
A Capability Calculus for Concurrency and

Determinism ⋆

Tachio Terauchi1 and Alex Aiken2

1 EECS Department, University of California, Berkeley
2 Computer Science Department, Stanford University

Abstract. We present a capability calculus for checking partial con-
fluence of channel-communicating concurrent processes. Our approach
automatically detects more programs to be partially confluent than pre-
vious approaches and is able to handle a mix of different kinds of com-
munication channels, including shared reference cells.

1 Introduction

Deterministic programs are easier to debug and verify than non-deterministic
programs, both for testing (or simulation) and for formal methods. However,
sometimes programs are written as communicating concurrent processes, for
speed or for ease of programming, and therefore are possibly non-deterministic.
In this paper, we present a system that can automatically detect more programs
to be deterministic than previous methods [7, 10, 8, 9, 5]. Our system is able to
handle programs communicating via a mix of different kinds of channels: ren-
dezvous, output buffered, input buffered, and shared reference cells. Section 3.2
shows a few examples that can be checked by our system: producer consumer, to-
ken ring, and barrier synchronization. The companion technical report contains
the omitted proofs [12].

We cast our system as a capability calculus [4]. The capability calculus was
originally proposed as a framework for reasoning about resources in sequential
computation, but has recently been extended to reason about determinism in
concurrent programs [3, 11]. However, these systems can only reason about syn-
chronization at join points, and therefore cannot verify determinism of channel-
communicating processes. This paper extends the capability calculus to reason
about synchronization due to channel communications. A key insight comes from
our previous work [11] which showed that confluence can be ensured in a princi-
pled way from ordering dependencies between the side effects; dependencies are
enforced by finding a flow assignment (which can be interpreted as fractional
capabilities [3]) in the dependence graph.

2 Preliminaries

We focus on the simple concurrent language shown in Figure 1. A program, p,
is a parallel composition of finitely many processes. A process, s, is a sequential

⋆ This research was supported in part by NSF Grant No. CCR-0326577.

p ::= s1||s2|| . . . ||sn (program)
e ::= c (channel)

| x (local variable)
| n (integer constant)
| e1 op e2 (integer operation)

s ::= s1; s2 (sequence)
| if e then s1 else s2 (branch)
| while e do s (loop)
| skip (skip)
| x := e (assignment)
| !(e1, e2) (write channel)
| ?(e, x) (read channel)

Fig. 1. The syntax of the small concurrent language.

statement consisting of the usual imperative features as well as channel commu-
nication operations. Here, !(e1, e2) means writing the value of e2 to the channel
e1, and ?(e, x) means storing the value read from the channel e to the variable
x. The variables are process-local, and so the only means of communication are
channel reads and writes. We use meta-variables x, y, z, etc. for variables and
c, d, etc. for channels.

The language cannot dynamically create channels or spawn new processes,
but these restrictions are imposed only to keep the main presentation to the novel
features of the system. Section 3.3 shows that techniques similar to previous work
in the capability calculus can be used to handle dynamic channels and processes.

2.1 Channel Kinds

The literature on concurrency includes several forms of channels with distinct
semantics. We introduce these channel kinds and show how they affect deter-
minism.

If c and d are rendezvous channels, then the following program is determin-
istic3 because (x, y) = (1, 2) when the process terminates:

!(c, 1); !(d, 2) || !(d, 3); ?(c, x) || ?(d, y); ?(d, y)

The same program is non-deterministic if c is output buffered because !(c, 1)
does not need to wait for the reader ?(c, x), and therefore (x, y) could be (1, 2)
or (1, 3).

While all the processes share one output buffer per channel, each process has
its own input buffer per channel. Therefore, !(c, 1); !(c, 2) || ?(c, x) || ?(c, y) is
deterministic if c is input buffered but not if c is output buffered or rendezvous.
Input buffered channels are the basis of Kahn process networks [7].

We also consider a buffered channel whose buffer is overwritten by every
write but never modified by a read. Such a channel is equivalent to a reference
cell. If c is a reference cell, !(c, 1); !(c, 2) || ?(c, x) is not deterministic because
!(c, 2) may or may-not overwrite 1 in the buffer before ?(c, x) reads the buffer.
The program is deterministic if c is any other channel kind. On the other hand,

3 Here, we use the term informally. Determinism is formally defined in Section 2.2.

(S(i), e) ⇓ n n 6= 0

(B, S, i.(if e then s1 else s2); s||p) → (B, S, i.s1; s||p)
IF1

(S(i), e) ⇓ 0

(B, S, i.(if e then s1 else s2); s||p) → (B, S, i.s2; s||p)
IF2

(S(i), e) ⇓ n n 6= 0

(B, S, i.(while e do s1); s||p) → (B, S, i.s1; (while e do s1); s||p)
WHILE1

(S(i), e) ⇓ 0

(B, S, i.(while e do s1); s||p) → (B, S, i.s||p)
WHILE2

(S(i), e) ⇓ e′ S′ = S[i 7→ S(i) :: (x, e′)]

(B, S, i.x := e; s||p) → (B, S′, i.s||p)
ASSIGN

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 (S(j), e3) ⇓ c

¬buffered(c) S′ = S[j 7→ S(j) :: (x, e′2)]

(B, S, i.!(e1, e2); s1||j.?(e3, x); s2||p) → (B, S′, i.s1||j.s2||p)
UNBUF

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 buffered(c) B′ = B.write(c, e′2)

(B, S, i.!(e1, e2); s||p) → (B′, S, i.s||p)
BUF1

(S(i), e) ⇓ c buffered(c)
(B′, e′) = B.read(c, i) S′ = S[i 7→ S(i) :: (x, e′)]

(B, S, i.?(e, x); s||p) → (B′, S′, i.s||p)
BUF2

Fig. 2. The operational semantics of the small concurrent language.

!(c, 1); !(c, 2); !(d, 3); ?(c, x) || ?(d, x); ?(c, y) is deterministic if c is a reference
cell and d is rendezvous because both reads of c happen after !(c, 2) overwrites
the buffer. But the program is not deterministic if c is output buffered.

2.2 Operational Semantics

The operational semantics of the language is defined as a series of reductions
from states to states. A state is represented by the triple (B, S, p) where B is a
buffer, S is a store, and p is a program such that each concurrent process in p

is indexed by a process number, i.e., p ::= 1.s1||2.s2|| . . . ||n.sn. Indexes are used
to connect a process to its input buffer and its store.

A store is a mapping from process indexes to histories of assignments where
a history is a sequence of pairs (x, e), meaning e was assigned to x. We use
meta-variables h, h′, etc. for histories. Let :: be append. A lookup in a history
is defined as: (h :: (x, e))(x) = e and (h :: (y, e))(x) = h(x) if y 6= x. We use
history instead of memory for the purpose of defining determinism.

Expressions are evaluated entirely locally. The semantics of expressions are
defined as: (h, c) ⇓ c, (h, x) ⇓ h(x), (h, n) ⇓ n, and (h, e1 op e2) ⇓ e′1 op e′2 if
(h, e1) ⇓ e′1 and (h, e2) ⇓ e′2.

B.write(c, e) =

8

>

>

>

<

>

>

>

:

B[c 7→ enq(B(c), e)] if c is output buffered

B[c 7→ 〈enq(q1, e), . . . , enq(qn, e)〉]

where B(c) = 〈q1, . . . , qn〉
if c is input buffered

B[c 7→ e] if c is a reference cell

B.read(c, i) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(B[c 7→ q′], e)

where B(c) = q and (q′, e) = deq(q)
if c is output buffered

(B[c 7→ 〈q1, . . . , q
′

i, . . . , qn〉], e)

where B(c) = 〈q1, . . . , qi, . . . , qn〉

(q′i, e) = deq(qi)

if c is input buffered

(B, B(c)) if c is a reference cell

Fig. 3. Buffer operations.

Figure 2 shows the reduction rules. Programs are equivalent up to re-ordering
of parallel processes, e.g., p1||p2 = p2||p1. If p is an empty program (i.e., p

contains 0 processes), then p′||p = p′. Also, we let s = s; skip = skip; s.
Note that the rules only reduce the left-most processes, and so we rely on pro-
cess re-ordering to reduce other processes. The rules IF1, IF2, WHILE1, and
WHILE2 do not involve channel communication and are self-explanatory. AS-

SIGN is also a process-local reduction because variables are local. Here, S[i 7→ h]
means {j 7→ S(j) | j 6= i∧ j ∈ dom(S)}∪ {i 7→ h}. We use the same notation for
other mappings.

UNBUF handles communication over rendezvous channels. The predicate
¬buffered(c) says c is unbuffered (and therefore rendezvous). Note that the writ-
ten value e′2 is immediately transmitted to the reader. BUF1 and BUF2 handle
communication over buffered channels, which include output buffered channels,
input buffered channels, and reference cells. The predicate buffered(c) says that
c is a buffered channel. We write B.write(c, e′2) for the buffer B after e′2 is writ-
ten to the channel c, and B.read(c, i) for the pair (B′, e′) where e′ is the value
process i read from channel c and B′ is the buffer after the read.

Formally, a buffer B is a mapping from channels to buffer contents. If c is
a rendezvous channel, then B(c) = nil indicating that c is not buffered. If c is
output buffered, then B(c) = q where q is a FIFO queue of values. If c is input
buffered, then B(c) = 〈q1, q2, . . . , qn〉, i.e., a sequence of FIFO queues where each
qi represents the buffer content for process i. If c is a reference cell, then B(c) = e

for some value e. Let enq(q, e) be q after e is enqueued. Let deq(q) be the pair
(q′, e) where q′ is q after e is dequeued. Buffer writes and reads are defined as
shown in Figure 3. Note that B.read(c, i) and B.write(c, e) are undefined if c is
rendezvous.

We write P →∗ Q for 0 or more reduction steps from P to Q. We define
partial confluence and determinism.

Definition 1. Let Y be a set of channels. We say that P is partially confluent
with respect to Y if for any P →∗ P1 communicating only over channels in Y ,
and for any P →∗ P2, there exists a state Q such that P2 →∗ Q communicating
only over channels in Y and P1 →∗ Q.

Definition 2. Let Y be a set of channels. We say that P is deterministic with
respect to Y if for each process index i, there exists a (possibly infinite) sequence
hi such that for any P →∗ (B, S, p) that communicates only over channels in Y ,
S(i) is a prefix of hi.

Determinism implies that for any single process, interaction with the rest of the
program is deterministic. Determinism and partial confluence are related in the
following way.

Lemma 1. If P is partially confluent with respect to Y then P is deterministic
with respect to Y .

Note that the definitions are sufficient for programs interacting with the en-
vironment because an environment can be modeled as a process using integer
operators with unknown (but deterministic) semantics.

3 Calculus of Capabilities

We now present a capability calculus for ensuring partial confluence. While capa-
bility calculi are typically presented as a type system in the literature, we take a
different approach and present the capability calculus as a dynamic system. We
then construct a type system to statically reason about the dynamic capability
calculus. This approach allows us to distinguish approximations due to the type
abstraction from approximations inherent in the capability concept. (We have
taken a similar approach in previous work [11].)

We informally describe the general idea. To simplify matters, we begin this
initial discussion with rendezvous channels and total confluence. Given a pro-
gram, the goal is to ensure that for each channel c, at most one process can
write c and at most one process can read c at any point in time. To this end,
we introduce capabilities r(c) and w(c) such that a process needs r(c) to read
from c and w(c) to write to c. Capabilities are distributed to the processes at
the start of the program and are not allowed be duplicated.

Recall the following confluent program from Section 2:

1.!(c, 1); !(d, 2) || 2.!(d, 3); ?(c, x) || 3.?(d, y); ?(d, y)

Note that for both c and d, at most one process can read and at most one
process can write at any point in time. However, because both process 1 and
process 2 write to d, they must somehow share w(d). A novel feature of our
capability calculus is the ability to pass capabilities between processes. The idea
is to let capabilities be passed when the two processes synchronize, i.e., when
the processes communicate over a channel. In our example, we let process 2

have w(d) at the start of the program. Then, when process 1 and process 2
communicate over c, we pass w(d) from process 2 to process 1 so that process 1
can write to d.

An important observation is that capability passing works in this example
because !(d, 3) is guaranteed to occur before the communication on c due to c

being rendezvous. If c is buffered (recall that the program is not confluent in this
case), then !(c, 1) may occur before !(d, 3). Therefore, process 1 cannot obtain
w(d) from process 2 when c is written because process 2 may still need w(d) to
write on d. In general, for a buffered channel, while the read is guaranteed to
occur after the write, there is no ordering dependency in the other direction,
i.e., from the read to the write. Therefore, capabilities can be passed from the
writer to the reader but not vice versa, whereas capabilities can be passed in
both directions when communicating over a rendezvous channel.

Special care is needed for reference cells. If c is a reference cell, the program
1.!(c, 1); !(c, 2)||2.?(c, x) is not deterministic although process 1 is the only writer
and process 2 is the only reader. We use fractional capabilities [3, 11] such that
a read capability is a fraction of the write capability. Capabilities can be split
into multiple fractions, which allows concurrent reads on the same reference cell,
but must be re-assembled to form the write capability. Fractional capabilities
can be passed between processes in the same way as other capabilities. Recall
the following confluent program from Section 2 where c is a reference cell and d

is rendezvous:

1.!(c, 1); !(c, 2); !(d, 3); ?(c, x) || 2.?(d, x); ?(c, y)

Process 1 must start with the capability to write c. Because both processes read
from c after communicating over d, we split the capability for c such that one
half of the capability stays in process 1 and the other half is passed to process 2
via d. As a result, both processes obtain the capability to read from c. We have
shown previously that fractional capabilities can be derived in a principled way
from ordering dependencies [11].

We now formally present our capability calculus. Let

Capabilities = {w(c), r(c) | c is rendezvous or output buffered}
∪{w(c) | c is input buffered} ∪ {w(c) | c is a reference cell}

A capability set C is a function from Capabilities to rational numbers in the
range [0, 1]. If c is rendezvous, output buffered, or input buffered, C(w(c)) = 1
(resp. C(r(c)) = 1) means that the capability to write (resp. read) c is in C. Read
capabilities are not needed for input buffered channels because each process has
its own buffer. For reference cells, C(w(c)) = 1 means that the capability to
write is in C, whereas C(w(c)) > 0 means that the capability to read is in C.
To summarize, we define the following predicates:

hasWcap(C, c) ⇔ C(w(c)) = 1

hasRcap(C, c) ⇔











C(r(c)) = 1 if c is rendezvous or output buffered

true if c is input buffered

C(w(c)) > 0 if c is reference cell

(S(i), e) ⇓ n n 6= 0

(X, B, S, i.C.(if e then s1 else s2); s||p) → (X, B, S, i.C.s1; s||p)
IF1′

(S(i), e) ⇓ 0

(X, B, S, i.C.(if e then s1 else s2); s||p) → (X, B, S, i.C.s2; s||p)
IF2′

(S(i), e) ⇓ n n 6= 0

(X, B, S, i.C.(while e do s1); s||p)
→ (X, B, S, i.C.s1; (while e do s1); s||p)

WHILE1′

(S(i), e) ⇓ 0

(X, B, S, i.C.(while e do s1); s||p) → (X, B, S, i.C.s||p)
WHILE2′

(S(i), e) ⇓ e′ S′ = S[i 7→ S(i) :: (x, e′)]

(X, B,S, i.C.x := e; s||p) → (X, B, S′, i.C.s||p)
ASSIGN′

Fig. 4. The capability calculus: sequential reductions.

To denote capability merging and splitting, we define:

C1 + C2 = {cap 7→ C1(cap) + C2(cap) | cap ∈ Capabilities}

We define C1 − C2 = C3 if C1 = C3 + C2. (We avoid negative capabilities.)
Figure 4 and Figure 5 show the reduction rules of the capability calculus.

The reduction rules (technically, labeled transition rules) are similar to those of
operational semantics with the following differences.

Each concurrent process is prefixed by a capability set C representing the
current capabilities held by the process. The rules in Figure 4 do not utilize ca-
pabilities (i.e., capabilities are only passed sequentially) and are self-explanatory.
Figure 5 shows how capabilities are utilized at communication points. UNBUF′

sends capabilities C from the writer process to the reader process and sends ca-
pabilities C′ from the reader process to the writer process. UNBUF′ checks
whether the right capabilities are present by hasWcap(Ci, c) ∧ hasRcap(Cj , c).
The label ℓ records whether the check succeeds. Because we are interested in
partial confluence with respect to some set Y of channels, we only check the ca-
pabilities if c ∈ Y . To this end, the predicate confch() parameterizes the system
so that confch(c) iff c ∈ Y .

BUF1′ and BUF2′ handle buffered communication. Recall that the writer
can pass capabilities to the reader. BUF1′ takes capabilities C′ from the writer
process and stores them in X . BUF2′ takes capabilities C′ from X and gives
them to the reader process. The mapping X from channels to capability sets
maintains the capabilities stored in each channel.

We now formally state when our capability calculus guarantees partial con-
fluence. Let erase((X, B, S, 1.C1.s1|| . . . ||n.Cn.sn)) = (B, S, 1.s1|| . . . ||n.sn), i.e.,
erase() erases all capability information from the state. We use meta-variables P ,
Q, R, etc. for states in the operational semantics and underlined meta-variables
P , Q, R, etc. for states in the capability calculus.

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 (S(j), e3) ⇓ c

¬buffered(c) S′ = S[j 7→ S(j) :: (x, e′2)]
ℓ = (confch(c) ⇒ (hasWcap(Ci, c) ∧ hasRcap(Cj , c)))

(X, B, S, i.Ci.!(e1, e2); s1||j.Cj?(e3, x); s2||p)
ℓ
→ (X, B, S′, i.(Ci − C + C′).s1||j.(Cj + C − C′).s2||p)

UNBUF′

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 buffered(c)
B′ = B.write(c, e′2) ℓ = (confch(c) ⇒ hasWcap(C, c))

(X, B, S, i.C.!(e1, e2); s||p)
ℓ
→ (X[c 7→ X(c) + C′], B′, S, i.(C − C′).s||p)

BUF1′

(S(i), e) ⇓ c buffered(c) (B′, e′) = B.read(c, i)
S′ = S[i 7→ S(i) :: (x, e′)] ℓ = (confch(c) ⇒ ¬hasRcap(C, c))

(X, B, S, i.C.?(e, x); s||p)
ℓ
→ (X[c 7→ X(c) − C′], B′, S′, i.(C + C′).s||p)

BUF2′

Fig. 5. The capability calculus: communication reductions.

A well-formed state is a state in the capability calculus that does not carry
duplicated capabilities. More formally,

Definition 3. Let P = (X, B, S, 1.C1.s1|| . . . ||n.Cn.sn). Let C =
∑n

i=1 Ci +
∑

c∈dom(X) X(c). We say P is well-formed if for all cap ∈ dom(C), C(cap) = 1.

We define capability-respecting states. Informally, P is capability respect-
ing with respect to a set of channels Y if for any sequence of reductions from
erase(P), there exists a strategy to pass capabilities between the processes such
that every communication over the channels in Y occurs under the appropriate
capabilities. More formally,

Definition 4. Let Y be a set of channels and let confch(c) ⇔ c ∈ Y . Let M

be a set of states in the capability calculus. M is said to be capability-respecting
with respect to Y if for any P ∈ M ,

– P is well-formed, and
– for any state Q such that erase(P) → Q, there exists Q ∈ M such that,

erase(Q) = Q, P
ℓ
→ Q, and if ℓ is not empty then ℓ = true.

We now state the main claim of this section.

Theorem 1. Let P be a state. Suppose there exists M such that M is capability-
respecting with respect to Y and there exists P ∈ M such that erase(P) = P .
Then P is partially confluent with respect to Y .

3.1 Static Checking of Capabilities

Theorem 1 tells us that to ensure that P is partially confluent, it is sufficient
to find a capability-respecting set containing some P such that erase(P) = P . 4

4 It is not a necessary condition, however. For example, !(c, 1)||!(c, 1)||?(c, x)||?(c, x)
is confluent but does not satisfy the condition.

Ideally, we would like to use the largest capability-respecting set, but such a set
is not recursive (because it is reducible from the halting problem). Instead, we
use a type system to compute a safe approximation of the set.

We define four kinds of channel types, one for each channel kind.

τ ::= ch(ρ, τ, Ψ1, Ψ2) (rendezvous)
| ch(ρ, τ, Ψ) (output buffered)
| ch(ρ, τ, 〈Ψ1, . . . , Ψn〉) (input buffered)
| ch(ρ, τ) (reference cell)
| int (integers)

Meta-variables ρ, ρ′, etc. are channel handles. Let Handles be the set of channel
handles. Let StaticCapabilities = {w(ρ), r(ρ) | ρ ∈ Handles}. Meta-variables
Ψ , Ψ ′, etc. are mappings from StaticCapabilities to [0, 1]. We call such a map-
ping a static capability set. The rendezvous channel type can be read as follows:
the channel communicates values of type τ , any writer of the channel sends
capabilities Ψ1, and any reader of the channel sends capabilities Ψ2. For an out-
put buffered channel, because readers cannot send capabilities, only one static
capability set, Ψ , is present in its type. For an input buffered channel, the se-
quence 〈Ψ1, . . . , Ψn〉 lists capabilities such that each process i gets Ψi from a read.
Because a value stored in a reference cell may be read arbitrarily many times,
our type system cannot statically reason about processes passing capabilities
through reference cells, and so a reference cell type does not carry any static
capability set.

Additions and subtractions of static capabilities are analogous to those of
(actual) capabilities:

Ψ1 + Ψ2 = {cap 7→ Ψ1(cap) + Ψ2(cap) | cap ∈ StaticCapabilities}
Ψ1 − Ψ2 = Ψ3 if Ψ1 = Ψ3 + Ψ2

We say Ψ1 ≥ Ψ2 if there exists Ψ3 such that Ψ1 = Ψ2 + Ψ3.
For channel type τ , hdl(τ) is the handle of the channel, and valtype(τ)

is the type of the communicated value. That is, hdl(ch(ρ, . . .)) = ρ and
valtype(ch(ρ, τ, . . .)) = τ . Also, writeSend(τ) (resp. readSend(τ)) is the set of
capabilities sent by a writer (resp. reader) of the channel. More formally,

writeSend(ch(ρ, τ, Ψ1, Ψ2)) = Ψ1

writeSend(ch(ρ, τ, Ψ)) = Ψ

writeSend(ch(ρ, τ, 〈Ψ1, . . . , Ψn〉)) =
∑n

i=1 Ψi

writeSend(ch(ρ, τ)) = 0

readSend(τ) =

{

Ψ2 if τ = ch(ρ, τ ′, Ψ1, Ψ2)

0 otherwise

(0 is the constant zero function λx.0.) Similarly, writeRecv(τ) (resp. readRecv(τ, i))
is the set of capabilities received by the writer (resp. the reader process i):

writeRecv(τ) = readSend(τ)

readRecv(τ, i) =

{

Ψi if τ = ch(ρ, τ, 〈Ψ1, . . . , Ψn〉)

writeSend(τ) otherwise

Γ, i, Ψ ⊢ s1 : Ψ1 Γ, i, Ψ1 ⊢ s2 : Ψ2

Γ, i, Ψ ⊢ s1; s2 : Ψ2

SEQ

Γ ⊢ e : int Γ, i, Ψ ⊢ s1 : Ψ1 Γ, i, Ψ ⊢ s2 : Ψ2 Ψ1 ≥ Ψ3 Ψ2 ≥ Ψ3

Γ, i, Ψ ⊢ if e then s1 else s2 : Ψ3

IF

Γ ⊢ e : int Γ, i, Ψ1 ⊢ s : Ψ2 Ψ2 ≥ Ψ1 Ψ ≥ Ψ1

Γ, i, Ψ ⊢ while e do s : Ψ2

WHILE

Γ, i, Ψ ⊢ skip : Ψ
SKIP

Γ ⊢ e : Γ (x)

Γ, i, Ψ ⊢ x := e : Ψ
ASSIGN

Γ ⊢ e1 : τ Γ ⊢ e2 : valtype(τ) confch(τ, Γ) ⇒ hasWcap(Ψ, τ)

Γ, i, Ψ ⊢ !(e1, e2) : Ψ − writeSend(τ) + writeRecv(τ)
WRITE

Γ ⊢ e : τ Γ (x) = valtype(τ) confch(τ, Γ) ⇒ hasRcap(Ψ, τ)

Γ, i, Ψ ⊢ ?(e, x) : Ψ − readSend(τ) + readRecv(τ, i)
READ

Fig. 6. Type checking rules.

Note that the writer of the input buffered channel ch(ρ, τ, 〈Ψ1, . . . , Ψn〉) must
be able to send the sum of all capabilities to be received by each process (i.e.,
∑n

i=1 Ψi), whereas the reader receives only its own share (i.e., Ψi).
For channel type τ , hasWcap(Ψ, τ) and hasRcap(Ψ, τ) are the static analog

of hasWcap(C, c) and hasRcap(C, c). More formally,

hasWcap(Ψ, τ) ⇔ Ψ(w(hdl(τ))) = 1

hasRcap(Ψ, τ) ⇔











Ψ(r(hdl(τ))) = 1 if τ is rendezvous or output buffered

true if τ is input buffered

Ψ(w(hdl(τ))) > 0 if τ is reference cell

A type environment Γ is a mapping from channels and variables to types
such that for each channel c and d,

– the channel type kind of Γ (c) coincides with the channel kind of c, and
– if c 6= d then hdl(Γ (c)) 6= hdl(Γ (d)), i.e., each handle ρ uniquely identifies a

channel. (Section 3.3 discusses a way to relax this restriction.)

We sometimes write Γ [c] to mean hdl(Γ (c)).
Expressions are type-checked as follows:

Γ ⊢ c : Γ (c) Γ ⊢ x : Γ (x) Γ ⊢ n : int

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 op e2 : int

Figure 6 shows the type checking rules for statements. The judgments are of
the form Γ, i, Ψ ⊢ s : Ψ ′ where i is the index of the process where s appears in,
Ψ the capabilities before s, and Ψ ′ the capabilities after s. SEQ, IF, WHILE,

SKIP, and ASSIGN are self-explanatory. WRITE handles channel writes and
READ handles channel reads. Here, confch(τ, Γ) is defined as:

confch(τ, Γ) ⇔ ∃c.Γ [c] = hdl(τ) ∧ confch(c)

We write Γ ⊢ B(c) if the buffer B(c) is well-typed, i.e., Γ ⊢ e : valtype(Γ (c))
for each value e stored in the buffer B(c). We write Γ ⊢ h if the history h is
well-typed, i.e, Γ ⊢ h(x) : Γ (x) for each x ∈ dom(h). We write Γ ⊢ C : Ψ if Ψ

represents C, i.e., for each w(c) ∈ dom(C), Ψ(w(Γ [c])) = C(w(c)) and for each
r(c) ∈ dom(C), Ψ(r(Γ [c])) = C(r(c)).

Let P = (B, X, S, 1.C1.s1|| . . . ||n.Cn.sn). An environment for P consists
of a type environment Γ for typing the channels, a type environment Γi for
typing each process i, the starting static capability Ψi for each process i, and
the mapping W from handles to static capabilities that represents X . We say
P is well-typed under the environment (Γ, Γ1, . . . , Γn, Ψ1, . . . , Ψn, W), written
(Γ, Γ1, . . . , Γn, Ψ1, . . . , Ψn, W) ⊢ P , if

– For each c, Γ ⊢ B(c).

– For each i, Γi ⊇ Γ , Γi ⊢ S(i), Γ ⊢ Ci : Ψi, and Γi, i, Ψi ⊢ si : Ψ ′

i for some Ψ ′

i .

– For each c, Γ ⊢ X(c) : W (Γ [c]), i.e., W is a static representation of X .

– Let Ψtotal =
∑n

i=1 Ψi +
∑

ρ∈dom(W) W (ρ). Then for each cap ∈ dom(Ψtotal),

Ψtotal (cap) = 1, i.e., there are no duplicated capabilities.

– For all output buffered channels c, W (Γ [c]) = |B(c)| ×writeSend(Γ (c)). For
all input buffered channels c, W (Γ [c]) =

∑n

i=1 |B(c).i| × readRecv(Γ (c), i).

In the last condition, |B(c)| denotes the length of the queue B(c), and |B(c).i|
denotes the length of the queue for process i (for input buffered channels). The
condition ensures that there are enough capabilities in X for buffered reads. We
now state the main claim of this section.

Theorem 2. Let Y be a set of channels and let confch(c) ⇔ c ∈ Y . Let M =
{P | ∃Env .Env ⊢ P}. Then M is capability-respecting with respect to Y .

Theorem 2 together with Theorem 1 implies that to check if P is confluent, it
suffices to find a well-typed P such that P = erase(P). More formally,

Corollary 1. Let Y be a set of channels and let confch(c) ⇔ c ∈ Y . P is
partially-confluent and deterministic with respect to Y if there exists P and Env
such that P = erase(P) and Env ⊢ P .

The problem of finding P and Env such that P = erase(P) and Env ⊢ P can
be formulated as linear inequality constraints satisfaction problem. The details
are similar to the type inference algorithm from our previous work [11]. The
constraints can be generated in time polynomial in the size of P , which can then
be solved efficiently by a linear programming algorithm.

3.2 Examples

Producer Consumer: Let c be an output buffered channel. The program
1.while 1 do !(c, 1) || 2.while 1 do ?(c, x) is a simple but common commu-
nication pattern of sender and receiver processes being fixed for each channel;
no capabilities need to be passed between processes. The type system can prove
confluence by assigning the starting capabilities 0 [w(ρ) 7→ 1] to process 1 and
0 [r(ρ) 7→ 1] to process 2 where c : ch(ρ, int, 0).

Token Ring: Let c1, c2, c3 be rendezvous and d be output buffered. The program
below models a token ring where processes 1, 2, and 3 take turns writing to d:

1.while 1 do (?(c3, x); !(d, 1); !(c1, 0))
|| 2.while 1 do (?(c1, x); !(d, 2); !(c2, 0))
|| 3.!(c3, 0); while 1 do (?(c2, x); !(d, 3); !(c3, 0))
|| 4.while 1 do ?(d, y)

Recall that variables x and y are process local. The type system can prove
confluence by assigning the channel d the type ch(ρd, int, 0) and each ci the
type ch(ρci

, int, 0 [w(ρd) 7→ 1], 0), which says that a write to ci sends w(d) to the
reader. The starting capabilities are 0 [r(ρc3

) 7→ 1, w(ρc1
) 7→ 1] for process 1,

0 [r(ρc1
) 7→ 1, w(ρc2

) 7→ 1] for process 2, 0 [r(ρc2
) 7→ 1, w(ρc3

) 7→ 1, w(ρd) 7→ 1]
for process 3, and 0 [r(ρd) 7→ 1] for process 4.

Barrier Synchronization: Let c1, c2, c3 be reference cells. Let d1, d2, d3, d′1, d′2,
d′3 be input buffered channels. Consider the following program:

1.while 1 do (!(c1, e1); !(d1, 0);BR; ?(c1, y); ?(c2, z); ?(c3, w); !(d′1, 0);BR′)
|| 2.while 1 do (!(c2, e2); !(d2, 0);BR; ?(c1, y); ?(c2, z); ?(c3, w); !(d′2, 0);BR′)
|| 3.while 1 do (!(c3, e3); !(d3, 0);BR; ?(c1, y); ?(c2, z); ?(c3, w); !(d′3, 0);BR′)

Here, BR = ?(d1, x); ?(d2, x); ?(d3, x) and BR′ = ?(d′1, x); ?(d′2, x); ?(d′3, x). The
program is an example of barrier-style synchronization. Process 1 writes to c1,
process 2 writes to c2, process 3 writes to c3, and then the three processes
synchronize via a barrier so that none of the processes can proceed until all are
done with their writes. Note that !(di, 0);BR models the barrier for each process
i. After the barrier synchronization, each process reads from all three reference
cells before synchronizing themselves via another barrier, this time modeled by
!(d′i, 0);BR′, before the next iteration of the loop.

The type system can prove confluence by assigning the following types
(assume e1, e2, and e3 are of type int): c1 : ch(ρc1, int), c2 : ch(ρc2, int),
c3 : ch(ρc3, int), and for each i ∈ {1, 2, 3},

di : ch(ρdi
, int, 〈0 [w(ρci

) 7→ 1
3], 0 [w(ρci

) 7→ 1
3], 0 [w(ρci

) 7→ 1
3]〉)

d′i : ch(ρd′

i
, int, 〈0 [w(ρc1

) 7→ 1
3], 0 [w(ρc2

) 7→ 1
3], 0 [w(ρc3

) 7→ 1
3]〉)

The initial static capability set for each process i is 0 [w(ρci
) 7→ 1, w(ρdi

) 7→
1, w(ρd′

i
) 7→ 1]. Note that fractional capabilities are passed at barrier synchro-

nization points to enable reads and writes on c1, c2, and c3.

Type inference fails if the program is changed so that d1, d2, d3 are also used
for the second barrier (in place of d′1, d

′

2, d
′

3) because while the first write to di

must send the capability to read ci, the second write to di must send to each
process j the capability to access cj , and there is no single type for di to express
this behavior. This demonstrates the flow-insensitivity limitation of our type
system, i.e., a channel must send and receive the same capabilities every time it
is used.

However, if synchronization points are syntactically identifiable (as in this
example) then the program is easily modified so that flow-insensitivity becomes
sufficient by using distinct channels at each syntactic synchronization point.5

In our example, the first barrier in each process matches the other, and the
second barrier in each process matches the other. Synchronizations that are not
syntactically identifiable are often considered as a sign of potential bugs [1]. Note
that reference cells c1 and c2 are not used for synchronization and therefore need
no syntactic restriction.

3.3 Extensions

We discuss extensions to our system.

Regions: Aliasing becomes an issue when channels are used as values, e.g., like in
a π calculus program. For example, our type system does not allow two different
channels c and d to be passed to the same channel because two different channels
cannot be given the same handle. One way to resolve aliasing is to use regions
so that each ρ represents a set of channels. Then, we may give both c and d the
same type ch(ρ, . . .) at the cost of sharing w(ρ) (and r(ρ)) for all the channels
in the region ρ.

Existential Abstraction and Linear Types: Another way to resolve aliasing is to
existentially abstract capabilities as in ∃ρ.τ ⊗ Ψ . Any type containing a capa-
bility set must be handled linearly6 to prevent the duplication of capabilities.
The capabilities are recovered by opening the existential package. Existential
abstraction can encode linearly typed channels [10, 8] (for rendezvous channels)
as: ∃ρ.ch(ρ, τ, 0 , 0) ⊗ 0 [w(ρ) 7→ 1, r(ρ) 7→ 1]. Note that the type encapsulates
both a channel and the capability to access the channel. This encoding allows
transitions to and from linearly typed channels to the capabilities world, e.g.,
it is possible to use once a linearly-typed channel multiple times. An analogous
approach has been applied to express updatable recursive data structures in the
capability calculus [13].

Dynamically Created Channels: Dynamically created channels can be handled
in much the same way heap allocated objects are handled in the capability

5 This can be done without changing the implementation. See named barriers in [1].
6 Actually, a more relaxed sub-structural type system is preferred for handling frac-

tional capabilities [11].

calculus [4] (we only show the rule for the case where c is rendezvous):

ρ is not free in the conclusion
Γ ∪ {c 7→ ch(ρ, τ, Ψ1, Ψ2)}, i, Ψ + 0 [w(ρ) 7→ 1][r(ρ) 7→ 1] ⊢ s : Ψ ′

Γ, i, Ψ ⊢ νc.s : Ψ ′

Existential abstraction allows dynamically created channels to leave their lexi-
cal scope. An alternative approach is to place the newly created channel in an
existing region. In this case, we can remove the hypothesis “ρ is not free in the
conclusion”, but we also must remove the capabilities 0 [w(ρ) 7→ 1][r(ρ) 7→ 1].

Dynamically Spawned Processes: Dynamic spawning of processes can be typed
as follows:

Γ, i, Ψ2 ⊢ s : Ψ ′

Γ, i, Ψ1 + Ψ2 ⊢ spawn(s) : Ψ1

(For simplicity, we assume that the local store of the parent process is copied for
the spawned process. Details for handling input buffered channels are omitted.)
Note that the spawned process may take capabilities from the parent process.

4 Related Work

We discuss previous approaches to inferring partial confluence. Kahn process net-
works [7] restrict communication to input buffered channels with a unique sender
process to guarantee determinism. Edwards et al. [5] restricts communication to
rendezvous channels with a unique sender process and a unique receiver process
to model deterministic behavior of embedded systems. These models are the
easy cases for our system where capabilities are not passed between processes.

Linear type systems can infer partial confluence by checking that each channel
is used at most once [10, 8].7 Section 3.3 discusses how to express linearly typed
channels in our system. König presents a type system that can be parameterized
to check partial confluence in the π-calculus [9]. Her system corresponds to the
restricted case of our system where each (rendezvous) channel is given a type of
the form ch(ρ, τ, 0 [w(ρ) 7→ 1], 0 [r(ρ) 7→ 1]), i.e., each channel sends its own write
capability at writes and sends its own read capability at reads. Therefore, for ex-
ample, while her system can check the confluence of !(c, 1); ?(c, x)||?(c, x); !(c, 2),
it cannot check the confluence of !(c, 1); !(c, 2)||?(c, x); ?(c, x).

A more exhaustive approach for checking partial confluence has been pro-
posed in which the confluence for every state of the program is individually
checked by following the transitions from that state [6, 2]. These methods are
designed specifically to drive state space reduction, and hence have somewhat a
different aim from our work. They have been shown effective for programs with
a small number of states.

This work was motivated by our previous work on inferring confluence in
functional languages with side effects [11] (see also [3]). These systems can only
reason about synchronization at join points, and therefore cannot infer conflu-
ence of channel-communicating processes.

7 [8] uses asynchronous π calculus, and so is not entirely comparable with our work.

5 Conclusions

We have presented a system for inferring partial confluence of concurrent pro-
grams communicating via a mix of different kinds of communication channels.
We casted our system as a capability calculus where fractional capabilities can
be passed at channel communications, and presented a type system for statically
inferring partial confluence by finding an appropriate capability passing strategy
in the calculus.

References

1. A. Aiken and D. Gay. Barrier inference. In Proceedings of the 25th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
342–354, San Diego, California, Jan. 1998.

2. S. Blom and J. van de Pol. State space reduction by proving confluence. In
Proceedings of the 14th International Conference on Computer Aided Verification,
pages 596–609, Copenhagen, Denmark, July 2002.

3. J. Boyland. Checking interference with fractional permissions. In R. Cousot, editor,
Static Analysis, Tenth International Symposium, volume 2694 of Lecture Notes in

Computer Science, pages 55–72, San Diego, CA, June 2003. Springer-Verlag.
4. K. Crary, D. Walker, and G. Morrisett. Typed memory management in a calcu-

lus of capabilities. In Proceedings of the 26th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 262–275, San Antonio,
Texas, Jan. 1999.

5. S. A. Edwards and O. Tardieu. Shim: a deterministic model for heterogeneous
embedded systems. In Proceedings of the 5th ACM International Conference On

Embedded Software, pages 264–272, Jersey City, NJ, Sept. 2005.
6. J. F. Groote and J. van de Pol. State space reduction using partial tau-confluence.

In Proceedings of 25th International Symposium on the Mathematical Foundations

of Computer Science 2000, pages 383–393, Bratislava, Slovakia, Aug. 2000.
7. G. Kahn. The semantics of a simple language for parallel programming. In Infor-

mation processing, pages 471–475, Stockholm, Sweden, Aug 1974.
8. N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. ACM

Transactions on Programming Languages and Systems, 21(5):914–947, Sept. 1999.
9. B. König. Analysing input/output-capabilities of mobile processes with a generic

type system. In Proceedings of the 27th International Colloquium on Automata,

Languages and Programming, pages 403–414, Geneva, Switzerland, July 2000.
10. U. Nestmann and M. Steffen. Typing confluence. In Proceedings of FMICS ’97,

pages 77–101, 1997.
11. T. Terauchi and A. Aiken. Witnessing side-effects. In Proceedings of the 10th ACM

SIGPLAN International Conference on Functional Programming, pages 105–115,
Tallinn, Estonia, Sept. 2005. ACM.

12. T. Terauchi and A. Aiken. A capability calculus for concurrency and determinism.
Technical Report UCB/EECS-2006-84, University of California, Berkeley, 2006.

13. D. Walker and G. Morrisett. Alias types for recursive data structures. In Interna-

tional Workshop on Types in Compilation, Montreal, Canada, Sept. 2000.

