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Abstract—We present an online, scalable method for inferring
the interactions among the components of large production sys-
tems. We validate our approach on more than 1.3 billion lines of
log files from eight unmodified production systems, showing that
our approach efficiently identifies important relationships among
components, handles very large systems with many simultaneous
signals in real time, and produces information that is useful to
system administrators.
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I. INTRODUCTION

We are interested in automatic support for understanding
large production systems such as supercomputers, data center
clusters, and complex control systems. Fundamentally, admin-
istrators of such systems need to answer variations of one
question: What parts of the system might affect X? Most
obviously, X may be the manifestation of a system bug and
the administrator is looking for the cause, but administrators
also need to answer questions about what affects resource
utilization (e.g., to eliminate performance problems), global
or local unexplained behavior (e.g., to decide whether the
unexpected behavior is actually a problem or not), and even
what aspects of the system should be monitored (with the
aim of logging all and only useful data), to give just a few
examples. Over a period of several years we have learned,
usually the hard way, that there are severe constraints on any
solution to this problem:

1) Lack of specification. In practice there is no description
of the correct behavior of the system. In fact, in all the
systems we have studied there is not even a list of all
the system’s components and their interactions—even
the administrators are unaware of what is inside some
parts of the system (e.g., third-party subsystems may be
black boxes). Administrators do have rules of thumb and
lists of known bad behaviors that they they watch for;
they also realize these lists are incomplete.

2) Minimally invasive monitoring. For reasons of cost,
performance, and system stability, administrators are
almost without exception unwilling to disturb the inner
workings of system components for the purposes of
better monitoring. It is often possible to add new logging
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of inputs and outputs to components, but even that nor-
mally must be justified as cost-effective for answering
some important question that cannot be answered using
existing logs.

3) Rapid turnaround. Answers to some of the most impor-
tant questions are only useful if they can be computed in
real-time. For example, administrators would like to set
standing queries that trigger an alarm when the system
first strays into a pattern of behavior that is known to
likely lead to severe problems or a crash.

In previous work we have addressed problems (1) and (2).
We assume only that some subset of the components have logs
with time-stamped entries (every system we have seen satisfies
this requirement). These logs are converted into time-varying
signals that are correlated, possibly with a time delay. The
strength of the correlation and direction of any delays allow
administrators to answer many useful queries about how and
when various parts of the system influence each other. All of
this computation, however, is offline [25], [27].

The primary contribution of this paper is an online method
for analyzing and answering questions about large systems.
Our approach retains the idea of computing correlations and
delays between component signals, but the semantic and
performance requirements of an online solution result in a
different design. In particular, we use a novel combination
of online, anytime algorithms that maintain concise models
of how components and sets of components are interacting
with each other, including the delays or lags associated with
those interactions. The types of questions our method is able
to answer online without the need for specifications or invasive
logging and the scalability of our approach are both new.

A system consists of a set of components, some of which
are instrumented to record timestamped log entries. These logs
are converted into real-valued functions of time called anomaly

signals, which encode when measurements differ from typical
or expected behavior. The process of converting raw logs into
meaningful anomaly signals is how the user encodes what
they know about the system as well as what they want to
understand. For example, a user might want the anomaly signal
to initially highlight an unusual error message and then mute
it once the error is understood. System administrators are
comfortable with this notion of an exploratory tool, which they
can adapt to reflect changes in the system, in their knowledge
of it, or in the questions they want to answer. While we discuss



this further in Section 3.1, the process of converting raw
measurements into anomaly signals is well-studied for a wide
variety of data types [11], [13], [15], [20], [25], [27], [39],
[40] and this paper focuses instead on how to use anomaly
signals to efficiently infer component interactions.

At every time-step or tick, we pass the most recent value
of every anomaly signal through a two-stage analysis. The
first stage compresses the data by finding correlated groups
of signals using an online, approximate principal component
analysis (PCA) [30]; we call these component groups subsys-

tems. This analysis produces a new set of anomaly signals,
called eigensignals, with one eigensignal corresponding to the
behavior of each subsystem; in other words, the behavior of the
entire system is summarized using a new, and much smaller,
set of signals. The second stage takes these eigensignals,
and possibly a small set of additional anomaly signals (see
Section III-C1), and looks for lag correlations among them
using an online approximation algorithm [34]. Although the
eigensignals are mutually uncorrelated by construction, they
may be correlated with some lag.

Figure 1 shows an example with three signals taken from
a production database (SQL) cluster: disk (an aggregated
signal corresponding to disk activity), forks (correspond-
ing to the average number of forked processes), and swap

(corresponding to the average number of memory page-ins).
The first stage of the analysis, the PCA, automatically finds
the correlation between disk and forks and generates a
single eigensignal that summarizes both of the original signals.
The second stage of the analysis takes the eigensignal and
swap’s anomaly signal, plotted in Figure 2, and discovers a
correlation: surprising behavior in the subsystem consisting
of disk and forks tends to precede surprising behavior
in swap. Our analysis, on these and several related signals,
helped the system’s administrator diagnose a performance bug:
a burst of disk swapping coincided with the beginning of
a gradual accumulation of slow queries which, over several
hours, crossed a threshold and crippled the server. In addition
to helping with a diagnosis, our method can give enough
warning of the impending collapse for the administrator to
take remedial action (see Section V-D2).

We describe our method in Section III and evaluate it
using nearly 100,000 signals from eight unmodified production
systems (described in Section IV), including four supercom-
puters, two autonomous vehicles, and two data center clusters.
Our results, in Section V, show that we can efficiently and
accurately discover correlations and delays in real systems
and in real time, and furthermore that this information is
operationally valuable.

II. RELATED WORK

There is an extensive body of work on system modeling,
especially on inferring the causal or dependency structure of
distributed systems. Our method distinguishes itself from most
previous work primarily in that we look for correlated behavior
called influence rather than dependencies [2], [10], [35], [41].
Two components share an influence if there is a correlation in
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Fig. 1: Three example anomaly signals. Greater distance from zero
(average) corresponds to more surprising measurements. The signals
disk and forks are statistically correlated.
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Fig. 2: The first eigensignal and swap. The downward spike in the
eigensignal consistently happens just before the spike in swap.

their deviations from normal behavior; influence is orthogonal
to whether or not the components share dependencies. Our
previous work has shown that influence is statistically robust
to noisy or missing data and captures implicit interactions like
resource contention [27]. The main contributions of this paper
are in computing both the strength and directionality (time
delay) of influence online, scaling to tens of thousands of
signals, and applying this tool to several administration tasks.

Previous work on dependency graphs typically assumes that
the system can be perturbed (by adding instrumentation or
active probing), that the user can specify the desired properties
of a healthy system, that the user has access to the source
code, or some combination of these (e.g., [22], [36]). We
discuss work that falls into each of these classes in greater
detail below. In our experience, it is often the case that none
of these assumptions hold in practice.

One common thread in dependency modeling work is that
the system must be actively perturbed by instrumentation or by
probing [4], [5], [8], [9], [33]. Pinpoint [6], [7] and Magpie [3]
track communication dependencies with the aim of isolating
the root cause of misbehavior; they require instrumentation of
the application to tag client requests. In order to determine the
causal relationships among messages, Project5 [1] and WAP5
[32] use message traces and compute dependency paths (none
of the systems we studied recorded such information). D3S
[21] uses binary instrumentation to perform online predicate
checks. Other work leverages tight integration of the system
with custom instrumentation to improve diagnosability (e.g.,
the P2 system [36]) or restrict the tool to particular kinds of
systems (e.g., MapReduce [29] or wide area networks [12],
[18], [19], [42]). Deterministic replay is another common
approach [14], [22] but requires supporting instrumentation.
For all eight of the production systems we study, we could
not apply any of these existing methods, and it was neither
possible nor practical for us to add instrumentation.

Some approaches require the user to write predicates in-



dicating what properties should be checked [21], [22], [36].
Pip [31] identifies when communication patterns differ from
expectations and requires an explicit specification of those
expectations. We have no such correctness predicates, models,
or specifications for any of the systems we study. Furthermore,
we encountered many instances where it would not have been
possible to write a sufficient specification of correct behavior
before diagnosing the problem—in other words, knowing what
property to check (e.g., creating a model suitable for model
checking) was equivalent to understanding the root cause.

Recent work shows how access to source code can facilitate
tasks like log analysis [40] and distributed diagnosis [16]. It
is worth noting that Xu et al. recently also used principal
component analysis in their work [39]; they use it to identify
anomalous event patterns rather than finding related groups of
real-valued signals. Although our system could be extended to
take advantage of access to source code, many systems involve
proprietary, third-party, or classified software for which source
code is unavailable.

A passive, black-box technique like ours has two potential
drawbacks in comparison with using dependencies. First, it
can only infer correlation, which does not imply causality.
Dependency-based techniques actually track cause and effect
and can say with certainty that certain events caused other
events to happen. Second, the correlations are only as good
as the log data, and less information about fewer compo-
nents will typically yield fewer and weaker correlations. In
practice, however, we have found that administrators already
gather enough information for our approach to discover useful
correlations and to imply causality using temporal ordering. In
Sections V-C and V-D, we demonstrate real situations in which
our method provides high-quality, actionable information, de-
spite these potential limitations.

Many interesting problems in systems arise when compo-
nents are connected or composed in ways not anticipated by
their designers [23]. As systems grow in scale, the sparsity of
instrumentation and complexity of interactions increases. Our
technique infers a broad class of interactions in unmodified
production systems, online, using existing instrumentation.

Our method uses an online principal component analysis
adapted from SPIRIT [30] and a lag correlation detection
algorithm called Enhanced BRAID [34]. We selected these
techniques because they make only weak assumptions about
the input data and have good performance and scalability char-
acteristics. This paper employs those two methods in several
novel ways: using the PCA as a dimensionality reduction to
make the lag correlation scalable, analyzing anomaly signals
rather than raw data as the input to permit the comparison
of heterogeneous components and the encoding of expert
knowledge, adding a mechanism for bypassing the PCA stage
that we use for standing queries, and, finally, applying these
techniques in the context of understanding production systems.

III. METHOD

Our method takes a difficult problem—understanding the
complex relationships among heterogeneous components gen-
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Fig. 3: Our method takes n anomaly signals and passes them to
a signal compression stage (performed using principal component
analysis). It then takes the resulting k eigensignals and those on the
watch list and passes these m signals to a lag correlation detector.
The listed output values are all available at any time.

erating heterogeneous logs—and transforms it into a well-
formed and computable problem: understanding the variance

in a set of signals. The input to our method is a set of
signals for which variance corresponds to behavior lacking
a satisfactory explanation. The first stage of our method tries
to explain the variance of one signal using the variance of
other signals; the standard technique for doing this is called
principal component analysis (PCA). However, PCA will miss
signals that co-vary with some delay or lag. The second stage
of our method identifies such lagged correlations. Furthermore,
we show how to encode and answer many natural questions
about a system in terms of time varying signals.

Consider a system of components in which a subset of
these components are generating timestamped measurements
that describe their behavior. These measurements are repre-
sented as real-valued functions of time called anomaly signals

(see Section III-A). Our method consists of two stages that
are pipelined together: (i) an online PCA that identifies the
contributions of each signal to the behavior of the system
and identifies groups of components with mutually correlated
behavior called subsystems (see Section III-B) and (ii) an
online lag correlation detector, which determines whether any
of these subsystems are, in turn, correlated with each other
when shifted in time (see Section III-C). Figure 3 provides an
overview of our approach.

A. Anomaly Signals

The input to our method is timestamped measurements from
components. The measurements from a particular component
are used to construct an anomaly signal. The value of an
anomaly signal at a given time represents how unusual or
surprising the corresponding measurements were: the further
from the signal’s average value, the more surprising.

As with any abstraction, anomaly signals are used to hide
details of the underlying data that are irrelevant for answering a
particular question. Thus, there is no single “correct” anomaly
signal, as any feature of the log may be useful for answering
some question. The abstraction may only lessen, rather than
remove, unwanted characteristics and may unintentionally
mute important signals, but the purpose of the anomaly signal
abstraction is to highlight the behaviors we wish to understand,
especially when and where they are occurring in the system.

Some measurements require a processing step to make
them numerical (see Section III-A1). In the absence of any
special knowledge about the system or the mechanisms that



generated the data, we have found that anomaly signals based
on statistical properties (e.g., the frequency of particular words
in a textual log) work quite well.

Administrators do not typically have a complete speci-
fication of expected behavior: systems are too complicated
and change too frequently for such a specification to be
constructed or maintained. Instead, they often have short lists
of rules about what kinds of events in the logs are important.
Anomaly signals allow them to encode this information (see
Section III-A1a).

A single physical or logical component may produce multi-
ple signals, each of which has an associated name. For exam-
ple, a server named host1 may be recording bandwidth mea-
surements as well as syslog messages, so the corresponding
signals might be named host1-bw and host1-syslog,
respectively. A single measurement stream may be used to
construct multiple anomaly signals: a text log might have one
signal for how unusual the messages are, overall, and another
signal for the presence or absence of a particular message.

Conversely, we don’t assume that all components have at
least one signal, and every real system we have examined has
multiple components that are uninstrumented. In fact, some
components were even unknown to the administrators. For this
reason, we can’t use techniques that assume instrumentation
for and knowledge of all components in the system.

1) Derived Signals: Non-numerical data like log messages
or categorical states must be converted into anomaly signals.
This process is well-studied for certain types of data, e.g.,
unstructured or semi-structured text logs [39], [40]. We use the
Nodeinfo algorithm [26] for textual logs and an information-
theoretic timing-based model [27] for the embedded systems
(autonomous vehicles), as both algorithms highlight irregular-
ities in the data without requiring a deep understanding of it.

Users may optionally preprocess numerical signals to en-
code what aspects of the measurements are interesting and
which are not. For example, daily traffic fluctuations may
increase variance, but this is not surprising and may be filtered
out of the anomaly signal. We apply no such filtering.

Although numerical signals can be used directly and there
are existing tools for getting anomaly signals out of common
data types, the more expert knowledge the user applies to
generate anomaly signals from the data, the more relevant
our results. In particular, the administrators of our systems
maintained lists of log message patterns that they believe
correspond to important events and they had a general un-
derstanding of system topology and functionality; we now
discuss how that knowledge can be used to generate additional
anomaly signals from the existing log data.

a) Indicator Signals: A user can encode knowledge of
interesting log messages using a signal that indicates whether
a predicate (e.g., a specific component generated a message
containing the string ERR in the last five minutes) is true or
false [25]. Although this is the simplest way to encode expert
knowledge about a log, indicator signals have proven to be
both flexible and powerful. Section V-C4 gives an example of
how indicator signals can elucidate system-wide patterns.

b) Aggregate Signals: A user can encode knowledge of
system topology (e.g., a set of signals are all generated by
components in a single machine rack) by computing the time-
wise average of those signals. This new signal represents the
aggregate behavior of the original signals; the time-average of
correlated signals will tend to look like the constituent signals
while the average of uncorrelated or anti-correlated signals will
tend toward a flat line. This has been shown to be a useful
way for the user to describe functionally- or topologically-
related sets of signals [25], and we see in Section V-C that
these aggregate signals often summarize important behaviors.

B. Stage 1: Signal Compression

A system may have thousands of anomaly signals, so being
able to efficiently summarize them using only a small number
of signals, with minimal loss of information, is valuable to
users of our approach and sometimes necessary to achieve
adequate online performance.

To compress the anomaly signals with minimal loss of infor-
mation, the first stage of our analysis performs an approximate,
online principal component analysis (PCA) [30]. This stage
takes the n anomaly signals, where n may be large, and
represents them as a small number k of new signals that are
linear combinations of the original signals. These new signals,
which we call eigensignals, are computed so that they capture
or describe as much of the variance in the original data as
possible; the parameter k is set to be as large as computing
resources allow to minimize information loss. This stage is
online, any-time, single-pass, and does not require any sliding
windows or buffering.

Although we refer the reader to the original paper for details
[30], we include a brief summary here for completeness. The
PCA maintains, for each eigensignal, a vector of weights of
length n, where n is the number of anomaly signals. At each
tick (time step), for each eigensignal, a vector containing the
most recent value of each anomaly signal is projected onto
the weight vector to produce a value for the eigensignal.
The eigensignals and weights are then used to reconstruct an
approximation of the original n signals. A check ensures the
resulting reconstruction has an energy that is sufficiently close
to that of the original signals; if not, the weights are adjusted
so that they “track” the anomaly signals. The time and space
complexity of this method on n signals and k eigensignals
is O(nk). An eigensignal and its weights define a behavioral

subsystem: a linear combination of related signals.
Recall the example from Section I. The first stage groups

disk and forks in the same subsystem, and in fact these two
signals are highly correlated. At this point, however, there is
no apparent relationship with the swap component. Note that
although PCA will tend to group correlated signals because
this efficiently explains variance, two signals being in the same
subsystem does not imply that they are highly correlated. This
is easily checked, though we omit the details. It has been
our experience that the signals with significant weight in a
subsystem are all well-correlated, which is also the justification



for picking the most heavily weighted signal in a subsystem
as the representative of that subsystem (see Section V-C3).

1) Decay: The PCA stage takes an optional parameter that
causes old measurements to be gradually forgotten, so the
subsystems will weight recent data more than older data. This
decay parameter is set to 1.0 by default, which means all
historical data is considered equally in the analysis. Previous
work used a decay parameter of 0.96 [30]. In our experiments,
we say ‘no decay’ to indicate a decay value of 1.0 and ‘decay’
to indicate 0.96. Note, however, that we do not explicitly retain
historical data, in either case.

Decay is useful for more closely tracking recent changes
(see Section V-C5) and for studying those changes over time
(see Section V-C1); if needed, an instance of the compression
stage with decay can be run in parallel to one without. We use
no decay except where otherwise indicated.

C. Stage 2: Lag Correlation

The first stage of our method extracts correlations among
signals that are temporally aligned, but delayed effects or clock
skews may cause correlations to be missed. The second stage
performs an approximate, online search for signals correlated
with a lag [34]; that is, signals that are correlated when one
is shifted in time relative to the other.

Again, we describe the lag correlation stage here for com-
pleteness, but refer the reader to the original paper for details
[34]. The cross-correlation between two signals gives the
correlation coefficients for different lags; the cross-correlation
can be updated incrementally, while retaining only a set of
sufficient statistics about the two input signals. To reduce the
running time, lag is computed only at a subset of lag values,
chosen so that smaller lags are computed more densely than
larger lags. To reduce space consumption, lags are computed
on smoothed approximations of the original signals. These op-
timizations yield asymptotic speedups and typically introduce
little to no error (see Section V-D3). The running time, per
tick, is O(m2), where m is the number of signals. The space
complexity is O(m2 log t), where t is the number of ticks.

One of the insights of our approach is that, without first
reducing the dimensionality of the problem, large systems
would generate too many signals for lag correlation to be
practical; one of the primary purposes of the PCA computation
is to perform this dimensionality reduction. Once the problem
is reduced to eigensignals and perhaps a small set of other
signals (see Section III-C1), lag correlation can often be
computed more quickly than the PCA (see Section V-A). In
other words, the first stage of our method ensures m << n

and makes lag correlation practical for large systems.
Recall the example from Section I. The lag correlation stage

finds a temporal relationship between the subsystem consisting
of disk and forks and the component swap, specifically
that anomalies in the former tend to precede those in the latter.

1) Watch List: The watch list is a small set of signals
that, in addition to the eigensignals, will be checked for
lag correlations. These signals bypass the compression stage,
which enables us to ask questions (standing queries) about

System Comps Log Lines Time Span
Blue Gene/L 131,072 4,747,963 215:00:00:00
Thunderbird 9024 211,212,192 244:00:00:00
Spirit 1028 272,298,969 558:00:00:00
Liberty 445 265,569,231 315:00:00:00
Mail Cluster 33 423,895,499 10:00:05:00
Junior 25 14,892,275 05:37:26
Stanley 16 23,465,677 09:06:11
SQL Cluster 9 116,785,525 09:00:47:00

TABLE I: The seven unmodified production system logs used in our
case studies. The ‘Comps’ column indicates the number of logical
components with instrumentation; some did not produce logs. Real
time is given in days:hours:minutes:seconds.

specific signals and to associate results with specific com-
ponents. There are several ways for a signal to end up on
the watch list: manual addition (e.g., a user complains that
a certain machine has been misbehaving), automatic addition
by rule (e.g., if the temperature of some component exceeds
a threshold), or automatic by selecting representatives for the
subsystems (see Section V-C3). A subsystem’s representative
signal is the anomaly signal with the largest absolute weight
in the subsystem that is not the representative of an earlier
(stronger) subsystem. In our experiments, we automatically
seed the watch list with the representative of each subsystem.

D. Output

The output of our method is the behavioral subsystems,
their behavior over time as eigensignals, and lag correlations
between those eigensignals and signals on the watch list. The
first stage produces k eigensignals and their weights. The
second stage produces a list of pairs of signals from among
the eigensignals and those on the watch list that have a lag
correlation, as well as the values of those lags and correlations.
This output is available at any time during execution.

IV. SYSTEMS

We evaluate our method on data from eight production
systems: four supercomputers, two data center clusters, and
two autonomous vehicles. Table I summarizes these systems
and logs, described in Sections IV-A–IV-C and elsewhere [24],
[25], [26], [28], [37], [38]. For this wide variety of systems—
without modifying, instrumenting, or perturbing them in any
way—our method builds online models of component and
subsystem interactions, and we use these results for several
system administration tasks.

The focus of this paper is on how to analyze anomaly
signals online to identify multi-component interactions, rather
than how to generate those anomaly signals in the first place,
so—for every system—we use the results of previous work
to pick algorithms to convert raw data into anomaly signals
and for picking predicates to generate indicator signals [25],
[26], [27]. These data are summarized in Table II. It has been
our experience that the results of our method are not strongly
sensitive to choices of these algorithms; for any reasonable
choice of anomaly signals, our method tends to group similar
components and detect similar lags.



System Ticks Tick= Signals Agg. Ind.
Blue Gene/L 2985 1 hr 69,087 67 245
Thunderbird 3639 1 hr 18,395 7 13,573
Spirit 11,193 1 hr 4094 7 3569
Liberty 5362 1 hr 372 4 124
Mail Cluster 14,405 1 min 139 4 102
Junior 488,249 0.04 s 25 0 0
Stanley 821,897 0.04 s 16 0 0
SQL Cluster 13,007 1 min 368 26 34

TABLE II: Summary of the anomaly signals for this study. We omit
ticks in which no logs were generated. The ‘Signals’ column indicates
the total number of anomaly signals, which includes the aggregate
(‘Agg.’) and indicator (‘Ind.’) signals.

A. Supercomputers

We use publicly-available logs from supercomputers that
were in production use at national laboratories [37]. These four
systems, named Liberty, Spirit, Thunderbird, and Blue Gene/L
(BG/L), vary in size by several orders of magnitude, ranging
from 512 processors in Liberty to 131,072 processors in
BG/L. The logs were recorded during production use of these
systems and we make no modifications to them, whatsoever.
An extensive study of these logs can be found elsewhere [28].
The log messages below were generated consecutively by node
sn313 of the Spirit supercomputer:

Jan 1 01:18:56 sn313/sn313 kernel: GM: There are 1

active subports for port 4 at close.

Jan 1 01:19:00 sn313/sn313 pbs_mom: task_check,

cannot tm_reply to 7169.sadmin2 task 1

We use an algorithm based on the frequency of terms in log
messages [26] to generate anomaly signals from the raw data.
This is a reasonable algorithm to use if nothing is known of
the semantics of the log messages; less frequent symbols carry
more information than frequent ones.

We generate indicator signals corresponding to known alerts
in the logs [26] using a process described in detail elsewhere
[25]. These signals indicate when the system or specific com-
ponents generate a message matching a regular expression that
is known to correspond to interesting behavior. For example,
one message generated by Blue Gene/L reads, in part:

excessive soft failures, consider replacing the card

The administrators are aware that this so-called DDR_EXC

alert indicates a problem. We generate one anomaly signal,
called DDR_EXC, that is high whenever any component of
BG/L generates this alert; for each such component (e.g.,
node1), there are also corresponding anomaly signals that
are high whenever that component generates the alert (called
node1/DDR_EXC) and whenever that component generates
any alert (called node1/*).

We also generate aggregate signals for the supercomputers
based on functional or topological groupings provided by
the administrators. For example, Spirit has aggregate signals
for the administrative nodes (admin), the compute nodes
(compute), and the login nodes (login). For Thunderbird
and BG/L, we also generate an aggregate signal for each rack.

B. Clusters

We also obtained logs from two clusters at Stanford Uni-
versity: 17 machines of a campus email routing server cluster
and 9 machines of a SQL database cluster. Of the 17 mail
cluster servers, 16 recorded two types of logs: a sendmail
server log and a Pure Message log (a spam and virus filtering
application). One system recorded only the mail log. The SQL
cluster was unique among the systems we studied in that it
recorded (a total of 271) numerical metrics using the Munin
resource monitoring tool (e.g., bytes received, threads active,
and memory mapped). For example, the following lines are
from the memory swap metric:
2009-12-05 23:30:00 6.5536000000e+04

2009-12-06 00:00:00 6.3502367774e+04

Each such numerical log was used without modification as
an anomaly signal. To generate anomaly signals for the non-
numeric content of these logs, we use the same term-frequency
algorithm as in Section IV-A.

As with the supercomputers, we generate indicator signals
for the textual parts of the cluster logs. Unlike the supercom-
puters, however, there are no known alerts, so we instead look
for the strings ‘error’, ‘fail’, and ‘warn’ and name these signals
ERR, FAIL, and WARN, respectively. These strings may turn
out to be subjectively unimportant, but adding them to our
analysis is inexpensive. We also generate aggregate signals
based on functional groupings provided by the administrators.
For example, the mail cluster has one aggregate signal for the
SMTP logs and another for the spam filtering logs; similarly,
we aggregate disk-related logs in the SQL cluster into a signal
called disk, memory-related logs into memory, etc.

C. Autonomous Vehicles

Stanley is the autonomous diesel-powered Volkswagen
Touareg R5 developed at Stanford University that won the
DARPA Grand Challenge in 2003 [38]. A modified 2006
Volkswagen Passat wagon named Junior placed second in
the subsequent Urban Challenge [24]. These distributed, em-
bedded systems consist of many sensor components (e.g.,
lasers, radar, and GPS), a series of software components that
process and make decisions based on these data, and interfaces
with the cars themselves (e.g., steering and braking). In order
to permit subsequent replay of driving scenarios, some of
the components were instrumented to record inter-process
communication. These log messages indicate their source, but
not their destination (there are sometimes multiple consumers).
We use the raw logs from the Grand Challenge and Urban
Challenge, respectively. The following lines are from Stanley’s
Intertial Measurement Unit (IMU):
IMU -0.001320 -0.016830 -0.959640 -0.012786 0.011043

0.003487 1128775373.612672 rr1 0.046643

IMU -0.002970 -0.015510 -0.958980 -0.016273 0.005812

0.001744 1128775373.620316 rr1 0.051298

In the absence of expert knowledge, we generate anomaly
signals based on deviation from what is typical: unusual terms
in text-based logs or deviation from the mean for numerical
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Fig. 4: Using prefixes of Stanley’s data (n = 16), we see that
compression rate is not a function of the number of ticks.
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Fig. 5: The lag correlation computation is not a function of the
number of ticks (n = 20). Each pair of data points corresponds
to one of our studied systems.

logs. Stanley’s and Junior’s logs contained little text and many
numbers, so we instead leverage a different kind of regularity
in the logs, namely the interarrival times of the messages.
We compute anomaly signals using an existing method based
anomalous distributions of message interarrival times [25]. We
generate no indicator or aggregate signals for the vehicles.

V. RESULTS

Our results show that we can easily scale to systems with
tens of thousands of signals and that we can describe most of a
system’s behavior with eigensignals that are orders of magni-
tude smaller than the original data; the behavioral subsystems
and lags our method discovers correspond to real system
phenomena and have operational value to administrators.

In this paper, we use a static k = 20 eigensignals rather
than attempt to dynamically adapt this number to match the
variance in the data (as suggested elsewhere [30]). It was our
experience that such adaptation resulted in overly frequent
changes to k. Instead, we set k to the largest value at which
the analysis is able to keep up with the rate of incoming
data. For the system that generated data at the highest rate
(Junior), this number was approximately 20, and we use this
value throughout.

As stated in Sections III-B1 and III-C1, we test decay values
of 1.0 (‘no decay’) and 0.96 (‘decay’) in agreement with
previous work, and we automatically seed the watch list with
representatives from the subsystems, except where noted.

We performed all experiments on a MacPro with two 2.66
GHz Dual-Core Intel Xeons and 6 GB 667 MHz DDR2 FB-
DIMM memory, running Mac OS X version 10.6.4, using a
Python implementation of the method.

Section V-A describes the performance of our analysis in
terms of time and Section V-B discusses the quality of the
results; we focus in these subsections on the mechanisms of the
analysis, rather than their applications. Then, in Sections V-C–
V-D, we discuss use cases for our method with examples from
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Fig. 6: The rate of ticks per second for the compression stage
decreases slowly with the number of signals; autoregressive weighting
(decay) has no effect on running time.
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Fig. 7: Although the compression rate decreases with the number of
signals, larger systems tend to update measurements less frequently.
The ratio between compression rate and measurement generation rate,
plotted, shows that the bigger systems are easier to handle than the
25 ticks-per-second data rate of the embedded systems.

the data. There are a variety of techniques for visualizing
the information produced by our analysis (e.g., graphs [25]);
this section focuses instead on the information our method
produces and the uses of that information.

A. Performance

Our method is easily able to keep up with the rate of data
production for all the systems that we studied.

The performance per tick does not degrade over time.
Figures 4 and 5 show processing rate in ticks per second for
the signal compression and lag correlation stages, respectively.
Across more than three orders of magnitude of ticks, from 100
to around 821,000, there is no change in performance. This is
in contrast to the naı̈ve PCA algorithm, whose running time
grows linearly with number of ticks.

The compression stage scales well with the number of sig-
nals (see Figure 6). For systems with a few dozen components,
the entire PCA state can be updated dozens of times per
second. Even with 70,000 signals, one tick takes only around 5
seconds. For such larger systems, however, the per-component
rate at which instrumentation data is generated tends to be
slower, as well. We require the rate of processing to exceed
the rate of data generation. As noted above, we chose a number
of subsystems that guaranteed this rate ratio was greater than
1 for all the systems we studied. The interesting fact is that
for many of the larger systems the ratio was much higher (see
Figure 7). In other words, the compression stage is sufficiently
fast to handle tens of thousands of signals that update with
realistic frequency. In fact, it was Junior, one of the smaller
systems, that had the smallest ratio of around 1.14. Junior’s
25 anomaly signals were updating 25 times per second.

In the event that a system were to produce data too quickly,
either because of the total number of signals or because of the
update frequency, we could reduce the number of subsystems
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Fig. 9: The cumulative fraction of total energy in Stanley’s first k
eigensignals. The bottom line shows the energy captured by the first
eigensignal; the line above that is for the first two eigensignals, etc.

(k), reduce the size of the watch list, or reduce the anomaly
signal sampling rate. This was not necessary for any of our
systems. Note that bursts in the raw log data, which can exceed
the average message rate by many orders of magnitude, are
absorbed by the anomaly signal and do not factor into this
discussion of data rate. Furthermore, we believe that future
work could parallelize both stages of our analysis, yielding
even better performance.

As Figure 8 shows, the lag correlation stage scales poorly
with the number of signals. Trying to run it on all 69,087
signals from BG/L, for example, is intractable. Our method
skirts this problem by feeding the lag correlation stage only
m signals: the eigensignals and signals on the watch list. The
vertical line at 40 signals represents the number we use for
most of the remaining experiments: 20 eigensignals and 20
representative signals in the watch list. Our method scales to
supercomputer-scale systems because m << n.

B. Eigensignal Quality

Previous work uses a measure called energy to quantify how
well the eigensignals describe the original signals [17], [30].
Let xτ,i be the value of signal i at time τ . The energy Et at
time t is defined as Et :=

1
t

�t
τ=1

�n
i=1 x

2
τ,i.

By projecting the eigensignals onto the weights, we can
reconstruct an approximation of the original n anomaly sig-
nals. If the eigensignals are ideal, then the energy of the
reconstructed signals will be equal to the energy of the original
signals; in practice, using k << n eigensignals and online
approximations means that this fraction of reconstruction
energy to original energy will be less than one.

Consider the autonomous vehicle, Stanley, which has 16
original signals. Figure 9 shows the energy ratio for the first
ten eigensignals; the lowest line is for the first eigensignal
only, the line above that represents the first two eigensignals,
then the first three, and so on. Figure 10 shows the incremental
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Fig. 10: The incremental additional energy captured by Stanley’s kth
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Fig. 11: The cumulative fraction of total energy in BG/L’s first k
eigensignals. The first ten eigensignals suffice to describe more than
90% of the energy in the system’s 69,087 signals.

energy fraction; that is, the line for k = 3 shows the amount
of increase in the energy fraction over using k = 2. Near
the beginning of the log, the PCA is still learning about the
system’s behaviors, so the energy fraction is erratic. Over time,
however, the ratio stabilizes. These experiments were without
decay, so the energy fractions show how well the compression
stage is able to model all the data it has seen so far. The
first ten eigensignals are able to model almost 100% of the
energy of Stanley’s 16 original signals (i.e., almost 38% of
the information in the anomaly signals was redundant).

For larger systems, we find more signals tend to be cor-
related and the number of eigensignals needed per original
signal decreases. Consider the cumulative energy fraction plot
for BG/L in Figure 11, which shows that the first eigensignal,
alone, contains roughly 33% of all of the energy in the system.

Figure 12 shows what fraction of energy is captured by the
first k eigensignals as a function of k

n . In other words, if we
think of the first stage of our method as lossy compression,
the figure shows how efficiently we are compressing the data
and with what loss of information. For systems like BG/L,
with many correlated subsystems, we can describe most of
the behavior with a tiny fraction of the original data. When
we let old data decay (see Figure 13), twenty eigensignals
is enough to bring the energy fraction to nearly one; for the
larger systems, this means we are compressing by orders of
magnitude with minimal information loss.

C. Behavioral Subsystems

In this section, we discuss some practical applications of
the output of the first stage of our analysis: the behavioral

subsystems. An eigensignal describes the behavior of a subsys-
tem over time; the weights of the subsystem capture how much
each original signal contributes to the subsystem. Components
may interact with each other to varying degrees, and our notion
of a subsystem reflects this fact.
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Fig. 13: When old data is allowed to be forgotten (decay), the
behavior of the system can be described efficiently using a small
number of eigensignals.

1) Identifying Subsystems: During the Grand Challenge
race, Stanley experienced a critical bug that caused the vehicle
to swerve around nonexistent obstacles [38]. The Stanford
Racing Team eventually learned that the laser sensors were
sometimes misbehaving, but our analysis reveals a surprising
interaction: the first subsystem is dominated by the laser sen-
sors and the planner software (see Figure 14). This interaction
was surprising because there was initially no apparent reason
why four physically separate laser sensors should experience
anomalies around the same time; it was also interesting that the
planner software was correlated with these anomalies more-
so than with the other sensors. As it turned out, there was
an uninstrumented, shared component of the lasers that was
causing this correlated behavior [25], [27] and whose existence
our method was able to infer. This insight was critical to
understanding the bug.

Administrators often ask, “What changed?” For example,
does the interaction between Stanley’s lasers and planner soft-
ware persist throughout the log, or is it transient? The output
of our analysis in Figure 15, which only reflects behavior near
the end of the log, shows that the subsystem is transient.
Most of the anomalies in the lasers and planner software
occurred near the beginning of the race and are long-since
forgotten by the end. As a result, the first subsystem is instead
described by signals like the heartbeat and temperature sensor
(which was especially anomalous near the end of the race
because of the increasing desert heat). We currently identify
temporal changes manually, but we could automate the process
by comparing the composition of subsystems identified by the
signal compression stage.

Subsystems can describe global behavior as well as local
behavior. Figure 16 shows the weights for Spirit’s first sub-
system, whose representative is the aggregate signal of all
the compute nodes; this subsystem describes a system-wide
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Fig. 14: Weights for Stanley’s first three subsystems. The left
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the subsystem; the second bar indicates its weight in the second
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Fig. 15: Weights of Stanley’s first three subsystems, with decay. The
subsystem involving the lasers (see Figure 14) has long since decayed
because the relevant anomalies happened early in the race.

phenomenon (nodes exhibit more interesting behavior when
they are running jobs). This is an example of behavior an
administrator might choose to filter out of the anomaly signals.
Meanwhile, the weights for Spirit’s third subsystem, shown in
Figure 17, are concentrated in a catch-all logging signal, sig-
nals related to component sn111, and alert types R_HDA_NR
and R_HDA_STAT (which are hard drive-related problems
[26]). This subsystem conveniently describes a specific kind
of problem affecting a specific component, and knowing that
those two types of alerts tend to happen together can help
narrow down the list of potential causes.

2) Refining Instrumentation: Subsystem weights elucidate
the extent to which sets of signals are redundant and which
signals contain valuable information. There is operational
value in refining the set of signals to include only those
that give new information. The administrator of our SQL
cluster stated this need as follows: “One of the problems with
developing a set of metrics to measure how well a particular
service is doing is that it’s very easy to come up with an
overwhelming number of them. However, if one wants to
manage a service to metrics, one wants to have a reasonably
small number of metrics to look at.”

In addition to identifying redundant signals, subsystems can
draw attention to places where more instrumentation would
be helpful. After our analysis of the SQL cluster revealed that
slow queries were predictive of bad downstream behavior, the
administrator said, “I wish I had connection logs from other
possible query sources to the MySQL servers to see if any
of those would have uncovered a correlation [but] we don’t
save those in a useful fashion. This is pointing to some real
deficiencies in our MySQL logging.”

3) Representatives: When diagnosing problems in large
systems, it is helpful to be able to decompose the system
into pieces. Administrators currently do this using topological
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many of the components.
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Fig. 17: Sorted weights of Spirit’s third subsystem. Most of the
weight is in a small subset of the components.

information (e.g., is the problem more likely to be in Rack
1 or Rack 2?). Our analysis shows that topology is often a
reasonable proxy for behavioral groupings. The representative
signal for the first subsystem of many of the systems are
aggregate signals: the aggregate signal summarizing interrupts
in the SQL cluster, the mail-format logs from Mail cluster,
the set of compute nodes in Liberty and Spirit, the components
in Rack D of Thunderbird, and Rack 35 of BG/L. On the other
hand, our experiments also revealed a variety of subsystems
for which the representative signals were not topologically
related. In other words, topological proximity does not imply
correlated behavior nor does correlation imply topological
proximity. For example, based on Figure 14, an administrator
for Stanley would know to think about the laser sensors and
planner software, together, as a subsystem.

A representative signal is also useful for quickly under-
standing what behaviors a subsystem describes. Figure 18
shows the anomaly signals of the representatives of the SQL
cluster’s first three subsystems. Based on the representatives,
we can infer that these subsystems correspond to interrupts,
application memory usage, and disk usage, respectively, and
that these subsystems are not strongly correlated.

4) Collective failures: Behavioral subsystems can describe
collective failures. On Thunderbird, there was a known system
message suggesting a CPU problem: “kernel: Losing

some ticks... checking if CPU frequency

changed.” Among the signals generated for Thunderbird
were signals that indicate when individual components output
the message above. It turns out that this problem had nothing
to do with the CPU; in fact, an operating system bug was
causing the kernel to miss interrupts during heavy network
activity. As a result, these messages were typically generated
around the same time on multiple different components. Our
method automatically notices this behavior and places these
indicator signals into a subsystem: all of the first several
hundred most strongly-weighted signals in Thunderbird’s third
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Fig. 18: The anomaly signals of the representatives of the first three
subsystems for the SQL cluster.
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Fig. 19: Reconstruction of a portion of Liberty’s admin signal using
the subsystems, including the periodic anomalies.

subsystem were indicator signals for this “CPU” message.
Knowing about this spatial correlation would have allowed
administrators to diagnose the bug more quickly [25].

5) Missing Values and Reconstruction: Our analysis can
deal gracefully with missing data because it explicitly guesses
at the values it will observe during the current tick before
observing them and adjusting the subsystem weights (see
Section III-B). If a value is missing, the guessed value may
be used, instead.

We can also output a reconstruction of the original anomaly
signals using only the information in the subsystems (i.e.,
the weights and the eigensignals), meaning an administrator
can answer historical questions about what the system was
doing around a particular time, without the need to explicitly
archive all the historical anomaly signals (which doesn’t scale).
Figure 19 shows the reconstruction of a portion of Liberty’s
admin anomaly signal. Most of this behavior is captured by
the first subsystem, for which admin is representative.

Allowing older values to decay permits faster tracking
of new behavior at the expense of seeing long-term trends.
Figure 20 shows the reconstruction of one of Liberty’s indi-
cator signals, with decay. The improvement in reconstruction
accuracy when using decay is apparent from Figure 21, which
shows the relative reconstruction error for the SQL cluster.
The behavior of this cluster changed near the end of the log
as a result of an upgrade; the analysis with decay adapts to
this change more easily.

D. Delays, Skews, and Cascades

In real systems, interactions may occur with some delay
(e.g., high latency on one node eventually causes traffic to be
rerouted to a second node, which causes higher latency on that
second node a few minutes later) and may involve subsystems.
We call these interactions cascades.

1) Cascades: The logs were rich with instances of individ-
ual signals and behavioral subsystems with lag correlations.
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Fig. 20: Reconstruction of a portion of Liberty’s R_EXT_CCISS
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Fig. 21: Relative reconstruction error for the SQL cluster, with and
without decay. Reconstruction is more accurate when old values
decay, especially during a new phase near the end of this log.

This includes the supercomputer logs, whose anomaly signals
have 1-hour granularity. We give a couple of examples here.

We first describe a cascade in Stanley: the critical swerving
bug mentioned in Section V-C1, which has previously been
analyzed only offline. Recall that the first stage of our analysis
identifies one transient subsystem whose top four components
are the four laser sensors and another subsystem whose
top three components are the two planner components and
the heartbeat component. The second stage discovers a lag
correlation between these two subsystems with magnitude 0.47
and lag of 111 ticks (4.44 seconds). This agrees with the lag
correlation between individual signals within the correspond-
ing subsystems; e.g., LASER4 and PLANNER_TRAJ have a
maximum correlation magnitude of 0.65 at a lag of 101 ticks.

In Section I, we described a cascade using three real signals
called disk, forks, and swap. These three signals (renamed
for conciseness) are from the SQL cluster and are the top
two components of the third subsystem and the representative
of the fourth subsystem, respectively. Our method reports
a lag correlation between the third and fourth subsystems
of 30 minutes (see Figure 22). The administrator had been
trying to understand this cascading behavior for weeks; our
analysis confirmed one of his theories and suggested several
interactions of which he had been unaware.

The administrator of the SQL cluster ultimately concluded
that there was not enough information in the logs to defini-
tively diagnose the underlying mechanism at fault for the
crashes. This is a limitation of the data, not the analysis.
In fact, in this example, our method both identified the
shortcoming in the logs (a future logging change is planned as
a result) and, despite the missing data, pointed at a diagnosis.

2) Online Alarms: Knowledge of a cascade may be action-
able even as the cascade is underway and even when we do
not understand the underlying cause. For instance, we can set
alarms to trigger when the first sign of a cascade is detected. In
the case of Stanley’s swerving bug cascade, the Racing Team
tells us Stanley could have prevented the swerving behavior
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Fig. 22: In the SQL cluster, the strongest lag correlation was found
between the third and fourth subsystems, with a magnitude of 0.46
and delay of 30 minutes. These eigensignals and their representatives’
signals (disk and swap, respectively), are shown above.
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Fig. 23: Our method reports that the signal swap tends to spike 210
minutes before interrupts, with a correlation of 0.271; we can
detect this online.

by simply stopping whenever the lasers started to misbehave.
Some cascades operate on timescales that would allow

more elaborate reactions or even human intervention. We tried
the following experiment based on two of the lag-correlated
signals reported by our method (plotted in Figure 23 and
discussed briefly in Section I): when swap rises above a
threshold, we raise an alarm and see how long it takes before
we see interrupts rise above the same threshold. We use
the first half of the log to determine and set the threshold to one
standard deviation from the mean; we use the second half for
our experiments, which yield no false positives and raise three
alarms with an average warning time of 190 minutes. Setting
the threshold at two standard deviations gives identical results.
Depending on the situation, advanced warning about these
spikes could allow remedial action like migrating computation,
adjusting resource provisions, and so on.

3) Clock Skews: A cascade discovered between signals or
subsystems that are known to act in unison may be attributable
to clock skew. Without this external knowledge of what should
happen simultaneously, there is no way to distinguish a clock
skew from a cascade based on the data; our analysis can
determine that there is some lag correlation, not the cause
of the lag. If the user sees a lag that is likely to be a clock
skew, our analysis provides the amount and direction of that
skew, as well as the affected signals.

Although there were no known instances of clock skew
in our data sets, we experimented with artificially skewing
the timestamps of signals known to be correlated. We tested
a variety of signals from different systems with correlation
strengths varying from 0.264 to 0.999, skewing them from
between 1 and 25 ticks. The amount of skew computed by our
online method never differed from the actual skew by more
than a couple of ticks; in almost all cases, the error was zero.



E. Results Summary

Our results show that signal compression drastically in-
creases the scalability of lag correlation (see Section V-A) and
that this compression process identifies behavioral subsystems
with minimal information loss (see Section V-B). Experiments
on large production systems (see Sections V-C–V-D) reveal
that our method can produce operationally valuable results
under common conditions where other methods cannot be
applied: noisy, incomplete, and heterogeneous logs generated
by systems that we cannot modify or perturb and for which
we have neither source code nor correctness specifications.

VI. CONTRIBUTIONS

We present an efficient, two-stage, online method for dis-
covering interactions among components and groups of com-
ponents, including time-delayed effects, in large production
systems. The first stage compresses a set of anomaly signals
using a principal component analysis and passes the resulting
eigensignals and a small set of other signals to the second
stage, a lag correlation detector, which identifies time-delayed
correlations. We show, with real use cases from eight un-
modified production systems, that understanding behavioral
subsystems, correlated signals, and delays can be valuable for
a variety of system administration tasks: identifying redundant
or informative signals, discovering collective and cascading
failures, reconstructing incomplete or missing data, computing
clock skews, and setting early-warning alarms.
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