid updates ab-
straction for reasoning about arrays [15]. If 21, ..., 2, are the numerical variables
of the program and f and g are array variables, then we are interested in array
invariants of the following form:

YVu,v.T(x1, T2, ..., ZTn, u,v) = flu] = g[v] (4)

The variables u and v are universally quantified variables and 7" is a numerical
predicate in the quantified variables and the variables of the program. Using
this template, we reduce the search for array invariants to numerical predicates
T(x1,%2,...,%n,u,v). The search for T proceeds as described in Section 3.

4.1 Evaluation

We evaluate the randomized search algorithms on the benchmarks of [15] in
Table 3. The VCs for these benchmarks were obtained from the repository of the
competition on software verification.! We have omitted benchmarks with bugs
from the original benchmark set; these bugs are triggered during data generation.
The second column shows the time taken to analyze these benchmarks using
the fluid updates abstraction in [15]. Using a specialized abstract domain leads
to a very efficient analysis, but the scope of the analysis is limited to array
manipulating programs that have invariants given by Eqn. 4.

In [8], the authors use templates to reduce the task of inferring universally
quantified invariants for array manipulating programs to numerical invariants
and show results using three different back-ends: Z3-HORN [30], ARMC [21], and
DuaLITY [37]. These are reproduced verbatim as columns Z3-H, ARMC, and Dual
of Table 3. Details about these columns can be found in the original text [8].

! https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/ QALIA /

i:=0; x :="a";

while(non_det()){ i++; x = "(" + x + ")"; }
assert(x.length == 2xi+l);

if (i>0) assert(x.contains("(a)"));

Fig. 2. A string manipulating program

Note that the benchmark init-e requires a divisibility constraint that none of
these back-ends or our search algorithms currently support.

Columns MCMC and Templ describe our randomized searches: the total time to
search (with sufficient data) and validate an invariant. Again the results are com-
petitive with previous domain-specific approaches. Also, a comparison of MCMC
and Templ shows that convergence depends crucially on the proposal mechanism.

5 Strings

Consider the string manipulating program in Figure 2. To validate its assertions,
the invariants must express facts about the contents of strings, integers, and
lengths of strings; we are unaware of any previous inference technique that can
infer such invariants. The string operations such as length (compute the length
of a string), indezof (find the position of a string in another string), substr
(extract a substring between given indices), etc., intermix integers and strings
and pose a challenge for invariant inference. However, the decision procedure Z3-
STR [51] can decide formulas over strings and integers. We use €21 to construct
an invariant inference procedure from Z3-STR.

A program state contains the values of all the numerical and the string vari-
ables. The search space S consists of boolean combinations of predicates that
belong to a given bag P of predicates: \/j_, (/\g:1 P}) where P] € P. The bag P
is constructed using the constants and the predicates occurring in the program.
We set a =5, 8 = 10, and for Figure 2, P has predicates z.contains(y), y1 = y2,
wyii+wax.length+ws < 0 where y € {z, “a”, “(”, “)”, “(a)"} and w € [-2: 2]. A
move replaces a randomly selected P} with a randomly selected predicate from
P. The current counterexample generation capabilities of Z3-STR are unreliable
and we generate data using the process explained in Section 4. (At most 25 data
elements are sufficient to obtain an invariant.) For the program in Figure 2,
randomized search discovers the following invariant:

(z=*“a” Ai=0)V (z.contains(“(a)”) A z.length = 2i + 1)

We consider some additional examples in Table 4 and the name indicates the
string operations they use. Due to the absence of an existing benchmark suite
for string-manipulating programs, our evaluation is limited to a few handwritten
examples.

One alternative to €21 for proving these examples involves designing a new
abstract interpretation [14, 13], which requires designing an abstract domain that

incorporates both strings and integers, an abstraction function, a widening oper-
ator, and abstract transfer functions that are precise enough to find disjunctive
invariants like the one shown above. Such an alternative requires significantly
greater effort than instantiating C21. In our implementation, both the proposal
mechanism and the eval function required to instantiate ¢21 are under 50 lines
of C++ each.

6 Relations

In this section we define a proposal mechanism to find invariants over rela-
tions. We are given a program with variables x1, s, ..., z, and some relations
Ry, Ra, ..., Ry. A program state is an evaluation of these variables and these
relations. The search space consists of predicates F' given by the following gram-
mar:
Predicate F ::= /\f:1 Fi
Formula F* ::= /\?:1 G’
Subformula G* ::= Yuy,us,...,u;.T
QF Predicate T == \/$_, NP_, LF (5)
Literal L := A | A
Atom A := R(V1,...,V,) a= arity(R)
Argument V =z |u | k

A predicate in the search space is a conjunction of formulas. The superscript of
F? denotes the number of quantified variables in its subformulas. A subformula
G' is a quantified predicate with its quantifier free part T expressed in DNF.
Each atomic proposition of this DNF formula is a relation whose arguments can
be a variable of the program (z), a quantified variable (u), or some constant
(k) like null. The variables in scope of a relation in a predicate are the program
variables and the quantified variables in the associated subformula.

Next we define the moves of our proposal mechanism. We select a move
uniformly at random from the list below and apply it to the current candidate
C. As usual, we write “at random” to mean “uniformly at random”.

1. Variable move: Select an atom of C at random. Next, select one of the
arguments and replace it with an argument selected at random from the
variables in scope and the constants.

2. Relation move: Select an atom of C at random and replace its relation with
a relation selected at random from the set of relations of the same arity. The
arguments are unaffected.

3. Atom move: Select an atom of C' at random and replace its relation with
a relation selected at random from all available relations. Perform variable
moves to fill the arguments of the new relation.

4. Flip polarity: Negate a literal selected at random from the literals of C.

5. Literal move: Perform an atom move and flip polarity.

These moves are symmetric and ergodic. Next, we evaluate the MCMC algorithm
in Figure 1 with this proposal mechanism and the cost function of Eqn. 3.

Table 4. Results on string manipulat- Table 5. Results for list manipulating

ing programs. The time taken (in sec- programs.

onds) by MCMC search and by Z3-STR

(for proving the correctness of the in- [Program _[#G[#R[Search|Valid]

variants) are shown. delete 50|12 0.20 | 0.04
delete-all|20| 7| 1.03 | 0.13
find 50(9| 0.42 | 0.04

l ‘Figure Q‘replace‘index‘substring‘ filter 50126] 10.41 | 0.11

Search| 0.8 0.02 | 0.06 0.05 last 50/ 3] 0.90 | 0.04

Z3-sTr| 0.03 TO |[114.6 0.01 reverse 20(54| 55.11 | 0.08

We instantiate the relational proposal mechanism with reachability relations:
The reachability relation n*(, j) holds if the cell pointed to by j can be reached
from 4 using zero or more pointer dereferences. A recently published decision
procedure is complete for such candidates via a reduction of such formulas to
boolean satisfiability [31]. We use this decision procedure as our validator and
randomized search to find invariants for some standard singly linked list manip-
ulating programs (described in [31]) in Table 5.

6.1 Evaluation

For defining the search space using Eqn. 5 we set a = § = = 5 and 0 = 2,
which is sufficient to express the invariants for benchmarks in Table 5. We run our
benchmarks on lists of length up to five to generate an initial set of good states,
the size of which is shown in the column #G. Starting from a non-empty set of
good states results in faster convergence than starting from an empty set. Next,
we start our search with zero bad states and zero pairs and generate candidate
invariants. The number of rounds for the search to converge to an invariant is
shown in the column #R. Later rounds take more time than the initial rounds.
Columns Search and Valid describe the time to search (with sufficient data)
and to validate an invariant respectively.

During our evaluation of various verification tasks, we observe that the deci-
sion procedures for advanced logics are not able to accept all formulas in their
input language. Hence, sometimes we must perform some equality-preserving
simplifications on the candidate invariants our search discovers. Currently we
perform this step manually when necessary, but the simplifications could be
automated.

7 Related Work

The goal of this paper is a framework to obtain inference engines from deci-
sion procedures. €21 is parametrized by the language of possible invariants. This
characteristic is similar to TVLA [43]. TVLA requires specialized heuristics (fo-
cus, coerce, etc.) to maintain precision. We do not require these heuristics and

this generality aids us in obtaining inference procedures for verification tasks
beyond shape analysis. C21 is a template-based analysis that does not use deci-
sion procedures to instantiate the templates and limits their use to checking an
annotated program. We do not rely on decision procedures to compute a predi-
cate cover [26], or for fixpoint iterations [18,50], or on Farkas’ lemma [25, 28,12,
7]. Hence, €21 is applicable to various decision procedures, including incomplete
procedures (Section 4 and Section 5).

The literature on invariant inference is huge. Most techniques for invariant
inference are symbolic analyses that trade generality for effective techniques in
specific domains [35, 28,16, 10,6, 1]. We are not aware of any symbolic inference
technique that has been successfully demonstrated to infer invariants for the
various types of programs that we consider (numeric, array, string, and list).
Daikon [17] and Houdini [18] use conjunctive learning, [45,41] use equation solv-
ing, and [47] uses SVMs: these fail to infer disjunctive invariants over inequalities.
The underlying machine learning algorithm of [46] uses geometry and hence is
applicable to numerical predicates only.

Algorithmic learning [36,34] approaches also iteratively invoke search and
validate phases. They use a CDNF learning algorithm that requires membership
queries, “is a conjunction of atomic predicates contained in the invariant?”,
that are resolved heuristically. We do not require membership queries. Other
techniques that use concrete data to guide verification include [22, 3,24, 39].

We are unaware of the any previous work that uses Metropolis Hastings for
invariant inference. In a related work, [23] uses Gibbs sampling for inference of
numerical invariants. However, the inference does not use concrete states and
the resulting cost function is expensive to evaluate. Handling programs with
pointers and arrays is left as an open problem by [23].

We use efficiency to guide the choice of parameters for randomized search.
E.g., in our evaluations, we set v in Figure 1 to log, 2. Systematic approaches
described in [48] can also be used for setting such parameters.

8 Conclusion

We have demonstrated a general procedure for generating an inference procedure
from a checking procedure and applied it to a variety of programs. The inference
procedure uses randomized search for generating candidate invariants that are
proven or refuted by the checker. While €21 is general and can handle many
classes of useful invariants, its performance is still competitive with state of the
art tools that are specialized for specific domains.

Acknowledgements We thank FEric Schkufza, Manolis Papadakis, and the
anonymous reviewers for their comments. This work was supported by NSF grant
CCF-1160904, a Microsoft fellowship, and the Air Force Research Laboratory
under agreement number FA8750-12-2-0020. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: SAFARI:
SMT-based abstraction for arrays with interpolants. In: CAV (2012)

Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
FMCAD (2013)

Amato, G., Parton, M., Scozzari, F.: Discovering invariants via simple component
analysis. J. Symb. Comput. 47(12) (2012)

Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.I.: An Introduction to MCMC
for Machine Learning. Machine Learning 50(1) (2003)

Beyer, D.: Competition on Software Verification (SV-COMP) benchmarks.
https://svn. sosy-lab.org/software/sv-benchmarks/tags/svcomp13/loops/

Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. STTT 9(5-6) (2007)

Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis
for combined theories. In: VMCALI (2007)

Bjgrner, N., McMillan, K.L., Rybalchenko, A.: On solving universally quantified
horn clauses. In: SAS (2013)

Burnim, J., Jalbert, N., Stergiou, C., Sen, K.: Looper: Lightweight detection of
infinite loops at runtime. In: ASE (2009)

Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. In: POPL (2009)

Chib, S., Greenberg, E.: Understanding the Metropolis-Hastings Algorithm. The
American Statistician 49(4) (1995)

Colén, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using
non-linear constraint solving. In: CAV (2003)

Costantini, G., Ferrara, P., Cortesi, A.: Static analysis of string values. In: ICFEM
(2011)

Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. weak updates. In:
ESOP (2010)

Dillig, I., Dillig, T., Li, B., McMillan, K.L.: Inductive invariant generation via
abductive inference. In: OOPSLA (2013)

Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1-3) (2007)

Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
FME (2001)

Garg, P., Loding, C., Madhusudan, P., Neider, D.: Learning universally quantified
invariants of linear data structures. In: CAV (2013)

Garg, P., Loding, C., Madhusudan, P., Neider, D.: ICE: A Robust Learning Frame-
work for Synthesizing Invariants. In: CAV (2014)

Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI (2012)

Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
a new algorithm for property checking. In: FSE (2006)

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44.

45.

46.

47.

Gulwani, S., Jojic, N.: Program verification as probabilistic inference. In: POPL
(2007)

Gulwani, S., Necula, G.C.: Discovering affine equalities using random interpreta-
tion. In: POPL (2003)

Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: PLDI (2008)

Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based invariant inference
over predicate abstraction. In: VMCALI (2009)

Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.G.: Proving
non-termination. In: POPL (2008)

Gupta, A., Majumdar, R., Rybalchenko, A.: From tests to proofs. In: TACAS
(2009)

Harder, M., Mellen, J., Ernst, M.D.: Improving test suites via operational abstrac-
tion. In: ICSE (2003)

Hoder, K., Bjgrner, N.: Generalized property directed reachability. In: SAT (2012)
Itzhaky, S., Banerjee, A., Immerman, N., Nanevski, A., Sagiv, M.: Effectively-
propositional reasoning about reachability in linked data structures. In: CAV

(2013)
Ivancic, F., Sankaranarayanan, S.: NECLA Static Analysis
Benchmarks http://www.nec-labs.com/research/system/systems_SAV-

website/small_static_bench-v1.1.tar.gz

Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: TACAS (2006)

Jung, Y., Kong, S., Wang, B.Y., Yi, K.: Deriving invariants by algorithmic learning,
decision procedures, and predicate abstraction. In: VMCAI (2010)

Kannan, Y., Sen, K.: Universal symbolic execution and its application to likely
data structure invariant generation. In: ISSTA (2008)

Kong, S., Jung, Y., David, C., Wang, B.Y., Yi, K.: Automatically inferring quan-
tified loop invariants by algorithmic learning from simple templates. In: APLAS
(2010)

McMillan, K., Rybalchenko, A.: Combinatorial approach to some sparse-matrix
problems. Tech. rep., Microsoft Research (2013)

de Moura, L.M., Bjgrner, N.: Z3: An efficient SMT solver. In: TACAS (2008)
Naik, M., Yang, H., Castelnuovo, G., Sagiv, M.: Abstractions from tests. In: POPL
(2012)

Neuwald, A.F., Liu, J.S., Lipman, D.J., Lawrence, C.E.: Extracting protein align-
ment models from the sequence database. Nucleic Acids Research 25 (1997)
Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to discover
polynomial and array invariants. In: ICSE (2012)

Nori, A.V., Sharma, R.: Termination proofs from tests. In: ESEC/SIGSOFT FSE
(2013)

Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3) (2002)

Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. In: ASPLOS
(2013)

Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: ESOP (2013)

Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Program verification
as learning geometric concepts. In: SAS (2013)

Sharma, R., Nori, A., Aiken, A.: Interpolants as classifiers. In: CAV (2012)

48.

49.
50.

51.

Sharma, R., Nori, A.V., Aiken, A.: Bias-variance tradeoffs in program analysis. In:
POPL (2014)

Solar-Lezama, A.: The sketching approach to program synthesis. In: APLAS (2009)
Srivastava, S., Gulwani, S.: Program verification using templates over predicate
abstraction. In: PLDI (2009)

Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a Z3-based string solver for web appli-
cation analysis. In: ESEC/SIGSOFT FSE (2013)

